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Abstract

This dissertation explores the ecology and evolution of polyploid species, or organisms

with multiple sets of chromosomes from whole genome duplication (WGD). Polyploidy is a

widespread phenomenon across the tree of life, significantly impacting both animal and plant

evolution. Recent advancements in genomics technology has made the study of polyploid

species substantially more feasible, but the complexity of polyploid biology is still limiting.

As a result, many questions on the evolutionary role of polyploidy remain unanswered. Here,

I study the origin and ecological role of polyploidy in Andropogon gerardi Vitman, a mixed-

ploidy and ecologically dominant prairie grass, using a novel reference genome and whole

genome sequencing data. We found mixed-ploidy in A. gerardi is a result of recurrent poly-

ploid formation, or happy little accidents. Further, we found WGD in A. gerardi confers imme-

diate adaptive phenotypic changes. In the course of this research, we fortuitously assembled a

reference genome for Poa pratensis, an economically valuable and popular turfgrass, instead

of a second A. gerardi genome. Finally, I synthesize the challenges of variant calling in poly-

ploids due to extensive genomic diversity and a lack of genomic resources and I propose a

variant calling pipeline to addresses key challenges. Overall, this dissertation enhances our

understanding of polyploidy’s role in plant evolution and environmental adaptation.
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Introduction

My dissertation aims to study the ecology and evolution of polyploid species. Polyploids are or-

ganisms with two or more sets of chromosomes from whole genome duplication (WGD). Although

we typically discuss genomes as diploid or haploid, polyploids are incredibly common throughout

the tree of life. In animals, polyploidy is a well-described feature of cancer cells and common in

some lineages of fish, frogs, salamanders and hexapods (Zack et al. 2013; Román-Palacios et al.

2021; David 2022; Li et al. 2018). The role of polyploidy in plants cannot be understated; it is

thought to contribute to plant diversification and speciation (One Thousand Plant Transcriptomes

Initiative 2019). Over 35% of extant plant species are polyploids, but the entire plant kingdom

shares an ancestral WGD event (Wood et al. 2009a; One Thousand Plant Transcriptomes Initiative

2019).

Polyploid species are highly diverse in their evolutionary origins and genome structure. Poly-

ploids are broadly described as belonging to two groups defined by the evolutionary origins of the

subgenomes: allopolyploids, which form through hybridization of two or more species, and au-

topolyploids, which are formed through genome doubling within a single species. Allopolyploids

are generally defined as having disomic inheritance, where meiosis is similar to diploids and chro-

mosomes preferentially pair with their sister homolog from the ancestral genome. Comparatively,

autopolyploids are defined as having non-preferential pairing. In reality, the cytological defini-

tions of these groups are less discrete and fall along a gradient (Stebbins 1950; Mason and Wendel

2020; Meirmans and Van Tienderen 2013). Further, many lineages were formerly polyploids, hav-

ing undergone genome fractionation and reorganization to return to two sets of chromosome with

preferential pairing (i.e. diploidization; Ma and Gustafson 2005). These lineages, known as pale-

opolyploids, have remnant polyploid features in their genomes, such as duplicate gene copies that

contribute to novel gene functions (Ohno 2013). Polyploid species can vary further in traits such

aschromosome count (aneuploidy), haploid genome size, severity of initial WGD bottleneck, and

age since polyploidization.
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Study of diverse polyploid species has been limited due to a lack of genomic resources and

methods. As a result, a number of evolutionary questions remain unanswered: How do polyploid

species establish? Under what conditions is polyploidy adaptive and maladaptive? What are the

demographic consequences of polyploidization? Can polyploid species rapidly respond to climate

change? I investigated these questions in Andropogon gerardi Vitman, a mixed-ploidy species and

the dominant prairie grass in endangered North American tallgrass prairies (Chapter 1). This study

utilized a novel A. gerardi reference genome, whole genome sequence (WGS) and genome size

data for 180 genotypes, and a two-year common garden experiment.

During my study of A. gerardi, we initially accidentally sequenced and assembled the genome

of a weedy grass that had entangled itself within the pot of the A. gerardi reference plant. This

weed was Kentucky bluegrass (Poa pratensis), one of the most globally popular turfgrass species.

We were able to salvage the accidental assembly, as well as some other contaminated WGS data,

create the first genomic resources for this polyploid C3 grass (Chapter 2).

After having navigated multiple polyploid WGS datasets, I synthesized the barriers I encoun-

tered in variant calling in a review. Variant calling is the first step in any genomics, population ge-

netics, or quantitative genetics study and has unique challenges in polyploids. I proposed a variant

calling pipeline that addresses the identified barriers provided a compressive guide for researchers

beginning to work in polyploid systems or new to WGS datasets (Chapter 3).
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Chapter 1: The consequences of polyploidy in adaptation of a

dominant prairie grass

Alyssa R. Phillipsa,b,1, Taylor AuBuchon-Elderc, Edward S. Bucklerd,e,f, Robert Bukowskig,

Brenda Camerona, Elli Cryana,b,h, Elisabeth Forresteli, Jane Grimwoodj, John T. Lovellj,k, Patrick

Minxc, Julianna Portera, Jeremy Schmutzj,k, Britney Solomona, Qi Sunl, Sherry Flint-Garciam, M.

Cinta Romeyd, Elizabeth A. Kelloggc, and Jeffrey Ross-Ibarraa,b,n

aDepartment of Evolution and Ecology, University of California, Davis, Davis, CA 95616

bCenter for Population Biology, University of California, Davis, Davis, CA 95616

cDonald Danforth Plant Science Center, Olivette, MO

dSchool of Integrative Plant Sciences, Section of Plant Breeding and Genetics, Cornell University,

Ithaca, NY

eInstitute for Genomic Diversity, Cornell University, Ithaca, NY

fAgricultural Research Service, United States Department of Agriculture, Ithaca, NY

gBioinformatics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY

hDepartment of Plant Sciences, University of California, Davis, Davis, CA 95616

iDepartment of Viticulture and Enology, University of California, Davis, Davis, CA

jHudsonAlpha Institute for Biotechnology, Huntsville, AL

kDOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA

lGenomic Diversity Facility, Cornell University, Ithaca, New York

mUSDA-ARS, Plant Genetics Research Unit, Columbia, MO

nGenome Center, University of California, Davis, Davis, CA
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1. Abstract

Polyploidy is ubiquitous across the tree of life but has played an outsized role in the evolution of

plants. It has been well-documented that whole genome duplication (WGD) can alter gene expres-

sion, biochemistry, physiology, and morphology. The benefits of WGD are highly dependent on

the environment and may explain why polyploids are associated with disturbance, invasiveness,

and stress. Progress has been made in understanding the conditions in which ploidy is beneficial

primarily in ecological simulations and synthetic polyploids, but studies in natural mixed-ploidy

species are lacking. To address this gap, we are studying the role of mixed-ploidy in the local

adaptation of Andropogon gerardi Vitman, the dominant grass species in endangered North Amer-

ican tallgrass prairies. A. gerardi is composed of hexaploids (2n = 6x) and enneaploids (2n =

9x), which are equally abundant but have distinct ranges; previous research has found the 9x cyto-

type is more common in regions with reduced precipitation and increased variation in temperature

range. We have assembled a novel reference genome, whole genome sequenced 25 populations,

and measured fitness and morphological variation in a common garden containing 14 populations.

We found the 9x cytotype is produced through recurrent WGD and existing 9x genotypes are likely

first-generation polyploids. Additionally, we find polyploidy significantly affects growth rate and

stomatal traits, which may make the 9x cytotype more competitive in arid climates. Together with

previous research documenting the 9x have low reproductive viability, our results indicate the 9x

cytotype is an adaptive ‘dead-end’ but may locally outcompete the 6x cytotype in the short term

in some environments. More broadly, our results suggest the benefits of polyploidy depend on the

environment and mixed-ploidy is likely an ephemeral state of A. gerardi populations.

2. Introduction

Whole genome duplication (WGD) has played an outsized role in the evolution of plants (Wood

et al. 2009b; One Thousand Plant Transcriptomes Initiative 2019; Li and Barker 2020) and some

animal lineages (Román-Palacios et al. 2021; Zack et al. 2013; Li et al. 2018). The prevalence
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of polyploidy, the state of having more than two sets of chromosomes, has confounded scientists

as new polyploids are not favored to survive. The establishment of new polyploids is challenged

by a demographic bottleneck and a frequency-dependent mating disadvantage that arises when

the only mates available are the diploid progenitor (minority cytotype exclusion, Levin 1975).

Further, new polyploids must overcome challenges associated with higher DNA content, increased

resource requirements, meiotic abnormalities, epigenetic instability, and altered gene dosage and

allele number (Bird et al. 2018; Ramsey and Schemske 2002). If initial barriers are overcome, this

genomic novelty may create immediate phenotypic changes that aid establishment and adaptation

to novel environments (Clo and Kolář 2021; Porturas et al. 2019).

Mixed-ploidy species can be leveraged to answer questions on the ecology of polyploid es-

tablishment. Mixed-ploidy, also referred to as intraspecific variation in ploidy, is common within

plant species where at least 16% are estimated to contain multiple ploidy levels (Rice et al. 2015).

The ploidy levels, known as cytotypes, are most commonly parapatric and inhabit separate niches;

completely sympatric cytotypes are rare (Kolář et al. 2017). It is unclear whether mixed-ploidy

species are in a transient state or represent long-term coexistence of multiple cytotypes. Mul-

tiple theoretical models suggest coexistence is stabilized by processes that provide reproductive

assurance, like selfing and clonality, and reproductive isolation (Gaynor et al. 2023; Levin 1975).

Perenniality may also aid cytotype coexistence as multiple reproductive cycles increase the chance

of producing successful offspring (Van Drunen and Friedman 2022). Without one or more of these

mechanisms, coexistence is unfavorable and one cytotype is expected to overcome the other. Our

current understanding of the relative extent of these strategies in maintaining natural mixed ploidy

populations is limited.

Here, we study mixed-ploidy in Andropogon gerardi Vitman (formerly A. gerardii), a prairie

grass species composed of hexaploids (2n = 6x = 60) and enneaploids (2n = 9x = 90). The 6x cyto-

type is an allohexaploid with the parental species of the three subgenomes unknown but suspected

to belong to the genera Andropogon (now Anatherum, Vorontsova et al. 2023) and Schizachyrium

(Nagahama and Norrmann 2012; Estep et al. 2014). The 9x cytotype is an autopolyploid formed
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by a reduced (1n) and unreduced (2n) 6x gamete creating a viable embryo (Norrmann et al. 1997).

As a result, the 9x cytotype contains three copies of each chromosome resulting in a high rate

of univalents and multivalents in meiosis and subsequently lower seed viability (Norrmann et al.

1997; Tompkins et al. 2015). Interestingly, the two cytotypes are found sympatrically range-wide

(Tompkins et al. 2015; Keeler et al. 1987; Keeler 2004; Norrmann et al. 1997; Keeler 1990), but

the 9x cytotype is more abundant in drier climates with higher diurnal and annual temperature

ranges, such as the southwestern United States (McAllister et al. 2015). Other ploidy levels and

aneuploids are found less than 5% range-wide (McAllister et al. 2015; Keeler 1990). The differing

distributions of the two cytotypes suggest that 9x establishment or persistence is dependent on the

environment.

Composing up to 80% of the biomass in endangered North American tallgrass prairies (Weaver

1968), A. gerardi is essential to tallgrass prairie structure and function. As less than 5% of tallgrass

prairies remain (Samson and Knopf 1994) and climate change forecasts suggest suitable habitat for

A. gerardi will be limited within the current range by 2070 (Smith et al. 2017), understanding the

consequences of polyploidy in climate adaptation of A. gerardi populations is essential. Here,

we aim to evaluate the effect of polyploidy on the genetic diversity and adaptive potential of A.

gerardi populations. First, we utilize a range-wide whole genome sequence (WGS) dataset to

assess whether genetic diversity of A. gerardi populations reflects the contemporary loss and frag-

mentation of North American prairies. Then, we test three interrelated and non-mutally exclusive

hypotheses for how mixed-ploidy persists in A. gerardi: (Hypothesis 1) 9x individuals are con-

tinually input into the population through recurrent WGD events, (Hypothesis 2) 9x cytotype is

maintained via vegetative growth, enabling it to spread clonally through the prairie, and (Hypoth-

esis 3) the two cytotypes are or have undergone ecological differentiation preventing intraspecific

competition. Given the low rates of gene flow expected between cytotypes, we are unable to test

the role of interploidy reproduction in maintaining mixed-ploidy. Finally, we investigate the inter-

action between polyploidy and local adaptation by testing the effect of natural ploidal variation on

ecologically relevant traits in a common garden experiment.

6



3. Results

We collected 180 plants from 25 A. gerardi populations, representing the most geographically

and environmentally dispersed WGS sample of A. gerardi to date (Fig. 2.1A). The 9x and 6x

cytotypes of A gerardi are nearly indistinguishable in the field, but our subsequent evaluation of

ploidy identified 9x individuals in five populations, concentrated in the western half of the species

range (S1). Three of the five populations contained multiple 9x and 6x genotypes (BOU, KON,

AUS; Fig. 2.1A).

3.1 Assembly of a subgenome- and haplotype- resolved reference assembly

Previous analyses of A gerardi genetics have relied on reduced representation sequencing ap-

proaches and commonly ignored ploidy in genotyping. To facilitate our evolutionary analyses of

A. gerardi, we assembled a new, haplotype-resolved reference genome for a 6x genotype from the

center of the species range. Using a combination of 92x coverage Illumina short-reads, 54x OmniC

reads, and 85x PacBio HiFi long-reads (Tables S5, S4), we assembled 60 chromosome-scale scaf-

folds, with 30 scaffolds per haplotype (see Methods; Tables S8, S9). The three subgenomes were

identified by clustering the chromosome-scale scaffolds into groups of 10 based on shared enriched

12-mer content. Subgenome ’A’ was identified as most closely related to Anatherum virginicum

(formerly Andropogon virginicus, Vorontsova et al. 2023; Nagahama and Norrmann 2012), a sus-

pected progenitor species (Estep et al. 2014), at it had the highest number of shared 18-mers. The

reference was annotated with 89,426 gene models in the haploid genome and approximately 70%

of the genome is repetitive elements.

