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Beyond the Global Brain Differences: Intra-individual Variability 
Differences in 1q21.1 Distal and 15q11.2 BP1-BP2 Deletion 
Carriers

A full list of authors and affiliations appears at the end of the article.

Abstract

Background—The 1q21.1 distal and 15q11.2 BP1-BP2 CNVs exhibit regional and global brain 

differences compared to non-carriers. However, interpreting regional differences is challenging if a 

global difference drives the regional brain differences. Intra-individual variability measures can be 

used to test for regional differences beyond global differences in brain structure.

Methods—Magnetic resonance imaging data were used to obtain regional brain values for 

1q21.1 distal deletion (n=30) and duplication (n=27), and 15q11.2 BP1-BP2 deletion (n=170) and 

duplication (n=243) carriers and matched non-carriers (n=2,350). Regional intra-deviation (RID) 

scores i.e., the standardized difference between an individual’s regional difference and global 

difference, were used to test for regional differences that diverge from the global difference.

Results—For the 1q21.1 distal deletion carriers, cortical surface area for regions in the medial 

visual cortex, posterior cingulate and temporal pole differed less, and regions in the prefrontal 

and superior temporal cortex differed more than the global difference in cortical surface area. For 

the 15q11.2 BP1-BP2 deletion carriers, cortical thickness in regions in the medial visual cortex, 

auditory cortex and temporal pole differed less, and the prefrontal and somatosensory cortex 

differed more than the global difference in cortical thickness.

Conclusion—We find evidence for regional effects beyond differences in global brain measures 

in 1q21.1 distal and 15q11.2 BP1-BP2 CNVs. The results provide new insight into brain profiling 

of the 1q21.1 distal and 15q11.2 BP1-BP2 CNVs, with the potential to increase our understanding 

of mechanisms involved in altered neurodevelopment.
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Introduction

Carriers of certain rare recurrent copy number variants (CNVs) - i.e., deletions or 

duplications of a segment of the genome - have a higher risk of developing psychiatric 

and neurodevelopmental disorders, including schizophrenia and autism spectrum disorder1–5 

Several rare recurrent CNVs have moderate to large effects on structural brain measures 

derived from magnetic resonance imaging (MRI)6,7. The effects of CNVs on brain structure 

have been suggested to occur primarily during early neurodevelopment8, and some rare 

recurrent CNVs have been associated with altered cellular function, composition and size 

derived from cortical organoids that models fetal and early neurodevelopment9–12. The 

1q21.1 distal and 15q11.2 BP1-BP2 deletions are two of the most common recurrent 

CNVs1,13,14. They yield a higher risk of psychiatric and neurodevelopmental disorders1–5 

and show moderate to large effects on brain structure15,16. Thus, studying 1q21.1 distal 

and 15q11.2 BP1-BP2 deletion carriers offer a promising genetics-first approach to study 

deviations in neurodevelopment and brain structure, which may underlie the increased risk 

of developing psychiatric and neurodevelopmental disorders5,8.

To date, the neuroimaging studies on CNVs have focused on conventional mean 

comparisons between carriers and non-carriers, which have been informative for brain 

profiling of CNV carriers. For instance, several CNVs have shown global effects on 

the brain, as demonstrated by group differences in mean cortical thickness, total cortical 

surface area and total subcortical volume, in addition to wide-spread regional differences6,7. 

However, brain profiling may be challenging if an overall global difference on the brain 

drives many of the regional mean differences or if regional differences are driven by 

distinct subgroups in each comparison, rendering inter-regional brain profiles difficult to 

interpret. To overcome this challenge, detecting brain regions that diverge from the global 

difference could benefit from intraindividual variability measures, in which regional values 

represent its position within an individualized brain profile. Identification of brain regions 

that diverge from the overall global difference of the CNV may provide valuable insights 

into the regional penetrance, brain organization and functional consequences in CNV 

carriers. Indeed, as has been demonstrated in other fields such as cognitive science and 

neuropsychology, e.g.17–22, novel scientific and clinical insights can be achieved by looking 

beyond mean group differences through investigating intraindividual variability.

Both 1q21.1 distal and 15q11.2 BP1-BP2 deletion carriers exhibit global differences 

in brain structure, with the former displaying a lower total cortical surface area15 and 

the latter showing a higher mean cortical thickness and lower total cortical surface 

area16. Additionally, these deletions also exhibit regional differences across the cortex15,16. 

