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ARTICLE OPEN

SANA: cross-species prediction of Gene Ontology GO
annotations via topological network alignment
Siyue Wang1, Giles R. S. Atkinson1 and Wayne B. Hayes 1✉

Topological network alignment aims to align two networks node-wise in order to maximize the observed common connection
(edge) topology between them. The topological alignment of two protein–protein interaction (PPI) networks should thus expose
protein pairs with similar interaction partners allowing, for example, the prediction of common Gene Ontology (GO) terms.
Unfortunately, no network alignment algorithm based on topology alone has been able to achieve this aim, though those that
include sequence similarity have seen some success. We argue that this failure of topology alone is due to the sparsity and
incompleteness of the PPI network data of almost all species, which provides the network topology with a small signal-to-noise
ratio that is effectively swamped when sequence information is added to the mix. Here we show that the weak signal can be
detected using multiple stochastic samples of “good” topological network alignments, which allows us to observe regions of the
two networks that are robustly aligned across multiple samples. The resulting network alignment frequency (NAF) strongly
correlates with GO-based Resnik semantic similarity and enables the first successful cross-species predictions of GO terms based on
topology-only network alignments. Our best predictions have an AUPR of about 0.4, which is competitive with state-of-the-art
algorithms, even when there is no observable sequence similarity and no known homology relationship. While our results provide
only a “proof of concept” on existing network data, we hypothesize that predicting GO terms from topology-only network
alignments will become increasingly practical as the volume and quality of PPI network data increase.

npj Systems Biology and Applications            (2022) 8:25 ; https://doi.org/10.1038/s41540-022-00232-x

INTRODUCTION AND MOTIVATION
While much effort is devoted to prediction of protein function by
mapping sequence and structure to function, not all proteins have
analogs to ones with known function, and the sequence-function
relationship is far from 1-to-1: there can be functional similarity in
the absence of sequence similarity1–3, and conversely identical
sequences can possess multiple, completely different functions3–5.
Confusing matters further, minor changes in sequence can result
in significant changes to function6,7, and similar structure does not
always imply similar function8. However, one thing is Fcertain: a
protein’s function is intimately tied to its set of interaction
partners. Since protein–protein interaction (PPI) networks can be
measured directly, they potentially provide a road map to function
that avoids the complexities of relating sequence and structure to
function.
Given that all life on Earth is related, and that proteins derived

from genes that have even a remote a common ancestor often
share not only sequence but also functional similarity9, it is
reasonable to hypothesize that proteins in different species that
share common function might be aligned together by a network
alignment driven to maximize the number of common interac-
tions observed in an alignment. Stated in terms of graph theory,
we expect that nodes in two different PPI networks that share
common function should also share similar topology among their
network interactions. More succinctly, we expect network
topology and protein function to be related. Importantly, the
statement that proteins with similar function are likely to share
similar interaction partners does not require any sequence
relationship between the proteins claimed to have similar
function; similar network connectivity may be sufficient. This is
the basis on which we can hypothesize that topological network

alignment may be able to discover inter-species functional
orthology even in the absence of sequence similarity.
Unfortunately, PPI networks for most species are noisy10,

incomplete11, and biased12,13. Such data make it difficult to detect
common network topology, so that “failure to find network
conservation [between] species [is] likely due to low network
coverage, not evolutionary divergence”14. For example, the most
recent human PPI network from BioGRID (version 3.5.184, released
April 2020) contains 368,005 unique interactions amongst 17,815
unique human proteins; for comparison, the next most complete
mammal in the same release is mouse, which contains barely 6%
of the interactions of human, at only 22,903 interactions amongst
7543 unique mouse proteins. (Note that the numbers given on the
BioGRID website for each species include interactions with
proteins outside the named species. These must be removed in
order to extract the PPI network of the desired species. We also
remove self-interactions, to simplify the graph theory.) Given that
the number of edges in the human BioGRID network has
consistently grown by about 30% each year for the past decade
and shows no signs of leveling off, both networks must be
considered incomplete.
Given the highly disparate levels of PPI network completeness

between species, it may come as no surprise that, among the
more than fifty attempts in the literature at aligning PPI networks,
very few have been able to demonstrate a statistically significant
relationship between topological and functional or semantic
similarity, with most successes involving local network topology
as described by graphlets15–23. Instead, most authors under-
standably augment the objective function for network alignments
with sequence similarity of aligned proteins, and such methods
met with early success24 and continue to meet with success. The
problem with this approach is one of signal to noise: any novel
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functional information hidden in the weak signal that may exist in
the common topology between today’s (highly incomplete)
networks is likely to be “drowned out” by the much stronger—
and already well-understood—signal that exists between proteins
of similar sequence. Thus, network alignments driven by an
objective function that includes sequence similarity may lose the
opportunity to learn from any weak signal that may exist in the
topology of PPI networks but is obscured by little or no sequence
similarity.
What has been lacking in topology-driven network alignments

to date is a way to cut through the noise and incompleteness of
existing PPI network data to find the functional information
hidden in the noisy and incomplete topological data. Our solution
is to “fight fire with fire”, and utilize intentionally generated
randomness to separate signal from noise. Given two networks
whose topological similarity we wish to explore, we randomly
walk through the alignment search space, eventually converging
on a network alignment that exposes a near-optimal amount of
topological similarity. Since each random walk takes a different
path towards optimality, nodes that share the greatest amount of
topological similarity have the greatest chance of becoming
aligned across independent paths taken towards a near-optimal
solution. Our random walk through search space is generated
using simulated annealing, which has a rich history of success in
optimizing NP-complete problems25–37. Its randomness is key:
each run of our Simulated Annealing Network Aligner, or
SANA38,39, follows a different, randomized path towards an
alignment that uncovers close to the maximum amount of
common topology that can be discovered between two net-
works40. Since each path to a near-optimal alignment is different,
each run of SANA produces a different alignment-but all
alignments have nearly the same, close-to-optimal score. SANA
effectively produces a random sample from the frontier of near-
optimal alignments. If there is any weak signal of true common
topology between a pair of PPI networks, we would expect such
common topology to re-appear across these independently
generated, near-optimal alignments with a frequency above
random. In other words, the alignment of truly similar regions is
repeatable. For example, if SANA independently generates 100
alignments, the better-than-random re-alignment of regions with
better-than-random topological similarity manifests as a better-
than-random chance that individual pairs of proteins embedded
in these regions will appear at frequencies that are higher than
random chance would allow. Those pairs of proteins that appear
most frequently will tend to lie in regions with the greatest
amount of topological similarity, and consequently we would
expect such aligned pairs of proteins to have the highest
functional similarity among our aligned protein pairs.
We dub the result Network Alignment Frequency, or NAF. The

NAF of a pair of proteins (p, q) from different species measures the
propensity that they will align repeatedly across multiple
independently generated near-optimal alignments. We find that
NAF strongly correlates with Resnik’s Semantic Similarity (cf. Fig. 2).

Contribution
In this paper, our network alignments are driven by network
topology alone: the only input is two lists of protein–protein
interactions (PPIs)—one PPI network for each species. We
demonstrate that SANA’s network alignment frequency (NAF)
not only correlates with Resnik similarity, but is able to predict
novel GO annotations, even in the absence of detectable
sequence similarity. Our results are validated in two ways: with
predictions made in 2010 validated en masse by comparison with
GO terms available in 2020 (10 years later); and on a smaller scale,
with predictions made using data available in later 2018 manually
validated by literature search today. The latter predictions, based
on high NAF scores, were made by transferring GO annotations

from a mouse protein that was annotated with GO terms, to a
human protein that lacked such annotations and had no
detectable sequence similarity according to NCBI PSI-BLAST, nor
any known homology relationship using the latest available
orthology databases (see “Methods”).
Finally, we note that it is not merely the increase in data volume

over the past decade, but our method that has enabled these
results, since our 2010-based predictions used only data that was
available as of April 2010, and none of the network alignment
algorithms published in the intervening decade has successfully
leveraged topology alone to predict a significant number of GO
annotations with acceptable accuracy.
The outline of our paper is as follows: we describe Gene

Ontology annotations including which evidence codes we deem as
“involving sequence” (cf. Table 1 (bottom)), and introduce network
alignment (cf. Fig. 1) and the various measure of topological
similarity that we employ. We then define NAF—Network
Alignment Frequency—which is a measure of confidence for the
alignment of each protein pair output by our alignment algorithm
SANA38. Figure 2 then demonstrates that NAF correlates with
Resnik semantic similarity, while the large middle table of Fig. 2
shows that the correlation is especially strong when restricted to
proteins that are well-annotated. One of our most important results
is demonstrated in Fig. 3: the distribution of Resnik similarity scores
of network-aligned protein pairs is independent of whether the
pair possess sequence similarity. In other words, NAF uncovers
semantic similarity that is invisible to sequence-based methods.
Supplementary Table 1 lists the most dense regions of our network
alignments, sorted by mean degree, while Tables 2 and 3
demonstrate that prediction precision correlates strongly with
NAF in the regions with highest mean degree. Figure 4 (bottom)
presents AUPR curves for all 2010-based predictions of human GO
annotations validated in 2020; Table 4 and Supplementary Table 2
provide the associated F* measures. Finally, Tables 5 and 6 detail
novel predictions of human GO terms based on information
available in 2018 and manually validated by literature search.

RESULTS
Global network alignment
We focus on the Pairwise Global Network Alignment (PGNA)
problem: pairwise, because we align exactly two networks G1 and
G2 that have n1 and n2 nodes, and we assume without loss of
generality that n1 ≤ n2; global, because we aim to find a mapping
from every node in G1 to some node in G2; and network (as
opposed to sequence) alignment because we aim to use only the
network connectivity information (aka global network topology)
to guide creation of the network alignment (see “Methods” for a
formal definition). Figure 1 depicts a schematic diagram of a
small PGNA.