3.2 Assessment of the impact of habitat fragmentation on population structure and genetic

diversity

Widespread land-use change has resulted in severe fragmentation and loss of North American

prairies, where less than 1% of tallgrass prairies are estimated to remain in some regions (Sam-
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Figure 1.1: Population structure is limited among sampled A. gerardi populations. (A) Geo-
graphic distribution of sampled populations relative to the common garden location (yellow star)
across a gradient of mean annual precipitation (MAP). Populations where only 6x genotypes were
sampled are depicted in white and populations with at least one 9x genotype and 6x sampled geno-
types are shown in black. Diamond-shaped points indicate populations that were included in the
common garden. Population codes refer to those in Table S1. (B) The first two PCs of a PCA on
SNPs for all genotypes. Each point represents a genotype where circles are 6x and triangles are
9x. The color of each point is the majority ancestry estimated by (C) STRUCTURE when K = 2,
where tan is the West admixture group and teal is the East.

son and Knopf 1994). To assess the impact of habitat loss on A. gerardi population structure and

genetic diversity, we sequenced the sampled A. gerardi plants to high (> 20x) or low (< 5x) cover-

age and aligned reads to our reference assembly, resulting in nearly 12 million SNPs after quality

control. We used a principal component analysis (PCA) and STRUCTURE, a genetic-clustering

algorithm (Pritchard et al. 2000). In the principal component analysis (PCA), the first two prin-

cipal components (PC1 and PC2) separated the sampled genotypes into two broadly discernible

geographic groups, referred to here as East and West (Fig. 2.1B). These two clusters were also

resolved by STRUCTURE, where K = 2 is the best-supported model (Fig. 2.1C, S3).

Notably, within the West genetic group, a third cluster of populations was distinguished in
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the PCA (Fig. 2.1B). The populations in this cluster (MIL, BAR, AFT) had high relatedness and

elevated inbreeding. BAR had a significantly higher average inbreeding coefficient than other

tested populations (FBAR = 0.28±0.01, p < 0.05; F̄ = 0.18, Fig. S6) and lower per-base genetic

diversity (Fig. S5). MIL did not have significantly higher inbreeding or lower nucleotide diversity

but kinship was elevated (Fig. S4). AFT also shows high within-population kinship but individual

inbreeding coefficient could not be estimated for this population as it was only sequenced to low-

coverage.

While genetic data allows the identification of these broad clusters, the PCs explain very little of

the total genetic variation (2.8% and 1.9%, respectively). Indeed, genetic differentiation between

the East and West genetic groups was very low with a FST of 0.023 (SD = 0.040) indicating that

most genetic diversity is shared between genetic groups; metrics specifically designed to partition

genetic variation in polyploid taxa give similar results (ρ = 0.043, SD = 0.068). Overall, genetic

diversity within the 6x cytotype, the base ploidy level, is high (θ̄P per population = 0.007, Fig. S5).

3.3 Origins of mixed-ploidy populations

To understand whether recurrent polyploidization or asexual reproduction is contributing to the

maintenance of the 9x cytotype, we evaluated the relatedness of genotypes and populations within

and between cytotypes to determine the number of origins of the 9x cytotype. If asexual reproduc-

tion is the predominant mechanism, 9x genotypes would have the highest relatedness to other 9x

and high genetic differentiation from genotypes that are 6x. Alternatively, if the 9x cytotype arose

multiple times by recurrent polyploidization, analysis of genetic relatedness would detect genetic

groups composed of 9x and their 6x progenitors. We tested these hypotheses by examining the

relatedness of genotypes and populations in the West genetic group as it contained the majority of

sampled 9x genotypes (Fig. S2).

Grouping genotypes by population and cytotype, we first measured pairwise genetic differ-

entiation between all pairs with ρ , an alternative genetic differentiation statistic comparable to

FST which was developed to overcome bias introduced by ploidy (Ronfort et al. 1998; Fig. S7).
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Differentiation between and within cytotypes was low overall (ρ̄ = 0.068, SD = 0.0088). Within-

cytotype differentiation was significantly higher for the 9x (ρ̄ = 0.096±0.006) than the 6x cytotype

(ρ̄ = 0.060±0.0017; p < 0.0001), although the difference between mean genetic differentiation is

small. Additionally, genetic differentiation between the 6x and 9x cytotypes (ρ̄ = 0.075± 0.002)

was higher than genetic differentiation among 9x (p < 0.0001) and lower than divergence among

6x (p < 0.0001). Differentiation estimated with FST was consistent with these results (S7). The low

overall genetic differentiation, as well as the small but significantly higher differentiation among

9x, is consistent with the multiple origins hypothesis. Further, the lack of differentiation between

9x and 6x genetic groups rejects the single-origin hypothesis.

Locally, individuals of the 9x cytotype may share a single origin and are maintained by either

clonal growth or sexual reproduction, though the latter is expected to be quite rare due to meiotic

errors (Norrmann et al. 1997). We calculated kinship (Fi j) between all 6x and 9x genotypes in

the west genetic group following (VanRaden 2008), which was found to be the best estimator for

polyploid populations (Amadeu et al. 2020; Bilton et al. 2024). We hypothesized that a single

local origin should lead to elevated kinship among 9x individuals. Consistent with our finding

among populations, the majority of sampled genotypes had very low relatedness (F̄i j = 0.0078, SD

= 0.021; Fig. 1.2, S4). The average kinship among 9x was 0.017 (SD = 0.037) indicating the 9x

are not clonal stands. The maximum relatedness among 9x was 0.18, approximately the expected

relatedness of a half-sibling or grandparent-grandchild relationship (Fi j = 0.125). Together, these

findings suggest the 9x cytotype has multiple origins at both the local and regional scale. Mixed-

ploidy in A. gerardi populations is a product of recurrent polyploidization.

3.4 The effect of polyploidy on growth and reproductive effort

Although recurrent polyploidization may help explain the high overall abundance of 9x cytotypes,

it does not explain the observed association of the 9x cytotype with high temperature variability

and low mean annual precipitation (McAllister et al. 2015). Instead, we hypothesized that selective

differences in survival or growth could explain this pattern. To test this hypothesis, we evaluated
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Figure 1.2: Kinship is low among genotypes in mixed-ploidy populations. Kinship among
31 genotypes from the mixed-ploidy populations is plotted where genotypes are labeled with the
population they were sampled from (AUS, BOU, or KON). Genotypes are hierarchically clustered
by Euclidean distance in kinship values and have the same order on both axes. Columns are
annotated with the cytotype of each genotype where 9x are dark gray and 6x are light gray. No
data is plotted for the diagonal as estimates of self-relatedness are unreliable with low-coverage
data. This kinship matrix is a subset of a larger kinship matrix between all genotypes in West
genetic group (Fig. S4).

15 ecologically relevant phenotypes in genotypes from 14 populations over two years in a common

garden (Fig. 2.1A, S12). Of the 14 populations planted in the common garden, three populations

contained multiple 9x and 6x genotypes (BOU, KON, AUS).

We first assessed the effect of ploidy on fitness. We measured differences in reproductive effort

(number of tillers and percent of tillers that are flowering) and growth between the two measure-

ment years (change in aboveground biomass, height, basal area, and tillers). Using linear mixed

models that control for relatedness among genotypes (Model 1), we found population of origin sig-

nificantly affects change in aboveground biomass (χ2 = 12.16, p = 0.00049) but no other measures

of reproductive effort or growth (Table S2). Individual plant genotype significantly affected all re-

productive effort and growth traits, but not change in plant height and basal area. Notably, we found

ploidy significantly affected change in aboveground biomass (δ̂ = 1.02, 95% CI [0.422,1.61], p =

0.0008). Genotypes that are 9x grew on average 3.25 times (95% CI [2.58,3.92]) larger, which is
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approximately 45% more growth than the 6x (µ̂ = 2.23, 95% CI [1.81,2.66]). As all genotypes were

sequenced and replicated within the common garden, we could estimate narrow-sense heritability

(h2) and genetic correlations (rg) among traits to evaluate the contribution of genetic variation to

trait variation and phenotypic trade-offs. We found change in aboveground biomass was positively

genetically correlated with plant height (rg,Y 1 = 0.16, rg,Y 2 = 0.19) and leaf dry matter content (rg

= 0.28, Fig. 1.3B), which is a measure of investment in individual leaves, mechanical resistance,

and tissue density (Wright et al. 2004), but we did not find a significant effect of ploidy on either

trait.

We regressed the population mean change in aboveground biomass against the geographic dis-

tance each population was transferred to the common garden (i.e. transfer distance) to assess

whether growth rate variation can be attributed to local adaptation. We found change in above-

ground biomass steeply declines with increasing transfer distance (r2 = -0.69, p = 0.0064, Fig.

1.3A). We further broke down transfer distance as the difference in MAP and MAT. We found a

significant negative correlation between growth and MAT (r2 = -0.61, p = 0.020; Fig. S10) and

MAP transfer distance (r2 = -0.82, p = 0.00034). Populations from climates with a lower MAP

than the common garden site performed the best while populations with a higher home MAP per-

formed the worst. Additionally, growth declined with an increasing difference in MAT. These

results support previous findings of local adaptation in A. gerardi (Galliart et al. 2019).

Given ploidy can increase growth, it may interact with local adaptation to enable A. gerardi

populations to withstand greater local environmental variation and stress. To further understand

this relationship, we use linear mixed models that include the home climate of each population as

a fixed effect (Model 6.13). The home climate was described by PC1 and PC3 from a PCA run on

all ClimateNA variables (Wang et al. 2016) averaged across 1961 to 1990, which explained 91.7%

and 2.7% of variation respectively (see Methods). PC1 was associated with variation in growing

degree days where the highest loadings of PC1 were growing degree days below 18◦C and above 5

and 10◦C with loadings of -0.66, 0.46, and 0.33, respectively (Fig. S9). PC3 was positively asso-

ciated with mean annual precipitation (MAP) and negatively associated with Hargreaves climatic
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moisture deficit (CMD) with loadings of 0.68 and -0.61. In this model, we continued to find a

significant effect of ploidy on change in aboveground biomass (δ̂ = 0.79, 95% CI [0.274,1.31], p

= 0.0027) and found a change in aboveground biomass was positively associated with both PC1 (δ̂

= 0.00021, SE = .000052, p = 0.00) and PC3 (δ̂ = 0.0013, SE = .00033, p = 0.00). Overall, these

results demonstrate ploidy has a significant effect on fitness and suggest a role for ploidy in local

adaptation of A. gerardi populations.

3.5 The effect of polyploidy on leaf morphology and economics

At face value, higher fitness of the 9x cytotype might suggest the 9x cytotype would outcompete

the 6x cytotype. Rather, the co-dominance of cytotypes might be explained by ploidy-inducing

ecological trade-offs. Previous work has identified ecotypic variation in A. gerardi leaf anatomy,

plant height, and physiology (Olsen et al. 2013; Caudle et al. 2014; Galliart et al. 2020; Bachle and

Nippert 2021), but these studies only examined variation across a limited range and precipitation

cline or failed to consider ploidal variation. Using linear mixed models, we find the sampled A.

gerardi populations differ significantly in a number of ecophysiological and morphological traits

including in mean stomata length, stomatal density, stomatal pore index (SPI), leaf thickness, leaf

length, leaf width, and plant height (Table S2). Nonetheless, trait variation was continuous across

populations, and a PCA of best linear unbiased predictions (BLUPs) estimated for each genotype

and all phenotypes could not identify clusters that would indicate the presence of ecotypes or

morphogroups (Fig. S8). Further, the 90% confidence ellipses for cytotypes or for West and East

genetic groups substantially overlap, indicating little differences in overall morphology (Fig. S8).

The h2 we estimated for the measured traits further supports the dominant role of the environment,

rather than genetics, in generating ecotypes (Fig. 1.3B, S13).

Even though we found no overall morphological patterns, leaf-level traits are significantly ge-

netically correlated (Fig. 1.3B). Specific leaf area, leaf thickness, leaf length, and leaf width are

significantly genetically correlated in year 1 (Fig. 1.3B). The direction of the relationships is con-

sistent in year 2, although not significantly different from zero. We found environmental PC1
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Figure 1.3: Phenotypic diversity is continuous across A. gerardi populations. (A) Plant height
is plotted for each population in each year by mean plant height. The mean plant height for each
genotype is overlaid on the boxplots. Population codes refer to those in Figure 2.1A. (B) Population
mean change in aboveground biomass, predicted as a BLUP, declines with increasing geographic
transfer distance. The gray area indicates the 95% confidence interval of the predicted values.
(C) The genetic correlation (rg) between all measured phenotypes is plotted with narrow-sense
heritability (h2) of each trait on the diagonal. Genetic correlations were estimated independently
for traits measured in year 1 (Y1) and year 2 (Y2). Axis labels refer to abbreviations for the
measured phenotypes: change in aboveground biomass (RG), growth in height (HG), growth in
number of tillers (TG), growth in basal area (BG), stomatal density (SD), stomata length (SL),
stomatal pore index (SPI), leaf dry matter content (LDMC), height (H), number of tillers (T),
percent of tillers flowering (RT), specific leaf area (SLA), and leaf length (L), width (W) and
thickness (TH). Tiles with a black border have a 95% credible interval that does not cross zero.
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explains a significant proportion of variation in leaf traits and PC3 significantly explains variation

in all leaf traits except leaf thickness (Table S3). Populations at the northern edge of the range

(ESL, MAN, Fig. 2.1A), which have the lowest MAT and GDD, have the smallest and thinnest

leaves while populations at the southern edge of the range (AUS, MIL) in driest and hottest cli-

mates have the thickest and largest leaves. Ploidy only had a significant effect on leaf thickness,

but the effect size was within our measurement error (Table S2).