However, the regional differences vary across the brain as indicated by variation in effect 

sizes across brain regions. This could indicate that the carriers of the 1q21.1 distal 
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and 15q11.2 BP1-BP2 deletion exhibit higher variability in brain structure, along with 

systematic inter-regional differences in brain structure as measured by MRI-derived features.

In both 1q21.1 distal and 15q11.2 BP1-BP2 CNV carriers, the largest regional differences 

are typically found in frontal regions, associated with higher-cognitive processing. In 

contrast, the posterior brain regions, associated with primary sensory processing, typically 

do not show significant differences15,16. Insight into variation in brain structure may be 

useful for understanding differences in brain function as cortical morphology overlaps with 

the functional hierarchical gradient of the brain23. This functional hierarchical gradient 

reflects a sensorimotor (i.e., involved in unimodal and functional specific processes) to 

association axis (i.e., involved in higher-order cognitive processes) in the human brain23–25, 

which has been supported by anatomical, functional, and evolutionary data24. Thus, a more 

fine-grained brain profile of the structural differences in 1q21.1 distal and 15q11.2 BP1-BP2 

CNV carriers may aid our understanding of their phenotypic profile.

Brain structural differences in 1q21.1 distal and 15q11.2 BP1-BP2 CNV carriers indicate 

global mean differences (i.e., cortical thickness and cortical surface area), as well as regional 

group differences in primarily frontal brain regions. The regional group differences indicate 

that some brain regions are more affected than others. Here, we define more affected brain 

regions as regions that differ more than the global mean difference, and less affected brain 

regions as regions that differ less than the global mean difference. To measure this, we use 

an intraindividual variability measure to detect brain regions that diverge from the global 

difference, where the regional values represent its position within an individualized brain 

profile. We expected that anterior regions within the association cortices were more affected, 

whereas posterior regions within the primary sensorimotor cortices were less affected in 

carriers of the 1q21.1 distal and 15q11.2 BP1-BP2 CNVs.

Methods and Materials

Sample

Individuals carrying a 1q21.1 distal or 15q11.2 CNV and a matched non-carrier group were 

taken from the ENIGMA-CNV working group core dataset and the UK Biobank across 

61 scanner sites. Each CNV carrier was matched with five non-carriers based on age, sex, 

scanner site and ICV using the MatchIt package in R26. This resulted in four subsets (sample 

characteristics are presented in tables 1 and 2, supplementary note 1).

MRI-derived features, CNVs and quality control

Neuroimaging data were obtained from the UK Biobank, as described elsewhere27, and 

from the ENIGMA-CNV core dataset. The ENIGMA-CNV neuroimaging measures were 

collected from several sites (see appendix 1 for details) and analyzed using the standardized 

ENIGMA protocol (https://enigma.ini.usc.edu/protocols/imaging-protocols/). Details of the 

quality control of the MR images are provided in supplementary note 2. Briefly, the MRI 

data from the ENIGMA-CNV working group underwent the ENIGMA cortical quality 

control procedures (https://enigma.ini.usc.edu/protocols/imaging-protocols/), where the 68 

cortical and 14 subcortical regions were extracted using the Desikan-Killiany atlas. For the 
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UK Biobank sample, we used the Euler number as a proxy for image quality28 and removed 

all participants with Euler numbers below minus four standard deviations from downstream 

analyses (n =437). To account for site effects in the samples, we ran each of the four subsets 

through ComBat, an instrument for data harmonization29. CNV calling in ENIGMA-CNV 

was based on previous publications15,16. For the UK Biobank sample, we identified CNVs 

based on the returned dataset from Crawford et al.30 All participants with a CNV as defined 

in previous publications15,16,30 were removed from downstream analyses, except for the 

individuals flagged with the 1q21.1 distal or the 15q11.2 BP1-BP2 CNV.

Derivation of dependent variables

We adjusted for the effect of age, age2, sex and ICV on every brain regional value using 

linear regression across the carriers and the non-carriers. The residualized brain regional 

values were used to calculate the mean and standard deviation for the non-carriers only. We 

estimated 1) Z-scores per region (similar calculations as in31) and created 2) global index 

and 3) intraindividual standard deviation (similar calculations as in 21) as well as 4) regional 

intradeviation (RID) score.