Network alignment quality measures
To demonstrate a relationship between network topology and
semantic similarity, we start by elaborating on how each is
measured.

Semantic similarity between pairs of individually aligned proteins.
Given a pair of proteins p∈ G1, q∈ G2, we measure their semantic
similarity using the “maximum” variant of Resnik Semantic
Similarity41,42 applied to Gene Ontology (GO) terms43 as
implemented by the Python package FastSemSim44. Every GO
term that annotates a gene or protein has an associated evidence
code describing the evidence that backs the annotation. Most
evidence codes are either based directly on experiment, or
inferred through some mechanism. Some mechanisms for
inferring GO annotations include sequence analysis. Since one of
our main goals is to demonstrate that NAF can highlight Resnik
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similarity in the absence of sequence similarity, we distinguish
between Resnik values that allow all types of evidence (“allGO”) vs.
those that disallow any evidence based on sequence ("NOSEQ”).
Table 1 (bottom) lists the evidence codes we disallow in the
latter case.

Topological similarity of a global alignment between two networks.
The topological similarity of an alignment between two networks
can be scored in many ways, including quantifying edge
overlap17,45,46, node “importance”47, graphlet similarity16,48,49,
graph edit distance50,51, and graph spectra52. While some work
has been conducted to compare how alignment strategies and
objective functions each independently affect the biological
relevance of an alignment46,53, our companion paper40 performs
the first comprehensive, level-playing field study to compare a
large number of topological measures for their ability to recover
biological information. Figure 1 provides a schematic example of

two purely edge-based measures: EC17 (variously called Edge
Correctness, Coverage, Correspondence, or Conservation by
various authors), and S3 (the Symmetric Substructure Score45).

Statistical sampling of stochastically-generated network
alignments using simulated annealing
Anybody who shakes a box of loose items in an attempt to make
the contents “settle” already intuitively understands annealing:
vigorous shaking re-initializes the system to a new random state,
while more refined shaking hones the solution towards a “settled”
state which is typically different each time. Crucially, all settled
states found by the same “shaking schedule” tend to end with
roughly equal energy, even though the final positions of the
package contents are different each time. In its essence, our NAF
detects pairs of proteins whose alignment is repeatable across
multiple, independent, stochastically generated, near-optimal
alignments.

Network alignment frequency (NAF). We say that a pair of proteins
that appears frequently in well-scoring topological alignments
have a high propensity to align together. For each of the 28 pairs
of BioGRID networks from Table 1 (top), we independently
generate 100 alignments, each driven to optimize the same
objective function for a 1 h run of SANA. (All runs used a 24-core
Intel X5680 CPU running at 3.33 GHz with 96 GB of RAM.) We
chose 1 hour because that was the shortest run that produced
objective function values within a few percent of the asymptotic
value of much longer runs40. Once the 100 runs are finished, we
count the frequency (minimum zero, maximum 100) that each pair
of aligned nodes appears across the 100 network alignments. The
result is NAF: a node-by-node output measure ϕpq, which is the
frequency, or propensity, of alignment between proteins p∈ G1,
q∈ G2. The higher the frequency, the higher the propensity for
alignment between p and q. Note that while many measures
exist16,17,21,46,48,49,52,54 for computing topological similarity

Table 1. TOP: BioGRID (version 3.4.164, downloaded Sept. 2018), sorted by number of edges.

Species ShortName Common name Nodes Edges Mean degree Max degree

H. sapiens HS Human 17,200 282,181 32.8 2385

S. cerevisiae SC Baker’s yeast 5984 104,962 35.1 3603

D. melanogaster DM Fruit fly 8728 46,364 10.6 266

A. thaliana AT Water cress 9364 34,725 7.42 1341

M. musculus MM Mouse 6777 18,108 5.34 1671

S. pombe SP Fission yeast 2811 8931 6.36 298

C. elegans CE Round worm 3194 5572 3.49 181

R. norvegicus RN Rat 2391 3554 2.97 808

Code Description of sequence-based evidence (i.e., disallowed in our predictions)

IBA curated transfer amongst related sequences Based on common Ancestry (derived by sequence comparison)

IEA Electronic Annotation (strong sequence-based evidence not directly traceable to experimental evidence)

ISM Inferred from sequence model

ISA Inferred from sequence alignment

ISO Inferred from Sequence Orthology

IGC Inferred from Genomic Context

RCA Inferred from Reviewed Computational Analysis

ISS Inferred from Sequence or Structural Similarity

The graphs are undirected; duplicate edges, self-loops and all interactions with proteins outside the specified species were removed.
BOTTOM: Sequence-based GO evidence codes disallowed in “NOSEQ” cases: Note that we are rather more Draconian in our interpretation of “sequence-
based” than is the norm: we disallow any code in which sequence could have had any influence, including manually curated sequence comparison. This
supports our hypothesis that NAF discovers semantic similarity “in the absence of sequence similarity”.

Fig. 1 A schematic depiction of a 1-to-1 Pairwise Global Network
Alignment (PGNA). The input graphs are G1 (blue, with fewer
nodes), and G2 (red). The network alignment can be depicted itself
as a network with two types of nodes (purple and red) and three
types of edges (purple, blue, and red). Aligned nodes and edges are
purple, depicting a mix of red and blue. Unaligned nodes and edges
retain the color of the graph they came from. Note that in the
aligned network, two common measures of topological network
similarity can easily be interpreted visually: EC= ∣purple edges∣/
∣purple+blue edges∣, while S3= ∣purple edges∣/∣edges of all colors
between purple nodes∣.
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Fig. 2 Two rows of figures at top plot the Resnik-based similarity vs. NAF between mouse-human (top row) and yeast-human (bottom
row). Top Table: Pearson correlation (ρ) and statistical significance of the plots. Middle Table: Filtering for well-annotated proteins, we see
higher Pearson correlations between NAF and Resnik score (allowing all evidence codes) that result when filtering for well-annotated protein
pairs in EC-driven alignments; N is the number of aligned protein pairs for which both proteins are annotated with at least S GO terms that are
each annotate at most M proteins per species. We exhaustively list every pair of BioGRID species for which the Pearson p-value is <10−2 for
S ≥ 8 and M ≤ 4; the table is sorted by ρ(S,M). Bottom Table: Pearson correlation between M, S, and ρ(S,M) above, across all species and values
M and S for which ρ(S,M) was statistically significant (see text for further discussion).
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between two nodes p ∈ G1, q ∈ G2, they are all pre-computed and
provided as input to the alignment process, remaining constant
throughout the process. Ours is the first topology-only network
alignment method to produce a pair-by-pair score as output.
The network alignment frequencies generated above by

multiple runs of SANA are a generalization of core alignments,
that were introduced by GRAAL17 and developed further by
H-GRAAL19. GRAAL used randomness only to break ties while
building an alignment greedily using graphlet measures, while
H-GRAAL used the Hungarian Algorithm to exhaustively enumer-
ate all optimal solutions to a given graphlet-based local measure.
In both cases, it was observed that there were a subset of aligned
protein pairs (the “core”) that appeared in all optimal alignments,
and that the mean semantic similarity measured across this core
of always-aligned protein pairs was higher than protein pairs
whose alignment partners changed between alignments. NAF
simply generalizes this idea to stochastically generated network
alignments that have been optimized to maximize some measure
of global topological similarity.
We note that even though SANA produces only 1-to-1 network

alignments on each individual run, the merged output of N such
alignments effectively produces many-to-many network align-
ments, with the added value of an output score for each possible
pair of nodes. This merging of multiple network alignments also
alleviates a potential problem called “low alignment coverage.” In
particular, it has been noted55 that 1-to-1 network alignment
algorithms do not provide alignment suggestions for all possible
nodes in both networks. Their solution was to combine the
outputs of several algorithms in order to improve this coverage.
However, our network alignment frequency measure makes this
unnecessary, since every possible pair of nodes can be assigned
an approximate propensity value; pairs that never appear are
simply assigned an approximate propensity of zero.

