
UCLA
UCLA Electronic Theses and Dissertations

Title
First-Order Methods for Self-Dual Linear Programs

Permalink
https://escholarship.org/uc/item/7f96q99z

Author
Shao, Justin

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7f96q99z
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

First-Order Methods for Self-Dual Linear Programs

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Electrical and Computer Engineering

by

Justin Muyot Shao

2024

© Copyright by

Justin Muyot Shao

2024

ABSTRACT OF THE THESIS

First-Order Methods for Self-Dual Linear Programs

by

Justin Muyot Shao

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2024

Professor Lieven Vandenberghe, Chair

Recently, there has been increasing interest in first-order methods for conic linear program-

ming, an extension of linear programming in which scalar inequalities are replaced with

vector inequalities defined relative to convex cones. Conic programming is an important

class of optimization problems with a wide range of applications including in operations re-

search, finance, and engineering. There is a rich history of extensive research into methods

for solving them efficiently and accurately.

First-order methods show potential to improve the efficiency of conic programming solvers

since they circumvent the need to factor matrices or solve linear systems, operations which

can be especially computationally expensive when modeling complex problems or problems

with large data sets. In this work, we examine two first-order methods for solving conic linear

programs using a self-dual embedding whose solution yields a primal-dual optimal solution

or a certificate of primal or dual infeasibility. These methods require no feasible starting

points, and the most expensive operations are matrix-vector multiplications or projections

onto cones which makes it easy to customize the methods to exploit problem structure.

We compare two methods, the primal-dual hybrid gradient method and the extragradient

ii

method, with a suite of practical improvements. We test these methods on linear programs

and other non-polyhedral conic linear programs. The numerical experiments indicate that

these methods solve the self-dual embedding efficiently and accurately.

iii

The thesis of Justin Muyot Shao is approved.

Vwani P. Roychowdhury

Lin Yang

Lieven Vandenberghe, Committee Chair

University of California, Los Angeles

2024

iv

For my beloved family and friends.

v

TABLE OF CONTENTS

1 Introduction . 1

2 Conic Linear Programming . 4

2.1 Conic Linear Programming . 4

2.2 Duality . 15

2.3 Self-Dual Embedding . 17

2.4 Algorithms . 24

3 Primal-Dual Hybrid Gradient Method . 27

3.1 PDHG for Conic Linear Programming . 28

3.2 PDHG for Linear Programming . 29

3.3 Infeasibility Detection . 33

3.4 PDHG for Extended Self-Dual Embedding 34

4 Extragradient Method for Self-Dual Programs 36

4.1 Extragradient Method for Self-Dual Problems 37

4.2 Extragradient Method for Extended Self-Dual Embedding 38

5 Numerical Results . 40

5.1 Description of Experiments . 40

5.2 Convergence Curves . 42

5.3 Linear Programs . 43

5.4 Trace Norm Minimization . 50

vi

6 Conclusions and Future Work . 53

References . 55

vii

LIST OF FIGURES

5.1 Magnitude of primal objective |θ| of extragradient iterates plotted against itera-

tion number. 43

5.2 Relative residuals }re}8{α and }ri}8{α of extragradient iterates plotted against

iteration number. 44

5.3 Magnitudes of primal and dual objectives |θ| of PDHG iterates plotted against

iteration number. 44

5.4 Relative residuals }re}8{α and }ri}8{α of the primal (top) and dual (bottom)

PDHG iterates plotted against iteration number. 45

5.5 Fraction of problems solved plotted against the total elapsed time. 47

5.6 Fraction of problems solved plotted against the total number of KKT passes. . . 47

5.7 Fraction of problems solved plotted against the total elapsed time. 48

5.8 Fraction of problems solved plotted against the total number of KKT passes . . 49

viii

LIST OF TABLES

5.1 CPU times in seconds of our methods solving randomly generated LPs. 50

5.2 CPU times in seconds of CVX, PDHG, and the extragradient method for ran-

domly generated trace norm minimization problems. 52

5.3 Objective values found by CVX, PDHG, and the extragradient method for ran-

domly generated trace norm minimization problems. 52

ix

ACKNOWLEDGMENTS

This thesis is made possible by the support and teachings from many people I had the honor

of studying and interacting with during my time as a student at UCLA. Firstly, I would like

to extend sincerest thanks to Professor Lieven Vandenberghe for his advisorship. Learning

in his courses since I was an undergraduate student and working on this thesis under his

guidance has been a fantastic and motivating educational experience, for which I will forever

be grateful.

I would also like to thank my committee members Professor Vwani Roychowdhury and

Professor Lin Yang, whose courses have been a big inspiration for my continued studies in

computation and applied mathematics. Learning from these excellent teachers and scientists

has kept me excited and passionate about my current and future studies. My experiences

with all of my committee members inspires me to strive to be an expert creator of knowledge.

Furthermore, I am thankful for my friends and community who have all been great sources

of support, energy, and vitality. Without this fellowship with my friends and classmates I

would not have been able to produce my best efforts.

Finally, I am grateful for my family who have continually supported me through my

educational journey and have been a persistent source of encouragement and strength.

x

VITA

2022 B.S. (Electrical Engineering) and Minor (Mathematics), University of Cal-

ifornia, Los Angeles.

xi

CHAPTER 1

Introduction

Linear programming is an important class of convex optimization problems that can be

used to solve a wide range of problems in applied mathematics, operations research, and

engineering. There has long been focus on developing algorithms for solving linear programs;

in 1947, Dantzig developed the simplex algorithm for solving linear programs as described

in [Dan63], which was one of the earliest works in numerical optimization. The simplex

method finds an optimal vector by traversing the vertices of the feasible polyhedron. While

the method is still popularly used and generally performs well, Klee and Minty in [KM72]

show that the simplex algorithm runs in exponential worst-case complexity by constructing

a simple example linear program and showing that the simplex algorithm visits every vertex

of its feasible polyhedron. Yudin and Nemirovskii in [YN77, YN83] study the informational

complexity of convex optimization and introduce the ellipsoid method; Khachiyan applied

their findings to linear programming in [Kha79] and proved that the worst-case complexity

of the ellipsoid method for linear programming is polynomial. Though the ellipsoid method

was not competitive in practice with the simplex algorithm, it inspired further research into

methods besides the simplex method.

The development of interior-point methods, methods that iterate within the feasible re-

gion, for linear programs was an important milestone in the field of linear programming

algorithms, and these methods are still widely used today. Karmarkar introduced a new

interior-point method for linear programming in [Kar84], which used projective transforma-

tions and solved linear programs in polynomial complexity. This successful method inspired

1

many following works leading to new interior-point methods and a renewed interest in re-

lated approaches. These notably included the affine scaling method [Bar86, VMF86, Dik67]

and the barrier method [Ren88].

In 1994, Nesterov and Nemirovski in [NN94] analyzed interior-point methods for convex

programming, including semidefinite programming and second-order cone programming. In

this work, they apply analysis and methods of linear programs to non-polyhedral conic

optimization problems. Primal-dual interior-point methods are used in many commercial

and noncommercial solvers including Mosek, SeDuMi, and SDPT3 [ApS19, Stu99, TTT99].

A conic linear program is a convex optimization problem with linear objective function

and conic inequality constraints. It can be viewed as a generalization of linear programming,

and many of the results and algorithms for linear programming can be naturally extended

to this framework. Conic linear programming is widely studied, and it can model important

cases of optimization problems including semidefinite programming and second-order cone

programming. It is also the basis of many modeling packages including CVX, CVXPY,

PICOS, YALMIP, and CVXOPT [GB14, GB08, DB16, SS22, L04, ADV13].

Although surprisingly many convex optimization problems can be modeled as semidefinite

programs and second-order cone programs, there are optimization problems that cannot be

modeled with these tools, such as problems with power or exponential constraints, or that

incur a heavy overhead cost when reformulated in the form of a more standard problem.

As a result, there has been growing interest in interior-point methods for non-symmetric

cones, for example in [SY15], [ADV10], [Ser15], and in implementations of power cones and

exponential cones for Mosek and Clarabel [GC21].

There is also growing interest is in the development of methods besides interior-point

methods. Interior-point methods are generally able to solve problems in few iterations, but

the computational per-iteration cost is high, which creates difficulties in scaling. One cele-

brated approach for semidefinite programming is the Burer-Monteiro approach, introduced

in [BM03], which represents a positive semidefinite matrix in factored form and optimizes

2

over the factors. This makes the problem non-convex in general but reduces the dimension

of the problem.

Another direction of growing interest is in first-order methods for conic linear programs,

the most expensive operations of which are matrix-vector products and projections onto

cones. These operations scale much better to larger problems than matrix factorizations,

which are used in simplex and interior-point methods. For instance, Zheng et al. in [ZFP20]

employ chordal decomposition to first reformulate a semidefinite program to one with smaller

semidefinite constraints then use the alternating direction method of multipliers, a first-

order method, to solve the reformulated problem. In this work, we examine two first-order

primal-dual methods, the primal-dual hybrid gradient method and the extragradient method,

applied to a self-dual embedding.

In this thesis, we first review conic linear programming in Chapter 2. Then, we describe

the primal-dual hybrid gradient method and the extragradient method in Chapter 3 and

Chapter 4 respectively. In Chapter 5, we describe some numerical experiments involving

these methods, and finally we conclude in Chapter 6 with discussions on these methods and

some directions for further research.

3

CHAPTER 2

Conic Linear Programming

In this chapter, we review conic linear programming and the necessary background and

notations for this work. In Section 1, we review the background of conic linear programming,

including the standard cases of linear programming, second-order cone programming, and

semidefinite programming and their applications. We review duality in Section 2 and note

some important results and their consequences. Then, in Section 3 we review self-dual

embeddings and how this reformulation can be used to develop efficient solvers. Finally, in

Section 4 we give a brief overview of algorithms that are commonly used to solve conic linear

programs.

2.1 Conic Linear Programming

Conic linear programming is a general and important form that can be used to model many

convex optimization problems. It is an extension of linear programming and the foundation

of many solvers like YALMIP, CVX, and CVXPY [L04, GB14, GB08, DB16].

Firstly, a conic linear program is an optimization problem with a linear objective function

and inequality constraints defined with respect to a cone. For this work, we assume that the

objective function is the standard inner product with some objective vector, and the linear

operators defining the constraints are left multiplications by matrices and therefore have

adjoint operators left multiplication by the transposes of the matrices. So, a conic linear

4

program is written as

minimize cTx

subject to Ax “ b

Gx ` s “ h

s P K

(2.1)

where K is a proper convex cone. A cone is a nonempty set K such that

x P K ñ tx P K @t ě 0

and a proper cone is a convex cone that is closed, has nonempty interior, and does not

contain any lines. For a proper cone K, the generalized inequality ĺK with respect to K is

defined

x ĺK y ðñ y ´ x P K,

and the inequality holds strictly as

x ăK y ðñ y ´ x P intpKq.

For this work, we write m1 and m2 for the respective number of rows in A and G. Note that

Gx ` s “ h and s P K are equivalently Gx ĺK h.

Conic linear programming is a richly studied topic, and we refer to [BV04, BN01] for conic

linear programming and convex optimization in general, and to [Roc70] for background on

cones and convexity.

2.1.1 Linear Programming

Linear programming (LP) is an extremely important optimization problem that can find

application in every discipline in engineering and modeling. It is also important to study

because theory and algorithms can often be appropriately generalized to conic linear pro-

gramming.

5

A linear program has the form

minimize cTx

subject to Ax “ b

Gx ď h

(2.2)

where the inequality ď is element-wise comparison and is equivalent to ĺRm2
`
.