1. Z-scores. Specifically, Z-scores for CNV carriers and non-carriers were 

calculated based on the mean and standard deviation from the non-carriers as 

shown in Eq. (1):

Zif = (Xif − Mif)
SDif

(1)

Where Zif is the standardized value for brain region i in feature f (i.e., cortical 

thickness, surface area, or subcortical volume), and Xif is the regional value 

for brain region i for feature f, Mif and SDif represent the mean and standard 

deviation, respectively, for brain region i using feature f across the non-carriers. 

Thus, for every individual we obtained a vector of standardized Z-scores across 

68 cortical regions for cortical thickness and cortical surface area, and 14 

subcortical regions.

2. Global index: We created an individualized global index (GI) for cortical 

thickness, cortical surface area and subcortical volume, respectively, by 

calculating the mean Z-score across the cortical and subcortical regions as shown 

in Eq. (2)

GIf = 1
nf

∑
i = 1

nf
Zif (2)

where GIf is the global index for feature f, n is the total number of brain regions 

for feature f, and Zif is the standardized value for the brain region I for feature f 
derived from Eq. (1).

3. Intraindividual standard deviation: Furthermore, we also calculated the 

intraindividual standard deviation (iSD) across the Z-scores for cortical 

thickness, cortical surface area, and subcortical volume to obtain measures of 

within-individual variability, as shown in Eq. (3):
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iSDf = ∑i = 1
nf (Zif − GIf)2

nf − 1
(3)

where the nf is total number of brain regions for feature f, Zif is the standardized 

value for brain region i for feature f, GIf is the global index for feature f (i.e., 

mean Z-score across brain regions for an individual) as derived from Eq. (2). A 

low iSD indicates that an individual’s Zscores across brain regions are relatively 

consistent and do not vary much across brain regions, while a high iSD indicates 

that the Z-score across brain regions are relatively inconsistent, indexing a more 

variable brain.

4. Regional intra-deviation score: Finally, to identify regions that diverge more 

than expected from an individual’s global index and intraindividual standard 

deviation, we created a regional intra-deviation (RID) score calculated using Eq. 

(4) for every brain region across feature f:

RIDf = (Zif − GIf)
iSDf

(4)

where the Zif is the standardized value for brain region i for feature f and GIf 

is the global index for feature f as shown in Eq. (2.). The iSDf reflects the 

standard deviation for the Z-score across brain regions in feature f as formulated 

in Eq. (3). Here, we define regions that are less affected as those that do not 

follow the global tendency in the data, whereas the regions that exceed the global 

tendency of the data are considered to be more affected. To establish brain-

cognition relationships between the brain measures and cognition, we tested for 

associations between RID and Z-scores and cognitive ability (supplementary 

note 3, Figure S1, Table S1).

Statistical analyses

All statistical analyses were conducted in R studio v4.0.0 and brain visualizations were 

created using the ENIGMA toolbox32. For the per-CNV analyses, we tested for group 

differences by including carrier status (i.e., either carrier or non-carrier) in a linear 

regression model. The deletion and duplication carriers were tested separately with their 

corresponding matched non-carrier group used as the reference. The estimated standardized 

beta values were extracted from the models and are presented in the results as a measure of 

effect size. The p-values underwent a False Discovery Rate (FDR)33 adjustment to account 

for multiple comparisons for each of the four CNV groups. Corrected p-values below .05 

were considered statistically significant. Three main analyses were performed: First, in line 

with the conventional mass-univariate analysis approach, we performed group comparisons 

on the Z-scores across all the ROIs for cortical thickness, cortical surface area and 

subcortical volume (FDR corrected for 150 comparisons). Second, we compared the global 

index, and intraindividual standard deviation and mean corrected intraindividual standard 

deviation values between carriers and non-carriers (FDR corrected for 12 comparisons). 

The mean corrected intraindividual standard deviation represents the intraindividual standard 
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deviation after regressing out the global index, as the mean values tend to be correlated 

with the standard deviation. Third, for the RID scores, group comparisons were computed 

between carriers and non-carriers for all ROIs for cortical thickness, cortical surface 

area, and subcortical volume (FDR corrected for 150 comparisons). Due to missing 

values in some brain regions, the analyses were restricted to individuals with complete 

observations for the feature that was analyzed (i.e., cortical thickness, cortical surface 

area, and subcortical volume). Sensitivity analyses were conducted for the significant RID 

score differences by adjusting for affection status (i.e., known psychiatric or neurological 

diagnoses). In addition, we examined the interaction term between carrier status and 

affection status and between carrier status and cognitive ability. Finally, we compared 

the brain profile of significant differences in RID scores to the significant differences in 

Z-scores adjusted for the global index.