Correlation between semantic similarity and NAF
For each value ϕ of NAF, the mean Resnik similarity was computed
across all aligned protein pairs with at least frequency ϕ. We then
plotted the Resnik values of various subsets of pairs allowing
various subsets of GO evidence codes. We will depict our results
split across three “axes”: (a) which topological objective was being
optimized (our two examples here being EC17 and graphlet-
GDV16); (b) whether or not the aligned node pair possess
sequence similarity; and (c) whether we allowed the use of
sequence-based GO evidence codes when computing the Resnik
score. Before studying the details, we first draw attention to our

primary conclusion: when the aligned pair of proteins possess
sequence similarity, then sequence-based evidence codes provide
a “boost” to the Resnik score; conversely, this boost is impossible
for aligned pairs of proteins that do not possess sequence
similarity, resulting in a potential bias towards a low Resnik score
for such pairs. We stress that the separation of aligned protein
pairs into those that do, or do not, possess sequence similarity is
done after the fact: sequence plays absolutely no role in creating
our alignments or computing NAF. The sequence of events is (1)
create 100 alignments by optimizing a topology-only objective
function; (2) compute NAF for each pair of aligned proteins
observed in the 100 alignments; (3) compute two Resnik scores for
each pair of aligned proteins: one that allows the use of sequence-
based evidence codes, and one that does not; (4) finally, once all
scores are fixed (both NAF and Resnik), separate the aligned
protein pairs into two groups: those that possess sequence
similarity, and those that do not.
Figure 2 plots Resnik similarity vs. NAF in 12 “postage-stamp”

sub-figures, arranged with the top row of postage stamps
depicting alignments between mouse (MM) and human (HS),
and the bottom row between yeast (SC) and human. In each row,
the left three postage stamps (which we call a “column-triplet”)
depict alignments that were driven to optimize EC, while those in
the right column-triplet were driven to optimize Graphlet Degree
Vector Similarity16. Each “postage stamp” displays the mean (blue
line) and standard deviation (blue shaded area) of Resnik semantic
similarity (measured on the left axis with scores from 0 to 12)
between pairs of individually aligned proteins as a function of
NAF. The red line (right axis, logarithmic from 1 to 105) depicts the
number of pairs that aligned with that NAF or higher. Within each
column-triplet, the three columns depict:
(left) only those aligned protein pairs that possess sequence

similarity, and for which we allowed sequence-based evidence
codes in the Resnik score (column labeled at the bottom with
“seqSim/allGO”);
(mid) all aligned protein pairs, again allowing sequence-based

evidence (column “allPairs/allGO”);
(right) all aligned protein pairs, but disallowing sequence-based

evidence codes (column “allPairs/GO-NOSEQ”).
Note that the latter two columns of each column-triplet in Fig. 2

depict the same set of aligned node pairs, the only difference
being that the former allows sequence-based evidence codes
while the latter does not. Conversely, the first column of each
triplet lists only those pairs that actually possess sequence
similarity (see “Methods”).

Fig. 3 Protein pairs aligned by network topology alone have equal Resnik similarity—not including sequence-based evidence—
independent of whether they possess sequence similarity. Note the horizontal axis here is no longer NAF, it is annotation level of aligned
pairs across all those with NAF 2% or higher. We plot mean Resnik score as a function of annotation level for MMHS (left) and SCHS (right). In
each plot, aligned protein pairs (p, q) are binned along the horizontal axis into the integer part of the NetGO-based annotation detail111 of the
lesser understood protein. The vertical axis is mean Resnik score, with shading out to 1σ standard deviation of the pairs in that bin. Blue is
protein pairs with sequence similarity, red is those without. In all cases, the Pearson correlations are above 0.35 and have p-values below
10−300 before binning to take the mean, while the p-value of Pearson correlation of the binned means are about 2 × 10−3; the difference
between the means has p-value above 0.4—i.e., far from statistical significance. The Resnik scores here are significantly lower than those in
Fig. 2 for two reasons: first, we have, of necessity, removed all sequence-based evidence, and second, the mean is dominated by the high
number of low-NAF (NAF= 2%) pairs.
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In each column-triplet of Fig. 2, comparing the three postage
stamps reveals, respectively, that (1) allowing sequence-based
evidence significantly enhances the measured Resnik similarity,
but obviously only for that minority of pairs that actually possess
sequence similarity; (2) the sequence-similar pairs and their
sequence-based evidence enhance the mean Resnik similarity
across all aligned pairs, over the Resnik value obtained when (3)
no sequence-based evidence is allowed. (In the cases that the
semantic similarity trend reverses and starts to decrease with
alignment frequency, it is usually when the number of aligned
pairs is below 30, which can be attributed to statistical noise.)
Comparing the two objective functions, we see that EC achieves
maximum NAF frequencies of about 15–20 with mean Resnik
scores of about 4–8 (depending on whether we allow sequence-
based evidence). In contrast, the graphlet-GDV objective provides
hundreds of aligned pairs with very high NAF (up to 100), though
their Resnik scores are significantly lower on average. We will see
below that even with these apparent low scores, graphlet-based
objectives still retain significant predictive power. Supplementary
Fig. 1 shows that NAF correlates well with Resnik similarity even
when we separate GO terms based on biological process (BP),
cellular component (CC), and molecular function (MF), across all
aligned pairs and allowing all GO terms.

Table 2. Prediction precision by evidence code and NAF threshold
with H. sapiens as the target.

Pair Measure NAF #pred PIP #val Precision

Evidence code EXP

SC-HS EC 2 383 1903 159 41.5%

SC-HS EC 4 73 1903 30 41.1%

SC-HS S3 2 399 1903 150 37.6%

SC-HS S3 4 68 1903 22 32.4%

SC-HS Importance 2 412 1903 125 30.3%

SP-HS EC 2 49 1906 22 44.9%

SP-HS EC 4 7 1906 3 42.9%

Evidence code IPI

SC-HS ec+s3+Imp 4 10,917 19278 2305 21.1%

SC-HS ec+s3+Imp 7 19,075 19,278 6137 32.2%

SC-HS ec+s3+Imp 11 12,341 19,278 5436 44.0%

SC-HS ec+s3+Imp 17 8568 19,278 4655 54.3%

SC-HS ec+s3+Imp 29 2961 19,278 1838 62.1%

AT-HS ec+s3+Imp 2 10,600 7740 3471 32.7%

AT-HS ec+s3+Imp 4 6757 7740 3304 48.9%

AT-HS ec+s3+Imp 7 3416 7740 1945 56.9%

AT-HS ec+s3+Imp 11 1564 7740 937 59.9%

AT-HS ec+s3+Imp 17 610 7740 393 64.4%

AT-HS ec+s3+Imp 29 109 7740 79 72.5%

CE-HS ec+s3+Imp 2 8652 3703 4200 48.5%

CE-HS ec+s3+Imp 4 4482 3703 2603 58.1%

CE-HS ec+s3+Imp 7 1998 3703 1253 62.7%

CE-HS ec+s3+Imp 11 637 3703 410 64.4%

CE-HS ec+s3+Imp 17 133 3703 88 66.2%

CE-HS ec+s3+Imp 29 15 3703 10 66.7%

DM-HS ec+s3+Imp 2 18,858 8439 5701 30.2%

DM-HS ec+s3+Imp 4 10,119 8439 5473 54.1%

DM-HS ec+s3+Imp 7 6310 8439 3566 56.5%

DM-HS ec+s3+Imp 11 7546 8439 4358 57.8%

DM-HS ec+s3+Imp 17 3360 8439 2025 60.3%

DM-HS ec+s3+Imp 29 59 8439 43 72.9%

SP-HS ec+s3+Imp 2 8244 6974 2755 33.4%

SP-HS ec+s3+Imp 4 3026 6974 1669 55.2%

SP-HS ec+s3+Imp 7 1677 6974 1054 62.9%

SP-HS ec+s3+Imp 11 786 6974 529 67.3%

SP-HS ec+s3+Imp 17 347 6974 235 67.7%

SP-HS ec+s3+Imp 29 71 6974 53 74.6%

MM-HS ec+s3+Imp 2 8469 13394 3191 37.7%

MM-HS ec+s3+Imp 4 2629 13394 1489 56.6%

MM-HS ec+s3+Imp 7 849 13394 544 64.1%

MM-HS ec+s3+Imp 11 239 13394 148 61.9%

MM-HS ec+s3+Imp 17 31 13394 13 41.9%

MM-HS ec+s3+Imp 29 8 13394 5 62.5%

This table summarizes prediction precision as a function of NAF for species
aligned with human satisfying the degree-3 criterion. The species pairs are
presented in order of mean CCS degree, highest to lowest (cf.
Supplementary Table 1). We show predictions based on source evidence
codes EXP (top section) and IPI (bottom section) available in 2010 and
validated (with any evidence) in 2020. PIP means predictable in principle,
and refers to the absolute maximum number of predictions that would be
possible in principle given the information available as of April 2010 (see
text). To save space in the IPI case, we have conglomerated the measures
EC, S3, and Importance, since all three had similar validation rates at fixed
NAF (within 10% of each other in all cases). Also to save space, not all
values of NAF are listed here, but the Pearson correlation between NAF and
precision across all NAF values are presented below, in Table 3.

Table 3. Correlation between NAF and prediction precision for each
species pair, across rows similar to those in Table 2.

Pair Rows ρ p-value σ

SC-DM 18 0.8436 3.416 × 10−5 6.2844

SC-HS 17 0.8741 8.544 × 10−6 6.9706

MM-DM 14 0.709 0.0356 3.4823

SP-DM 18 0.5425 0.1937 2.5832

AT-HS 17 0.8338 0.0001243 5.8490

AT-DM 17 0.9301 1.284 × 10−8 9.8053

CE-HS 16 0.6352 0.07426 3.0771

MM-CE 16 0.9252 1.032 × 10−7 9.1228

MM-SP 16 0.7642 0.003988 4.4333

SP-AT 18 0.8393 4.496 × 10−5 6.1739

DM-HS 16 0.7672 0.003627 4.4753

AT-CE 17 0.8804 5.087 × 10−6 7.1898

SP-CE 18 0.8864 1.15 × 10−6 7.6598

CE-DM 15 −0.2407 0.4805 0.8943

SP-HS 17 0.7413 0.005154 4.2774

MM-HS 15 0.2273 0.5011 0.8418

RN-CE 16 0.7 0.02165 3.6677

MM-AT 14 0.9327 4.893 × 10−7 8.9604

RN-SP 6 0.8793 0.08192 3.6916

RN-DM 6 0.8885 0.06864 3.8726

RN-AT 6 0.9643 0.003344 7.2840

RN-MM 6 0.9068 0.04537 4.3019

TOTAL (non-normalized) 213 0.314 0.00023 4.74

TOTAL (normalized) 213 0.749 7.27 × 10−38 15.5

Each row represents one species pair with the NAF-precision correlation
across all measures. The second-last row is the correlation between NAF
and prediction precision across all species and all measures. However, as
seen in Table 2, the scaling between NAF and precision can differ
substantially across species, which muddles the correlation. We correct for
this in the final row, where we have normalized the NAF and precision to
their maximum values on a per-species basis.
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We move now to the tables below the postage stamps of Fig. 2.
The top table lists the Pearson correlations and statistical
significance of the plots. For the species pairs mouse-human
(“MM-HS”, top two rows) and yeast-human (“SC-HS”, bottom two
rows), we list the number of aligned protein pairs (“#aligs”) with NAF
score 2% or more, and compute the Pearson correlation between

NAF and Resnik using either GO terms of all evidence codes (middle
section) or excluding any GO terms with sequence-based evidence,
even if they also have non-sequence evidence (right section). In
each section we list the Pearson correlation ρ, the p-value computed
using Fisher’s r-to-z transformation, as well as the number of
standard deviations (σ’s) from random represented by that p-value.