As a result of the wide applicability of linear programming, it has a long history of being

extensively studied. In the 1940’s, Dantzig introduced the simplex method for linear pro-

gramming [Dan63]. Since then, there have been numerous advancements in the development

of LP solvers. Khachiyan in [Kha79] first showed with the ellipsoid method, earlier intro-

duced in [YN77, YN83], that linear programs could be theoretically solved in polynomial

time, and in 1984 Karmarkar developed an interior-point method with polynomial complex-

ity for LPs [Kar84] that performs well in practice and inspired more research on efficient

algorithms for solving LPs. Later, there has been more research on improving the efficiency

of these algorithms and applying them to large-scale programs.

Integer linear programming is a well studied discipline of optimization related to linear

programming, where the optimization variable of an LP is constrained further to be integral,

that is, x in (2.2) is additionally constrained to x P Zn. This can be used to model discrete

optimization problems like in combinatorics and graph theoretic optimization problems, and

efficient LP solvers are required for solving integer linear programs. We direct to [Sch98] for

reference on integer linear programming.

2.1.2 Second-Order Cone Programming

Another important class of conic linear programs are second-order cone programs (SOCPs).

An SOCP is a program of the form

minimize cTx

subject to }Bk0x ` dk0}2 ď Bk1x ` dk1, k “ 1, . . . , r

6

where } ¨ }2 is the Euclidean norm.

Using the second-order cone, defined as

Qp
“ tpx, yq P Rp´1

ˆ R | }x}2 ď yu,

the SOCP can be expressed as a conic linear program of the form (2.1) by choosing

G “

»

—

—

—

—

—

—

—

—

—

–

´B10

´B11

...

´Br0

´Br1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, h “

»

—

—

—

—

—

—

—

—

—

–

d10

d11
...

dr0

dr1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, K “ Qm10 ˆ ¨ ¨ ¨ ˆ Qmr0

where mk0 ´ 1 is the number of rows in Bk0 for k “ 1, . . . , r.

SOCPs have been extensively studied and have wide applications including modeling

norm minimization problems, approximation problems, robust optimization, portfolio opti-

mization, and other nonlinear optimization problems. For more on applications of second-

order cone programs, see [LVB98, AG03]. One example in robust linear programming is the

problem

minimize cTx

subject to gTk x ď hk, k “ 1, . . . ,m

where for each k, gk is uncertain or variable, but known to be within an ellipsoid

gk P tḡk ` Pku | }u}2 ď 1u.

So, each constraint is ḡTk x ` uTP T
k x ď hk for all }u}2 ď 1, and equivalently

ḡTk x ` sup
}u}2ď1

`

uTP T
k x

˘

ď hk.

Since sup}u}2ď1

`

uTP T
k x

˘

“
›

›P T
k x

›

›

2
, the robust linear program can be written as the SOCP

minimize cTx

subject to
›

›P T
k x

›

›

2
ď hk ´ ḡTk x, k “ 1, . . . ,m

7

Another example of how an SOCP can model a nonlinear optimization problem is in

maximizing the geometric mean of nonnegative affine functions:

maximize
p
ź

k“1

`

aTk x ` bk
˘1{p

subject to aTk x ` bk ě 0, k “ 1, . . . , p.

First, consider the case where p is a power of two, and write p “ 2K . Then, the problem can

be equivalently written

maximize v1v2 ¨ ¨ ¨ vp

subject to 0 ď vk “ aTk x ` bk, k “ 1, . . . , p

which can then be written as

maximize pt1q1pt1q2 ¨ ¨ ¨ pt1qp{2

subject to 0 ď vk “ aTk x ` bk, k “ 1, . . . , p

pt1q
2
1 ď v1v2

pt1q
2
2 ď v3v4

...

pt1q
2
p{2 ď vp´1vp

t1 ě 0.

Repeating this procedure of rewriting the problem, each time reducing the number of factors

in the objective function by half and adding the appropriate constraints, the problem can

8

be expressed as

maximize tK

subject to 0 ď vk “ aTk x ` bk, k “ 1, . . . , p

t2K ď ptK´1q1ptK´1q2, tK ě 0

ptK´1q
2
1 ď ptK´2q1ptK´2q2, ptK´1q

2
2 ď ptK´2q3ptK´2q4, tK´1 ě 0

...

pt1q
2
1 ď v1v2

pt1q
2
2 ď v3v4

...

pt1q
2
p{2 ď vp´1vp

t1 ě 0.

Since hyperbolic constraints of the form

uTu ď yz, y ě 0, z ě 0

are equivalently
›

›

›

›

›

›

»

–

2u

y ´ z

fi

fl

›

›

›

›

›

›

2

ď y ` z, y ě 0, z ě 0

the previous formulation of the geometric mean problem can be written as a second-order

cone program.

In the case where p is not a power of 2, then we can first define additional variables

ak “ 0 and bk “ 1 for k “ p ` 1, . . . , 2K where 2K is the smallest power of 2 greater than p,

then apply the same procedure. We note that while this reformulation conveniently yields a

well-studied form, the additional variables incur additional computational cost for a solver.

9

2.1.3 Semidefinite Programming

A semidefinite program (SDP) is a program of the form

minimize cTx

subject to x1Ak1 ` x2Ak2 ` ¨ ¨ ¨ ` xnAkn ĺSpk`
Bk, k “ 1, . . . , r

where Sn
` is the cone of positive semidefinite nˆnmatrices, and Aki, Bk P Spk

` for i “ 1, . . . , n

and k “ 1, . . . , r. To write this program in the form of (2.1), we first define a vectorization

operation for symmetric matrices vec : Sp Ñ R
ppp`1q

2 as

vecpMq “

´

M11,
?
2M21,

?
2M31, . . . ,

?
2Mp1,M22,

?
2M32, . . . ,Mp2, . . . ,Mpp

¯

and the cone of vectorized positive semidefinite matrices

Sp
“ tvecpMq | M P Sp

`u.

Then, the SDP can be written in the form of (2.1) as

G “

»

—

—

—

—

—

—

–

vecpA11q vecpA12q ¨ ¨ ¨ vecpA1nq

vecpA21q vecpA22q ¨ ¨ ¨ vecpA2nq

...
...

. . .
...

vecpAr1q vecpAr2q ¨ ¨ ¨ vecpArnq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, h “

»

—

—

—

—

—

—

–

vecpB1q

vecpB2q

...

vecpBrq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, K “ Sp1 ˆ ¨ ¨ ¨ ˆ Spr .

The factor of
?
2 is added so that the standard inner product of the vectorized matrices

coincides with the standard inner product of matrices, that is

trpABq “ vecpAq
TvecpBq

for symmetric A and B.

Semidefinite programming has many applications in controls, experiment design, combi-

natorial optimization, and others in engineering.

In combinatorial optimization, the maximum cut problem can be analyzed with semidef-

inite programming, as described in [GW95]. For a graph G “ pV,Eq with weighted edges,

10

denoted wij for pi, jq P E, the objective of the maximum cut problem is to find a set of

vertices S Ď V that maximizes the sum of weights of edges with one endpoint in S and the

other in V zS. An upper bound can be formulated as follows: for each vertex i, we introduce

an indicator variable yi with yi “ 1 if i P S and ´1 otherwise; the weight of the cut is

1

2

ÿ

pi,jqPE

wijp1 ´ yiyjq.

We consider the matrix Y with Yij “ yiyj for all i, j P V . Y is such that rankpY q “ 1 and

Yii “ 1 for all i P V . Relaxing the constraints gives the semidefinite program

maximize
1

2

ÿ

pi,jqPE

wijp1 ´ Yijq

subject to Yii “ 1, i P V

Y ľ 0.

For more materials on combinatorial optimization and semidefinite programming, see [Lov03,

Ali95, GW95].

Semidefinite programming can be used to solve optimization problems involving eigen-

values. Consider for example the problem of minimizing the sum of the r largest eigenvalues

of Apxq “ A0 ` A1x1 ` ¨ ¨ ¨ ` Anxn with A1, . . . , An symmetric. This problem can be solved

with the semidefinite program

minimize rt ` trpXq

subject to tI ` X ´ Apxq ľ 0

X ľ 0

of variables x P Rn, t P R, and X symmetric. We refer to [VB96, VB99] for additional notes

on semidefinite programming and some of its applications.

The class of problems that can be modeled as semidefinite programs is surprisingly large,

but these reformulations often require many additional variables. One such possible refor-

11

mulation is for the problem of minimizing trace norm:

minimize }A1x1 ` ¨ ¨ ¨ ` Anxn ´ B}˚

where } ¨ }˚ is the trace norm, also known as the nuclear norm, which is the sum of singular

values. This problem can be reformulated into a semidefinite program of the form

minimize ptrpV1q ` trpV2qq {2

subject to

»

–

V1 Apxq ´ B

pApxq ´ Bq
T V2

fi

fl ľ 0

where V1 and V2 are additional symmetric matrix variables and the operator A is defined

Apxq “ A1x1 ` ¨ ¨ ¨ `Anxn. We note that the addition of V1 and V2 introduces a considerable

overhead.

Trace norm minimization is useful because the trace norm is the convex envelope of rank

in the unit operator norm ball, meaning that it is the best pointwise approximation for

rank in the ball. This makes minimization of trace norm a useful heuristic for finding low

rank solutions, similarly to how l1 norm minimization serves as a heuristic for finding sparse

solutions. In fact, Recht and others in [RFP10] show that under certain conditions, a mini-

mum rank solution can be exactly recovered by solving the convex trace norm minimization

problem. We direct to [RFP10] for reference on trace norm minimization and to [Faz02] for

a report on the optimization problem and some of its applications.

We refer to [BN01, VB96] for further reading on LP, SOCP, and SDP theory.

2.1.4 Nonsymmetric Cone Programming

A symmetric cone is a cone that is self-dual and homogeneous, meaning that its automor-

phism group has a subgroup that acts transitively on its interior. For practical purposes, the

important symmetric cones are the nonnegative orthant, the second-order cone, the positive

semidefinite cone, and Cartesian products of the three previous. Primal-dual interior-point

12

methods for linear programs extend very naturally to conic LPs with symmetric cone con-

straints. Symmetric cones have special algebraic properties, and we direct to [FK94] for

reference on background of symmetric cones. In [NT97], Nesterov and Todd introduce self-

scaled barriers as an extension of the logarithmic barrier, and they find that the cones that

admit self-scaled barriers are exactly the symmetric cones, and they describe symmetric

primal-dual interior-point methods for conic LPs on symmetric cones.

A nonsymmetric cone is a cone that is not symmetric. There is growing interest in the

study of conic linear programs with nonsymmetric cones; see [SY15, ADV10, Ser15, Nes06,

DA22] for examples of works investigating nonsymmetric conic optimization.

An important example of a nonsymmetric cone is the exponential cone

Kexp “ cl
`␣

px, y, zq P R3
| yey{x

ď z, y ą 0
(˘

.

Using the exponential cone, many convex functions can be modeled as conic linear programs,

including logarithms, entropy, and exponential functions, which cannot be modeled in SOCPs

or SDPs.

An important family of problems that can be modeled with exponential cones is geometric

programming, which considers problems of the form

minimize cTx

subject to log

˜

nk
ÿ

i“1

exp
`

aTkix ` bki
˘

¸

ď 0, k “ 1, . . . , r.

Zener studied geometric programs in the 60’s [Zen61], and they can be applied to many

engineering problems including design of circuits and power systems [BKV07, Ben68] and

regional analysis.