Stomatal trait variation was also significantly associated with climate (Table S3). Stomatal den-

sity and stomata length were negatively genetically correlated (rg = -0.53; Fig. 1.3B), which is the

expected relationship (Taylor et al. 2012). Environmental PC1 explained a significant proportion

of variation of all stomatal traits whereas PC3 significantly explained variation in stomatal density

and stomatal pore index (Table S3). Stomatal density increased with PC3 (δ̂ = 0.040, SE = 0.023,

p = 0.00; Fig. 1.4A) and decreased with PC1 (δ̂ = 0.0032, SE = 0.0036, p = 0.00). Accordingly,

stomata length increased with PC1 (δ̂ = 0.00022, SE = 0.00039, p = 0.00). As a result, populations

in regions with lower MAP and higher MAT had the largest and fewest stomata (Fig. 1.4). We

found 9x genotypes had significantly larger stomata (δ̂ = -4.3 µm, 95% CI [−2.38,−4.395], p =

< 0.0001), lower stomatal density (40 µm−2, 95% CI [19.4,60.7], p = 0.0001, Fig. 1.4C), and

a lower stomatal pore index (δ̂ = 8.63, 95% CI [4.28,13], p = 0.0001) compared to 6x genotypes

(Table S2). This relationship is consistent across the abaxial leaf surface (Fig. S14). When con-

sidering home climate in our model, we found the estimate of the effect of ploidy is similar (Table

S3).

4. Discussion

Polyploidy is ubiquitous across the green tree of life, yet our understanding of how polyploids

establish and adapt to novel environments is limited. Mixed ploidy species provide an opportunity

to study the natural conditions in which WGD is beneficial, or maladaptive. We investigated these

questions in A. gerardi, a mixed-ploidy species and the ecologically dominant bunchgrass in North

American prairies.
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Figure 1.4: Stomatal density decreases with increasing ploidy and mean annual precipitation.
(A) Stomatal density increases with PC3. The solid line is the effect of PC3 on stomata density
estimated with Model 6.13 and the dashed lines are two standard errors from the mean. The average
stomatal density is plotted for each genotype where triangles are 9x and circles are 6x genotypes.
(B) Mean annual precipitation (MAP) is positively correlated with PC3. The gray area indicates
the 95% confidence interval of the linear regression of MAP and PC3. Values for each population
are overlaid. Points in A and B are colored by population where the population codes refer to
those in Figure 2.1A. (C) The two cytotypes significantly differ in mean stomata length. The mean
stomatal density of each genotype is overlaid on top of the boxplots as black points.

4.1 Minimal population structure and high genetic diversity in Andropogon gerardi despite

modern habitat fragmentation

Using the first WGS dataset generated for A. gerardi populations, we found A. gerardi population

structure and genetic diversity do not reflect the drastic loss and fragmentation of North American

prairies. Broadly, the populations are structured into two genetic groups, with a longitudinal di-

vide into East and West groups. The two groups are highly admixed and the majority of genetic

diversity is shared between the groups (Fig. 2.1). These large genetic groups are similar to those

described in previous studies using genotype-by-sequencing (GBS, McAllister and Miller 2016;

Galliart et al. 2020) and amplified fragment length polymorphism (ALFP) markers (Gray et al.

2014). Nonetheless, our estimates of genetic differentiation between genetic groups are lower than

previous reports, likely due to the larger number of markers and reduced bias of whole genome

sequencing.

Genetic diversity in A. gerardi populations is high (Fig. S5) and comparable to diverse crops
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like maize (Chen et al. 2022). We found only three populations had signatures of inbreeding or low

Ne; genotypes belonging to AFT, BAR, and MIL have high relatedness across populations (Fig. S4)

even though they are geographically disconnected where BAR is separated approximately 1000 km

from both AFT and MIL (Fig. 2.1A). Although these sites were selected as they were suspected to

be remnant, unseeded prairies, the high relatedness among these populations may suggest the BAR

population was seeded or contaminated with foreign seed from the southwestern United States.

High relatedness within BAR is consistent with recent inbreeding, as evidenced by significantly

higher inbreeding coefficients and lower nucleotide diversity (Fig. S6, S5). High relatedness within

MIL is not associated with inbreeding and lower diversity suggesting the population has a low Ne

but no recent inbreeding.

A. gerardi populations exhibit local adaptation, with significant variation in growth and mor-

phology associated with climate of origin. For a population to be considered locally adapted, the

population must perform best in its home environment and outcompete foreign genotypes at home

(Kawecki and Ebert 2004). We found growth declines with geographic transfer distance (Fig.

1.3A), which is consistent with local adaptation. The presence of local adaptation and lack of

population structure suggests local selective pressures are strong enough to overcome gene flow

or recent shared ancestry. The local selective pressures include MAT and MAP (Fig. S10). The

populations from the highest latitude and lowest MAT (Fig. 2.1A; ESL and MAN) had the shortest

stature and thin and small leaves. Plant height and leaf thickness increase with both MAT and MAP.

These patterns are consistent with previous studies documenting precipitation is a major driver of

trait (Olsen et al. 2013; Caudle et al. 2014; Galliart et al. 2019) and genetic variation across A.

gerardi populations (Avolio et al. 2013; Galliart et al. 2019). Trait variation along a temperature or

latitudinal cline was less explored prior to our study; McMillan (1959) found phenology and plant

height was associated with daylength, which is negatively correlated with latitude and positively

correlated MAT in North America. Further, Bachle and Nippert (2021) found the best models of

leaf anatomical variation included both precipitation and temperature.

Previous researchers have defined A. gerardi genetic and phenotypic variation in two or three
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ecotypes that follow the longitudinal precipitation cline across the center of the United States

(Fig. 2.1A; Galliart et al. 2019; Gray et al. 2014). Using the definition of ecotype from Lowry

(2012), ecotypes are defined as, ”groups of populations, which are distinguished by a composite

of variation in many traits and allele frequencies across loci over space”. We find that A. gerardi

populations cannot be delineated into ecotypes due to limited genetic differentiation and contin-

uous phenotypic variation across both a latitudinal and longitudinal cline. Rather, the stark trait

contrasts previously described may have resulted from sampling bias along a precipitation cline,

measurement of traits outside a common garden experiment, and bias in sequencing markers.

4.2 Mixed-ploidy is maintained by recurrent polyploidization

We found the coexistence of multiple cytotypes in A. gerardi is primarily supported by recurrent

WGD events regenerating the 9x cytotype. Our results agree with previous findings by McAllis-

ter and Miller (2016), who described a minimum of three origins of the 9x cytotype. Recurrent

polyploidization may result from continual or environmental-induced bursts of unreduced gamete

production in the 6x cytotype (Ramsey and Schemske 1998). Unreduced gametes have been es-

timated to form at a rate of less than 1% in autopolyploid plants (Ramsey and Schemske 1998;

Harlan and deWet 1975). This rate may increase under temperature and water stress (Wang et al.

2017; Sax 1936; Belling 1925), which may also contribute to 9x being more common in regions

with higher temperature variability.

Gene flow between cytotypes is likely rare and has a minimal contribution to genetic diversity

in mixed-ploidy populations due to multiple reproductive barriers faced by the 9x cytotypes. The

9x have irregular meiosis which produces unbalanced gametes leading to reduced seed viability

compared to the 6x (Norrmann et al. 1997; Tompkins et al. 2015). Although the probability of

9x meiosis producing a balanced 1n gamete across 30 chromosomes is extremely low, pollen is

produced in abundance, individual plants produce as many as 180 flowering tillers in a year, and

the generation time is estimated at 50 to 100 years (Keeler 2004). Thus while gene flow among 9x

individuals or between cytotypes is not impossible, it likely contributes little to observed diversity.
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Indeed, the offspring of 9x that successfully germinate are typically aneuploids (Norrmann et al.

1997) and are found in less than 5% frequency in the field (Keeler 1992; McAllister et al. 2015).

Recurrent polyploidization, the limited reproductive success of the 9x cytotype, and low occur-

rence of intermediate and aneuploid cytotypes suggest the existing genotypes that are 9x may be

first-generation polyploids, referred to as neopolyploids. Individual 9x plants persist in A. gerardi

populations due to vegetative growth through an underground rhizome. Neopolyploidy is further

supported by the recent loss and local recolonization of the majority of North American prairies

due to the severe ’Dust Bowl’ drought lasting from 1932 to 1938 (Schubert et al. 2004). Through

the drought, A. gerardi persisted in substantially smaller stands as the majority of the prairie was

converted to C3 grass species (Weaver and Albertson 1943; Knapp et al. 2020). In prairies that

experienced the greatest decline, there was up to a 60% loss in A. gerardi abundance (Weaver and

Albertson 1943). The plants that persisted had a shortened stature and root depth greater than 6

ft, in order to reach the lowered water table (Weaver and Albertson 1943). It took as long as 20

years for C4 grasses to return to dominance, suggesting many of the sampled populations have

undergone a recent population expansion (Weaver 1968). Further, we see the 9x and 6x cytotypes

are intermixed within populations and do not form large clonal stands (Keeler 1992) supporting

recent polyploidization as the origins of mixed-ploidy, rather than recolonization via asexual re-

production.

4.3 The consequences of neopolyploidy in adaptation

In A. gerardi, we have shown 9x individuals are neopolyploids and polyploidization confers changes

in growth and physiology that are likely adaptive in arid conditions. Together, these results suggest

the abundance of 9x in climates with low MAP and increased temperature variability (McAllister

et al. 2015) may be largely driven by ecological adaptations due entirely to the impacts of WGD.

We found the 9x cytotype has a significantly higher change in aboveground biomass than the

6x cytotype. This trait is a measure of both relative growth rate and fitness in bunchgrasses (Keeler

and Davis 1999; Aspinwall et al. 2013; Lovell et al. 2021) as most of the yearly reproduction is
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asexual, via vegetative propagation, rather than from seed (Benson and Hartnett 2006). We found

the change in aboveground biomass could not be attributed to a difference in lateral growth (change

in basal area), tiller density (change in number of tillers), or plant height (Table S2). Rather, change

in aboveground biomass was positively genetically correlated with leaf dry matter content and plant

height suggesting a greater investment in tissue density and leaf mechnaical resistance (Wright

et al. 2004, Fig. 1.3B). The change in tissue density may be attributed to altered composition of

the cell wall (Corneillie et al. 2019) or an increased number of organelles (Fernandes Gyorfy et al.

2021), which may affect plant metabolism. Increased tissue density may provide greater structural

support enabling changes in plant height. Lastly, the increased growth of 9x may be explained by

the diversion of resources from seed development to the growth of non-reproductive tissues as the

9x have lower seed viability (Tompkins et al. 2015). Regardless of the home climate, we found the

9x cytotype always has higher growth than the 6x cytotype (Table S2, S3).

We also detected a change in stomata size, where the 9x have larger but fewer stomata than the

6x, suggesting an increase in some cell types, although not all cell types may be affected due to de-

velopmental and function constraint (Snodgrass et al. 2017). We found the 6x have smaller, more

dense stomata suggesting they have higher maximum stomatal conductance than the 9x cytotype.

As the 9x cytotype is more common in regions with lower MAP, a lower stomatal conductance

would be beneficial to decrease water loss. Further, we see that A. gerardi populations from cli-

mates with lower MAP, when measured in a shared environment and controlling for population

structure, have the largest and lowest density of stomata. Increased stomata size in polyploids

compared to their diploid progenitors or lower ploidy levels has been well documented in both

synthetic and natural polyploids (Beaulieu et al. 2008). Stomata size and stomatal density are in-

dicative of the stomatal pore area on the leaf, which, in combination with the physiological process

of stomatal closure, regulate the amount of CO2 that can enter the leaf for photosynthesis and con-

trol water loss via transpiration (i.e. stomatal conductance). In grasses, higher maximum stomatal

conductance is generally associated with smaller stomata length, higher stomatal density, and wet

habitats (high MAP) (Taylor et al. 2012). This relationship is consistent with a previous study in
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the closely related sand big bluestem (A. hallii Vitman), a grass adapted to sandy soils with low

soil moisture (Awada et al. 2002).

The effect of ploidy on stomata size, as an approximation for cell size, is consistent with the

change in growth we detected. Increasing genome size is expected to so slow the cell cycle (Francis

et al. 2008) and therefore slow growth rate, but this is can compensated for by making fewer, larger

cells (Doyle and Coate 2019). The strategy of making fewer, larger cells was shown to be adap-

tive for geophytes, plants with underground storage organs, in environments with shorter growing

seasons or high seasonality where fast development is needed (Veselỳ et al. 2012). The correlation

of 9x abundance with increased temperature variability (McAllister et al. 2015) is consistent with

larger cells and a slow cell cycle being an adaptive trait.

Studies evaluating the effect of ploidy on relative growth rate and water use efficiency in mul-

tiple environments, as well as research into population variation in unreduced gamete formation,

are needed. For example, nitrogen and phosphorus requirements have been shown to increase

with ploidy due to increased material costs from synthesizing more DNA and phospholipid bilayer

(Walczyk and Hersch-Green 2023; Roddy et al. 2020). Additionally, our estimation of stomata

traits may be limited by only looking at abaxial stomata as adaxial stomata have been shown to

balance the overall maximum stomatal conductance limitations from abaxial stomata (Muir et al.

2023). However, the majority of A. gerardi are hypostomatous (stomata only present on the abaxial

side) and stomata size is similar on both sides of the leaf (Varvel et al. 2018; Knapp et al. 1994).