Fig. 4 TOP (purple scatter plots): Mean precision of GO term predictions vs. alignment quality between all species pairs (left, Pearson
ρ= 0.19, p= 0.002, n= 511) and species pairs when human was the target (right, Pearson ρ= 0.61, p= 2 × 10−11, n= 107). In both cases,
alignment quality is measured as the product of NAF, EC, and mean degree of aligned nodes induced on the CCS with the given NAF.
Predictions were made using only BioGRID networks and GO terms available as of April 2010, and validated against GO terms available a
decade later (April 2020). Bottom: Precision-Recall of 2010-based NAF predictions of GO annotations for human proteins: Predictions are made
using only data available as of April 2010, validated against the GO release of April 2020. We omit any predictions in which the aligned
proteins had any known orthology or detectable sequence similarity. We plot precision vs. recall of predictions from global network
alignments between the network pairs where human is the target and which satisfy the degree-3 criterion, which are (left to right, top to
bottom) C. elegans, D. melanogaster, A. thaliana, S. pombe, S. cerevisiae, and M. musculus; the six figures are ordered by species from best-to-
worst by the mean AUPR of each figure. Within each figure, the legends are ordered best-to-wost by AUPR, and labeled by: AUPR, species pair,
measure of topological similarity, and predicting evidence code (i.e., the evidence code of the non-human protein used to source the
prediction for the aligned human protein). Precision is the number of correct predictions as a fraction of all predictions arising at the threshold
NAF, and the denominator of Recall is the cardinality of the set resulting from the intersection of the following two sets: Predictable in
principle pairs, and the annotations actually present in the April 2020 GO release (called the validating set—see “Methods”). See Table 4 for F-
scores.
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The correlations (ρ values) listed in the top table of Fig. 2 are on
the low side. The primary reason for this is due to lack of GO
information: the majority of proteins have few GO annotations, or
only very vague ones. The mathematical formulation of the Resnik
score41,42 requires that both proteins be well-annotated to achieve
a high score. This fact is clearly demonstrated in Supplementary
Fig. 4, where we see that the Resnik score between a pair of
proteins clearly increases as the number of annotations on the
less-well-annotated protein increases. For example, if only a small
fraction ε of proteins are well-annotated by some criterion, then
only a fraction ≈ ε2 of protein pairs will be well-annotated by the
same criterion. Luckily, our 100 alignments provide us with about
half a million pairs of aligned proteins for any given pair of species
—more than enough to allow us to filter for well-annotated pairs.
(If both proteins are well-annotated but with very different
annotations, then they will have a meaningful low score, as
opposed to a low score due to lack of information.)
To account for this, we now filter protein pairs for annotation

quality. First, note that a GO term’s specificity is inversely
proportional to how many proteins it annotates: GO terms that
annotate only a few proteins tend to provide more specific
information than vague GO terms that annotate thousands of
proteins. Furthermore, proteins annotated with highly specific GO
terms tend to be better understood than those that are not. In the
large middle table of Fig. 2, each row displays the correlation
between NAF and Resnik after filtering for well-annotated protein
pairs. In particular, for a given row labeled with (S,M) in the last
two columns, a protein pair is included only if each protein is
independently annotated by at least S distinct GO terms each of
which annotates at most M proteins per species. The table
exhaustively lists every statistically significant (p < 0.01) correlation

observed for S ≥ 8 and M ≤ 4 optimizing the EC objective, sorted
by ρ(S,M). For example, the top row depicts alignments between
the species pair CE-DM (worm C. elegans and fruit fly D.
melanogaster); although not depicted, the 100 CE-DM alignments
contained exactly 302,169 distinct protein pairs with non-zero
NAF; among these, there were only N= 23 in which both proteins
were annotated by at least S= 16 distinct GO terms each of which
annotated at most M= 1 proteins in its respective species. In other
words, these 23 protein pairs are very well understood—they each
possess least 16 GO terms that uniquely annotate that protein and
no other in its species. In this case, we see that correlation
between NAF and Resnik is ρ(S,M)= 0.661—much higher than the
correlations seen among the unrestricted protein pairs in the table
immediately above it.
The large middle table of Fig. 2 lists only a small subset of (S,M)

values we tested, which included all pairs where S and M
independently ranged from 1 to 1024 in powers of 2 (10 values
each), for both the EC and graphlet measures—200 rows per
species—across all 5

2

� � ¼ 10 pairs of the 5 best-annotated BioGRID
species: C. elegans, D. melanogaster, M. musculus, S. cerevesia, and
H. sapiens (CE, DM, MM, SC, and HS, respectively). Merging all of
these cases gives a table with 2,000 rows, each one with a NAF-
Resnik Pearson correlation ρ(S,M) and p-value. Of particular
interest is what happens when we compute the Pearson
correlation between ρ(S,M) and either S or M. More formally:
Given a pair of species s1, s2 and values of S and M each ranging
from 1 to 1024 in powers of 2, let ρ(S,M) refer to the Pearson
correlation between NAF and Resnik restricted to protein pairs
satisfying the S,M requirements. Out of the 2000 rows, there are
1599 in which the correlation ρ(S,M) is statistically significant
(p < 5 × 10−6, chosen to ensure a statistical significance of at least

Table 4. 2010-based predictions ranked by F*.

Rank F* NAF Pair M EvCode jP12 \ Γ02j pred Valid Precision

1 0.500 2% CE-HS S3 IPI 3443 3131 1643 52.5%

2 0.496 2% CE-HS Import. IPI 3443 3146 1634 51.9%

3 0.424 16% SP-AT Import. IPI 455 569 217 38.1%

4 0.417 16% SP-AT S3 IPI 455 577 215 37.3%

5 0.416 5% DM-HS S3 IPI 4080 3237 1521 47.0%

6 0.404 5% DM-HS EC IPI 5978 3204 1855 57.9%

7 0.375 8% SP-AT EC IPI 472 968 270 27.9%

8 0.358 2% CE-HS EC IPI 3443 2127 998 46.9%

9 0.346 2% AT-HS S3 IPI 5038 4360 1627 37.3%

10 0.341 2% AT-HS Import. IPI 5038 4365 1605 36.8%

11 0.340 8% MM-AT S3 IPI 725 768 254 33.1%

12 0.309 5% DM-HS Import. IPI 9018 3245 1895 58.4%

13 0.298 2% SP-HS S3 IPI 5380 4022 1401 34.8%

14 0.298 2% SP-HS Import. IPI 5380 3985 1394 35.0%

15 0.291 5% MM-AT EC IPI 755 1043 262 25.1%

16 0.277 1% CE-HS Lgraal IPI 3140 1511 644 42.6%

17 0.260 8% SP-AT graphlet IPI 455 808 164 20.3%

18 0.259 8% SP-AT Lgraal IPI 472 827 168 20.3%

19 0.257 1% SC-HS EC EXP 2111 1158 420 36.3%

20 0.249 2% AT-HS EC IPI 5038 3629 1080 29.8%

NAF: threshold that achieved F*; pair: species pair (cf. Table 1 (top)); M: topological measure; EvCode: evidence code supporting the annotation of the source
(non-human) protein that produced the predicted human protein annotation; jP12 \ Γ02j: intersection of the number of predictable in principle annotations
(P12, see “Methods”) with Γ02—all annotations available in the validation set. pred: number of predicted annotations made using the specified source evidence
code at the specified NAF (note this number can be bigger than the previous column since, clearly, any number of predictions can be made that may not
appear in the validating GO release). valid: the number of validated predictions by any non-sequence-based evidence code. Precision: number of predictions
that were validated.
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p < 0.01 after Bonferroni correction across 2000 rows); we find that
ρ(S,M) is itself correlated with each of S and M, independently.
Since this is a correlation of correlations, we refer to it as a
Pearson2. Observing the bottom table of Fig. 2, we see that there
is a strong and highly significant correlation with M (negative
because specificity increases as M decreases), and separately a
strong and highly significant positive correlation with S (the
number of such GO terms possessed by both proteins). The
correlation becomes even stronger if we use S/M as the
independent variable. In English, the bottom table of Fig. 2
demonstrates that the more we know about two proteins that
have been aligned, the better the correlation between their
alignment frequency (NAF) and their mutual Resnik score. This
observation suggests that high NAF scores tend to uncover
protein pairs with genuine high similarity, even if that similarity is
not (yet) well-documented with GO terms; in turn, this suggests
that NAF can be used as a measure of confidence that two
proteins possess GO-based semantic similarity.