A geometric program can be expressed as conic linear program using the exponential

13

cone as

minimize cTx

subject to

»

—

—

—

–

aTkix ` bki

1

zki

fi

ffi

ffi

ffi

fl

P Kexp, i “ 1, . . . , nk, k “ 1, . . . , r

nk
ÿ

i“1

zki ď 1, k “ 1, . . . , r.

The three-dimensional power cone defined as

Qα “
␣

px, y, zq P R3
ˇ

ˇ xαy1´α
ě |z|

(

in [Nes06] for some α P p0, 1q can model power constraints, for example |x|p ď t is equivalent

to pt, 1, xq P Q1{p. This is further generalized in [Cha09] to

Kα “

#

px, zq P Rn
` ˆ R

ˇ

ˇ

ˇ

ˇ

ˇ

n
ź

i“1

xαi
i ě |z|

+

with α P Rn
` and

řn
i“1 αi “ 1. Solvers like Mosek and YALMIP include power cone model-

ing capabilities, and there is recent interest in developing methods for solving conic linear

programs with constraints of these cones.

The trace norm minimization problem presented previously as a semidefinite program

can be more simply written as a conic linear program using the trace norm cone, which we

define as

K˚
“ tpvecpXq, tq P Rmn

ˆ R | }X}˚ ď tu.

The problem is equivalent to

minimize t

subject to

»

–

vecpApxq ´ Bq

t

fi

fl P K˚.

14

This formulation may be favorable for computation compared to the SDP formulation be-

cause it avoids the increase in number of variables and increased dimension from the Schur

complement system.

2.1.5 Modeling Using Conic Linear Programming

Using thoughtfully constructed cones, any convex optimization problem can be formulated

as a conic linear program. For a convex set C, the inverse image of C under perspective is

P´1
pCq “ tpx, yq P Rn

ˆ R | y ą 0, x{y P Cu .

If C additionally has nonempty interior and contains no lines, then cl pP´1pCqq is a proper

cone. Then the constraint x P C can equivalently be written as the conic inequality px, 1q P

P´1pCq. For a convex function f , the epigraph of the perspective of f is

epi pPf q “ tpx, y, zq P Rn
ˆ R ˆ R | y ą 0, yfpx{yq ď zu .

A convex constraint fpxq ď t can be equivalently written as px, 1, tq P epi pPf q. Combining

the construction of cones from convex sets and cones from convex functions, every convex

optimization problem can be modeled as a conic linear program. While these constructions

show that conic linear programming is universal, in practice optimization problems are typ-

ically reformulated into programs with more standard cones such as the symmetric cones,

the exponential cone, or the power cone.

2.2 Duality

For a cone (and in fact for any set) K, the dual cone of K is defined as

K˚
“ ts | sTx ě 0 @x P Ku.

15

The dual of the conic linear program (2.1) is

maximize ´ bTy ´ hT z

subject to c ` ATy ` GT z “ 0

z P K˚,

(2.3)

and from this related problem we can derive optimality and infeasibility conditions for the

primal problem (2.1).

2.2.1 Optimality Conditions

Let p‹ be the optimal value of the primal program (2.1) and d‹ the optimal value of the dual

program (2.3). Weak duality always holds, that is, d‹ ď p‹. Strong duality, the condition

where d‹ “ p‹ holds under stricter conditions. A commonly noted sufficient condition is

Slater’s condition, which holds when the primal problem is strictly feasible, that is, when

there exists a point x that satisfies Gx ă h.

When strong duality holds, the Karush–Kuhn–Tucker (KKT) conditions are sufficient

and necessary for optimality. px‹, s‹, y‹, z‹q satisfies the KKT conditions when

‚ Primal feasibility: Ax‹ “ b, Gx‹ ` s‹ “ h, s‹ ľK 0

‚ Dual feasibility: ATy‹ ` GT z‹ ` c “ 0, z‹ ľK˚ 0

‚ Complementary slackness: pz‹q
T s‹ “ 0.

2.2.2 Theorems of Alternatives

For the constraints of the conic linear program (2.1), the following theorem of alternatives

is useful:

Theorem 1 At most one of the following is feasible:

‚ Ax “ b, Gx ĺ h

16

‚ ATy “ 0, GT z “ 0, z ľ˚ 0, bTy ` hT z ă 0

and at most one of the following is feasible:

‚ Ax “ 0, Gx ĺ h, cTx ă 0

‚ ATy ` GT z ` c “ 0, z ľ˚ 0.

The system of alternatives, related closely to Farkas’ lemma for linear systems, is useful

since the alternatives can be used to prove that there does not exist some x with Ax “ b and

Gx ĺ h or that there does not exist some py, zq with ATy ` GT z ` c “ 0, z ľ˚ 0, certifying

primal or dual infeasibility respectively.

We direct to [Nem04, BN01] as reference materials for theory of optimality, feasibility,

and duality in convex optimization.

2.3 Self-Dual Embedding

For a conic linear program, a self-dual embedding is a larger program that embeds the original

primal and dual programs. Forming the embedding is an elegant and successful approach

to handling initialization and infeasibility detection. The self-dual embedding is primal and

dual feasible with known feasible points and known optimal value of zero. So, solving the

embedding does not require a phase I procedure or an infeasibility detection procedure, and

the self-dual property simplifies termination criteria for a solver. From the solution to a

self-dual embedding we can usually recover an optimal vector or a certificate of infeasibility.

17

2.3.1 Homogeneous Self-Dual Embedding

Goldman and Tucker in [GT56] consider dual linear programs of the form

maximize cTx minimize bTu

subject to Ax ď b subject to ATu ě c

x ě 0 u ě 0

and introduce the self-dual feasibility problem

find pu, x, tq

subject to

»

—

—

—

–

0 ´A b

AT 0 ´c

´bT cT 0

fi

ffi

ffi

ffi

fl

»

—

—

—

–

u

x

t

fi

ffi

ffi

ffi

fl

ě 0

pu, x, tq ě 0

that encodes the KKT conditions. By a result Tucker states in [Tuc56], the above system

has a nonzero solution pu0, x0, t0q such that
»

—

—

—

–

0 ´A b

AT 0 ´c

´bT cT 0

fi

ffi

ffi

ffi

fl

»

—

—

—

–

u0

x0

t0

fi

ffi

ffi

ffi

fl

`

»

—

—

—

–

u0

x0

t0

fi

ffi

ffi

ffi

fl

ą 0.

If t0 ą 0, then u0{t0 and x0{t0 are dual and primal optimal vectors respectively. In the case

where t0 “ 0, either the primal or dual program has no feasible vector, and if a program has

a feasible vector its set of feasible vectors is unbounded; additionally, neither program has

an optimal vector.

Recall the conic linear program of form (2.1):

minimize cTx

subject to Ax “ b

Gx ĺK h.

18

The embedding of Goldman and Tucker can be extended to problems of this form:

minimize 0

subject to

»

—

—

—

—

—

—

–

0

0

s

κ

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

–

0 AT GT c

´A 0 0 b

´G 0 0 h

´cT ´bT ´hT 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

–

x

y

z

τ

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ps, κ, z, τq ľ 0

(2.4)

where ps, κ, z, τq ľ 0 is shorthand for s ľK 0, κ ě 0, z ľK˚ 0, τ ě 0. This embedding is

studied by Ye, Todd, and Mizuno in [YTM94], where they detail interior-point algorithms

for solving it. O’Donoghue et al. in [OCP16] analyze solving the same self-dual formulation

using the alternating direction method of multipliers, and they implement this method in

Splitting Conic Solver (SCS) [OCP23].

This embedding is feasible since ps, κ, x, y, z, τq “ 0 is a feasible point. Since the objective

function is not dependent on the variables, any feasible point is optimal. The embedding is

called homogeneous since for any feasible ps, κ, x, y, z, τq, pts, tκ, tx, ty, tz, tτq for any t ě 0

is also feasible.

19

The equality constraint implies that for any feasible ps, κ, x, y, z, τq,

sT z ` κτ “

»

—

—

—

—

—

—

–

x

y

z

τ

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

T »

—

—

—

—

—

—

–

0

0

s

κ

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

–

x

y

z

τ

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

T »

—

—

—

—

—

—

–

0 AT GT c

´A 0 0 b

´G 0 0 h

´cT ´bT ´hT 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

–

x

y

z

τ

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ ´

¨

˚

˚

˚

˚

˚

˚

˚

˝

»

—

—

—

—

—

—

–

x

y

z

τ

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

T »

—

—

—

—

—

—

–

0 AT GT c

´A 0 0 b

´G 0 0 h

´cT ´bT ´hT 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

–

x

y

z

τ

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‹

‹

‹

‚

T

“ ´psT z ` κτq

and so

sT z ` κτ “ 0

at every feasible point, and so there is no strictly feasible point.

Suppose ps, κ, x, y, z, τq is a solution to the homogeneous self-dual embedding with either

κ or τ nonzero. Since ps, κ, z, τq ľ 0 and sT z ` κτ “ 0, then exactly one of κ and τ is

positive and the other is zero.

‚ In the case τ ą 0, κ “ 0, px̂, ŷ, ẑq “ px, y, zq{τ and ŝ “ s{τ are such that
»

—

—

—

–

0

0

ŝ

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

0 AT GT

´A 0 0

´G 0 0

fi

ffi

ffi

ffi

fl

»

—

—

—

–

x̂

ŷ

ẑ

fi

ffi

ffi

ffi

fl

`

»

—

—

—

–

c

b

h

fi

ffi

ffi

ffi

fl

, pŝ, ẑq ľ 0, ẑT ŝ “ 0

so x̂ and pŷ, ẑq and primal and dual optimal.

‚ In the case τ “ 0, κ ą 0, cTx ` bTy ` hT z ă 0 so cTx is negative or bTy ` hT z is

negative. If cTx ă 0 then the dual is infeasible since

Gx ` s “ 0, Ax “ 0, s ľ 0, cTx ă 0.

20

If bTy ` hT z ă 0 then the primal is infeasible since

ATy ` GT z “ 0, z ľ 0, bTy ` hT z ă 0.

The algorithm described in [OCP16] chooses the initial point specifically to avoid convergence

to the meaningless ps, κ, x, y, z, τq “ 0 solution.

If the found solution is such that τ “ κ “ 0, then neither an optimal solution nor a

certificate of infeasibility for the original problem can be found.

2.3.2 Extended Self-Dual Embedding

Another self-dual linear program that encodes the KKT conditions can be defined as

minimize αθ

subject to

»

—

—

—

—

—

—

—

—

—

–

0

0

s

κ

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

–

0 AT GT c qx

´A 0 0 b qy

´G 0 0 h qz

´cT ´bT ´hT 0 qτ

´qTx ´qTy ´qTz ´qτ 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

–

x

y

z

τ

θ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

—

—

—

—

–

0

0

0

0

α

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ps, κ, z, τq ľ 0

(2.5)

for a positive constant α, which has the advantage of being strictly feasible, unlike the

homogeneous self-dual embedding (2.4).

The parameters pqx, qy, qz, qτ q are chosen to be

»

—

—

—

—

—

—

–

qx

qy

qz

qτ

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“
α

sT0 z0 ` 1

¨

˚

˚

˚

˚

˚

˚

˝

»

—

—

—

—

—

—

–

0

0

s0

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

´

»

—

—

—

—

—

—

–

0 AT GT c

´A 0 0 b

´G 0 0 h

´cT ´bT ´hT 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

–

x0

y0

z0

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‹

‹

‚

(2.6)

with x0, s0, y0, z0 chosen arbitrarily with s0 ąK 0 and z0 ąK˚ 0.