5. Conclusion

Polyploidy may provide an adaptive advantage to novel climates. Natural mixed-ploidy species are

advantageous systems for studying role of polyploidy in adaptation as they are not confounded by

the chemical induction of WGD. However, considering the age of polyploidization in mixed-ploidy

species is necessary to separate the effects of WGD from evolution post-polyploidization. Here, we

studied the coexistence of 6x and 9x cytotypes in A. gerardi, the dominant species in endangered

North American tallgrass prairies. We found the 9x cytotype is continuously created by recurrent
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polyploidization, where each 9x individual is likely a recent, novel WGD event. Asexual repro-

duction extends the lifespan of 9x individuals, creating overlap across WGD events and increasing

the abundance of the 9x cytotype. Our results support theoretical models that suggest perennially

and clonality enables cytotype coexistence (Van Drunen and Friedman 2022) and we are the first

to empirically demonstrate the role of recurrent polyploidization in maintaining multiple cytotypes

at high frequency.

We also find WGD confers changes to growth and physiology that are likely adaptive to arid

climates. These adaptive changes explain the abundance of the 9x cytotype in regions with low

MAP and high temperature variability (McAllister et al. 2015). Further, these adaptations may

allow the 9x cytotype to locally outcompete 6x and lower population adaptive potential due to low

rates of seed viability (Norrmann et al. 1997; Tompkins et al. 2015). We see evidence of 9x dom-

inance in some populations being reported as 100% 9x (McAllister et al. 2015). A 9x population

could persist with asexual reproduction and very low rates of sexual reproduction, but adaptation

will be limited. This is concerning given phenotypic species distribution models predict A. gerardi

biomass will decrease as much as 60% by 2070 (Smith et al. 2017). As a result, ploidy may be

a conservation concern in A. gerardi populations, as initially proposed by Tompkins et al. (2015)

in North Carolina and South Carolina populations. Intraspecific variation in ploidy has previously

been proposed as a conservation concern and suggested to be considered in seed selection (Kramer

et al. 2018) and populations prioritization (Wickell et al. 2024, but see Almeida and Santos Leal

2024). Our results underscore the need to consider polyploidy in conservation and restoration and

emphasize the importance of understanding the role of polyploidy in adaptation.

6. Methods

6.1 Sample collection

A. gerardi plants were either collected as rhizomes or grown from seed (Supplemental Data). Nec-

essary permissions and permits were obtained before collecting. Plants were sampled from 29 sites
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in the United States and Canada (Fig. 2.1A) and plants were brought back to the United States

from Canada under phytosanitary certificate #3193417. Nearby sites were considered a single site

in analyses resulting in a total of 25 sampled populations. Plants from rhizomes were collected

following methods described in Phillips et al. (2023). Briefly, the plants were dug up with a shovel

late in the growing season in 2016 through 2020. Any soil was washed off, the leaves were cut

back to about 4 in in height to reduce transpiration, and the rhizomes were wrapped in wet paper

towels for transportation to the Donald Danforth Plant Science Center in St. Louis, MO, USA.

Plants grown from seed were grown from population bulk seed collected by Loretta Johnson at

Kansas State University, KS, USA. The plants were potted in and maintained in greenhouses with

average conditions of 8°C day, 22°C night, 50% relative humidity (RH), and a 16 hrs daylength.

Once mature, the plants were maintained on outdoor benches year-round. The leaves were cut

back and the pots were covered with straw mulch each winter. Voucher specimens were created

for each population and have been deposited at the Missouri Botanical Garden (St. Louis, MO,

USA.).

6.2 Short-read sequencing of population panel

A set of 148 genotypes were processed for low-coverage sequencing at Cornell University (Sup-

plemental Data). DNA was extracted using approximately 100 mg of lyophilized leaf tissue and

a DNeasy Plant Kit (Qiagen Inc., Germantown, MD). High throughput Illumina Nextera libraries

were constructed and samples were sequenced with other plant samples in pools of 96 individuals

in one lane of an S4 flowcell in an Illumina NovaSeq 6000 System with paired-end 150-bp reads,

providing approximately 1.8X coverage for each sample.

Sequencing was re-attempted at the University of California, Davis (UCD) for 15 genotypes,

which failed initial sequencing attempts (Supplemental Data). For resequencing, young leaves

were re-collected from plants maintained in a greenhouse at UCD, fixed in liquid nitrogen, and

stored in a -80°C freezer until use. DNA was again extracted with a DNeasy Plant kit (Qiagen

Inc., Germantown, MD) from approximately 10 mm2 of leaf tissue. Illumina Nextera libraries
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were constructed using an epMotion® 5073 (Eppendorf, Hamburg, Germany) following the Nex-

tera Lite protocol (Rowan et al. 2019). The samples were pooled samples were run in one lane

of a S4 flowcell in an Illumina NovaSeq 6000 System with paired-end 150-bp reads, providing

approximately 2.5X coverage for each sample.

An additional subset of 50 genotypes were whole genome sequenced to high coverage by the

Department of Energy Joint Genome Institute.

Samples sequenced at Cornell University were part of a larger sequencing across Andro-

pogoneae species. To assess the quality of the short-read sequencing from Cornell and detect

possible contamination from other species, reads from each sample were aligned to Sorghum ref-

erence genome (NCBI GenBank ID GCF 000003195.3) using bwa mem (Li 2013), as the A. ger-

ardi reference genome was still in assembly. Alignment statistics were collected including the

fraction of mapped reads, duplication rate, the fraction of bases of the whole genome and of the

coding sequence portion covered at depths of >0X, >1X, and >5X, and the fraction of reads map-

ping with various numbers of mismatches (0, 5, 10, 15) were also reported. The Kraken pipeline

(Wood and Salzberg 2014) was used to quantify contamination for each sample with sequences

originating from bacteria, the human genome, and plants outside of the Poaceae family. To further

confirm the taxonomy of the analyzed sequences, a custom database of five plastid genes (matK,

ndhF, rbcL, rpoB and rpoC1) was constructed from 4755 plant plastid genomes downloaded from

NCBI RefSeq (Supplemental Data). All these genomes have species-level taxonomy information.

Nucleotide sequences of the five genes were extracted from the plastid genomes of each species

based on NCBI Refseq gene annotation. For genomes without gene annotations, TBLASTN was

used to identify the coordinates of these genes within the respective genomes. For each sample,

bwa aln (Li and Durbin 2009) was then used to map 1000 randomly selected reads to the plastid

genes database. Up to five such genes with the most reported hits were selected, and the Phylum,

Class, Order, Family, Subfamily, Tribe, Genus, and Species of these genes were reported. While

the categories Phylum through Tribe were typically as expected (Streptophyta, Magnoliopsida, Po-

ales, Poaceae, Panicoideae, Andropogoneae, respectively), Genus was often ambiguous between
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Schizachyrium and Andropogon due to the species’ allopolyploidy. Samples that were identified as

anything other than Schizachyrium or Andropogon were discarded.

6.3 Genome sequencing for the A. gerardi reference genome

We sequenced A. gerardi (var. Kellogg-1272) using a whole genome shotgun sequencing strategy

and standard sequencing protocols. Sequencing reads were collected using Illumina and PacBio

platforms. Illumina and PacBio reads were sequenced at the Department of Energy (DOE) Joint

Genome Institute (JGI) in Berkeley, California and the HudsonAlpha Institute in Huntsville, Al-

abama. Illumina reads were sequenced using the Illumina NovoSeq6000 platform, and the PacBio

reads were sequenced using the SEQUEL II platform. One 400 bp insert 2x250 Illumina fragment

library (92.80x coverage) was sequenced along with one 2x150 OmniC library (54.38x; Table S5).

Prior to assembly, Illumina fragment reads were screened for PhiX contamination. Reads com-

posed of >95% simple sequence were removed. Illumina reads <50 bp after trimming for adapter

and quality (q<20) were removed. The final read set consists of 1,601,302,817 reads for a total

of 92.80x of high-quality Illumina bases. For the PacBio sequencing, the total circular consen-

sus sequencing (CCS) sequence yield consisted of 16,785,606 reads (average size 19,680 bp) that

produced 343.73 Gbp (85.93x; Table S4).

6.4 Genome size estimation

We attempted to estimate genome size with flow cytometry for all sampled individuals. Genome

size could not be estimated for all individuals as some plants died prior to estimation. Flow cytom-

etry methods were previously described in Phillips et al. (2023). Briefly, maize B73 inbred line

(5.16 pg/2C) was used as an internal standard. Three replicates were prepared and analyzed sepa-

rately for each individual. The cell count, coefficient of variation of FL2-A, and mean FL2-A were

recorded for the target and reference sample with no gating. The three replicates were averaged to

calculate the genome size (Supplemental Data).

Of the individuals for which genome size couldn’t be estimated with flow cytometry, sixteen
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had sufficient sequencing coverage for ploidy to be determined using nQuire (Weiß et al. 2018).

Thirty high-coverage genotypes with genome sizes successfully estimated using flow cytometry

were included in the nQuire analysis as a control. Of the 30 control genotypes, 29 were 6x and

one was 9x. nQuire utilizes a Gaussian Mixture Model to model the read frequency histogram

expected for diploids, triploids, and tetraploids. As all three subgenomes are resolved in the A.

gerardi genome described below, we expect the 6x genotypes to have a diploid distribution and the

9x genotypes to have a triploid distribution. Maximized log-likelihoods were estimated for each

genotype under the diploid, triploid, and tetraploid models and normalized to the maximized log-

likelihood of the data modeled under a free model. The ploidy model with the highest normalized

log-likelihood was assigned the ploidy of the genotype. To assess noise and error in this method,

the normalized maximized log-likelihoods for each of the three ploidy models were plotted against

each other in R (v4.2.2, R Core Team 2017; Figure S1).

Of the remaining individuals for which genome size could not be estimated with flow cytometry

or sequenced-based approaches, ploidy could be inferred for one population based on a previous

study. The population CUI (Cuivre River State Park, MO, USA) was previously sampled for

cytotypic composition by McAllister et al. (2015) and found to be 100% 6x. Given this study is

relatively recent, we assumed all individuals sampled from CUI are 6x.

6.5 Genome assembly and construction of pseudomolecule chromosome

A total of 16,785,606 PacBio CCS reads (85.93x) were assembled using HiFiAsm+HIC assembler

v15.1, Cheng et al. 2021) and subsequently polished using the 1,601,302,817 Illumina fragment

2x250 reads (92.80x) were used to resolve homozygous SNP/indel errors in the consensus with

RANCON (v1.4.10; Vaser et al. 2017). This produced initial assemblies of both haplotypes. The

haplotype 1 (HAP1) assembly consisted of 1,064 scaffolds (1,064 contigs), with a contig N50 of

55.6 Mbp, and a total genome size of 2,780.5 Mbp (Table S6). The haplotype 2 (HAP2) assembly

consisted of 731 scaffolds (731 contigs), with a contig N50 of 59.9 Mbp, and a total genome size

of 2,701.5 Mbp (Table S7).
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Hi-C Illumina reads (54.38x) from A. gerardi (var. Kellogg-1272) were separately aligned to

the HAP1 and HAP2 contig sets with Juicer (v1.8.9, Durand et al. 2016), and chromosome-scale

scaffolding was performed with 3D-DNA (v180922, Dudchenko et al. 2017). No misjoins were

identified in either the HAP1 or HAP2 assemblies. The contigs were then oriented, ordered, and

joined together into 30 chromosomes per haplotype using the Hi-C data. A total of 38 joins were

applied to the HAP1 assembly, and 38 joins for the HAP2 assembly. Each chromosome join is

padded with 10,000 Ns. Contigs terminating in significant telomeric sequence were identified

using the (TTTAGGG)n repeat, and care was taken to make sure that they were properly oriented

in the production assembly.

Scaffolds that were not anchored in a chromosome were classified into bins depending on

sequence content. Contamination was identified using blastn against the NCBI non-redundant

nucleotide collection (NR/NT) and blastx using a set of known microbial proteins. Additional

scaffolds were classified in HAP1 as repetitive (>95% masked with 24-mers that occur more than

4 times in the chromosomes; 786 scaffolds, 87.8 Mb), redundant (unanchored scaffolds composed

of ≥95% 24-mers >2x in all scaffolds; 2 scaffolds, 31.1 kb), mitochondria (177 scaffolds, 10.5

Mb), and prokaryote (13 scaffolds, 727.0 kb). Scaffolds were also classified as repetitive (>95%

masked with 24-mers that occur more than 4 times in the chromosomes; 554 scaffolds, 66.8 Mb),

redundant (unanchored scaffolds composed of ≥95% 24-mers >2x in all scaffolds; 5 scaffolds,

115.9 kb), and mitochondria (83 scaffolds, 5.1 Mb).

After forming the chromosomes, it was observed that some small (<20kb) redundant sequences

were present on adjacent contig ends within chromosomes. To resolve this issue, adjacent contig

ends were aligned to one another using BLAT (v35, Kent 2002), and duplicate sequences were

collapsed to close the gap between them. A total of 2 adjacent contig pairs were collapsed in

the HAP1 assembly and 6 in the HAP2 assembly. The three subgenomes were then clustered

into groups of 10 chromosomes based on shared enriched 12-mer content. For each triplet of

chromosomes, all 12-mers were identified from a frequency of 20 – 5000, with a minimum of

50 occurrences being required on one of the triplets. A positively enriched 12-mer had one of
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the three with at least 3 times the count of the other two. All occurrences of the enriched 12-

mers were counted across the chromosomes and converted to a binary call. Binary k-mer calls

were subset to sites observed in ≥ 5 chromosomes and used to construct a symmetric binary

distance matrix. Clustering was then accomplished on the distance matrix by partitioning around

medoids (PAM) with the R package cluster (v2.1.4, Maechler et al. 2012). The 3 subgenomes were

designated as A, B, and C. The ”A” subgenome was identified as being most closely related to A.

virginicus. This was determined using HipMer (Georganas et al. 2015) assembly of A. virginicus

to mask the 3 subgenomes using 18-mers. The A-genome consistently shared more content with

A. virginicus than the other two subgenomes. Chromosomes were numbered and oriented within

the 3 subgenomes using Sorghum bicolor, and the resulting sequence was screened for retained

vector and contaminants (Tables S8, S9).