Results

Global measures

The group differences in the global index and the intraindividual standard deviation 

measures are presented in Table 3 with reference values for the non-carrier groups in Table 

S2. The 1q21.1 distal deletion carriers had a lower global index for surface area, whereas 

the 15q11.2 BP1-BP2 deletion carriers had a lower global index for surface area and a 

higher global index for cortical thickness. In addition, the 15q11.2 BP1-BP2 duplication 

carriers had a lower global index for cortical thickness. Furthermore, there was a higher 

intraindividual standard deviation for cortical surface for both the 1q21.1 distal duplication 

carriers (both for the mean corrected and uncorrected measure) and the 15q11.2 BP1-BP2 

deletion carriers (only for the mean corrected measure), as well as a higher intraindividual 

standard deviation for cortical thickness in the 15q11.2 BP1-BP2 deletion carriers (both for 

the mean corrected and uncorrected measure). With one exception, correlations between the 

intraindividual standard deviation measures across CNV groups did not show any significant 

differences (supplementary note 4, Figure S2).

1q21.1 distal copy number variant

The 1q21.1. distal deletion carriers showed widespread lower cortical surface area with 

significant differences in 63 ROIs using Z-scores (Figure 1a-b, top; Table S3), and exhibited 

a higher RID score for cortical surface area in regions within the occipital, superior parietal, 

temporal pole and posterior cingulate cortex, as well as lower RID scores in regions within 

the superior temporal and frontal regions (Figure 1a-c, bottom, Table S4). Further, 1q21.1. 

distal deletion carriers showed higher cortical thickness compared to non-carriers in 19 ROIs 

using Z-scores (Figure 2a-b, top, Table S3), in addition to lower RID scores for regions 

within the occipital lobe and paracentral lobule and higher RID scores for regions within the 

superior temporal and inferior frontal cortex (Figure 2a-c, bottom, Table S4). The 1q21.1 

distal deletion carriers also exhibited lower subcortical volume in left thalamus and right 

nucleus accumbens (Table S3), and lower RID score for the left thalamus (Table S4). All the 

significant RID score differences survived adjustment for affection status. The interaction 

term between carrier status and affection status was not associated with the significant 

RID scores (supplementary note 5, Table S5). A subset of the significant RID scores were 
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implicated in the brain-cognition RID map (Figure S1). However, we did not observe any 

significant interactions between carrier status and cognitive ability on any of the significant 

RID scores (supplementary note 6, Table S6). The results yielded more significant group 

differences in RID scores (i.e., 24) compared to Z-scores adjusted for the global index 

between 15q11.2 BP1-BP2 deletion carriers and non-carriers (i.e., 13, supplementary note 7, 

Figure S3, Table S7). The 1q21.1 distal duplication carriers showed higher cortical surface 

area in the right pars opercularis and right superior frontal gyrus, and lower volume in 

the right and left hippocampus compared to non-carriers (Table S8). Using RID scores, no 

significant differences in the ROIs were found (Table S9).

15q11.2 BP1-BP2 copy number variant

The 15q11.2 BP1-BP2 deletion carriers showed lower cortical surface area in 10 ROIs 

using Z-scores (Figure 3a-b, top, Table S10), and higher RID scores for the left frontal 

pole and right pars opercularis surface area, but lower RID scores for the left and right 

pars orbitalis surface area compared to non-carriers (Figure 3a-c, bottom, Table S11). For 

cortical thickness, the 15q11.2 BP1-BP2 deletion carriers showed higher cortical thickness 

in 30 regions using Z-scores (Figure 4a-b, top, Table S10). The RID scores for cortical 

thickness were lower in regions within occipital and temporal regions, and higher in motor 

and frontal regions compared to non-carriers (Figure 4a-c, bottom, Table S11). The 15q11.2 

BP1-BP2 deletion carriers also showed lower Z-scores for left caudate, right pallidum 

and right nucleus accumbens (Table S10). All significant RID scores remained significant 

after adjustment for affection status. No significant interactions between carrier status and 

affection status (Table S12, supplementary note 5) nor between carrier status and cognitive 

ability for the 15q11.2 BP1-BP2 deletion carriers were observed (Table S13, supplementary 

note 6). The results yielded more significant group differences in RID scores (i.e., 14) 

compared to Z-scores adjusted for global index (i.e., 12) between 15q11.2 BP1-BP2 deletion 

carriers and non-carriers (supplementary note 7, Figure S4, Table S14). The 15q11.2 BP1-
BP2 duplication carriers showed lower cortical thickness in 11 ROIs and higher right 

superior frontal cortical surface area using Z-scores (Table S15) but showed no significant 

differences in the ROIs using RID-scores (Table S16).