The NAF-function postulate
In each column-triplet of Fig. 2, the second and third columns
(“allPairs”) show significantly lower Resnik scores than the first,
which plots only pairs that possess sequence similarity according
to BLAST (bitscore threshold 13, E-values allowed from 0 to 1000).
Since NAF aligns protein pairs based only on similar network
topology, and the tables of Fig. 2 strongly support the hypothesis
that NAF correlates with Resnik semantic similarity, we propose
the following:

NAF-function Postulate: protein pairs aligned at or above a
given Network Alignment Frequency (NAF) are drawn from a
single distribution of functional similarities, regardless of
whether or not they possess significant sequence similarity.

We provide evidence for the NAF-function Postulate below, but
if true, it suggests that, compared to the first column of each
column-triplet in Fig. 2, the lower scores of the second and third

Table 5. All zero-sequence-similar cilia-related GO term predictions from BioGRID mouse to human with NAF 8% or greater: NAF is the network
alignment frequency at which the Mouse protein was aligned to the Human protein.

NAF Mouse Human (& aliases) T Predicted cilia-related GO: term(s) Species+validation

16 MKS1 HDAC5 CLUH P 1905515, 0044458, 0060271, 0060122, F63,65 M,H64

16 MKS1 C 0005929, 0036064, 0035869

15 NPHP1 C 0031514, 0005929, 0035869, 0097546, 0032391

12 AHI1 P 1905515, 0060271

12 AHI1 C 0005929, 0036064, 0097730

13 SHANK3 CAND1 C 0060170 H66

12 SHANK3 RPL6 IRS4 C 0060170 H?67

12 IQCB1 CUL7 RAD51C P 0060271 H68

12 IQCB1 C 0032391

11 NPHP4 POLR3D CFTR C 0005929, 0036064, 0035869, 0097546, 0032391, 0097730 H69–71

10 APP CDH1 C 0035253 H72?73

10 SHANK3 EEF1A2 HNRNPU C 0060170 M?74

10 SHANK3 RPL18 ITGA5 C 0060170 R?76

9 IQCB1 RNF2 P 0060271 H77,78

9 IQCB1 C 0032391

9 FAM92A VCAM1 P 0060271 M79

9 FAM92A VCAM1 C 0036064, 0097546

8 IQCB1 VCAM1 P 0060271

8 IQCB1 VCAM1 C 0032391

9 NPHP4 MUC4 XPO1 C 0005929, 0036064, 0035869, 0097546, 0032391, 0097730 M80

8 DYNC1H1 RPS9 P 0003341 F87

8 HTT CUL5 NUP50 P 1905505, 1902857, 0045724 H81

8 AHI1 C1ORF87 P 1905515, 0060271 H88

8 AHI1 C 0005929, 0036064, 0097730

8 NPHP1 CCDC8 C 0031514, 0005929, 0035869, 0097546, 0032391 M,H82

8 FAM92A HIAT1 OBSL1 P 0060271 M,H85

8 FAM92A C 0036064, 0097546

8 NPHP3 LMOD1 SOD1 P 1905515, 0060271 M86

8 NPHP3 C 0005929, 0097543, 0097546

8 EPS8 RPLP0P6 C 0032426, 0032420, 0032421 Not validated

8 EPS8 CNBP MYCL C 0032426, 0032420, 0032421 H89

In all cases, the mouse protein was annotated with the specified GO terms but the human protein was not (even indirectly). T is “type” (P= Biological Process,
C= Cellular Component) of the predicted GO terms; predicted GO terms are listed with the leading “GO:” and leading zeros removed; Species
+Validation lists the species (H= human, M=mouse, R= rat, F= fish) for which cilia-related activity for that protein has been validated, along with the
reference for the corroboration—however, in all cases the authors of the citations strongly implied that their results were applicable to humans, though a
question-mark indicates the evidence was weak or only implicit.
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columns is spurious, because allowing GO terms derived from
sequence-based evidence will only benefit that minority of protein
pairs that actually possess sequence similarity; those pairs that do
not possess sequence similarity cannot benefit from sequence-
based evidence that does not exist. Of course, we are not claiming
that sequence-based evidence is untrustworthy; it is simply
inapplicable to protein pairs that do not possess sequence
similarity. If one assumes that the Resnik scores in the left column
(“seqSim/allGO”) are indicative of true similarity for protein pairs at
a particular NAF, then the NAF-Function Postulate asserts that the
Resnik scores in the second and third columns are artificially low.
In essence, the NAF-function postulate states: sequence-based
evidence doesn’t help when it doesn’t exist—but absence of evidence
is not evidence of absence. This, combined with the already-known
fact that functional similarity can exist despite little or no
detectable sequence similarity1–3, makes the NAF-function postu-
late a plausible extension of existing knowledge.
We now provide evidence for the NAF-function Postulate. First,

to apply a level-playing-field comparison of Resnik similarity
between pairs of nodes that may or may not share sequence
similarity, we disallow the use of sequence-based evidence in
computing the Resnik score (cf. Table 1 (bottom)). Surprisingly,
even after removing sequence-based evidence, sequence-similar
proteins retain a significant Resnik advantage at fixed NAF. Careful
investigation reveals that proteins with sequence similarity tend to
be better-annotated even with non-sequence evidence than those
without (Supplementary Fig. 3). While the reason behind this bias
in annotation levels is beyond the scope of this paper
(popularity?13), the effect is easily removed by accounting for
level of GO annotation. Figure 3 plots the mean Resnik score as a
function of annotation level (i.e., number of GO terms, disallowing
sequence-based evidence), across all aligned protein pairs with
NAF 2% or more. After separating those aligned protein pairs with,
and without, sequence similarity, we observe that the two curves
are statistically indistinguishable, suggesting that sequence
similarity plays little or no role in the NAF-Function Postulate. In
other words, while high sequence similarity is often sufficient to
infer functional or semantic similarity, it is by no means necessary:
removing sequence-based evidence and comparing the Resnik
similarity between protein pairs at equal annotation level, the
impact of sequence similarity on semantic similarity is negligible.
More to the point, this suggests that when two proteins without
sequence similarity are aligned with NAF at or above some
threshold ϕ, their semantic similarity tends to be about the same

as equal-NAF pairs with sequence similarity. While Fig. 3 only
demonstrates this for ϕ= 2, the previous sentence equates to the
NAF-Function Postulate.
Finally, we note the obvious fact that protein pairs with high

sequence similarity are rare among the space of all protein pairs,
which is why—when it occurs—sequence similarity correlates well
with semantic similarity. Similarly, protein pairs with high
topology-based network similarity (as quantified by NAF) are also
rare in the space of all protein pairs, and that network similarity
correlates equally well with semantic similarity. Figure 3 estab-
lishes that topological network similarity also correlates with
functional and semantic similarity, independent of whether the
topologically-aligned protein pairs share sequence similarity.

NAF predicts common GO terms even in the absence of
sequence similarity
The bottom two tables in Fig. 2 show than when both proteins are
well-annotated, we observe a strong positive correlation between
NAF and the demonstrable similarity between the pair of proteins
aligned. This suggests that NAF can be used as a measure of
confidence that two proteins share some common set of GO
terms: if two proteins are aligned with high NAF but only one of
them is well-annotated, there is a basis for using the GO terms
possessed by one as predictions of GO terms possessed by the
other, with NAF providing a measure of confidence of the
predictions. Here we test this hypothesis in several ways.

Predictions from the year 2010, validated today. To demonstrate
that NAF’s success is not simply due to the greater amount of
network data available today than previously, we have performed
the required 100 alignments on the same species as in Table 1
(top), but using BioGRID 3.0.64, released on 23 April 2010. We then
used the Gene Ontology release of the same month to predict
novel (as of April 2010) GO annotations between species, as
follows: Let pg,e represents the fact that protein p is annotated
with GO term g, supported by evidence code e. For each pair of
proteins (p, q) aligned by SANA with NAF ≥ ϕ, assume we wish to
use the GO terms of p (the “source”) to predict those of q (the
“target”). For each GO term g from the source protein p, and for
each evidence code e relating p to g, we increment a counter qg,e
by ϕ. Note that this allows GO terms and their evidence codes for
target q to accumulate across different proteins p of the source
species—essentially, if q is aligned with multiple proteins p and all
of these alignment partners agree than q should be annotated

Table 6. GO terms present in Mouse Fancd2 but not Human Trim25, along with the global frequency of the GO term, the evidence code, the GO
Category (Biological Process, Cellular Component), and description.