Heterozygous SNP/indel phasing errors were corrected using the 85.93x CCS data. A to-

tal of 1,903 heterozygous SNPs/indels were corrected in both haplotypes. Homozygous SNPs

and indels were corrected in the tremula and alba releases using ∼62X of Illumina reads (2x150,

400 bp insert) by aligning the reads using bwa mem (v0.7.17-r1188, Li 2013) and identifying ho-

mozygous SNPs and indels with the GATK’s UnifiedGenotyper tool (v3.6-0-g89b7209, McKenna

et al. 2010). A total of 987 homozygous SNPs and 10,691 homozygous indels were corrected

in the HAP1 release, while a total of 882 homozygous SNPs and 9,487 homozygous indels were

corrected in the HAP2 release. The final version 1.0 HAP1 release contained 2,669.3 Mbp of se-

quence, consisting of 88 contigs with a contig N50 of 63.1 Mbp and a total of 99.90% of assembled

bases in chromosomes. The final version 1.0 HAP2 release contained 2,588.3 Mbp of sequence,

consisting of 68 contigs with a contig N50 of 59.2 Mbp and a total of 99.93% of assembled bases

in chromosomes.

Completeness of the euchromatic portion of the version 1.0 assemblies was assessed using

existing RNASeq reads (library JLJB). The aim of this analysis is to obtain a measure of com-

pleteness of the assembly, rather than a comprehensive examination of gene space. The transcripts

were aligned to the assembly using bwa mem (v0.7.17-r1188, Li 2013) and the screened alignments
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indicate that 99.880% of the RNASeq reads aligned to the HAP1 release, and 99.883% aligned to

the HAP2 release.

6.6 Genome annotation

Transcript assemblies were made for each haplotype from about 1.2 billion pairs of 2x150 stranded

paired-end Illumina RNA-seq reads using PERTRAN, which conducts genome-guided transcrip-

tome short read assembly via GSNAP (Wu and Nacu 2010) and builds splice alignment graphs

after alignment validation, realignment, and correction. Approximately 14.8 million PacBio Iso-

Seq CCS reads were corrected and collapsed by a genome-guided correction pipeline, which aligns

CCS reads to the respective haplotype with GMAP (Wu and Nacu 2010) and corrects introns for

small indels in splice junctions when all introns are the same or 95% overlap for single exon, to ob-

tain about 774,000 and 766,000 putative full-length transcripts for HAP1 and HAP2, respectively.

Subsequently, 829,257 (HAP1) and 820,009 (HAP2) transcript assemblies were constructed

using PASA (Haas et al. 2003) from the RNA-seq transcript assemblies and the respective hap-

lotype. Loci were determined by transcript assembly alignments, EXONERATE alignments, and

Swiss-Prot proteomes to repeat-soft-masked A. gerardi respective genomes using RepeatMasker

(Smit et al. 2013–2015) with up to 2,000 bp extension on both ends unless extending into an-

other locus on the same strand. EXONERATE alignments used protein sequences from Arabidop-

sis thaliana, Glycine max, Oryza sativa, Sorghum bicolor, Brachipodium, Aquilegia coerulea,

Solanum lycopersicum, Vitis vinifera, Panicum hallii, Joinvillea ascendens, Acorus americanus,

Paspalum vaginatum, Phoenix dactylifera, Musa acuminata, Ananas comosus, Asparagus offici-

nalis, Phalaenopsis equestris. The repeat library consists of de novo repeats by RepeatModeler

(Smit et al. 2008–2015) on A. gerardi HAP1 and repeats in RepBase (Bao et al. 2015). Gene mod-

els were predicted by homology-based predictors, FGENESH+ (Salamov and Solovyev 2000),

FGENESH EST (similar to FGENESH+, but using EST to compute splice site and intron input

instead of protein/translated open reading frame, ORFs), EXONERATE (Slater and Birney 2005),

PASA assembly ORFs (in-house homology constrained ORF finder) and AUGUSTUS (Stanke

29



et al. 2006) trained by the high confidence PASA assembly ORFs and with intron hints from short

read alignments. The best-scored predictions for each locus were selected using multiple positive

factors, including EST and protein support, and one negative factor of overlap with repeats. PASA

improved the selected gene predictions by adding untranslated regions, splicing correction, and

alternative transcripts.

PASA-improved gene model proteins were subject to protein homology analysis to the above-

mentioned proteomes to obtain the C-score, a protein BLASTP score ratio to the mutual best hit

BLASTP score, and protein coverage, the highest percentage of protein aligned to the best of

homologs, for each transcript. PASA-improved transcripts were selected if their Cscore was ≥

0.5 and protein coverage ≥ 0.5, or it had EST coverage, but its CDS overlapping with repeats is

< 20%. Gene models with CDS that overlap repeats more than 20% must have a C-score ≥ 0.9

and homology coverage ≥ 70% to be selected. Additionally, gene models were subject to Pfam

analysis (Mistry et al. 2021) and gene models with > 30% TE domains were removed. Gene

models that were incomplete, had low homology support, and a short single exon (< 300 bp CDS)

without a protein domain nor good expression were manually filtered out. Transposable elements

were annotated using the Extensive de novo TE Annotator (EDTA; Ou et al. 2019).

6.7 Variant calling and genotyping

The quality of the raw short read sequence data was assessed using FastQC (v0.11.6, http:

//www.bioinformatics.babraham.ac.uk/projects/fastqc/). Samples re-sequenced at UC

Davis were trimmed using fastp to remove adapters, polyG trails, and the first 9 bp on each read

while requiring reads to have a minimum length of 36 bp (fastp -l 36 -Q --trim front1 9

--trim front2 9; v0.20.1, Chen et al. 2018). Samples sequenced by JGI and Cornell did not

require trimming to improve alignment quality.

The sequence data were aligned to the A. gerardi reference genome with bwa-mem2 (v2.2;

Vasimuddin et al. 2019). Reads from samples that were sequenced on multiple lanes were com-

bined into a single fasta file prior to alignment. The BAM files were sorted using SAMtools (v1.7;
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Danecek et al. 2021), read groups were added using Picard AddOrReplaceReadGroups, and du-

plicates were removed with Picard MarkDuplicates (v2.27, http://broadinstitute.github.

io/picard) using default settings. Alignment quality was assessed using QualiMap (qualimap

bamqc -nt 1000 -nt 12 -nw 400 --skip-duplicated; v.2.1.1, Okonechnikov et al. 2016).

Samples with less than 98% of reads mapping were discarded. BAMs from genotypes that were in-

dependently sequenced multiple times were merged into a single BAM (samtools merge). High

coverage samples sequenced by JGI were subsampled to approximately 2-4X coverage (samtools

view -b -s 0.06). Genotypes with less than 90% reads mapping or 0.5X coverage and missing

genome size data were excluded from downstream analyses.

For analyses that included 6x and 9x genotypes, we identified and filtered variable sites using

BCFtools (Li 2011), then called single-read genotypes with ANGSD (Korneliussen et al. 2014).

Variable sites were called using BCFtools mpileup and BCFtools call (v1.16; Li 2011). After

identifying variable sites, sites were filtered to exclude multialleic sites and sites with low map-

ping quality and sequencing quality with GATK (gatk VariantFiltration -filter "QUAL

≤ 30" -filter "MQ ≤ 30" and default gatk SelectVariants --restrict-alleles-to

BIALLELIC; v4.2; Van der Auwera and O’Connor 2020). SNPs were additionally filtered for less

than 20% missing data and a minimum genotype depth of 1 using a custom R script. A maximum

depth filter was applied in order to exclude sites where paralogs may be mapping (Phillips 2024).

We defined the maximum depth cutoff at each site as the 99th percentile assuming coverage fol-

lows a Poisson distribution. Single-read genotypes were estimated for the filtered sites directly

from the BAMs using ANGSD (angsd -doIBS 1 -doMajorMinor 3 -doCounts 1 ; v0.934 ;

Korneliussen et al. 2014). Single-read genotypes are generated by randomly drawing a read at

each site. If the read draw has the reference allele, the genotype is ”1” while the alternate allele is

”0”.
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6.8 Assessment of population structure and diversity

One-hundred thousand sites were randomly sampled from the single-read genotype matrix for as-

sessment of population structure. The principal component analysis (PCA) was run using ANGSD

(angsd -doCov 1). The kinship matrix was estimated following (VanRaden 2008) using a custom

script in R. The diagonal elements were set to 1 for use in downstream analyses, as an accurate

estimate of kinship within an individual cannot be made using a draw of a single read. Downstream

analyses produced the same results given a diagonal of 1, 0, or random values. Clones were identi-

fied as having a kinship coefficient greater than 0.4; only two hexaploid genotypes were identified

as clones. Population structure analyses were run with and without clones and were similar.

Population admixture was assessed by estimating the individual ancestry coefficients and num-

ber of genetic clusters (K) using the STRUCTURE admixture model (v2.3.4, Pritchard et al. 2000).

STRUCTURE was run for a K of 2 through 24 for 3 replicates of 85,000 iterations per model (in-

cluding a 10,000 burn-in). We specified PLOIDY as 1 because the single-read genotypes only

sample one haplotype. Convergence was confirmed by consistent results between replicates (Fig.

S3).

Population differentiation was estimated with FST and ρ (Ronfort et al. 1998; Meirmans et al.

2018). Values were estimated between the East and West genetic groups identified in previous anal-

yses and pairwise between a cytotypes within each population. For the pairwise population anal-

ysis, three genotypes were randomly selected from each cytotype-population groups containing at

least three genotypes. Then, population allele frequencies were calculated from the single-read

genotypes. Subsequently, pairwise FST was calculated as FST = HT−HS
HT

, where HT is the expected

heterozygosity and HS is the observed heterozygosity within the two populations. Pairwise ρ was

calculated as ρ = HT−HS
HT−HSP

, where HSP is the ploidy-corrected HS, following Meirmans et al. (2018).

FST and ρ were estimated per-site for each pairwise comparison and then averaged. To determine

if within 9x, within 6x, and between cytotype genetic differentiation was statistically different,

we estimated the mean FST and ρ for the three comparison types (6x-6x, 9x-9x, 6x-9x) using the

R function emmeans and tested whether the means differed using a Tukey pairwise comparison
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implemented in contrast (v1.1, Searle et al. 1980) and a 95% confidence level.

6.9 Estimation of hexaploid genetic diversity

Nucleotide diversity (θP), Watterson’s theta (θW ), and Tajima’s D were estimated for all 6x geno-

types in 10,000 and 50,000 bp windows using ANGSD (v0.935, Korneliussen et al. 2013). The

folded site frequency spectrum (SFS), thetas, and Tajima’s D were estimated independently for

each population. The two identified clones were excluded from estimation of hexaploid genetic di-

versity. Individual inbreeding coefficients were estimated only in 6x genotypes with high coverage

WGS data, as low coverage data can result in significant bias (Bilton et al. 2024). The inbreeding

coefficients were estimated in parallel for each chromosome using ngsF (v1.2.0, Vieira et al. 2013).

Results for all analyses were plotted in R using ggplot2 (v3.4; Wickham 2016).

6.10 Common garden experiment

A subset of 85 genotypes from 14 populations were planted in a common garden in Columbia,

Missouri at the University of Missouri Genetics Farm in May 2021. The populations and genotypes

were selected to maximize diversity in home environment and representation of the 9x cytotype.

Additionally, the selected genotypes were required to have WGS and flow cytometry data. The

selected genotypes were vegetatively propagated by splitting the rhizomes to produce three clonal

replicates. Clonal replicates were bulked at the Donald Danforth Plant Science Center and the

University of California, Davis greenhouse facilities. The genotypes were planted in a randomized

block design with three blocks, placing one random clonal replicate per genotype in each block

(Fig. S12). Random positions within the block were modified only when two genotypes from the

same population were neighbors.

Prior to planting, the field was covered with landscaping cloth (DeWitt Sunbelt Woven Ground

Cover) held down with anchor pins in order to prevent competition from weedy annual grasses and

broadleaf weeds. Plants were spaced 4.5 ft (1.37 m) apart in a grid pattern and the landscape cloth

extended for at least 4.5 ft (1.37 m) around the edge of the blocks. The three blocks were separated
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by 9 ft (2.74 m). The holes cut in the landscaping cloth were cut in an X-shape at least 3 ft wide in

each direction to ensure lateral growth was not constrained. After planting, the field was irrigated

once to promote establishment and was not irrigated for the rest of the experiment, relying only on

rainfall. The field was hand-weeded and broadleaf weeds were sprayed with 2,4-D herbicide early

in the spring when the A. gerardi plants were small and likely to be outcompeted by weeds.

6.11 Phenotyping leaf functional traits

The field was phenotyped in early September of 2021 and 2022. Six leaves were collected from

each plant each year, selecting the youngest fully expanded leaves on 6 different tillers (Perez-

Harguindeguy et al. 2016; Garnier et al. 2001). Leaves were cut at the ligule with scissors, placed

in a plastic bag with a damp paper towel, then stored overnight in a 4◦C fridge before phenotyping.

Within 72 hours of collection, fresh weight (g) and leaf lamina thickness (mm) was measured.

Fresh weight was only measured in 2022. Leaf lamina thickness was measured at the base of

the leaf using digital calipers, taking care to avoid the midrib. The leaves were scanned for mea-

surement of width, length, and one-sided area using ImageJ (v1.53-1.54; Schneider et al. 2012).

Leaf length was measured as the length of the leaf sheath from the ligule to the leaf tip and leaf

width was measured at the widest part of the leaf. Specific leaf area (SLA), leaf dry matter content

(LDMC; 2022 only), and leaf density (ρF ) were calculated for each leaf (Vile et al. 2005; Garnier

et al. 2001).

After scanning, abaxial leaf impressions were taken on the fresh leaves using dental putty

(Zhermack elite HT+ light body fast set) for analysis of stomatal traits. Three impressions were

taken per leaf (bottom, middle, top) to capture developmental variation. Results were similar across

leaf impressions (Fig. S14). After the dental putty impressions were taken, the fresh leaves were

placed in a 7 in manilla envelope and dried at 70◦C for at least 72 hours. After the leaves were

dried, dry mass was measured (mg).