Discussion

The current study is the first to identify intraindividual variability differences in brain 

structure in CNV carriers. Using the intraindividual standard deviation measure, we 

observed higher variability in the regional effects for cortical surface area in both 1q21.1 

distal duplication and 15q11.2 BP1-BP2 deletion carriers, and higher variability in the 

regional effects for cortical thickness for the 15q11.2 BP1-BP2 deletion carriers, compared 

to non-carriers. Using RID scores, we find that a subset of brain regions diverged 

significantly from non-carriers for both the 1q21.1 distal and 15q11.2 BP1-BP2 deletion 

carriers. We also find a higher number of significant regional differences using RID scores 

compared to the conventional global covariation approach. The current results hold promise 

for identifying specific CNV-associated brain profiles by targeting regional differences using 

an individualized approach, which are overlooked in studies applying conventional brain 

MRI measures.
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In line with previous results15, the 1q21.1 distal deletion carriers showed lower global 

cortical surface area compared to non-carriers. The observed differences in Z-scores indicate 

widespread lower cortical surface area, whereas the RID scores indicate that the cortical 

surface area in posterior and primary sensory regions (i.e., lingual, pericalcarine, superior 

parietal, isthmus of the cingulate gyrus) are less affected and frontal and association cortices 

(i.e., caudal middle frontal, lateral orbitofrontal, rostral middle frontal, superior frontal 

cortex) are more affected. Thus, the observed regional Z-score group differences along 

lateral and medial parietal to lateral inferior temporal and motor cortex appear to be largely 

reflective of the global effect. A subset of the significant RID scores (i.e., the superior 

temporal gyri and left supramarginal gyrus cortical thickness and left lateral orbitofrontal 

and left lateral superior temporal gyrus cortical surface area) was associated with cognitive 

ability in non-carriers. However, the effect sizes are low, and the current sample size of CNV 

carriers is too small to reliably detect such brain-cognition associations.

The 15q11.2 BP1-BP2 deletion showed a higher global cortical thickness compared to 

non-carriers, primarily concentrated in the frontal cortex, recapitulating previously reported 

group differences in cortical thickness16. We complement these findings by showing group 

differences in RID scores, which indicates that the cortical thickness in sensory cortices (i.e., 

cuneus and pericalcarine area) are less affected, and the association cortices (i.e., rostral 

middle frontal and superior frontal cortex) are more affected by the deletion. The association 

cortices that show cortical thickness differences using RID scores are regions that underlies 

complex cognitive functions23–25, and may subserve the lower cognitive performance in 

15q11.2 BP1-BP2 deletion carriers compared to controls14,34.

Notably, some findings deviate from the interpretation of a less affected sensorimotor 

cortex and a more affected association cortex. Both the 1q21.1 distal and 15q11.2 BP1-BP2 

deletion carriers show evidence for a relatively less affected cortical surface area and cortical 

thickness, respectively, in the left temporal pole. We also find that the cortical thickness of 

the postcentral gyri, a primary somatosensory region, is more affected in the 15q11.2 BP1-

BP2 deletion carriers. To speculate, this may be associated with the motor delay observed 

in clinically affected 15q11.2 BP1-BP2 deletion carriers35. For cortical surface area in the 

15q11.2 BP1-BP2 deletion carriers, we find inconsistent effects for frontal regions: although 

we observe a relatively more different bilateral pars orbitalis, we also find evidence for a less 

different left frontal pole and right pars opercularis. Furthermore, we did not find significant 

differences in RID scores in the 15q11.2 BP1-BP2 duplication carriers, nor in the 1q21.1 

distal duplication carriers. The results complement previous findings of lower effect sizes in 

brain measures for duplication versus deletion carriers6,7, and thus may support that deletion 

carriers distort the anatomical relationships in the brain more than duplication carriers.