21

The extended self-dual embedding program is always strictly feasible with

ps, κ, x, y, z, τ, θq “

ˆ

s0, 1, x0, y0, z0, 1,
sT0 z0 ` 1

α

˙

a strictly feasible point.

Similarly to the case of (2.4), the conic linear program (2.5) is self-dual and its solution

can give optimal vectors or certificates of infeasibility for the original program if τ ą 0 and

κ “ 0 or τ “ 0 and κ ą 0 respectively.

2.3.3 τ “ κ “ 0 Pathology

A solution to the homogeneous self-dual embedding (2.4) or extended self-dual embedding

(2.5) with τ “ κ “ 0 is undesirable because it gives no information about optimal solutions

or feasibility of the original problem. Permenter et al. in [PFA17] describe an algorithm

using facial reduction that can be approximately implemented that can derive an objective

vector, improving ray, or certificate of infeasibility when solutions to the homogeneous self-

dual embedding with τ “ κ “ 0 are encountered. They also note that if τ “ κ “ 0 for all

solutions of the embedding, then it indicates that the primal or dual problem is ill-posed, or

poorly conditioned as described in [Ren95].

Facial reduction for conic programming was first introduced by Borwein and Wolkowicz

in [BW81]. The procedure is used to replace the cone of the program with a new nonempty

cone of smaller dimension that is a subset of the original cone and still contains the optimal

vector. We refer to the work [DW17] as a survey and reference for theory and recent work

in facial reduction.

For dual conic linear programs of the form

minimize xc, xy maximize xb, yy

subject to Ax “ b subject to c ´ A˚y “ s

x P C s P C˚

22

the facial reduction procedure can be used to replace C with a smaller cone that is a subset of

C. Permenter and others in [PFA17] show that when a strict solution to (2.4) provides neither

an optimal solution nor a certificate of infeasibility, it provides a facial reduction certificate.

s is a facial reduction certificate for the primal program if sK contains the set tx | Ax “ bu

and C X sK Ă C strictly. Here, p¨qK is the set of all orthogonal vectors. Analogously, x is

a facial reduction certificate for the dual program if xK contains tc ´ A˚y | y P Rmu and

C˚ X xK Ă C˚.

[PFA17] describe that s is a facial reduction certificate for the primal program if there

exists y with

xb, yy “ 0, A˚y ` s “ 0, s P C˚
zCK,

and x is a facial reduction certificate for the dual program if

xc, xy “ 0, Ax “ 0, x P CzpC˚
q

K.

Using facial reduction, Permenter and others describe an algorithm that yields a mean-

ingful solution to a self-dual embedding even in the case where τ “ κ “ 0. Firstly, write

HpCq to be the set of solutions px, s, y, τ, κq to the homogeneous self-dual system

Ax ´ bτ “ 0

´A˚y ´ s ` τc “ 0

xb, yy ´ xc, xy ´ κ “ 0

px, s, τ, κq ľK 0.

where K “ C ˆ C˚ ˆ R` ˆ R` The algorithm is

23

1: C Ð K

2: repeat

3: Find px, s, y, τ, κq in the relative interior of HpCq

4: if τ ` κ ą 0 then

5: return px, s, y, τ, κq

6: else

7: if s R CK then

8: C Ð C X sK

9: else

10: C Ð
`

C˚ X xK
˘˚

11: end if

12: end if

13: until algorithm returns

The algorithm returns, in finitely many iterations, a solution px, s, y, τ, κq that satisfies

τ ą 0 or κ ą 0. The update of replacing the cone C with CXsK transforms the conic program

to one with a reduced cone that still contains the optimal vector.

2.4 Algorithms

2.4.1 Interior-Point Methods

Interior-point methods have been a popular method of solving conic linear programs, and is

used in solvers including Mosek, SeDuMi, and SDPT3 [ApS19, Stu99, TTT99]. There has

been extensive research on these methods since the 1990’s, and they have been successful in

solving medium-scale problems efficiently. These methods repeatedly solve a linearization of

the KKT equations of an approximate problem where the inequality constraints are replaced

instead with a barrier function. While these methods generally are robust and converge

24

in few iterations, there is difficulty in scaling these methods for larger problems since each

iteration solves a linear system. The cost of solving the linear system is especially expensive

since there is often a need to embed the problem into some larger problem and the linear

system is dense or has dense factorizations in general, so the cost per iteration grows quickly.

We refer to [NN94, Wri97] for further readings on interior-point methods.

2.4.2 First-Order Methods

Recent focus has been on first-order methods, which do not require solving a linear system.

Since the computational cost is dominated by matrix-vector multiplications and projection or

proximal operations, which are frequently efficient to compute, these methods are promising

for large-scale conic linear programs, where factoring a data matrix would be very costly.

Firstly, for convex f , the proximal operator proxf is defined

proxf pxq “ argmin
y

ˆ

fpyq `
1

2
}y ´ x}

2
2

˙

and the convex conjugate f˚ is defined

f˚
pyq “ sup

xPdom f

`

yTx ´ fpxq
˘

.

We also note that proximal operators extend projections. The proximal operator of the

indicator function of a nonempty set C,

δCpxq “

$

’

&

’

%

0, x P C

8, x R C

is

proxδC pxq “ argmin
y

ˆ

δCpyq `
1

2
}y ´ x}

2
2

˙

“ argmin
yPC

}x ´ y}2

which is identically the Euclidean projection onto C, which we denote with ΠC .

The Douglas-Rachford algorithm, first introduced in 1956 in [DR56] for numerically solv-

ing the heat equation and later applied in [LM79] to minimization problems, solves problems

25

of the form

minimize fpxq ` gpxq

with f and g convex. The algorithm updates as

xk`1 “ proxf pykq

yk`1 “ yk ` proxgp2xk`1 ´ ykq ´ xk`1

with any y0. If g additionally has conjugate g˚ with easily computable proximal operator,

the updates can be simplified using Moreau decomposition and change of variables z “ x´y

to

xk`1 “ proxf pxk ´ zkq

zk`1 “ proxg˚pzk ` 2xk`1 ´ xkq

with any x0, z0.

The alternating direction method of multipliers (ADMM) is a choice first-order method,

equivalent to applying the Douglas-Rachford method to the dual problem as shown in

[Gab83]. ADMM updates as

xk`1 “ proxf pzk ` λkq

zk`1 “ proxgpλk ´ xk`1q

λk`1 “ λk ´ xk`1 ` zk`1

We refer to [BPC11] for a survey on ADMM and its applications and to [ZFP20] and

[OCP16, OCP23] as some examples modern solvers that use ADMM.

In this work, we examine two first-order methods: the primal-dual hybrid gradient and

extragradient methods; we defer to chapters 3 and 4 respectively for details on these methods.

26

CHAPTER 3

Primal-Dual Hybrid Gradient Method

The primal-dual hybrid gradient (PDHG) method was first introduced by Zhu and Chan in

[ZC08], where they present a primal-dual descent algorithm and apply it to total variation

minimization for image denoising tasks. Esser, Zhang, and Chan in [EZC10] generalize the

algorithm to a broader class of convex optimization problems and survey related methods.

Chambolle and Pock in [CP11] also study the algorithm and analyze the rate of convergence.

Pock and others in [PCB09] use PDHG to minimize the Mumford-Shah functional for image

segmentation tasks. We refer to [CP16] for further readings on optimization algorithms and

their applications in imaging.

For a minimization problem

minimize fpxq ` gpAxq

with equivalent saddle-point formulation

min
x

max
y

pxAx, yy ` fpxq ´ g˚
pyqq

with f and g˚ proper, convex, lower semicontinuous functions, the PDHG algorithm is given

as

yk`1 “ proxσg˚ pyk ` σAx̄kq

xk`1 “ proxτf pxk ´ τA˚yk`1q

x̄k`1 “ xk`1 ` θ pxk`1 ´ xkq

(3.1)

with primal and dual step sizes τ, σ ą 0 satisfying στ }A}
2
2 ď 1, θ P r0, 1s and initial points x0,

y0, and x̄0 “ x0. With θ “ 0 the method is equivalent to the Arrow-Hurwicz algorithm, and

27

with θ “ 1 and A “ I the method is the Douglas-Rachford splitting algorithm. Chambolle

and Pock in [CP11] and [CP15] show that the method converges with rate Op1{Nq.

3.1 PDHG for Conic Linear Programming

Now, consider the application of PDHG to the conic linear program (2.1). For ease of

notation, we write

B “

»

–

A

G

fi

fl , q “

»

–

b

h

fi

fl .

The conic linear program (2.1) can be written as

minimize fpxq ` gpBxq

with

fpxq “ cTx, gpyq “ δt0um1ˆp´Kqpy ´ qq.

The conjugate of g is

g˚
pyq “ qTy ` δRm1ˆK˚pyq.

Recalling that the proximal operator of the indicator function of a set is the Euclidean

projection onto that set, the updates in PDHG (3.1) simplify to

yk`1 “ ΠRm1ˆK˚ pyk ´ σ pq ´ Bx̄kqq

xk`1 “ xk ´ τ
`

c ´ BTyk`1

˘

x̄k`1 “ xk`1 ` θpxk`1 ´ xkq.

Here, we again write ΠS to denote the Euclidean projection operator

ΠSpxq “ argmin
sPS

}x ´ s}2.

For the case where the conic linear program is written to have constraints Ax “ b, Gx ĺK

h, x P C for some convex C, then the primal iteration can be expressed

xk`1 “ ΠC

`

xk ´ τ
`

c ´ BTyk`1

˘˘

28

with fpxq “ cTx ` δCpxq, which may be useful for programs where the primal variable is

constrained to a convex cone or other convex set.

PDHG is promising for large scale conic linear programming because of its low per-

iteration complexity; each iteration of PDHG consists of evaluating matrix-vector products

and projections onto cones. Unlike matrix factorization or solution of linear systems, these

operations scale well to larger dimensions.

3.2 PDHG for Linear Programming

Applegate et al. in [ADH21] introduce PDLP (PDHG for LP), a method for solving linear

programs using PDHG equipped with a suite of practical enhancements. These include

adaptive step size updates, adaptive restarts, and dynamic primal weight updates. While

first-order methods frequently quickly converge to an accurate solution, progress towards a

precise solution often slows. Applegate and others show that equipped with the algorithmic

enhancements, PDLP is able to efficiently find precise solutions to linear programs.

For a linear program of the form

minimize cTx

subject to Ax “ b

Gx ď h

l ď x ď u

with l P pR Y t´8uq
n and u P pR Y t8uq

n, the PDHG iterates with θ “ 1 can be written as

xk`1 “ ΠX

`

xk ´ τ
`

c ´ BTyk
˘˘

yk`1 “ ΠY pyk ´ σ pq ´ Bp2xk`1 ´ xkqqq

with X “ tx P Rn | l ď x ď uu and Y “ Rm1 ˆ Rm2
` . PDLP parameterizes the primal step

size and dual step size as τ “ η{ω and σ “ ηω with primal weight ω ą 0 and step size η ą 0.

29

Then, the method is known to converge with η ď 1{}B}2. For ω ą 0, the weighted norm of

primal-dual pair pxk, ykq is defined as

}pxk, ykq}ω “

c

ω}xk}22 `
}yk}22

ω
.