To measure stomatal traits, a negative of the dental putty impression was taken using clear nail

polish and then imaged using a Leica DM1000 microscope and Leica MC170 HD digital camera

34



at 10X magnification. Using ImageJ, guard cell length was measured along the longest portion

of the guard cell for five stomata per impression. Additionally, stomatal density was measured

for each impression. As stomatal density is very high in A. gerardi, the image was cropped to a

smaller area containing at least 10 stomata. In the cropped image, the area and number of stomata

were measured (Supplemental Data). Stomatal pore index (SPI) was measured as stomatal density

divided by the square root of mean guard cell length. Stomatal traits were measured in both years

but were measured incompletely in 2021. As a result, we analyze and present only the 2022 data.

Variation between impressions was assessed using a linear model regressing stomatal traits against

impression. We tested for differences in mean stomatal traits between each group of impressions

using a Tukey test with a 95% confidence interval implemented in emmeans and contrast (v1.1,

Searle et al. 1980).

6.12 Phenotyping performance traits

Survival (dead or alive) was recorded each year, although overall mortality was low (11%). Ad-

ditionally, we measured the number of tillers, percent flowering tillers, plant height, basal area,

and above-ground biomass. Plant height was measured as the length of the longest tiller from the

ground to the tip of the inflorescence. To estimate basal area, we measured the diameter of the

base in two perpendicular directions and then calculated the area as an ellipse (cm2, Aspinwall

et al. 2013). After all phenotypes were collected for the year, all above-ground biomass was cut

off the plant approximately 4 in above the crown using grass shears. The biomass was placed in a

brown paper bag and dried at 37◦C until the dry weight stabilized (3 to 5 days). Once dry, the total

dry above-ground biomass was measured (g). Root and below-ground traits were not measured as

they require destructive sampling. Basal growth, tiller growth, and relative growth were calculated

as the difference between year 2 and year 1 measurements to account for the varying sizes of the

plants when transplanting.
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6.13 Trait data analysis

The effect of ploidy and the environment on trait variation was specified using two independent

linear mixed models for each trait using the R package Sommer (v4.3.3, Giovanny 2016). First, the

effect of ploidy on a given phenotype (Y) was tested with the following model, where ploidy was

specified as a fixed effect and population (z) and genotype (g) were random effects. Covariance

among genotypes was specified with a kinship matrix (K). Year (t) was included as a random effect

if the phenotype was measured in multiple years.

Y = µ +βPP+g+ t + z+ ε (1)

g ∼ MV N(0,VAK)

t,z,ε ∼ N(0,σ2)

To test the effect of a population’s home environment on trait variation, yearly climate data for

each population and the common garden site was extracted from ClimateNA using ClimateNAr

(v1.1, Wang et al. 2016). Climate variables were averaged from 1961 to 1990. Average yearly

growing degree days at 10◦C (GDD) were separately estimated using daymetr (v1.7, Hufkens

et al. 2018) for the period of 1980 to 2000. A PCA was run on the climate data to describe

the environmental distance between populations. After examining the correlation between the

principal components (PCs) and the raw climate data, PC1 and PC3 were selected to represent the

home environment of each model. PC1 (E1) and PC3 (E3) were specified as fixed effects and added

to the previously described model:

Y = µ +βPP+βE1E1 +βE3E3 +g+ t + z+ ε (2)

The residuals of each model were qualitatively assessed for normality, homogeneity of vari-

ances, and independence. Transformations were applied where needed; a log, exponential, and
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inverse normal transformation were applied to basal growth, percent of flowering tillers, and SLA,

respectively. The significance of fixed effects was tested with an ANOVA. If ploidy was signifi-

cant, we used emmeans and contrast (v1.1, Searle et al. 1980) to estimate cytotype means and

test if the the cytotype means were significantly different. Log likelihood ratio tests were used to

test the significance of random effects in the model using a confidence level of 95%. Significance

was evaluated for all tests using a 95% adjusted for multiple tests by Bonferroni corrections where

the corrected alpha is 0.0033.

The genetic correlation and heritability of the phenotypes were estimated with MegaLMM

(v0.1.0 ,Runcie et al. 2021) using Model 1 without year in the model. Rather, we treated traits

measured in multiple years as separate traits. We specified 20 latent factors and used the default

priors. We extracted the posterior means for lambda, genetic variance, and genetic covariances

from a single model run for 1000 iterations after a burn-in of 500 iterations. We also estimated the

95% credible interval of the posterior distributions for the genetic covariances and heritabilities.

Change in aboveground biomass was regressed against geographic and climate transfer dis-

tance to assess location adaptation. Using Sommer, best linear unbiased predictors (BLUPs) were

first estimated for each population using Model 1. The grand mean was added to the estimated

BLUPs to improve interpretation. Geographic transfer distance was estimated as the Haversine

distance between the population and common garden using geodist (v0.0.8, Padgham 2021).

Climate distance was measured by the difference in average mean annual precipitation (MAP)

and mean annual temperature (MAT) between the common garden environment and home envi-

ronment. Average MAP and MAT was estimated for each population by averaging the ClimateNA

data described above. Daily precipitation and temperature data for the common garden in 2021 and

2022 was downloaded for the Columbia-Jefferson Farm and Gardens (Boone County, MO, USA)

weather station from the Missouri Historical Agricultural Weather Database. The average daily

temperature was averaged across years to estimate the common garden MAT. Total daily precipi-

tation was summed for each year then averaged to estimate the common garden MAP. Finally, the

three measure of transfer distance (geographic, MAP, and MAT) were regressed against population
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BLUPS with lm in R.

6.14 Data availability

The short-read WGS data is available on NCBI Sequence Read Archive (SRA) under BioProject

PRJNA1109389. Supplementary data including genotype metadata, raw phenotype data, and flow

cytometry data is available on Dryad at https://doi.org/10.5061/dryad.gxd2547v1. The

A. gerardi reference genome is available on Phytozome under genome IDs 784 and 783. All

scripts for genotype calling, population genetic analyses, and trait data analysis can be found at

https://github.com/phillipsar2/andro_snakemake.
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8. Supporting Information

Figure S1: The normalized maximized log-likelihood of the diploid and triploid nQuire mod-
els for genotypes sequenced with high coverage. The color of the points represents whether the
ploidy is unknown or known via flow cytometry. Of the genotypes for which ploidy was known,
all were 6x except for one genotype. Tested unknown genotypes had similar values to known 6x
genotypes except for two outliers. In the upper left and lower right corners are genotypes with
unusually high (45X) and low (16X) coverage, respectively.
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Figure S2: Principal component analysis of single read genotypes for all sequenced genotypes.
The first two principal components are plotted for each genotype with the color of each point
indicating the population of origin. The shape of each point indicates the ploidy of the sample
where 6x are circles and 9x are triangles.
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Figure S3: The estimated log probability of the sequence data given K admixture groups as
estimated by STRUCTURE. Three runs were estimated for each K. The estimated probability
and consistency across runs declines with an increasing value of K.
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Figure S4: Kinship of all sequenced genotypes in the West genetic group. Columns are anno-
tated with the cytotype of each genotype where 9x are dark gray and 6x are light gray. Genotypes
are hierarchically clustered by Euclidean distance in kinship values and have the same order on
both axis. Genotypes are labeled with their population code which follows Figure 2.1A. No data
is plotted for the diagonal as estimates of self-relatedness are unreliable with low-coverage data.
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Figure S5: Population estimates of hexaploid genetic diversity. Nucleotide diversity (A,D),
Watterson’s theta (B,E), and Tajima’s D (C, F) were estimated in 10 kbp (A, B, C) and 50 kbp (D,
E, F) windows. The mean values for each population are shown as a black dot with an error bar
indicating one standard deviation from the mean.

Figure S6: Individual inbreeding coefficient estimated for hexaploid genotypes with high cov-
erage WGS data. The violin plots show the distribution of the inbreeding coefficients estimated
for each chromosome (n = 30) per genotype and are colored by population. The gray dashed line
is the average inbreeding coefficient across these genotypes.
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Figure S7: Pairwise FST and ρ estimated between 6x and 9x population pairs in the West
genetic group. The upper diagonal is pairwise FST (shades of green) and the lower panel is pair-
wise ρ (shades of purple). FST is dependent on ploidy level and is expected to be elevated in
comparisons among 9x compared to comparisons among 6x (Ronfort et al. 1998).
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Figure S8: PCA on best linear unbiased predictors of common garden phenotypes. The first
two principal components are plotted for each genotype overlain with the vectors for each stan-
dardized phenotype and 90% confidence ellipses. (A) Points are colored by population and the
confidence ellipses enclose the East (black) and West (gray) genetic groups. (B) Points and el-
lipses are colored by ploidy where the 6x cytotype is black and 9x cytotype is gray.

Figure S9: Principal component loadings of the PCA on climate variables. The principal com-
ponent loading is plotted for each comparison between principal component (PCA) and climate
averages. All variables are from ClimateNA except GDD, which is the growing degree days at
10◦C estimated with daymetr.
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Figure S10: Population mean change in aboveground biomass regressed against climate
transfer distance. Population means are best linear unbiased predictors (BLUPs) estimated using
linear mixed models (see Methods). Predicted values (black line) are plotted with 95% confidence
intervals in gray and population BLUPs overlaid as black dots. Climate transfer distance was esti-
mate as (A) The difference in mean annual precipitation (MAP) and (B) mean annual temperature
(MAT).
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Figure S11: Posterior mean narrow sense heritability for all measured phenotypes. The black
dot indicates the posterior mean and the gray bar 95% credible interval. See Figure 1.3B for trait
codes.

Figure S12: The common garden prior to phenotyping in 2022. The field runs north to south and
the image shows the field looking north. The common garden was located in Columbia, Missouri.
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Figure S13: Posterior mean narrow sense heritability for all measured phenotypes. The black
dot indicates the posterior mean and the gray bar 95% credible interval. See Figure 1.3B for trait
codes.

Figure S14: The effect of cytotype on stomatal traits is consistent across the leaf. We measured
stomatal traits at three locations on the abaxial side of each leaf to assess developmental variation.
Impression 1 is an impression taken within the bottom 1 inch of the leaf, impression 2 is the
middle of the leaf, and impression 3 is within the top inch of the leaf. We assessed developmental
variation in (A) stomatal pore index (SPI), (B) stomatal density, and (C) stomata length on a subset
of genotypes (n = 23). The boxplot depict the distribution of genotype means for each ploidy where
white is 6x and gray is 9x genotypes. The mean values for each genotype are overlaid as points.
Lowercase letters above the boxplots indicate which impressions means are significantly different
using a Tukey test and 95% confidence level.
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Table S1: Population metadata. Population ID refers to sites in Figure 2.1A. CG indicates whether
or not a population was included in the common garden experiment.

Population ID Subpopulation ID Location Latitude Longitude CG
AFT Big Bluestem Texas Afton, Dickens County 33.748371 -100.7992 N
AUS AUB 79 Austin, TX 30.0763595 -97.9433 Y
AUS AUB 4 Austin, TX 30.0798056 -97.9344 Y
BAR BB Barta Brothers’ Ranch, NE 42.2333 -99.6500 N
BOU Kellogg 1284 Boulder, CO 39.8673889 -105.2427 Y
BOU Kellogg 1283 Boulder, CO 39.9339 -105.2075 Y
CDB CDB Cedar Bluffs Reserve, KS 38.75 -99.7666 Y
CUI Cuivre River SP Cuivre River SP, MO 39.030639 -90.9619 N
CUI Kellogg 1298 39.03333 -90.9174 N
DES DES Desoto Railroad Prairie, IL 37.85 -89.2333 N
ESL ESL East Shoal Lake, Manitoba 50.28583 -97.5144 Y
FUL FUL Fults Hill Prairie, IL 37.9666 -89.8000 Y
HAL Kellogg 1271 Hall, NE 40.7436 -98.5851 N
KEN Mckain WI Div Kenosha, WI 42.5999 -88.2230 Y
KON Konza Konza Research Station 39.0886 -96.5533 Y
MAN MBTGPP Manitoba Tallgrass Prairie Preserve, Manitoba 49.07426 -96.7431 Y
MIL Kellogg 1277 Milnesand Prairie Reserve, NM 33.6833 -103.3405 Y
MON Mckain ILL Div Montgomery, IL 39.350439 -89.6435 N
REL REL Relict Prairie, KS 38.85 -99.3666 Y
SAL SAL Saline Expt. Range, KS 39.0333 -101.3333 Y
SUT Suther Suther Prairie, NC 35.451238 -80.4673 Y
SUT AUB 94 Suther Prairie, NC 35.4486526 -80.4672 N
TWE 12mi Twelve Mile Railroad Prairie, IL 38.7666 -88.8333 Y
VIC Victoria Glades glade 1 Victoria Glades glade 1 38.2021462 -90.5549 N
WAL WAL Walters Prairie, IL 38.9833 -88.1500 Y
WCG Wallen creek glades Wallen creek glades, MO 37.812797 -90.7006 N
WEB WEB Webster Reserve, KS 39.4 -99.5333 N
WEK AUB 121 Wekiya State Park, FL 28.7124841 -81.4796 N
WEL 807 BBS Welda Prairies, Anderson county, KS 38.16897 -95.2748 N
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Table S4: PacBio library statistics for the libraries included in the Andropogon gerardi (var.
Kellogg-1272) genome assembly and their respective assembled sequence coverage levels.