Global and frontal regional group differences in cortical thickness are prominent brain 

features of several neurodevelopmental disorders, including autism spectrum disorder36 

and schizophrenia37. Thus, group differences in brain structure may be confounded by 

individuals with neurodevelopmental or psychiatric disorders. Here, all the significant RID 

score differences in 1q21.1 distal and 15q11.2 BP1-BP2 deletions survived adjustment for 

affection status, and there were no interaction effects between carrier status and affection 

status on the significant RID scores.
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The current results implicate novel mechanisms in neurodevelopment. Compelling 

candidates for the changes in the 1q21.1 distal CNV are the human specific NOTCH2NL 
genes, which have been linked to the evolutionary expansion of the human neocortex38,39. 

NOTCH signaling is important for outer radial glia cell self-renewal, which are thought to 

contribute to cortical expansion40. Deletion of the NOTCH2NL genes in human cortical 

organoids yields smaller organoids compared to controls38 and NOTCH2NL increases 

the number of cycling basal progenitors in the mouse embryonic neocortex41. Thus, 

NOTCH2NL could yield a potential mechanistic link between the assumed lower gene 

expression levels in 1q21.1 distal deletion carriers and the lower cortical surface area, 

possibly important for the expansion of frontal regions.

Among the four genes in the 15q11.2 BP1-BP2 loci42, CYFIP1 has gained considerable 

interest due to its association to schizophrenia43,44 and autism45–47. CYFIP1 exhibits high 

expression levels in the developing mouse brain47. CYFIP1 has also been linked to variation 

in cortical surface area48, as well as various cellular phenotypes, including myelination49, 

neurite length and branch number, cell size50, dendritic spine formation51 and regulation 

of radial glia cells52. Notably, CYFIP1 haploinsufficiency lower myelination thickness in 

rats49. Cortical thickness, as estimated with MRI, has been suggested to be influenced by 

myelination53. Thus, the higher cortical thickness observed in 15q11.2 BP1-BP2 deletion 

carriers may be due to altered myelination in the brain, possibly with somatosensory 

cortex being particularly sensitive to these alterations. CYFIP1 deficiency has also been 

associated with functional connectivity deficits in motor cortices, as well as aberrant 

motor coordination in mice54. Finally, it should be noted that the 1q21.1 distal and the 

15q11.2 BP1-BP2 loci span several genes, and genes within CNVs are likely to be involved 

in multifaceted genetic interactions55. More research is needed to identify the causative 

biological mechanisms of the brain structural phenotypes.

This study has strengths and limitations. We use an intraindividual variability approach to 

examine brain metrics that are related to an individual’s own inter-regional brain profile. By 

examining metrics that consider the variation within individuals, it is possible to map the 

heterogeneity and deviations in CNV carriers compared to non-carriers. However, variability 

measures should be interpreted with caution, as some effects on the brain may be so 

extreme that further deviations are unlikely to be observed. That is, CNVs may yield large 

effects on brain structure, but only to a certain extent due to biological constraints. Thus, 

we urge caution when interpreting intraindividual standard deviation in brain measures as 

ceiling and floor effects may bias the variability metrics. Still, we identify structures that 

are significantly less different or more different relative to the mean difference, indicating 

sufficient variability in the individualized brain metrics. About 1/2 (1q21.1 distal) and 

2/3 (15q11.2 BP1-BP2) of the carriers are derived from the UK Biobank, which has a 

healthy volunteer bias56, possibly yielding underestimations of brain structural differences. 

However, this is somewhat counter-balanced by the ENIGMA-CNV dataset that is likely 

to increase the heterogeneity in the study sample (although some datasets are likely to 

have similar bias towards healthy individuals as the UK Biobank). Indeed, the variability 

observed in brain structure within individuals underscores the heterogeneity between and 

within individuals in the sample. Future studies with larger sample sizes are needed to 

examine the phenotypic heterogeneity observed in CNV carriers.
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The results of the current study aid our understanding of 1q21.1 distal and 15q11.2 BP1-BP2 

CNV brain profiles by identifying regional differences using intraindividual variability 

metrics, which has the potential to give better insight into the neuronal mechanisms 

in neurodevelopment and risk for psychiatric diseases. We find evidence for regional 

differences beyond the global differences in brain structure, where the spatial effects partly 

support the hypothesis of less affected sensorimotor cortex and more affected association 

cortex in both the 1q21.1 distal and 15q11.2 BP1-BP2 deletion carriers.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Cortical surface area comparison between 1q21.1 distal deletion carriers and non-
carriers.
A) Top panel shows z-scores - group differences in regional cortical surface area. Bottom 

panel shows RID-scores - group differences in regional cortical surface area that are scaled 

to the individual’s own global index. Non-carriers are represented by gray lines, and 