GO term freq Evidence Cat Description

GO:0005634 14,731 IDA C Nucleus

GO:0034599 285 IGI P Cellular response to oxidative stress

GO:0000793 100 IDA C Condensed chromosome

GO:0048854 55 IGI P Brain morphogenesis

GO:0097150 47 IGI P Neuronal stem cell population maintenance

GO:0006974 673 IMP P Cellular response to DNA damage stimulus

GO:0050727 84 IMP P Regulation of inflammatory response

GO:0007129 72 IMP P Synapsis

GO:0007276 44 IMP P Gamete generation

GO:0051090 29 IMP P Regulation of DNA-binding transcription factor activity

GO:0045589 20 IMP P Regulation of regulatory T cell differentiation

GO:2000348 4 IMP P Regulation of CD40 signaling pathway

Top section: Non-IMP-based GO term predictions, sorted from most general (high frequency in the 2nd column) to most specific (low frequency). Bottom
section: GO terms predicted by the IMP evidence code, for which we did not attempt literature validation due to time constraints.
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with GO term g, then the NAF value accumulates across all such
p’s. For example, if a GO term appears among multiple non-
human proteins each aligned with the same human one, all
contribute to the score of the human protein being annotated
with that GO term, with that evidence code. At the end, we have a
cumulative score for q being annotated with g, across various
evidence codes e. If the cumulative score is above a pre-specified
threshold Φ (used in precision-recall calculations, see “Methods”),
it counts as a prediction. We then validate these predictions by
checking to see if the predicted GO term shows up as annotating
the human protein in a later release of the GO database. We find
that the validation rate depends heavily on the evidence code
used to justify the annotation of the non-human protein. By far
the evidence codes with the greatest predictive power (from
2010) are IPI (Inferred from Physical Interaction), EXP (experimen-
tally determined), and IDA (Inferred from Direct Assay), in that
order. (Keep in mind that these are the evidence codes for the
source protein—the non-human one.) This resulted in over 3000
novel annotations to almost 4000 human proteins, including 137
human proteins that had zero GO annotations as of April 2010.
We made every effort to exclude annotations that could have

been either predicted, or validated using any form of sequence
information. In particular, we eliminated from consideration (1)
any pair of proteins that had sequence similarity according BLAST
(used with its default parameters resulting in bit scores of 13 or
higher); and (2) any pair of proteins listed as orthologs—even
distant ones—in any of NCBI Homologene, InParanoid 856, or the
2019 release of EggNog57. In addition, we excluded any GO
annotation that was supported by any sequence-based evidence
code, even if it also had non-sequence-based evidence. Finally,
this procedure was applied both to the 2010 GO release from
which GO term predictions were sourced, as well as 2020 GO
release which was used to validate predictions. Though these
conditions are likely more stringent than one would want in a
production-level prediction pipeline, our goal here is to demon-
strate that none of the predictions discussed below could have
been made, or even validated, using any form of sequence
information. In short, the predictions below should be largely
orthogonal to predictions that are based on sequence analysis.
In the process of studying prediction precision, we discovered

that some sets of 100 alignments provided few validated
predictions even with a high NAF threshold. Investigation revealed
that the alignments in question had little topology in common
despite the high NAF of the aligned nodes. In particular, given a
set of nodes with NAF above a threshold, the Common Connected
Subgraph (CCS) is the set of edges in common among the aligned
nodes—cf. the purple edges emanating from purple nodes in Fig.
1. We found that prediction precision suffered significantly in two
distinct cases. By far the most frequent case was when the mean
degree of (purple) nodes of the CCS were low even with high EC
or S3 scores (cf. Fig. 1)—in other words, while most edges were
aligned, there simply were not very many of them—possibly
meaning the high EC and S3 were due to chance. Less frequently,
we found cases where the mean degree of the CCS was high, but
the number of non-aligned edges was even higher, making both
the EC and S3 scores low. Figure 4 (top) quantifies this effect by
plotting prediction precision vs. “alignment quality” as measured
by the product of NAF, and the EC and the mean degree of nodes
in the CCS induced with that NAF. Importantly, like NAF, this
measure of “alignment qualtity” is computable a priori as part of
the alignment output. Since the low-degree case was by far the
most frequent cause of low prediction precision, for the purposes
of this paper we will arbitrarily apply a lower bound of 3 on the
mean degree of the induced CCS to eliminate cases of low
prediction precision; we call this the degree-3 threshold, and leave
to future work how to more rigorously choose such a bound.
Supplementary Table 1 shows, for each species pair and each

measure, the NAF value that achieved the highest mean degree

Dmax on the resulting induced CCS. Surprisingly, although the
edge-based measures EC, S3, and Importance frequently reach the
degree-3 threshold, we observe that the graphlet-based measures
rarely result in a mean degree above 1, and never above 3. Table 2
depicts the prediction precision as a function of NAF for all species
paired with human (HS), so long as the mean degree of the CCS
was above 3; only RN (Rattus norvegicus) failed to satisfy the
degree-3 threshold (cf. Supplementary Table 1). Observe that in
IPI section of Table 2, the prediction precision generally
increases with NAF. Table 3 expands on this by showing that
the prediction precision almost always has a strong positive
correlation with NAF (though in some cases not enough distinct
NAF values exist to make the correlation statistically significant,
and the one case with a negative correlation is far from statistical
significance). These correlations corroborate the hypothesis that
higher NAF provides greater confidence that the aligned protein
pair share common GO terms.
Armed now with the knowledge of which species pairs have

“robust” alignments based on the mean degree-3 threshold of the
CCS, Fig. 4 (bottom) presents precision-recall curves using NAF
thresholds, across the 6 species aligned with human that satisfied
the degree-3 threshold, broken down by predicting evidence code
and measure of topological similarity used to drive the alignment.
The number of predictions are not depicted, but for example GO
terms with IPI evidence in 2010 from yeast and fly produced 2959
and 2050 validated, novel GO annotations of human proteins,
respectively; EXP produced 367 and 187, respectively. Other
evidence codes for these species had AUPR’s below 0.01, though
some other species pairs had non-negligible AUPRs (see
Supplementary). Table 4 lists the top 20 sets of predictions across
all species pairs satisfying the degree-3 threshold, ranked by F*
(best F1 score), broken down by GO evidence code; Supplemen-
tary Table 2 does the same for GO category (Biological Process,
Cellular Component, Molecular Function). We see from Table 4
that the most successful evidence code for making predictions is
IPI (Inferred through Physical Interaction), while Supplementary
Table 2 shows that GO terms in the category Molecular Function
are by far the most successfully predicted. These conclusions may
change as the date of prediction moves forward.
We note that, even though these predictions are made with 10-

year-old networks, our best AUPRs are competitive with the best
sequence- and structure-based predictors in the 2017 CAFA3
competition as well as recent algorithms comparing themselves to
CAFA358–62. (It is impossible to compare directly against CAFA
because no PPI network data is available for the species used in
CAFA.) We emphasize again, however, that our predictions were
neither made nor validated using sequence information, and so we
believe our predictions are orthogonal to those that are possible
from CAFA, and thus purely additive to existing prediction
methods. Finally, it is interesting to note the high quality of these
predictions even though Resnik-NAF correlations are much weaker
in 2010 data than in Fig. 2 (Supplementary Fig. 2).

Predictions using 2018 data, validated today by literature search.
The painstaking effort required to create the Gene Ontology
database by human curation of the literature necessarily means
that the GO database lags behind knowledge available in the most
recent, live literature. Thus, we repeated the same effort as we did
for 2010, but using BioGRID 3.4.164 (Sept. 2018, the same release
as was used in Figs. 2 and 3), using the GO database of the same
month. Our goal is to produce bona fide predictions of GO
annotations to human proteins. We expect that the relevance of
inter-species GO term predictions will be highest when (a) the two
species are as closely related as possible; and (b) both PPI
networks are as complete as possible. Thus, we choose to align the
human PPI network with that of mouse, since mouse and human
are both mammals, and mouse has the most complete
mammalian PPI network after human.
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All below predictions of the annotation of human protein p with
GO term g are bona fide predictions, in the sense that the
annotation of p with g was not present in the Sept. 2018 GO
release, either directly, nor by inference on the GO hierarchy. For
reference, out of the ~150,000 GO annotations to human proteins,
only 340 (0.23%) contained the word “cilia”; the numbers for
mouse were comparable, at 285 out of 110,000 (0.26%).

Literature validation of our top cilia-related GO term predictions.
To keep our job of manual literature curation tractable, we
narrowed the scope to cilia-related predictions from mouse to
human with a NAF of 8% or greater, with cilia chosen on the
advice of a senior curator of the Gene Ontology Consortium
(Karen Christie, personal communication). We use cilia-related GO
annotations of mouse proteins to predict the same GO annota-
tions to human proteins lacking such annotations. We avoid all
cases that could be related via sequence or orthology—in other
words, we omit predictions where the aligned mouse and human
proteins had any known orthology or detectable sequence
similarity, even if the mouse protein had an annotation that the
human one did not. Table 5 shows that these predictions achieve
a high rate of literature validation. We stopped at NAF= 8 since
lower values of NAF had dozens to hundreds of predictions, which
is too many to validate manually.
Below we provide a brief summary of each citation used in

Table 5 that was used as evidence of cilia-related activity. There
are 19 distinct human proteins with predicted cilia-related
annotations; only 1 was entirely unvalidated; an additional 6 were
validated for a non-human ortholog to the human protein without
explicit mention of whether the prediction is expected to be valid
for the human ortholog; and an additional 4 have what we would
describe as “weak” human validation. The resulting validation
rates are 18/19 (95%), 12/19 (63%), and 8/19 (42%). In the case of
“weak” validation, it is possible that, rather than directly
transferring the specified GO term, it may be more appropriate
to transfer a less specific GO term higher in the GO hierarchy.
Determining when this is the appropriate action is an area of
future research.

● HDAC5 upregulates MEF2C; in turn, MEF2C is known to be
missing during metastasis, the latter of which is necessary for
ciliogenesis; conversely, inhibition of HDAC5 suppresses cyst
formation that disrupts cilia formation63. HDAC5’s upregula-
tion of MEF2C also causes malformed cilia which can be
rescued by knockdown of MEF2C64; HDAC5 morphant
Zebrafish exhibit shorter cili65.

● CAND1 is a centrosome protein known to regulate centro-
some amplification; CAND1 knockdown in mice inhibits airway
ciliogenesis66.

● RPL6 is a centrosomal marker among a selection of known or
candidate centrosomal proteins [ref. 67, Figure 18.2].

● CUL7 Reduction in CUL7 expression is associated with defects
in centrosome and cilia formation68.

● CFTR at the molecular level is involved in chloride transport,
but loss of function of CFTR disrupts cilia in lung tissue,
causing cystic fibrosis (CF); direct delivery of CFTR to the lung
is an active research area in the fight against CF69–71.

● CDH1: there seems to be some controversy as to whether
CDH1 does72, or does not73, affect cilia.