The algorithm is described as

1: n Ð 0, k Ð 0, η Ð 1{}K}8, ω0 Ð InitializePrimalWeightpc, qq

2: repeat

3: t Ð 0

4: repeat

5: zn,t`1, ηn,t`1, η̂n,t`1 Ð AdaptiveStepOfPDHGpzn,t, ωn, η̂
n,t, kq

6: ẑn,t`1 Ð 1
řt`1

i“1 ηn,i

řt`1
i“1 η

n,izn,i

7: zn,t`1
c Ð GetRestartCandidatepzn,t`1, z̄n,t`1, zn,0q

8: t Ð t ` 1, k Ð k ` 1

9: until restart conditions or termination conditions met

10: zn`1,0 Ð zn,tc , n Ð n ` 1

11: ωn Ð PrimalWeightUpdatepzn,0, zn´1,0, ωn´1q

12: until termination criteria hold

13: return zn,0.

In the above, t counts the number of iterations of the inner loop, which is the number

of iterations since the last restart; k counts the total number of iterations, and n counts the

number of times the inner loop is run, which counts the number of restarts. z denotes the

primal-dual iterate px, yq. In the rest of this section, we summarize the practical algorithmic

improvements implemented in PDLP.

30

3.2.1 Adaptive Step Size Choice

The adaptive step size update is implemented in AdaptiveStepOfPDHG by repeatedly per-

forming the proximal operations and accepting iterates xk`1 and yk`1 when

η ď
}pxk`1 ´ xk, yk`1 ´ ykq}2ω

2pyk`1 ´ ykqTBpxk`1 ´ xkq

and decreasing η otherwise. This stepping method finds a step size small enough to guarantee

convergence, and it is more liberal than setting η “ 1{}B}2 and additionally does not require

computing }B}2.

3.2.2 Adaptive Restarts

In each outer iteration of PDLP, the algorithm is restarted according to the normalized

duality gap as introduced in [AHL22], defined as

ρnr px, yq “
1

r
max

px̂,ŷqPXˆY
}px̂,ŷq´px,yq}ωnďr

pLpx, ŷq ´ Lpx̂, yqq ,

which is always finite. Also defined is µnpz, zrefq “ ρn
}z´zref}ωn

pzq for some reference point zref.

For parameters βsufficient P p0, 1q, βnecessary P p0, βsufficientq, and βartificial P p0, 1q, the algorithm

is restarted if one of the conditions is met:

‚ µnpzn,t`1
c , zn,0q ď βsufficientµnpzn,0, zn´1,0q

‚ µnpzn,t`1
c , zn,0q ď βnecessaryµnpzn,0, zn´1,0q and µnpzn,t`1

c , zn,0q ą µnpzn,tc , zn,0q

‚ t ě βartificialk

where n counts the iterations of the outer loop, t counts the iterations of the inner loop, and

k is the total number of iterations; zn,t is the iterate after the tth iteration of the inner loop,

of the nth iteration of the outer loop. zn,t`1
c is the restart candidate after updating zn,t, and

31

it is chosen by GetRestartCandidate as

zn,t`1
c “

$

’

&

’

%

zn,t`1, µnpzn,t`1, zn,0q ă µnpz̄n,t`1, zn,0q

z̄n,t`1, otherwise

where z̄n,t`1 is the average iterate in the nth outer loop after t iterations of the inner loop,

weighted by the step sizes of the updates, that is

z̄n,t`1
“

řt`1
i“1 η

n,izn,i
řt`1

i“1 η
n,i

.

In other words, the restart candidate is selected as the current iterate or the average iterate

over the inner loop, whichever results in a lower normalized duality gap with the iterate at

the beginning of the inner loop as the reference point.

3.2.3 Primal Weight Updates

The primal weight is initialized in InitializePrimalWeight to be

ω0 “

$

’

&

’

%

}c}2

}q}2
, }c}2 ą 0 and }q}2 ą 0

1, otherwise

.

The primal weight is updated so that the distance to optimal solutions in the primal and

dual tend to equality, that is, }pxn,t ´ x‹, 0q}ωn “ }p0, yn,t ´ y‹q}ωn , which would be at

ωn}xn,t
´ x‹

}
2
2 “

1

ωn

}yn,t ´ y‹
}
2
2.

Since x‹ and y‹ are unknown, PrimalWeightUpdate instead estimates

ωn “ }yn,t ´ y‹
}2{}xn,t

´ x‹
}2

as }yn,0 ´ yn´1,0}2{}xn,0 ´ xn´1,0}2.

32

3.3 Infeasibility Detection

Applegate et al. in [ADL21] Theorem 4 describe the behavior of PDHG for linear programs

and how the iterates can yield a certificate of infeasibility. They consider a linear program

in standard form

minimize cTx

subject to Ax “ b

x ě 0

with operator T the PDHG update, T pxk, ykq “ pxk`1, yk`1q, with στ}A}22 ă 1. They show

that T is firmly nonexpansive

}T pz1q ´ T pz2q}
2
M ď }z1 ´ z2}

2
M ´ }pT ´ Iqpz1q ´ pT ´ Iqpz2q}

2
M @z1, z2 P Rn`m

with respect to weighted norm } ¨ }M with M defined as

M “

»

–

1
τ
In ´AT

´A 1
σ
Im1

fi

fl .

Then, one of the following holds for the fixed-point iteration of T :

‚ If the primal and dual programs are feasible, then pxk, ykq converges to optimal px‹, y‹q

and pT ´ Iqpx‹, y‹q “ 0.

‚ If the primal and dual programs are infeasible, then the infimal displacement vector

pvx, vyq “ argminzPclprangepT´Iqq
1
2
}z}2M gives certificates of infeasibility vx and vy for the

dual and primal programs respectively.

‚ If the primal is infeasible and the dual is feasible, then yk diverges to infinity and xk

converges to x‹, vy is a certificate of primal infeasibility, and there exists some y‹ such

that pvx, vyq “ pT ´ Iqpx‹, y‹q.

33

‚ If the dual is infeasible and the primal is feasible, then the analogous conclusion to the

previous holds with the primal and dual components swapped.

For this work, we solve the extended self-dual embedding, which is strictly feasible,

circumventing the need for an infeasibility detection method like that described above. In

our alternate approach to detecting infeasibility, we solve the extended-self dual embedding

and if the solution is such that κ ą 0, we conclude the problem is infeasible and recover a

certificate of primal or dual infeasibility.

3.4 PDHG for Extended Self-Dual Embedding

In our implementation, we consider PDHG for conic linear programs, augmented with the

same practical improvements that Applegate and others describe in [ADH21]. We apply this

algorithm to the extended-self dual embedding (2.5). Recall the embedding

minimize αθ

subject to

»

—

—

—

—

—

—

—

—

—

–

0

0

s

κ

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

–

0 AT GT c qx

´A 0 0 b qy

´G 0 0 h qz

´cT ´bT ´hT 0 qτ

´qTx ´qTy ´qTz ´qτ 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

–

x

y

z

τ

θ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

—

—

—

—

–

‘0

0

0

0

α

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ps, κ, z, τq ľ 0.

Now writing c “ p0, . . . , 0, αq and Q the skew-symmetric constraint matrix, the updates

can be written as

vk`1 “ ΠC pvk ´ σ pc ` Qūkqq

uk`1 “ ΠC
`

xk ´ τ
`

c ` QTvk`1

˘˘

ūk`1 “ uk`1 ` θpuk`1 ´ ukq

34

with u being the primal variable and v being the dual variable. C is Rn ˆRm1 ˆK˚ ˆR` ˆR,

so the projection onto C projects the z component to the dual of K and the τ component to

the nonnegative numbers. In other words,

ΠCpx, y, z, τ, θq “
`

x, y,ΠK˚pzq, τ`, θ
˘

.

35

CHAPTER 4

Extragradient Method for Self-Dual Programs

Consider a pair of primal and dual optimization problems

minimize fpxq ` gpAxq maximize ´ g˚
pzq ´ f˚

p´A˚zq

with f and g closed convex functions. We compare extensions of the extragradient method

[Kor77], described in [AT05, JN12, Nem04, Tse08], for solving the saddle point formulation

min
x

max
y

pxAx, yy ` fpxq ´ g˚
pyqq .

This saddle point problem is also formulated as a variational inequality, that is, the problem

of finding px‹, y‹q such that

fpxq ´ fpx‹
q ` xx ´ x‹, A˚y‹

y ě 0, @x, ´g˚
pyq ` g˚

py‹
q ` xy ´ y‹, Ax‹

y ď 0, @y.

The iterates of the extragradient method are given as:

x̄k “ proxtkf pxk ´ tkA
˚zkq

z̄k “ proxtkg˚pzk ` tkAxkq

xk`1 “ proxtkf pxk ´ tkA
˚z̄kq

zk`1 “ proxtkg˚pzk ` tkAx̄kq

(4.1)

36

4.1 Extragradient Method for Self-Dual Problems

For a self-dual program, with f˚ “ g and A “ ´A˚, the primal and dual programs are

equivalent:

minimize fpxq ` f˚
pAxq maximize ´ fpzq ´ f˚

pAzq. (4.2)

Assuming that the problem is strictly feasible, strong duality holds so p‹ “ d‹. Addi-

tionally, if p‹ ą ´8, the dual optimum is attained. Since a feasible point x̂ is also dual

feasible, the optimal value is bounded below and so p‹ “ d‹ “ 0. The primal-dual optimality

conditions

0 P

»

–

0 A˚

´A 0

fi

fl

»

–

x

z

fi

fl `

»

–

Bfpxq

Bg˚pzq

fi

fl

reduce to 0 P ´Ax ` Bfpxq for the self-dual program.

The associated convex-concave function

Lpx, zq “ fpxq ´ g˚
pzq ` xz, Axy

for the self-dual function can be formulated as

Lpx, zq “ fpxq ´ fpzq ` xz, Axy

and so Lpx, zq “ ´Lpz, xq and Lpx, xq “ 0.

We apply the extragradient method (4.1) to the self-dual program (4.2), choosing some

initialization x0 “ z0. Then, x̄k “ z̄k and xk “ zk for all k, so the four updates simplify to

two:

x̄k “ proxtkf pxk ` tkAxkq

xk`1 “ proxtkf pxk ` tkAx̄kq.

The step size selection method by Tseng [Tse08] is to compute x̄k and xk`1 given some

positive tk and accept the iterates if

fpxk`1q ´ xAx̄k, xk`1y `
1

tk

ˆ

}xk`1 ´ xk}22

2

˙

ě fpx̄kq

37

holds. Otherwise, we decrease tk and recompute the iterates.

4.2 Extragradient Method for Extended Self-Dual Embedding

Recall the self-dual embedding (2.5)

minimize αθ

subject to

»

—

—

—

—

—

—

—

—

—

–

0

0

s

κ

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

–

0 AT GT c qx

´A 0 0 b qy

´G 0 0 h qz

´cT ´bT ´hT 0 qτ

´qTx ´qTy ´qTz ´qτ 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

–

x

y

z

τ

θ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

—

—

—

—

–

0

0

0

0

α

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ps, κ, z, τq ľ 0.

(4.3)

The program can be written in self-dual composite form as

minimize fpx, y, z, τ, θq ` f˚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

»

—

—

—

—

—

—

—

—

—

–

0 AT GT c qx

´A 0 0 b qy

´G 0 0 h qz

´cT ´bT ´hT 0 qτ

´qTx ´qTy ´qTz ´qτ 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

T »

—

—

—

—

—

—

—

—

—

–

x

y

z

τ

θ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

(4.4)

with

fpx, y, z, τ, θq “

$

’

&

’

%

αθ pz, τq ľ 0

8 otherwise.