Cutoff Number of Reads Basepairs Average Read Length Coverage
0 16,785,606 343,726,563,435 19,680 85.93x
1,000 16,784,941 343,726,421,728 19,680 85.93x
2,000 16,782,985 343,723,282,795 19,681 85.93x
3,000 16,781,398 343,719,397,953 19,681 85.93x
4,000 16,780,091 343,714,820,784 19,682 85.93x
5,000 16,777,997 343,705,307,473 19,682 85.93x
6,000 16,774,286 343,684,717,768 19,683 85.92x
7,000 16,768,962 343,650,000,372 19,684 85.91x
8,000 16,763,136 343,606,292,932 19,686 85.90x
9,000 16,757,799 343,560,982,110 19,687 85.89x
10,000 16,753,026 343,515,663,833 19,688 85.88x
11,000 16,748,251 343,465,530,496 19,689 85.87x
12,000 16,743,169 343,406,976,519 19,690 85.85x
13,000 16,734,980 343,303,965,973 19,692 85.83x
14,000 16,704,343 342,886,573,490 19,699 85.72x
15,000 16,566,666 340,874,186,260 19,732 85.22x
16,000 16,066,795 333,079,495,791 19,853 83.27x
17,000 14,753,317 311,321,403,055 20,189 77.83x
18,000 12,463,595 271,193,752,445 20,850 67.80x
19,000 9,938,051 224,485,620,806 21,750 56.12x

Table S5: Genomic libraries included in the Andropogon gerardi (var. Kellogg-1272) genome
assembly and their respective assembled sequence coverage levels in the final release. *Average
read length of PacBio reads.

Library Sequencing Platform Average Read/Insert Size Read Number Assembled Sequence Coverage
JEXY Illumina 400 1,601,302,817 92.80x
GOXCG Illumina-HiC – 938,370,083 54.38x

PacBio 19,680* 16,785,606 85.93x
Total – 2,556,458,506 233.11x
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Table S6: Summary statistics of the initial output of the HAP1 RACON polished HiFiAsm+HIC
assembly. The table shows total contigs and total assembled basepairs for each set of scaffolds
greater than the size listed in the left hand column.

Minimum
Scaffold
Length

Number of
Scaffolds

Number of
Contigs

Scaffold Size Basepairs Non-gap Basepairs

5 Mb 61 61 2,664,415,677 2,664,415,677 100.00%
2.5 Mb 65 65 2,677,111,928 2,677,111,928 100.00%
1 Mb 68 68 2,681,267,982 2,681,267,982 100.00%
500 kb 77 77 2,687,222,053 2,687,222,053 100.00%
250 kb 117 117 2,700,371,179 2,700,371,179 100.00%
100 kb 344 344 2,732,853,625 2,732,853,625 100.00%
50 kb 1,064 1,064 2,780,484,710 2,780,484,710 100.00%
25 kb 1,064 1,064 2,780,484,710 2,780,484,710 100.00%
10 kb 1,064 1,064 2,780,484,710 2,780,484,710 100.00%
5 kb 1,064 1,064 2,780,484,710 2,780,484,710 100.00%
2.5 kb 1,064 1,064 2,780,484,710 2,780,484,710 100.00%
1 kb 1,064 1,064 2,780,484,710 2,780,484,710 100.00%
0 bp 1,064 1,064 2,780,484,710 2,780,484,710 100.00%
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Table S7: Summary statistics of the initial output of the HAP2 RACON polished HiFiAsm+HIC
assembly. The table shows the total contigs and total assembled basepairs for each set of scaffolds
greater than the size listed in the left-hand column.

Minimum
Scaffold
Length

Number of
Scaffolds

Number of
Contigs

Scaffold Size Basepairs Non-gap Basepairs

5 Mb 61 61 2,608,260,179 2,608,260,179 100.00%
2.5 Mb 65 65 2,622,080,605 2,622,080,605 100.00%
1 Mb 67 67 2,625,544,079 2,625,544,079 100.00%
500 kb 78 78 2,633,098,987 2,633,098,987 100.00%
250 kb 115 115 2,645,787,790 2,645,787,790 100.00%
100 kb 290 290 2,671,355,876 2,671,355,876 100.00%
50 kb 731 731 2,701,527,046 2,701,527,046 100.00%
25 kb 731 731 2,701,527,046 2,701,527,046 100.00%
10 kb 731 731 2,701,527,046 2,701,527,046 100.00%
5 kb 731 731 2,701,527,046 2,701,527,046 100.00%
2.5 kb 731 731 2,701,527,046 2,701,527,046 100.00%
1 kb 731 731 2,701,527,046 2,701,527,046 100.00%
0 bp 731 731 2,701,527,046 2,701,527,046 100.00%

Table S8: Final summary assembly statistics for the HAP1 chromosome scale assembly.

Scaffold Total 48
Contig Total 88
Scaffold Sequence Total 2,669.7 Mb
Chromosome Sequence Total 2,666.8 Mb
Contig Sequence Total 2,669.3 Mb (0.001% gap)
Scaffold N/L50 13 / 86.8 Mb
Contig N/L50 16 / 63.1 Mb

Table S9: Final summary assembly statistics for the HAP2 chromosome scale assembly.

Scaffold Total 39
Contig Total 68
Scaffold Sequence Total 2,588.6 Mb
Chromosome Sequence Total 2,586.5 Mb
Contig Sequence Total 2,588.3 Mb (0.05% gap)
Scaffold N/L50 13 / 86.4 Mb
Contig N/L50 17 / 59.2 Mb
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1. Abstract

Poa pratensis, commonly known as Kentucky bluegrass, is a popular cool-season grass species

used as turf in lawns and recreation areas globally. Despite its substantial economic value, a

reference genome had not previously been assembled due to the genome’s relatively large size

and biological complexity that includes apomixis, polyploidy, and interspecific hybridization. We

report here a fortuitous de novo assembly and annotation of a P. pratensis genome. Instead of

sequencing the genome of a C4 grass, we accidentally sampled and sequenced tissue from a weedy

P. pratensis whose stolon was intertwined with that of the C4 grass. The draft assembly consists

of 6.09 Gbp with an N50 scaffold length of 65.1 Mbp, and a total of 118 scaffolds, generated

using PacBio long reads and Bionano optical map technology. We annotated 256K gene models

and found 58% of the genome to be composed of transposable elements. To demonstrate the

applicability of the reference genome, we evaluated population structure and estimated genetic

diversity in P. pratensis collected from three North American prairies, two in Manitoba, Canada

and one in Colorado, USA. Our results support previous studies that found high genetic diversity

and population structure within the species. The reference genome and annotation will be an

important resource for turfgrass breeding and study of bluegrasses.

2. Background

Poa pratensis L., commonly known as Kentucky bluegrass, is an economically valuable horticul-

tural crop grown globally on lawns and recreational areas as turf (Haydu et al. 2006). Native to

Europe and Asia, it was introduced to North America in the seventeenth century by European colo-

nizers as a forage crop (Carrier and Bort 1916; Raggi et al. 2015). Today, Kentucky bluegrass is the

most popular cool-season grass used for turf due to it’s vigorous growth and quick establishment

that creates a dense, strong sod with a long lifespan (Casler and Duncan 2003).

Today, there are 40 million acres of managed turf in the United States (U.S.), an area ap-

proximately the size of the state of Florida (Milesi et al. 2005). While this massive area has the
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potential to serve as an important carbon sink, the large water and fertilization resources required

currently outweigh the benefits (Milesi et al. 2005). Breeding efforts are underway to improve

environmental-stress tolerances, disease and insect resistance, seed quality and yield, as well as

uniformity and stability of traits (reviewed in Bonos and Huff 2013). While the economic value

of P. pratensis is high, it is highly invasive, and in the last 30 years has aggressively invaded the

North American Northern Great Plains, altering ecosystem function by reducing pollinator and

plant diversity and altering nutrient dynamics (Kral-O’Brien et al. 2019; DeKeyser et al. 2015;

Hendrickson et al. 2021). Continued research into the genetic diversity of wild P. pratensis is

needed to understand how invasive populations are rapidly adapting, and the study of wild popula-

tions may enable identification of disease or environmentally tolerant ecotypes for use in turfgrass

breeding.

Previous studies using RAPD, ISSR, and SRR markers demonstrated high genetic diversity

in both developed cultivars and wild populations but limited population structure between these

groups (Bushman et al. 2013; Raggi et al. 2015; Honig et al. 2012, 2018, but see Dennhardt et al.

2016). Population divergence has been detected amongst some wild populations (Dennhardt et al.

2016) but the extent of population structure is unclear. There are a number of potential reasons

for finding a lack of population structure, including gene flow, the independent development of

cultivated lines from locally adapted ecotypes (Raggi et al. 2015; Bonos and Huff 2013), and

geographic heterogeneity in patterns of genetic diversity. Repeated reversion of cultivars to wild

forms has also been suggested, but is unlikely (Dennhardt et al. 2016). Alternatively, previous

studies may simply not have had sufficient marker resolution to detect population structure in a

highly heterozygous polyploid species like P. pratensis.

Genetic analysis and improvement of turfgrass are challenging because of apomixis and poly-

ploidy (Bushman and Warnke 2013). Poa pratensis is a facultative apomict, meaning it can re-

produce sexually or asexually by aposporous apomixis, and it is a polyploid with frequent aneu-

ploidy (Brown 1939). Although apomixis is a highly valued trait for seed production, high rates

of apomixis stymie the recombination needed to genetically analyze traits or recombine beneficial
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traits into one cultivar (Bonos and Huff 2013). Polyploidy and aneuploidy further these difficul-

ties due to copy number variation of regions of interest and non-Mendelian inheritance resulting

from double reduction. While some progress has been made in managing apomixis (Funk et al.

1967; Pepin and Funk 1971; Matzk 1991), including the discovery of its genetic basis (Albertini

et al. 2004; Marconi et al. 2020), the development of additional molecular and genomic tools in

P. pratensis are needed to move genetic analysis and breeding efforts forward in the face of its

complex biology.

Here, we report the first P. pratensis genome. While attempting to assemble the genome for

a C4 prairie grass, Andropogon gerardi, we unknowingly sequenced and assembled a wild Poa

growing in the same pot. Fortunately, this resulted in a highly contiguous, near complete genome

assembly. We utilized the reference genome and wild Poa from three prairies to investigate the

genetic diversity and population structure of North American Poa. The reference genome and

annotation presented here are an important advancement for Kentucky bluegrass breeding. Ad-

ditionally, this reference genome provides an important resource for the study of closely related

bluegrasses including P. trivialis L., P. annua L., and P. arachnifera Torr.

3. Materials & Methods

3.1 Sample collection

Rhizomes of Poa species were collected fortuitously as part of a different project aimed at col-

lecting major C4 prairie grasses (Andropogon gerardi Vitman, Sorghastrum nutans (L.) Nash, and

Schizachyrium scoparium (Michx.) Nash) in moist prairies in Colorado, USA and two prairies in

Manitoba, Canada and (Table S1). Necessary permissions and permits were obtained prior to col-

lecting. Plants were brought back to the United States from Canada under phytosanitary certificate

3193417.

The C4 focal plants were dug up with a shovel late in the growing season in 2018 (when the

Poa was dormant and thus invisible), soil was washed off, rhizomes were wrapped in wet paper
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towels, and leaves were cut back to about 4 inches height to reduce transpiration. The focal C4

plant was placed in a 1-gallon Ziploc bag and returned to the plant growth facility at the Donald

Danforth Plant Science Center in St. Louis, MO, USA. Plants were potted in 2:1 BRK20 promix

soil to turface. The previously dormant Poa plants produced fresh green leaves in this setting and

grew faster than the C4 plant with which it was entwined. Once it was discovered that Poa had

interpolated itself into the rhizome and root area of the C4 plants, the Poa plants were extricated

and placed in separate pots.

One Poa was found inside the pot for an Andropogon gerardi genotype which was used to

attempt assembly of a reference genome. Instead of collecting tissue from the A. gerardi plant,

tissue was accidentally sampled from the Poa plant. This Poa individual is referred to as the Poa

reference individual (Table S1). Eight additional Poa, referred to here as the Poa population panel,

were discovered in various pots for C4 grasses whose genomes we attempted to sequence.

As Poa species generally require vernalization to flower, several plants were over-wintered

outside under mulch and flowered in spring 2020 and/or 2021; voucher specimens were taken

from these plants to verify species identity and have been deposited at the Smithsonian Institu-

tion (Washington, District of Columbia, U.S.A) and the Missouri Botanical Garden (St. Louis,

MO, U.S.A.) (Heide 1994). Not all Poa individuals survived, so some specimens lack vouchers.

Additionally, not all surviving Poa flowered so vegetative vouchers were submitted (Table S1).

3.2 PacBio sequencing

Approximately 4.1 g fresh tissue from the reference individual was extracted for PacBio sequenc-

ing using a High Molecular Weight (HMW) DNA approach based on the Circulomics Big DNA Kit

(Circulomics, USA). This method yields DNA with a center of mass at 200 Kb, which is sufficient

to construct PacBio CLR 20 Kb+ libraries. Sequencing was completed on the Sequel II across four

SMRTCells. DNA extraction and sequencing was completed by Corteva AgriscienceTM.
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3.3 Bionano optical map generation

DNA was extracted from 0.7 g of fresh leaf tissue from the reference individual using agarose em-

bedded nuclei and the Bionano PrepTM Plant Tissue DNA Isolation kit. DNA extraction, labeling,

imaging, and optical map assembly followed the methods previously described in Hufford et al.

(2021) and was completed by Corteva AgriscienceTM.

3.4 Preparation and imaging of metaphase spreads

Metaphase spreads were utilized to estimate chromosome count and ploidy of the reference indi-

vidual. Root tips were harvested from a recent off-shoot of the reference individual, treated with

nitrous oxide (3 hr at 160 psi) to stop mitosis in metaphase (Kato 1999), then processed as previ-

ously described in Kato et al. (2004) and Kato et al. (2011) with minor modification. Specifically,

the root tips were fixed in 90% acetic acid for 15 min, then rinsed with and stored in 70% ethanol at

−20◦C. Ethanol was removed from the root tips prior to enzymatic digestion by soaking in water

for 10 min. About 1 mm of the tip (meristem and root cap) was excised and transferred to a tube

containing 20 µL of 3% cellulase R-10 (Desert Biologicals, Phoenix, AZ) and 1.25% pectolyase Y-

23 (Desert Biologicals) in citrate buffer (10 mM sodium citrate, 10 mM EDTA, adjusted to pH 5.5

with citric acid) on ice. The tissue was digested for approximately 1 hr at 37◦C. Seventy percent

ethanol was used to inactivate the enzymes and rinse the samples. The ethanol was replaced with

approximately 7 µL of a solution of 90% acetic acid and 10% methanol. The tissue was broken

and cells dispersed using a blunted dissecting probe. The entire volume was dropped from a height

less than 1 cm onto a microscope slide in a container lined with wet paper towels and allowed to

dry.