● HNRNPU: there is indirect evidence in a mouse model
specifically designed to model human ciliopathy that HNRNPU
interacts with SLP374, a known cilia-active protein75.

● RPL18 (Ribosomal Protein L18) is one of 268 proteins
identified in a rat cilia preparation [ref. 76, Table 1]; admittedly,
the evidence here is weak as they make no further mention
of RPL18.

● RNF2 is regulated by known BBS (cilial dysfunction) genes77,78.
● VCAM1 is expressed on the ciliary body of mouse retinal cells

modeled to study human autoimmune disorders79.
● XPO1 aids ciliary Gli2 export in mice80.
● CUL5 knockdown weakly suppresses ciliogenesis in human

epithelial cell cultures81.
● CCDC8, OBSL1, and CUL7 form a centrosomal complex82 in

mice83 and cultured human cells84; this complex is implicated
in 3M Syndrome (same references, but also as studied in
human HEK293T cells85).

● SOD1 mutations are of interest because they are associated
with a minority of the familial version of the muscular disease
ALS; it has been shown than SOD1 mutations inhibit
ciliogenesis in motor neurons in mice86.

● RPS9 is known to be expressed in cells bearing motile cilia of
model fish species87.

● C1ORF87 is found in high abundance in human airway cilia88.
● CNBP integrity of the primary cilium is necessary to induce

CNBP in human cancer stem cells89.

We note that, of the GO term predictions in Table 5, 20 are
Cellular Component (C), 11 are Biological Process (P), while none
are Molecular Function (F). For this reason it would be misleading
to label the results of this paper as “functional prediction”. The
biggest contributing factor to the lack of functional predictions is
likely the fact that, of the 285 cilia-related mouse annotations, 205
are Cellular Component, 71 are Biological Process, and only 9 are
Molecular Function. Thus, there is simply a dearth of truly
functional annotations of cilia-related mouse proteins from which
to draw predictions. A second likely contributing factor is, again,
the dearth of network data which likely allows proteins to be
aligned close to their “proper” place in the network but not directly
to their functional ortholog. We hypothesize that this latter issue
will become less of a problem as more PPI data are accumulated.

Detailed validation of our single highest NAF prediction. The single
highest NAF score was 82% between mouse protein Fancd2 and
human protein TRIM25. Here we provide detailed literature-based
validation of all GO terms present in mouse Fancd2 but not
human TRIM25 in the Sept. 2018 GO release—cf. Table 6. Most are
Biological Process GO terms, which according to recent CAFA61

benchmarks is the most difficult GO category to predict. Note that
in this section, we no longer restrict ourselves to cilia-related GO
terms, and we arbitrarily omit validation of GO terms predicting by
the IMP evidence code, due to time constraints. Thus, the text
below attempts validation only of GO terms predicted by evidence
codes other than IMP, though IMP-based predictions are included
in Table 6.
Biological Process GO:0048854 (brain morphogenesis): Forma-

tion of the brain requires differentiation of stem cells into
determined cell types. Autophagy plays an important role in
stem cell differentiation, as it allows the cell to degrade obsolete
organelles to become a more specialist cell 90. TRIM family
proteins are emerging as important regulators of autophagy, and
interact with a range of known autophagy proteins91. A number of
autophagic genes, including Ambra1, are expressed in mouse
embryos during neuronal differentiation92. Ambra1 has been
shown to be a key modulator of neurogenesis93. Recently, it has
been demonstrated that TRIM25 interacts with Ambra1 to up-
regulate autophagy in mouse liver cells94. Whether TRIM25
interacts with Ambra1 similarly in neural cells is not known, but
two of its close relatives have been shown to promote neural
differentiation by different pathways: TRIM3295, and TRIM6996.
TRIM25 has been shown to enhance transcriptional activity of the
differentiator gene RARα to a similar degree as TRIM3295, further
implicating it in this pathway for promoting neural stem cell
differentiation.
Biological Process GO:0097150 (neuronal stem cell population

maintenance): Understanding the functions of different TRIM
proteins in this regard is an area of cutting-edge research, as
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discoveries that TRIM proteins have regulatory functions in neural
development and maintenance have only recently been made97.
As with stem cell differentiation, autophagy is an important
process in stem cell maintenance90, and TRIM proteins have
important roles in autophagy 98,99. Deficiencies in autophagy can
result in neuro-degenerative disorders and premature aging100.
TRIM25 is expressed and contributes to stem cell maintenance in
mouse embryos101 by ensuring genomic stability following DNA
replication102. A recent survey97 states that TRIM25’s function in
stem cells appears to be the least well understood out of all TRIM
family proteins, and makes no mention of a role for TRIM25 in
neurological processes. The indirect evidence presented above,
along with its high NAF score, suggests that TRIM25’s role in this
area be further investigated.
Biological Process GO:0034599 (cellular response to oxidative

stress (ROS)): Oxidative stress in cells is used as a signal of protein
activity and function. Viral infection can lead to oxidative stress
and degradation of viral proteins via proteasomes, and the TRIM25
ubiquitylation pathway103. Viral-origin proteins, when expressed in
the cell, commonly generate reactive oxygen species. The RIG-1
pathway is known to respond to ROS to trigger cellular processes
as part of the innate immune system104. Importantly, reactive
oxygen species are also a known stimulus for activating
autophagic processes105, providing an obvious potential link
between this prediction and the autophagy ones discussed above.
Components GO:0000793 (condensed chromosome) and

GO:0005634 (nucleus): TRIMs have roles in cell cycle progres-
sion106. The cell cycle is composed of various different phases, one
of which is mitosis (M phase). During mitosis, a number of changes
occur within the cell, including the condensation of DNA into
chromosomes (in prophase). While the review of Venuto and
Merla106 does not acknowledge TRIM25 to have a specific role in
prophase mitosis, the relatively uncharacterized status of TRIM2597

does not contradict our prediction. Finally, chromosome con-
densation occurs in the nucleus, so if TRIM25 is involved in
condensing the chromosome, this additionally implies
GO:0005634.
In sum, TRIM25 appears a poorly understood member of the

TRIM family. Given the importance of E3 ubiquitin ligases in
neurological development, disorders and degenerative condi-
tions107 these predictions from PPI network alignment provide
plausible directions for future research in the function of TRIM25.

Comparison with other methods that use only network
topology
At the time of writing, we are aware of only two methods in the
literature that predict GO annotations using only network
topology: SINaTRa108 and Mashup109; neither is based on network
alignment.
Synthetic lethality (SL) refers to a pair of genes neither of which

is alone essential to life, but death occurs if both are knocked out
simultaneously. SINaTRa108 uses a vector of traditional (non-
graphlet) local measures of network topology to quantify the
neighborhood of a node, and then uses standard machine
learning techniques to train an SL classifier on pairs of genes in
one species, and then predict SL pairs in another species. While
the authors attempt no other types of prediction other than SL,
and they use data from just one year (2015), the closest
approximation to our results are when they train on yeast (S.
cerevisiae) and test on an “ablated” version of the fission yeast (S.
pombe) network designed to mimic the edge density of the
human network. In this test (their Figure S10), they achieved
AUPRs between 0.43 and 0.60 [ref. 108, p. 9]. Their higher AUPRs
may be attributable to their using more recent data (by 5 years).
Mashup109 uses network diffusion to construct a compact, low-

dimensional vector of features for each node in a network. They
then integrate the feature vectors extracted from many different

types of networks from the same species to train an off-the-shelf
machine learning algorithm to learn properties of interest, such as
GO terms. Using the 2013 STRING database as input, they achieve
AUPRs for prediction of human GO terms in the range of about
0.15 to 0.40 (their Figures 2 and 3), depending on details of their
ranking. These numbers are comparable to ours (cf. Fig. 4
(bottom)).

DISCUSSION
In broad outline, our main results are:

1. Across many stochastically-generated inter-species network
alignments with near-optimal40 topological scores, the
frequency that a pair of proteins is aligned together
correlates with, and has predictive value of, Resnik similarity.

2. NAF exposes Resnik similarity not only in the absence of
significant sequence similarity, but exposes such similarity
between non-sequence similar proteins that is just as strong
as the Resnik similarity between sequence-similar proteins
(cf. Fig. 3). This leads to the NAF-function Postulate (page 6).

3. While sequence comparison is obviously an accepted and
valuable tool when predicting functional similarity, it is
simply not applicable when no significant sequence
similarity is detectable. Thus, sequence similarity is a
sufficient but not necessary condition for inferring func-
tional or semantic similarity (cf. Fig. 3).

4. To our knowledge, NAF is the first measure based solely on
topology-driven network alignment to provide GO term
predictions with success that is competitive with state-of-
the-art methods, whether based on sequence, structure, or
topology.

Though not depicted in any Figures, we also measured
precision, recall, and AUPR of our 2010-based predictions (similar
to Fig. 4 (bottom)) by validation against GO releases for every year
from 2011 to 2019. We found that the number of validated
predictions, sourced from 2010, increases significantly year-over-
year, suggesting that many “non-validated” predictions may
become validated at some future date. Also, though not discussed
in the main text, Supplementary Fig. 1 demonstrates that the
ability to detect and predict semantic similarity scales with degree
and, more generally, edge density (see also our companion
paper40). This leads us to predict that the following will occur as
network data continue to accrue:

(a) Larger regions of the networks will become robustly
alignable—i.e., NAF scores will increase, along with the
number of protein pairs aligned with NAF above any fixed
threshold.

(b) Topology-driven network alignments will be able to dis-
cover better topological agreement between networks,
resulting in more GO term predictions, and with greater
confidence. This hypothesis is corroborated by the much
higher prediction accuracy of our literature validation of
2018-sourced predictions than those from 2010.