For ease of notation, write v “ px, y, z, τ, θq the optimization variable, q “ p0, . . . , 0, αq, and

Q for the skew-symmetric matrix in the equality constraint. The extragradient algorithm

updates can be written as

v̄k “ proxtkf pvk ´ tkQvkq

vk`1 “ proxtkf pvk ´ tkQv̄kq

38

which are

v̄k “ argmin
v̄

ˆ

tkfpv̄q `
1

2
}v̄ ´ pvk ´ tkQvkq}

2
2

˙

vk`1 “ argmin
v

ˆ

tkfpvq `
1

2
}v ´ pvk ´ tkQv̄kq}

2
2

˙

.

Solving the minimization problem in the updates gives

v̄k “ ΠC pvk ´ tkQvk ´ tkqq

vk`1 “ ΠC pvk ´ tkQv̄k ´ tkqq .

Similarly to the PDHG updates, C “ Rn ˆ Rm1 ˆ K˚ ˆ R` ˆ R, so

ΠCpx, y, z, τ, θq “
`

x, y,ΠK˚pzq, τ`, θ
˘

.

The extragradient method applied to the self-dual embedding is promising for large-scale

conic linear programs because, as a first-order method, the most computationally expensive

operations of this algorithm are multiplications by Q and projections onto cones, which are

relatively inexpensive operations.

39

CHAPTER 5

Numerical Results

In this chapter, we describe numerical experiments to illustrate the performance of PDHG

and the extragradient method. We solve linear programs and non-polyhedral conic linear

programs and provide empirical evidence that the algorithms converge and find a correct

solution. All experiments are run on a machine with a 4 GHz eight-core AMD FX-8370 with

16 GB of memory.

5.1 Description of Experiments

For these experiments, we use the open-source Julia [BEK17] implementation of PDLP

from [ADH21], which we have edited to support non-polyhedral conic linear programs. We

also provide an implementation of a modified extragradient method, which solves self-dual

programs without performing the redundant dual iterates and supports non-polyhedral conic

linear programs.

For these experiments, we solve a conic linear program using the extended self-dual

formulation and record the total time spent on the computational operations in the algorithm

and the number of KKT passes, where each KKT pass is left-multiplication of a vector by

pA,Gq and one by pA,GqT .

40

5.1.1 Initialization

For forming the embedding, we choose x0 and y0 to be zero vectors. To choose s0 ąK 0, we

use the following choices:

‚ For K “ Rn
` we choose s0 “ 1.

‚ For K “ Sn, we choose s0 “ vecpIq.

‚ For K a norm cone, including second-order cones, the trace norm cone, and the operator

norm cone, we choose s0 “ p0, 0, . . . , 0, 1q, the vectorization of p0, 1q.

We choose z0 ąK˚ 0 using the same scheme. With these choices of x0, s0, y0, z0, we choose

α “ sT0 z0 ` 1 to correlate with the problem size, and then we form the extended self-dual

embedding by computing pqx, qy, qz, qτ q according to (2.6) and form the extended self-dual

embedding (2.5).

For choosing an initial point, we use the heuristic presented in [Meh92]. Inspired by

this, for a conic linear program of the form (2.1), the first iterate is chosen according to the

least-norm problem

minimize }x}
2
2 ` }s}

2
2

subject to Ax “ b

Gx ` s “ h

and the least-squares problem

minimize
›

›ATy ` GT z ´ c
›

›

2

2
`

1

2
}z}

2
2.

We choose initial point px, y, z, τ, θq “ px̃, ỹ, z̃, 1, ps̃T z̃ ` 1q{αq where px̃, s̃q and pỹ, z̃q are the

optimal solutions to the above programs.

We use the above simple methods for choosing strictly feasible points used in forming the

embedding and for initializing PDHG and the extragradient method, though we note that

there are many other appropriate choices.

41

5.1.2 Termination Conditions

Since the extended self-dual embedding is self-dual and strictly feasible, there is a feasible

vector that attains the optimum. So, we choose termination criteria to be zero duality gap

and feasibility, within some small positive tolerance ϵ. For computing distance to feasibility,

we compute the residuals

re “

»

—

—

—

–

ATy ` GT z ` τc ` θqx

´Ax ` τb ` θqy

´qTx x ´ qTy y ´ qTz z ´ τqτ

fi

ffi

ffi

ffi

fl

´

»

—

—

—

–

0

0

α

fi

ffi

ffi

ffi

fl

ri “
`

I ´ ΠKˆR`

˘

¨

˝

»

–

´Gx ` τh ` θqz

´cTx ´ bTy ´ hT z ` θqτ

fi

fl

˛

‚.

We note that the constraint pz, τq ľ 0 is always satisfied since each iteration of both PDHG

and the extragradient method projects pz, τq onto K˚ ˆ R`. We implement termination

criteria as

θ ď ϵ small duality gap

}p re, ri q} ď αϵ small distance to feasibility

and the factor of α for the feasibility condition is to make the tolerance relative to the scale

of the problem. For these experiments, we choose ϵ “ 1e´6, and we note that there are

other approaches to implementing these termination criteria.

5.2 Convergence Curves

In this section, we show convergence curves to illustrate the performance of PDHG and

the extragradient method on the extended self-dual embedding. We run the algorithms on

the instance 25fv47 from the Netlib data set, which we describe again in a later section.

The problem 25fv47 is a feasible linear program with 1571 variables and 821 constraints.

Additionally, the problem constrains the variables to be nonnegative, which we reform as

42

Figure 5.1: Magnitude of primal objective |θ| of extragradient iterates plotted against iter-

ation number.

´Ix ď 0. Figure 5.1 and Figure 5.2 depict the absolute objective value and relative residuals

respectively of the extragradient method iterates, as the iteration number increases.

Similarly, we create the same plots with the PDHG iterates; since PDHG does not perform

the same updates for the primal and dual vectors, we record the same metrics for both the

primal and dual iterates in Figure 5.4 and Figure 5.3.

From the figures, we observe that the algorithms make fast progress towards a solution in

the early iterations, but progress slows. This is indicated by the curves trending towards zero

less steeply at larger iteration numbers. This phenomenon is expected of first-order meth-

ods. We also note that the curves are not monotonic and that many of the discontinuities

correspond to the algorithm triggering a restart.

5.3 Linear Programs

In this section, we measure the performance of PDHG and the extragradient method on

linear programs. In addition to the experimental setup described in the previous section,

we also then preprocess the problems by applying 10 iterations of Ruiz diagonal rescaling

[Rui01] as also used in [ADH21].

43

Figure 5.2: Relative residuals }re}8{α and }ri}8{α of extragradient iterates plotted against

iteration number.

Figure 5.3: Magnitudes of primal and dual objectives |θ| of PDHG iterates plotted against

iteration number.

44

Figure 5.4: Relative residuals }re}8{α and }ri}8{α of the primal (top) and dual (bottom)

PDHG iterates plotted against iteration number.

45

5.3.1 Netlib

For these experiments, we run the algorithms on the Netlib problems [Gay85], a collection

of linear programming problems historically used for benchmarking solvers. These problems

are imported in the form

minimize cTx

subject to Ax “ b

Gx ě h

l ď x ď u.

We convert this formulation into that of (2.2) by writing the box constraints as

»

–

´I

I

fi

flx ď

»

–

´l

u

fi

fl

and removing rows where p´l, uq is 8 to form the constraint

G̃x ď h̃.

Then we reform the problem as

minimize cTx

subject to Ax “ b
»

–

´G

G̃

fi

flx ď

»

–

´h

h̃

fi

fl .

5.3.1.1 Netlib Feasible Problems

This data set of 99 feasible linear programs includes problems across different scales from

problems with 32 to 22275 variables and 25 to 16676 constraints, making it a suitable data

set for testing algorithms on small- to medium-scale problems.

46

Figure 5.5: Fraction of problems solved plotted against the total elapsed time.

Figure 5.6: Fraction of problems solved plotted against the total number of KKT passes.

47

Figure 5.7: Fraction of problems solved plotted against the total elapsed time.

In Figure 5.5 and Figure 5.6, we show the fraction of the 99 Netlib problems solved

plotted against the elapsed time and against the total number of KKT passes respectively.

Both plots indicate that the performance of PDHG is generally better than that of the

extragradient method, but there are problems on which extragradient outperforms PDHG.

However, on 48 of the problems, either PDHG or the extragradient method converge to

a solution with τ “ κ “ 0, where the methods fail to get a solution, reflecting a weakness of

the self-dual embedding methods. Additionally, for some problems the relative discrepancy

between the actual optimal value and the ones returned by the first-order methods is large,

even with a moderately tight tolerance of 1e´6, reflecting another weakness, loss of precision

when recovering a solution to the original problem from the embedding solution.

5.3.2 Netlib Infeasible Problems

Netlib also contains a set of 29 infeasible linear programs. The performance of the methods

on this set of problems are depicted in Figure 5.7 and Figure 5.8.

Similarly to the Netlib feasible problems, these results provide evidence that PDHG

outperforms the extragradient method in general. In 12 of the problems, both methods

converged to a solution with τ “ κ “ 0; for problems on which a meaningful solution with

48

Figure 5.8: Fraction of problems solved plotted against the total number of KKT passes

τ`κ ą 0 is found, the first-order methods correctly conclude that the problems are infeasible.

From the results of the experiments on the Netlib feasible and infeasible problems, we

observe that PDHG generally solves the problems faster than the extragradient method.

However, for a significant proportion of the problems, both algorithms converge to a patho-

logical solution with τ “ κ “ 0.

We also run a similar experiment on the LP benchmark described by Hans Mittelmann

at [Mit]. These problems are very large compared to the Netlib ones, and for some problems,

the first-order methods would take excessively long to converge to a solution for the self-dual

embedding.

5.3.3 Randomly Generated Problems

In this section, we test the methods on randomly generated problems to analyze how the size

of a problem affects the convergence time of our methods. We randomly generate feasible

linear programs by first generating random A P Rmˆn and G P Rmˆn with density 0.01,

x0 P Rn, and s0 P Rm
` . Next, we choose b and h as

b “ Ax0, h “ Gx0 ` s

49

problem dimensions PDHG extragradient

(500, 250) 0.194 0.283

(500, 500) 0.405 0.461

(500, 750) 5.669 4.038

(500, 1000) 8.920 16.421

(1000, 250) 0.099 0.161

(1000, 500) 0.310 0.598

(1000, 750) 6.965 10.518

(1000, 1000) 92.507 181.684

Table 5.1: CPU times in seconds of our methods solving randomly generated LPs.

so x0 is a feasible point. The results of some random instances are shown in Table 5.1.

In this table, the problem dimensions pn,mq represent an LP with n variables, m equality

constraints, and m inequality constraints.

The results of this experiment indicate that PDHG and the extragradient method are able

to adequately find a solution for smaller problems, but for larger problems the increase in

problem dimensions from forming the embedding causes difficulty for the first-order methods.

Consistent with the performance of these methods on the Netlib problems, PDHG gener-

ally performs better than the extragradient method, though the difference in performance,

especially on smaller problems, seems smaller.

5.4 Trace Norm Minimization

For this experiment, we test our first-order methods on a non-polyhedral conic linear program

by considering a trace norm minimization problem

minimize

›

›

›

›

›

n
ÿ

k“1

xkAk ´ B

›

›

›

›

›

˚

50

with conic linear programming formulation

minimize t

subject to

»

–

vecpA1q vecpA2q ¨ ¨ ¨ vecpAnq 0

0 0 ¨ ¨ ¨ 0 1

fi

fl

»

–

x

t

fi

fl ľK˚

»

–

vecpBq

0

fi

fl .