1q21.1 distal deletion carriers are represented by black lines. Blue dots indicate significant 

differences. The insular cortex is included under frontal cortex for visualization purposes. B) 

Top panel displays the significant differences in Z-scores, and the bottom panel shows the 

significant differences in RID-scores. Blue-red diverging maps represent the effect size. C) 

Spatial distribution of all the mean differences in RID scores. Please note that all values are 

shown regardless of significance. Yellow-purple diverging maps represent the direction of 

the mean differences. Increased yellow intensity represents values that are less deviant than 

the overall global mean difference in cortical surface area, and increased purple intensity 

represents values that are more deviant than the overall global mean difference in cortical 

surface area. Z- and RID-scores are based on raw values adjusted for age, age2, sex, and 

intracranial volume on site harmonized data.
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Figure 2. Cortical thickness comparison between 1q21.1 distal deletion carriers and non-
carriers.
A) Top panel shows z-scores - group differences in regional cortical thickness. Bottom panel 

shows RID-scores - group differences in regional cortical thickness that are scaled to the 

individual’s own global index. Non-carriers are represented by gray lines, and 1q21.1 distal 

deletion carriers are represented by black lines. Blue dots indicate significant differences. 

The insular cortex is included under frontal cortex for visualization purposes. B) Top panel 

displays the significant differences in Z-scores, and the bottom panel shows the significant 

differences in RID-scores. Blue-red diverging maps represent the effect size. C) Spatial 

distribution of all the mean differences in RID scores. Please note that all values are shown 

regardless of significance. Yellow-purple diverging maps represent the direction of the mean 

differences. Increased yellow intensity represents values that are less deviant than the overall 

global mean difference in cortical thickness, and increased purple intensity represents values 

that are more deviant than the overall global mean difference in cortical thickness. Z- and 

RID-scores are based on raw values adjusted for age, age2, sex, and intracranial volume on 

site harmonized data.
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Figure 3. Cortical surface area comparison between 15q11.2 BP1-BP2 deletion carriers and 
non-carriers.
A) Top panel shows z-scores - group differences in regional cortical surface area. Bottom 

panel shows RID-scores - group differences in regional cortical surface area that are scaled 

to the individual’s own global index. Non-carriers are represented by gray lines, and 15q11.2 

BP1-BP2 deletion carriers are represented by black lines. Blue dots indicate significant 

differences. The insular cortex is included under frontal cortex for visualization purposes. B) 

Top panel displays the significant differences in Z-scores, and the bottom panel shows the 

significant differences in RID-scores. Blue-red diverging maps represent the effect size. C) 

Spatial distribution of all the mean differences in RID scores. Please note that all values are 

shown regardless of significance. Yellow-purple diverging maps represent the direction of 

the mean differences. Increased yellow intensity represents values that are less deviant than 

the overall global mean difference in cortical surface area, and increased purple intensity 

represents values that are more deviant than the overall global mean difference in cortical 

surface area. Z- and RID-scores are based on raw values adjusted for age, age2, sex, and 

intracranial volume on site harmonized data.
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Figure 4. Cortical thickness comparison between 15q11.2 BP1-BP2 deletion carriers and non-
carriers.
A) Top panel shows z-scores - group differences in regional cortical thickness. Bottom 

panel shows RID-scores - group differences in regional cortical thickness that are scaled to 

the individual’s own global index. Non-carriers are represented by gray lines, and 15q11.2 

BP1-BP2 deletion carriers are represented by black lines. Blue dots indicate significant 

differences. The insular cortex is included under frontal cortex for visualization purposes. 

B) Top panel displays the significant differences in Z-scores, and the bottom panel shows 

the significant differences in RID-scores. Blue-red diverging maps represent the effect size. 

C) Spatial distribution of all the mean differences in RID scores. Please note that all values 

are shown regardless of significance. Yellow-purple diverging maps represent the direction 

of the mean differences. Increased yellow intensity represents values that are less deviant 

than the overall global mean difference in cortical thickness, and increased purple intensity 

represents values that are more deviant than the overall global mean difference in cortical 

thickness. Z- and RID-scores are based on raw values adjusted for age, age2, sex, and 

intracranial volume on site harmonized data.
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