(c) In general, the biological relevance of topology-driven
network alignments will increase dramatically.

Related to the above, it is important to emphasize that we are
not claiming that the results expounded in this paper are of
practical use—yet. The fundamental problem is dearth of PPI
network data. Yeast and Human are by far the most complete
species pair, and yet they do not produce the best predictions,
possibly due to their great taxonomic distance. The mere fact that
we had to run one hundred independent 1-h runs of SANA per
species pair in order to tease out the weak signal attests to how
weak that signal is at present. The signal is just too weak, and the
CPU requirements too large, for the method to be practical on
existing networks. We expect, however, that as PPI networks
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become more complete and less noisy, a much more clear signal
will appear in network alignments, allowing topology-only
network alignments to more efficiently extract predictions.
One may notice that the “good” values of NAF and other

parameters of our algorithm varies widely between species. We
believe this, again, is due to the wide disparity in network
densities between species. This makes it fruitless to “tune” the
parameters of our algorithm on one species pair and use those
parameters on another pair. We also have not accounted for
multiple hypothesis testing in any of the p-values herein.
Clearly, our goal is to make the best novel GO term predictions

using today’s data. To do that, it is important to have an estimate
for the confidence level of predictions made today when no
validating data is available. We intend to explore the many
relationships observed in this paper to get a better handle on how
to assign a confidence to each prediction made. For example, we
expect that as PPI data accumulate with time, predictions will be
more precise and have higher confidence; this hypothesis is
supported by the literature validation rates above applied to
predictions using recent PPI data. However, the more recent the
PPI data, the smaller the duration between the date of the
prediction, and the date of validation; thus, validation rates will
appear lower simply due to the lack of passage of time.
Untangling these effects in order to produce predictions with a
reliable confidence level is an obvious direction for future
research.

METHODS
Sequence similarity according to BLAST
For all analyses other than those in Table 5, we ran BLASTP locally with the
default parameters to align all-to-all pairs of proteins between each species
pair. Pairs of proteins were labeled as “having sequence similarity
according to BLAST” if and only if BLASTP listed that pair anywhere in its
output, otherwise not; the lowest observed bit score was 13.5, while
E-values ranged from zero up to 1000. As a more sensitive test specifically
applied to Table 5, we visited NCBI's PSI-BLAST page, and for each row we
entered the accession code for the mouse protein and used the PSI-
BLAST program choice. In all cases, many matches (dozens to hundreds)
among human proteins were found with E-values ranging from 10 down to
1e−180, but in all cases we verified that none of those matches came from
the protein in the Human column of Table 5.

Formal definition of Pairwise Global Network Alignment
Let G1, G2 be two undirected graphs (i.e., networks), with node sets V1, V2
and edge sets E1, E2. Let ni= ∣Vi∣, i= 1, 2 be the number of nodes in the
networks, and mi= ∣Ei∣, i= 1, 2 be the number of edges in each. Without
loss of generality, assume n1 ≤ n2. We define a global network alignment a
as a 1-to-1 function a: V1→ V2 that maps each node in G1 to some node in
G2. (While the 1-to-1 requirement does not handle all biologically relevant
cases, it is a widely adopted assumption; however, SANA’s randomness
effectively eliminates this restriction.) Figure 1 provides a simple schematic
example of such a network alignment.

GO term prediction and automatic validation
The following description applies only to automatic prediction and
validation, not to manually literature-curated validations.
Assume we have two species s1, s2. Our goal is to use the PPI networks

and GO annotations of both species available as of date t to predict the
existence of novel GO annotations not available at time t, and validate
these predictions using GO terms available at some later date t0 > t.
Without loss of generality assume we are making predictions in the
direction s1→ s2, i.e., using GO annotations of proteins in s1 to predict GO
annotations of proteins in s2. We refer to s1 as the source species, and s2 as
the target species. In our case we are making predictions using networks
and annotations available at t= April 2010 (BioGRID 3.0.64 and GO release
2010-04, both available in April 2010), and validating those predictions
using annotations available from the GO release at t0 ¼ April 2020. The GO
databases were retrieved from the EMBL-EBI UNIPROT historical GO

database, which specifically focuses on protein (as opposed to gene)
function.
Assume that on date t, species s1, s2 have PPI networks, G1, G2 with node

sets V1, V2, and let n1= ∣V1∣, n2= ∣V2∣. Node sets consist of V1 ¼ fpign1i¼1;
and V2 ¼ fqjgn2j¼1

. For simplicity we will drop the node subscripts and refer
to p∈ V1 and q∈ V2. Assume that on date t, p is annotated with GO terms
γp, and q is annotated with GO terms γq. We will use the same letters for all
entities at the later date t0 , but with a prime added: for example G0

1 refers
to the PPI network of s1 at time t0 , p0 refers to a protein in V 0

1, and γp0 refers
to the set of annotations to p0 at time t0 . Note that p0 and p are the same
protein, but there exist proteins that may only exist in one of the two PPI
networks, or one of the two GO annotation databases; thus, p may exist in
the PPI network at time t but have no GO annotations at that time, or vice
versa. (Note we do not include proteins with degree zero in our PPI
networks, since they possess no useful topological information.)
We say that the association of GO term g with protein q0 of the target

species s2 at time t0 , sourced from any protein p in s1 at time t, is
predictable in principle if both of the following are true:

● q∈ V2—i.e., the protein exists in the earlier PPI network of the target
species s2. This is because q acquires annotations from proteins in the
source species by being aligned to them at time t; q cannot be aligned
if it does not exist in G2.

● ∃ p∈ V1 such that g∈ γp—i.e., at least one protein from source species
s1 is annotated with g at the earlier time. (Otherwise there is no place
from which to source g as a prediction for q0 .)

We define P12 as the set of all such predictable in principle annotations
from species 1 to species 2; this set is derivable from information known
only at the earlier time. Note, however, that its size is huge, being the
product of the number of nodes in s2 at time t and the number of distinct
GO terms annotating s1 at time t.
Note that, although q needs to be in the earlier network V2, we do not

demand that it exists in either of the GO term databases; those that exist in
the later but not the earlier GO database, and for which we can make
predictions, count as completely unannotated proteins at the earlier time,
for which we may be able to make, and validate, predictions; those that
also fail to exist in the later GO database may have predictions that are not
yet, but may ultimately become, validated. Finally, we say that a predicted
annotation ðv0; gÞ is validatable if g 2 γv0—that is, g annotates q0 in the
later GO database.
To measure recall, we need a maximal set of “ground-truth” annotations

at the later date. The most obvious candidate “ground truth” is all GO
annotations across all proteins in the target species at the later date, which
we call Γ02. However, there are likely to exist annotations ðv0; gÞ 2 Γ02 that
are not predictable in principle as defined above, either because g
annotated no proteins in V1, or because q had no known interactions at
time t and thus did not exist in G2. Thus, we define our maximal “ground
truth” set as P12 \ Γ02, and the number of elements in that set becomes the
denominator in our computation of Recall.
We use AUPR rather than ROC curves because the data are extremely

unbalanced: in particular, jP12j � jΓ02j, directly informing us that the
negative set is much larger than the positive one. For example, in April
2010, the human BioGRID PPI network had 8192 nodes, and the other
species listed above all had 3000–10,000 GO terms, so ∣P12∣ is in the tens of
millions, but the number of validating annotations for human in 2020 is
<20,000, making the negative set about 1000 times larger than the
positive one.
We make every attempt to eliminate any prediction that could have

been made or validated using sequence analysis. In particular, we

● eliminate any protein pairs (p, q), regardless of NAF, which have
sequence similarity according to BLAST (bit score threshold of 13), or
those with known (even distant) orthology according to NCBI
Homologene110, InParanoid 856, or the 2019 release of EggNog 557;

● eliminate any GO terms of p possessing evidence codes from Table 1
(bottom), even if they also possess non-sequence-based evidence.

● discard any “predicted” annotations that were already known at time t
between q and GO terms with any evidence code (including those in
Table 1 (bottom));

● discard any predicted annotations for which sequence evidence had
been produced by time t0 .

We are left with predictions of GO terms annotating q0 that were entirely
unknown at time t, that came from GO annotations of p at time t that did
not possess any sequence-based evidence, and that still lacked sequence-
based evidence as of time t0 , even when including orthology based on the
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best homology methods of time t0 . Note that for consistency, when we
remove any predictions coming from a pair of proteins (p, q) using the
above criteria, we also remove the predictions from P12 unless the same
prediction can be sourced from another protein p̂ in s1 that is not
eliminated based on the above criteria. (That is, we eliminate it from both
the numerators and denominators of precision and recall.)
Using these criteria, we feel confident that the majority of (possibly all)

predictions discussed in this paper were unattainable by any other means
using data or methods available as of t= April 2010, and additionally had
still not been discovered by any sequence or homology-based method
available as of t0 = April 2020.

DATA AVAILABILITY
BioGRID networks are available from BioGRID.org; GO term releases are available at
GeneOntology.org. The output alignments, including alignment frequency, Resnik
score, and paired proteins used to generate all Figures in the manuscript are available
for the EC measures in the paper at http://sana.ics.uci.edu/SANA-predicts-GO-terms/
Topo-Function-2019-alignments-EC.7z, and for a longer list of objectives (many of
which were used in our companion paper40) at http://sana.ics.uci.edu/SANA-predicts-
GO-terms/Topo-Function-2019-alignments-all.7z.

CODE AVAILABILITY
Source code for SANA is available at our GitHub repository; the Resnik Python script,
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