We note that the projection onto the trace norm cone can be efficiently computed as

ΠK˚pvecpXq, sq “

$

’

&

’

%

pvecpXq, sq, s ě }X}˚

`

vec
`

Udiagpσ̂1, . . . , σ̂rqV
T
˘

, s ` λ‹
˘

, otherwise

where X has singular value decomposition

X “ Udiagpσ1, . . . , σrqV
T ,

σ̂k is the soft threshold of σk for each k “ 1, . . . , r,

σ̂k “

$

’

’

’

’

’

&

’

’

’

’

’

%

σk ´ λ‹, σk ě λ‹

0, ´λ‹ ď σk ď λ‹

σk ` λ‹, σk ď ´λ‹,

and λ‹ is a positive root of the piecewise linear function

r
ÿ

k“1

maxt0, σk ´ λu ´ λ ´ s.

This result follows from Theorem 6.36 in [Bec17] and the proximal operator of } ¨ }˚. Since

the methods require projection onto the dual cone, we also note that from Moreau’s decom-

position identity, the projection onto the operator norm cone

K “ tpvecpXq, sq | s ě }X}u

can be found as

ΠKpx, sq “ px, sq ` ΠK˚p´x,´sq.

51

problem dimensions CVX PDHG extragradient

(100, 50) 18.4688 30.2940 36.5160

(100, 100) 532.8281 166.7670 125.0410

(100, 150) 2046.4000 744.7190 641.0940

Table 5.2: CPU times in seconds of CVX, PDHG, and the extragradient method for randomly

generated trace norm minimization problems.

problem dimensions CVX PDHG extragradient

(100, 50) 61.1516 61.1516 61.1516

(100, 100) 181.4902 181.4902 181.4906

(100, 150) 320.3810 320.3815 320.3825

Table 5.3: Objective values found by CVX, PDHG, and the extragradient method for ran-

domly generated trace norm minimization problems.

In this experiment, we randomly generate square matrices A1, A2, . . . , An, B with density

of 0.05 and solve the extended self-dual embedding. We compare the elapsed time with that

of CVX. The CPU times are in Table 5.2, and we also report the objective value found

in Table 5.3. Here, the problem dimensions pn,mq reflect a problem with n variables and

matrices A1, . . . , An, B P Rmˆm.

We observe that the results of these experiments provide evidence that the complexity

of solving the extended self-dual embedding with first-order methods scales better than that

of forming and solving the Schur complement system for trace norm minimization.

52

CHAPTER 6

Conclusions and Future Work

In conclusion, in this work we implemented two first-order methods for solving conic linear

programs by solving a self-dual embedding. We empirically show through numerical experi-

ments that these methods are promising for conic linear programs. Though not competitive

with more mature methods for very large problems, for small- and medium-scale problems,

solving the extended self-dual embedding with PDHG or the extragradient method is a suc-

cessful approach for finding an optimal vector or certificate of primal or dual infeasibility

without requiring an infeasibility detection method.

Several possible future improvements are relevant. Firstly, one of the next steps for our

methods would be implementing the facial reduction algorithm so a solution can be found

in the pathological τ “ κ “ 0 case. Improvements can also come from further exploiting

the symmetric structure of the self-dual problem. When solved with a first-order method,

the self-dual embedding is beneficial because it includes infeasibility detection capacity and

has a known optimal value, and its self-dual structure makes the extragradient method seem

especially suitable, but more improvements are required for this method to be scalable to

very large problems. Another area of improvement could be the development of techniques

to reduce the impact of significantly increasing the problem size and dimension when forming

the self-dual embedding.

Algorithmic improvements can also be found from fine-tuning the large number of pa-

rameters and choices for our methods. For instance, in this work we form the embedding

by choosing x0, y0, s0, z0, and α according to a simple scheme, but the embedding can be

53

formed with any choice of x0, y0, s0 ľK 0, z0 ľK˚ 0, and α ą 0; there may be possible

improvements in choosing these parameters more thoughtfully with consideration for algo-

rithmic performance. We also initialize the algorithms using a simple heuristic from linear

programming; there may be better initialization approaches customized for non-polyhedral

cones or that are tailored to the structure and symmetry of the extended self-dual embed-

ding. Additionally, in our implementation we use a simple stopping condition, and it may

be beneficial to implement other techniques commonly used in solvers like considering a

weighted sum of }re} and }ri} instead of simply }pre, riq}, associating different tolerances for

each component, and using a combination of absolute and relative tolerances. It may also be

useful to include more information from the original primal and dual programs in addition

to information from the embedding. Furthermore, there are many options for line searches

and step size policies when finding an acceptable iterate, and there may be one better suited

for solving the self-dual embedding.

Another future research direction is with replacing the proximal operators in the PDHG

updates (3.1) and in the extragradient updates (4.1) with the Bregman proximal operator,

which generalizes the proximal operator. The Bregman proximal operator of f maps x to

the minimizer of fpxq `dpx, yq where dpx, yq “ hpxq ´hpyq ´ x∇hpyq, x´ yy for some convex

h. We direct to [CZ97] for reference on Bregman divergences and point to [Teb92, CFI07,

JV22, JV23] as examples of research on Bregman methods for optimization. We note that

choosing h “ } ¨ }22{2 yields the standard proximal operator. This generalization allows for

more flexibility in designing methods that could better fit a problem’s geometry or structure.

54

REFERENCES

[ADH21] David Applegate, Mateo Diaz, Oliver Hinder, Haihao Lu, Miles Lubin, Brendan
O' Donoghue, and Warren Schudy. “Practical Large-Scale Linear Programming
using Primal-Dual Hybrid Gradient.” In M. Ranzato, A. Beygelzimer, Y. Dauphin,
P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information
Processing Systems, volume 34, pp. 20243–20257. Curran Associates, Inc., 2021.

[ADL21] David Applegate, Mateo Dı́az, Haihao Lu, and Miles Lubin. “Infeasibility detec-
tion with primal-dual hybrid gradient for large-scale linear programming.” arXiv
preprint arXiv:2102.04592, 2021.

[ADV10] Martin S. Andersen, Joachim Dahl, and Lieven Vandenberghe. “Implementation
of nonsymmetric interior-point methods for linear optimization over sparse matrix
cones.” Mathematical Programming Computation, 2(3):167–201, 2010.

[ADV13] Martin S. Andersen, Joachim Dahl, and Lieven Vandenberghe. “CVXOPT: A
Python package for convex optimization.”, 2013.

[AG03] Farid Alizadeh and Donald Goldfarb. “Second-order cone programming.” Math-
ematical programming, 95(1):3–51, 2003.

[AHL22] David Applegate, Oliver Hinder, Haihao Lu, and Miles Lubin. “Faster first-order
primal-dual methods for linear programming using restarts and sharpness.” Math-
ematical Programming, 201(1–2):133––184, October 2022.

[Ali95] Farid Alizadeh. “Interior point methods in semidefinite programming with appli-
cations to combinatorial optimization.” SIAM journal on Optimization, 5(1):13–
51, 1995.

[ApS19] MOSEK ApS. Semidefinite optimization, 2019.

[AT05] Alfred Auslender and Marc Teboulle. “Interior projection-like methods for mono-
tone variational inequalities.” Mathematical Programming, 104(1):39–68, Sep
2005.

[Bar86] Earl R. Barnes. “A variation on Karmarkar’s algorithm for solving linear pro-
gramming problems.” Mathematical programming, 36:174–182, 1986.

[Bec17] Amir Beck. First-Order Methods in Optimization. SIAM, 2017.

[BEK17] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. “Julia: A
fresh approach to numerical computing.” SIAM Review, 59(1):65–98, 2017.

[Ben68] Adi Ben-Israel. “Geometric Programming–Theory and Application (R. J. Duffin,
E. L. Peterson and C. Zener).” SIAM Review, 10(2):235–236, 1968.

55

[BKV07] Stephen P. Boyd, Seung-Jean Kim, Lieven Vandenberghe, and Arash Hassibi. “A
tutorial on geometric programming.” Optimization and engineering, 8:67–127,
2007.

[BM03] Samuel Burer and Renato D. C. Monteiro. “A nonlinear programming algorithm
for solving semidefinite programs via low-rank factorization.” Mathematical Pro-
gramming, 95(2):329–357, 2003.

[BN01] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on modern convex optimization:
analysis, algorithms, and engineering applications. SIAM, 2001.

[BPC11] Stephen P. Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al.
“Distributed optimization and statistical learning via the alternating direction
method of multipliers.” Foundations and Trends® in Machine Learning, 3(1):1–
122, 2011.

[BV04] Stephen P. Boyd and Lieven Vandenberghe. Convex optimization. Cambridge
University Press, 2004.

[BW81] Jon M. Borwein and Henry Wolkowicz. “Facial reduction for a cone-convex pro-
gramming problem.” Journal of the Australian Mathematical Society, 30(3):369–
380, 1981.

[CFI07] João Xavier Cruz Neto, Orizon Pereira Ferreira, Alfredo N. Iusem, and Renato
D. C. Monteiro. “Dual convergence of the proximal point method with Breg-
man distances for linear programming.” Optimization Methods and Software,
22(2):339–360, 2007.

[Cha09] Robert Chares. Cones and interior-point algorithms for structured convex opti-
mization involving powers and exponentials. PhD thesis, Université catholique de
Louvain, 2009.

[CP11] Antonin Chambolle and Thomas Pock. “A First-Order Primal-Dual Algorithm
for Convex Problems with Applications to Imaging.” Journal of Mathematical
Imaging and Vision, 40(1):120–145, 2011.

[CP15] Antonin Chambolle and Thomas Pock. “On the ergodic convergence rates of a
first-order primal–dual algorithm.” Mathematical Programming, 159:253–287, 05
2015.

[CP16] Antonin Chambolle and Thomas Pock. “An introduction to continuous optimiza-
tion for imaging.” Acta Numerica, 25:161–319, 2016.

[CZ97] Yair Censor and Stavros Andrea Zenios. Parallel optimization: Theory, algo-
rithms, and applications. Oxford University Press, USA, 1997.

56

[DA22] Joachim Dahl and Erling D. Andersen. “A primal-dual interior-point algorithm
for nonsymmetric exponential-cone optimization.” Mathematical Programming,
194(1):341–370, 2022.

[Dan63] George Bernard Dantzig. Linear programming and extensions. Princeton Univer-
sity Press, 1963.

[DB16] Steven Diamond and Stephen P. Boyd. “CVXPY: A Python-Embedded Modeling
Language for Convex Optimization.” Journal of Machine Learning Research, 2016.
To appear.

[Dik67] Ilya I. Dikin. “Iterative solution of problems of linear and quadratic program-
ming.” Doklady Akademii Nauk SSSR, 174:747–748, 1967.

[DR56] Jim Douglas and Henry H. Rachford. “On the numerical solution of heat conduc-
tion problems in two and three space variables.” Transactions of the American
mathematical Society, 82(2):421–439, 1956.

[DW17] Dmitriy Drusvyatskiy and Henry Wolkowicz. “The Many Faces of Degeneracy in
Conic Optimization.” Foundations and Trends® in Optimization, 3(2):77—-170,
Dec 2017.

[EZC10] Ernie Esser, Xiaoqun Zhang, and Tony F. Chan. “A general framework for a class
of first order primal-dual algorithms for convex optimization in imaging science.”
SIAM Journal on Imaging Sciences, 3(4):1015–1046, 2010.

[Faz02] Maryam Fazel. Matrix rank minimization with applications. PhD thesis, Stanford
University, 2002.

[FK94] Jacques Faraut and Ádám Korányi. Analysis on symmetric cones. Oxford univer-
sity press, 1994.

[Gab83] Daniel Gabay. “Applications of the Method of Multipliers to Variational Inequal-
ities.” In Studies in Mathematics and Its Applications, volume 15, pp. 299–331.
Elsevier, 1983.

[Gay85] David M. Gay. “Electronic mail distribution of linear programming test problems.”
Mathematical Programming Society COAL Newsletter, 13:10–12, 1985.

[GB08] Michael Grant and Stephen P. Boyd. “Graph implementations for nonsmooth
convex programs.” In V. Blondel, S. Boyd, and H. Kimura, editors, Recent Ad-
vances in Learning and Control, Lecture Notes in Control and Information Sci-
ences, pp. 95–110. Springer-Verlag Limited, 2008. http://stanford.edu/~boyd/
graph_dcp.html.

57

http://stanford.edu/~boyd/graph_dcp.html
http://stanford.edu/~boyd/graph_dcp.html

[GB14] Michael Grant and Stephen P. Boyd. “CVX: Matlab Software for Disciplined
Convex Programming, version 2.1.” https://cvxr.com/cvx, March 2014.

[GC21] Paul Goulart and Yuwen Chen. “Clarabel: A Library for Optimization and Con-
trol.” https://clarabel.org/stable/, 2021.

[GT56] Alan J. Goldman and Albert William Tucker. “Theory of Linear Programming.”
In Harold William Kuhn and Albert William Tucker, editors, Linear Inequalities
and Related Systems (AM-38), volume 38 of Annals of Mathematics Studies, pp.
53–97. Princeton University Press, 1956.

[GW95] Michel X. Goemans and David P. Williamson. “Improved approximation algo-
rithms for maximum cut and satisfiability problems using semidefinite program-
ming.” Journal of the ACM (JACM), 42(6):1115–1145, 1995.

[JN12] Anatoli Juditsky and Arkadi Nemirovski. “First-Order Methods for Nonsmooth
Convex Large-Scale Optimization, II: Utilizing Problem’s Structure.” In Suvrit
Sra, Sebastian Nowozin, and Stephen J. Wright, editors, Optimization for machine
learning, chapter 6, pp. 149–183. MIT Press, 2012.

[JV22] Xin Jiang and Lieven Vandenberghe. “Bregman primal–dual first-order method
and application to sparse semidefinite programming.” Computational Optimiza-
tion and Applications, 81(1):127–159, 2022.

[JV23] Xin Jiang and Lieven Vandenberghe. “Bregman Three-Operator Splitting Meth-
ods.” Journal of Optimization Theory and Applications, 196(3):936–972, 2023.

[Kar84] Narendra Karmarkar. “A new polynomial-time algorithm for linear program-
ming.” In Proceedings of the Sixteenth Annual ACM Symposium on Theory of
Computing, STOC ’84, pp. 302—-311, New York, NY, USA, 1984. Association for
Computing Machinery.

[Kha79] Leonid Genrikhovich Khachiyan. “A polynomial algorithm in linear program-
ming.” In Doklady Akademii Nauk, volume 244, pp. 1093–1096. Russian Academy
of Sciences, 1979.

[KM72] Victor Klee and George J. Minty. “How good is the simplex algorithm?” Inequal-
ities, 3(3):159–175, 1972.

[Kor77] Galina M. Korpelevich. “The extragradient method for finding saddle points and
other problems.” Matekon, 13(4):35–49, 1977.

[L04] Johan Löfberg. “YALMIP : A Toolbox for Modeling and Optimization in MAT-
LAB.” In In Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.

58

https://cvxr.com/cvx
https://clarabel.org/stable/

[LM79] P. L. Lions and B. Mercier. “Splitting Algorithms for the Sum of Two Nonlinear
Operators.” SIAM Journal on Numerical Analysis, 16(6):964–979, 1979.

[Lov03] László Lovász. “Semidefinite programs and combinatorial optimization.” In Re-
cent advances in algorithms and combinatorics, pp. 137–194. Springer, 2003.

[LVB98] Miguel Sousa Lobo, Lieven Vandenberghe, Stephen P. Boyd, and Hervé Lebret.
“Applications of second-order cone programming.” Linear algebra and its appli-
cations, 284(1-3):193–228, 1998.

[Meh92] Sanjay Mehrotra. “On the Implementation of a Primal-Dual Interior Point
Method.” SIAM Journal on Optimization, 2(4):575–601, 1992.

[Mit] Hans D. Mittelmann. “Decison Tree for Optimization Software.” https://plato.

asu.edu/guide.html.

[Nem04] Arkadi Nemirovski. “Prox-Method with Rate of Convergence O(1/t) for Varia-
tional Inequalities with Lipschitz Continuous Monotone Operators and Smooth
Convex-Concave Saddle Point Problems.” SIAM Journal on Optimization,
15(1):229–251, 2004.

[Nes06] Yurii Nesterov. “Towards nonsymmetric conic optimization.” Optimization Meth-
ods and Software, 2006.

[NN94] Yurii Nesterov and Arkadi Nemirovski. Interior-point polynomial algorithms in
convex programming. SIAM, 1994.

[NT97] Yurii Nesterov and Michael J. Todd. “Self-scaled barriers and interior-point meth-
ods for convex programming.” Mathematics of Operations research, 22(1):1–42,
1997.

[OCP16] Brendan O’Donoghue, Eric Chu, Neal Parikh, and Stephen Boyd. “Conic Opti-
mization via Operator Splitting and Homogeneous Self-Dual Embedding.” Journal
of Optimization Theory and Applications, 169(3):1042–1068, June 2016.

[OCP23] Brendan O’Donoghue, Eric Chu, Neal Parikh, and Stephen Boyd. “SCS: Splitting
Conic Solver, version 3.2.4.” https://github.com/cvxgrp/scs, November 2023.

[PCB09] Thomas Pock, Daniel Cremers, Horst Bischof, and Antonin Chambolle. “An al-
gorithm for minimizing the Mumford-Shah functional.” In 2009 IEEE 12th Inter-
national Conference on Computer Vision, pp. 1133–1140, 2009.

[PFA17] Frank Permenter, Henrik A. Friberg, and Erling D. Andersen. “Solving Conic
Optimization Problems via Self-Dual Embedding and Facial Reduction: A Unified
Approach.” SIAM Journal on Optimization, 27(3):1257–1282, 2017.

59

https://plato.asu.edu/guide.html
https://plato.asu.edu/guide.html
https://github.com/cvxgrp/scs

[Ren88] James Renegar. “A polynomial-time algorithm, based on Newton’s method, for
linear programming.” Mathematical Programming, 40(1):59–93, 1988.

[Ren95] James Renegar. “Incorporating Condition Measures into the Complexity Theory
of Linear Programming.” SIAM Journal on Optimization, 5(3):506–524, 1995.

[RFP10] Benjamin Recht, Maryam Fazel, and Pablo A. Parrilo. “Guaranteed Minimum-
Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization.”
SIAM Review, 52(3):471–501, 2010.

[Roc70] Ralph Tyrell Rockafellar. Convex Analysis. Princeton Landmarks in Mathematics
and Physics. Princeton University Press, 1970.

[Rui01] Daniel Ruiz. “A scaling algorithm to equilibrate both rows and columns norms in
matrices.” Technical report, CM-P00040415, 2001.

[Sch98] Alexander Schrijver. Theory of linear and integer programming. John Wiley &
Sons, 1998.

[Ser15] Santiago Akle Serrano. Algorithms for unsymmetric cone optimization and an
implementation for problems with the exponential cone. PhD thesis, Stanford Uni-
versity, 2015.

[SS22] Guillaume Sagnol and Maximilian Stahlberg. “PICOS: A Python interface to conic
optimization solvers.” Journal of Open Source Software, 7(70):3915, February
2022.

[Stu99] Jos F. Sturm. “Using SeDuMi 1.02, A MATLAB toolbox for optimization over
symmetric cones.” Optimization Methods and Software, 11(1-4):625–653, 1999.

[SY15] Anders Skajaa and Yinyu Ye. “A homogeneous interior-point algorithm for non-
symmetric convex conic optimization.” Mathematical Programming, 150(2):391–
422, 2015.

[Teb92] Marc Teboulle. “Entropic proximal mappings with applications to nonlinear pro-
gramming.” Mathematics of Operations Research, 17(3):670–690, 1992.

[Tse08] Paul Tseng. “On Accelerated Proximal Gradient Methods for Convex Optimiza-
tion.”, 2008.

[TTT99] Kim-Chuan Toh, Michael Todd, and Reha Tütüncü. “SDPT3—AMatlab software
package for semidefinite programming, version 2.1.” Optimization Methods and
Software, 11:545–581, 10 1999.

60

[Tuc56] Albert William Tucker. “Dual Systems of Homogeneous Linear Relations.” In
Harold William Kuhn and Albert William Tucker, editors, Linear Inequalities and
Related Systems (AM-38), volume 38 of Annals of Mathematics Studies, pp. 3–18.
Princeton University Press, 1956.

[VB96] Lieven Vandenberghe and Stephen P. Boyd. “Semidefinite Programming.” SIAM
Review, 38(1):49–95, 1996.

[VB99] Lieven Vandenberghe and Stephen P. Boyd. “Applications of semidefinite pro-
gramming.” Applied Numerical Mathematics, 29(3):283–299, 1999.

[VMF86] Robert J. Vanderbei, Marc S. Meketon, and Barry A. Freedman. “A modification
of Karmarkar’s linear programming algorithm.” Algorithmica, 1:395–407, 1986.

[Wri97] Stephen J. Wright. Primal-dual interior-point methods. SIAM, 1997.

[YN77] David B. Yudin and Arkadi S. Nemirovskii. “Informational complexity and effi-
cient methods for the solution of convex extremal problems.” Matekon, 13(3):25–
45, 1977.

[YN83] David B. Yudin and Arkadi S. Nemirovskii. Problem complexity and method effi-
ciency in optimization. John Wiley & Sons, 1983.

[YTM94] Yinyu Ye, Michael J. Todd, and Shinji Mizuno. “An Op
?
nLq-Iteration Homoge-

neous and Self-Dual Linear Programming Algorithm.” Mathematics of Operations
Research, 19(1):53–67, 1994.

[ZC08] Mingqiang Zhu and Tony Chan. “An efficient primal-dual hybrid gradient algo-
rithm for total variation image restoration.” UCLA CAM Report, 34(2), 2008.

[Zen61] Clarence Zener. “A mathematical aid in optimizing engineering designs.” Pro-
ceedings of the National Academy of Sciences, 47(4):537–539, 1961.

[ZFP20] Yang Zheng, Giovanni Fantuzzi, Antonis Papachristodoulou, Paul Goulart, and
Andrew Wynn. “Chordal decomposition in operator-splitting methods for sparse
semidefinite programs.” Mathematical Programming, 180(1):489–532, 2020.

61

	Introduction
	Conic Linear Programming
	Conic Linear Programming
	Duality
	Self-Dual Embedding
	Algorithms

	Primal-Dual Hybrid Gradient Method
	PDHG for Conic Linear Programming
	PDHG for Linear Programming
	Infeasibility Detection
	PDHG for Extended Self-Dual Embedding

	Extragradient Method for Self-Dual Programs
	Extragradient Method for Self-Dual Problems
	Extragradient Method for Extended Self-Dual Embedding

	Numerical Results
	Description of Experiments
	Convergence Curves
	Linear Programs
	Trace Norm Minimization

	Conclusions and Future Work
	References