Preparations were counterstained with a 1/20 dilution of Vectashield with DAPI (Vector Labo-

ratories, Burlingame, CA). Images were captured using Applied Spectral Imaging software (Carls-

bad, CA) on an Olympus BX 61 fluorescence microscope. Photoshop Brightness/Contrast and

Curves functions were used to decrease background noise and better define the chromosomal arms.

Genome size estimation Genome size was estimated for the Poa reference individual and 4 of
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the population panel individuals (Table S5). Not all population panel individuals were sampled as

some plants died prior to estimation. Genome size estimation methods using an internal standard

are modified from Doležel et al. (2007). Two internal standards were used for the reference: maize

B73 inbred line (5.16 pg/2C) and Andropogon gerardi accession CAM 1351 (6.13 pg/2C). Only

the maize B73 internal standard was used for the population panel. Approximately 10x1 cm of

fresh leaf tissue for the target and sample standard were placed in a plastic square petri dish. A

chopping solution composed of 1 mL LB01 buffer solution, 250µL PI stock (2 mg/mL), and 25 µL

RNase (1 mg/mL) added to the dish (1.25 mL; Doležel et al. 2007). The tissue was then chopped

into 2-4 mm lengths and the chopping solution was mixed through the leaves by pipetting. The

solution was then pipetted through a 30µm sterile single-pack CellTrics® filter into a 2 mL Rohren

tube on ice. Three replicates were chopped separately and analyzed for each Poa population panel

genotype and 9 replicates were analyzed for the reference. The samples were left to chill for 20 min

before analysis with a BD AccuriTM C6 flow cytometer. Samples were run in Auto Collect mode

with a 5-min run limit, slow fluidics option, a FSC-H threshold with less than 200,000 events, and a

1-cycle wash. The cell count, coefficient of variation of FL2-A, and mean FL2-A were recorded for

the target and reference sample with no gating. Results were analyzed separately for each replicate

and manually annotated to designate the set of events. The replicates for each Poa genotype were

averaged (Table S6).

3.5 Illumina sequencing of the Poa population panel

DNA was extracted from the Poa population panel using approximately 100 mg of lyophilized

leaf tissue and a DNeasy® Plant Kit (Qiagen Inc., Germantown, MD). High throughput Illumina

Nextera ® libraries were constructed and samples were sequenced with other plant samples in

pools of 96 individuals in one lane of an S4 flowcell in an Illumina Novaseq 6000 System with

paired-end 150-bp reads, providing approximately 0.80X coverage for each sample.
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3.6 Species identification

Species identification was completed using both morphological and DNA sequence data. Mor-

phological assessment was completed for the Poa reference genome and three of the population

panel samples using flowering and vegetative vouchers. Phylogenetic inference was completed

for species identification of all samples using one plastid and two nuclear ribosomal DNA loci:

trnT-trnL-trnF (TLF), external transcribed spacer (ETS), and internal transcribed spacer (ITS), re-

spectively. Trees for matK and rpoB-trnC were also evaluated but the sequences showed little

variation across sampled species.

Sequences for these loci were extracted from the Poa population panel whole genome se-

quence data by aligning reads to a P. pratensis sequence for each locus downloaded from Gen-

bank (Table S2) using the default options of bwa mem (v0.7.17; Li 2013). The alignment files

were sorted using SAMtools (v1.7; Danecek et al. 2021), read groups were added using Pi-

card AddOrReplaceReadGroups, and duplicates removed with Picard MarkDuplicates using de-

fault settings (http://broadinstitute.github.io/picard). We identified variable sites for

each sample separately using GATK (v4.1) HaplotypeCaller with default options (Van der Auw-

era and O’Connor 2020). SNPs were filtered to remove sites with low mapping quality and

low sequencing quality (gatk VariantFiltration -filter "QUAL < 40.0" -filter "MQ

< 40.0" and default gatk SelectVariants). A consensus sequence for each locus and sam-

ple was generated using GATK FastaAlternateReferenceMaker, which replaces the gene reference

bases at variable sites with the alternate allele.

Sequences were extracted from the reference genome by aligning the P. pratensis reference

sequences downloaded from Genbank to the reference genome with bwa mem using default options

(v0.7.17; Li 2013). This allowed us to identify the position of each locus in the reference. Each

locus only mapped to a single region in the reference genome, which was extracted using bioawk

( https://github.com/lh3/bioawk).

Sequences from the reference genome and the population panel were included in a dataset with

119 Poa samples from previous work (Table S3; Cabi et al. 2016, 2017; Gillespie et al. 2007,
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2008, 2009, 2018; Giussani et al. 2016; Refulio-Rodriguez et al. 2012; Soreng and Gillespie 2018;

Soreng et al. 2015, 2017, 2020; Sylvester et al. 2021). These samples were chosen to represent

the phylogenetic diversity of the genus Poa, and include all seven currently recognized subgenera

as well as 29 of 38 sections and several unclassified species groups (classification according to

Gillespie et al. (2007), with updates by Cabi et al. (2017); Gillespie et al. (2008, 2018); Soreng

and Gillespie (2018); Soreng et al. (2020)). Since formal infrageneric taxonomic delimitations are

often imperfect, and the genus Poa is large and highly complex, genotype codes are used in Table

S3 as shorthand for the plastid and nrDNA clades found in a sample or species (see Soreng et al.

(2020) for the most recent iterations).

Sequences were aligned using the auto-select algorithm and default parameters in the MAFFT

plugin (v7.017; Katoh and Standley 2013) in Geneious (v8.1.9; http://www.geneious.com) fol-

lowed by manual adjustment. Poa sect. Sylvestres was used as the outgroup to root trees based on

its strongly supported position as sister to all other Poa species in previous plastid analyses (Gille-

spie et al. 2007, 2009, 2018). Bayesian Markov chain Monte Carlo analyses were conducted in

MrBayes (v3.2.6; Ronquist et al. 2012). Optimal models of molecular evolution were determined

using the Akaike Information Criterion (AIC; Akaike 1974) conducted through likelihood searches

in jModeltest (Darriba et al. 2012) with default settings. Models were set at GTR + Γ for ETS and

GTR + I + Γ for ITS and TLF based on the AIC scores and the models allowed in MrBayes. Two

independent runs of four chained searches were performed for three or four million generations,

sampling every 500 generations, with default parameters. Analyses were stopped when an average

standard deviation of split frequencies of 0.007001, 0.006350, and 0.006490 was reached for ITS,

ETS, and TLF, respectively. A 25% burn-in was implemented prior to summarizing a 50% major-

ity rule consensus tree and calculating Bayesian posterior probabilities. Trees were visualized and

annotated in R using ggtree (v2.0.4) with ape (v5.4) and treeio (v1.10) (Yu 2020; R Core Team

2017; Wang et al. 2020; Paradis and Schliep 2019).
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3.7 Genome assembly

PacBio subreads obtained as BAM files were converted to FASTA format using SAMtools (v1.10;

Danecek et al. 2021) and error-correction was performed using overlap detection and error correc-

tion module (first stage) of Falcon (v1.8.0; Chin et al. 2016). For running Falcon, the following

options were used: the expected genome size was set to 6.4 Gbp (-genome size = 6400000000),

a minimum of two reads, maximum of 200 reads, and minimum identity of 70% for error correc-

tions (--min cov 2 --max n read 200, --min idt 0.70), using the 40x seed coverage for

auto-calculated cutoff. The average read correction rate was set to 75% (-e 0.75) with local

alignments at a minimum of 3000 bp (-l 3000) as suggested by the Falcon manual. For the

DAligner step, the exact matching length of k-mers between two reads was set to 18 bp (-k 18)

with a read correction rate of 80% (-e 0.80) and local alignments of at least 1000 bp (-l 1000).

Genome assembly was performed with Canu (v1.9: Koren et al. 2017) using the error-corrected

reads from Falcon. For sequence assembly, the corrected reads had over 70x coverage for the ex-

pected genome size of Poa and were characterized by N50 of 25.6 Kbp and average length of 16.3

Kbp. These reads were trimmed and assembled with Canu using the default options except for

ovlMerThreshold=500.

The Canu generated contig assembly was further scaffolded utilizing the Bionano optical map

with Bionano Solve (v3.4) and Bionano Access (v1.3.0), as described previously by Hufford et al.

2021. The default config file (hybridScaffold DLE1 config.xml) and the default parameters file

(optArguments nonhaplotype noES noCut DLE1 saphyr.xml) were used for the hybrid assembly.

The scaffolding step of Bionano Solve incorporates three types of gaps: 1) gaps of estimated size

(varying N-size, but not 100bp or 13bp), using calibrated distance conversion of optical map to

basepair (cases when contiguous optical map connects two contigs); 2) gaps of unknown sizes

(100-N gaps), when distance could not be estimated (cases when large repeat regions like rDNA

or centromeres interrupt the optical map but evidence to connect the map is present); and 3) 13-N

gaps, in regions where two or more independently assembled contigs align to the same optical

map, overlapping at the ends. The 13-N gaps are usually caused by sequence similarity sufficient
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for aligning to the optical map, but less than required to merge contigs. This could be caused

by either high heterozygosity in that region, highly repetitive sequence, paralogous regions of the

sub-genomes, or assembly errors. The contig overlaps, regardless of the size, are connected end-

to-end by adding 13-N gaps when processed using Bionano Solve. Due to the polyploid nature of

Poa as well as its high heterozygosity, these 13-N gaps had to be manually curated. We inspected

the contig alignments to the optical map using using Bionano Access (v1.3.0), either to trim the

overlapping sequence or to remove exact duplicates to generate error-free assembly.

3.8 Genome annotation

Gene prediction was carried out using a comprehensive method combining ab initio predictions

(from BRAKER v2.1.6; Brůna et al. 2021) with direct evidence (inferred from transcript assem-

blies) using the BIND strategy (Li et al. 2021). Briefly, 58 RNA-seq libraries were downloaded

from NCBI (Table S4) and mapped to the genome using a STAR (v2.5.3a; Dobin et al. 2013)-

indexed genome and an iterative two-pass approach under default options to generate mapped

BAM files. BAM files were used as input for multiple transcript assembly programs to assemble

transcripts: Class2 (v2.1.7; Song et al. 2016), Cufflinks (v2.2.1; Trapnell et al. 2012), Stringtie

(v2.1.4; Pertea et al. 2015) and Strawberry (v1.1.2; Liu and Dickerson 2017). Redundant assem-

blies were collapsed and the best transcript for each locus was picked using Mikado (v2.3.3; Ven-

turini et al. 2018) by filling in the missing portions of the ORF using TransDecoder (v5.5.0; Haas

et al. 2013) and homology as informed by the NCBI BLASTX (v2.10.1+; Altschul et al. 1990) re-

sults to the SwissProtDB (Duvaud et al. 2021). Splice junctions were also refined using Portcullis

(v1.2.1; Mapleson et al. 2018) to identify isoforms and to correct misassembled transcripts. Both

ab initio and direct evidence predictions were analyzed with TESorter (v1.3.0; Zhang et al. 2019a)

to identify and remove any TE-containing genes before merging them. Merging was done using

the GeMoMa (v1.8) Annotation Filter tool, to combine and filter gene predictions from BRAKER,

Mikado and additional homology-based gene predictions generated by the GeMoMa pipeline using

Hordeum vulgare annotations (Mascher et al. 2021; Keilwagen et al. 2016, 2018). The predictions

74



were prioritized using weights, with highest for homology (1.0), followed by direct evidence (0.9)

and lowest for gene predictions from ab initio methods (0.1). Homology is defined by GeMoMa

as protein sequence similarity and and intron position conservation relative to Hordeum vulgare.

The Annotation Filter tool was run with settings to enforce the completeness of the prediction

(start==’M’ stop==’*’), external evidence support (score/aa>=0.75), and RNAseq support

(evidence>1 or tpc==1.0). The final predictions were subjected to phylostratiography analy-

ses using phylostratr (v0.20; Arendsee et al. 2019). The focal species were set as ‘4545’ for Poa

pratensis, and default options were used. The program creates a clade tree of species based on the

current NCBI tree of life, trims the tree to maximize evolutionary diversity, retrieves the species

proteome from Uniprot, and compares the proteins of the focal species to those of other species

in the tree using pairwise BLASTs (Diamond search). Each gene is then assigned to the deepest

clade in which it has an inferred homolog. Genes found only in the focal species are considered

orphan genes and assigned to the phylostratum ‘Poa pratensis.’ Final gene-level annotations were

saved in GFF3 format and the predicted peptides/CDS sequences were extracted using gffread of

the Cufflinks package (v2.2.1; Trapnell et al. 2012).

3.9 Assessment of the assembly

Genome contiguity statistics were computed using the Assemblathon script (Bradnam et al. 2013).

Gene space completeness was measured using BUSCO (v4.0; Manni et al. 2021) using the lil-

iopsida odb10 profile (n = 3278) and poales odb10 profile (n = 4896) with default options. The

contiguity of TE assembly was then assessed using the LTR Assembly Index (LAI; Ou et al.

2018). To compute LAI, we first annotated repeats using the Extensive de-novo TE Annotator

(EDTA; v1.9.6; Ou et al. 2019), and intact LTR retrotransposons (LTR-RT) were identified using

LTRharvest (v1.6.1; Manchanda et al. 2020), and LTR FINDER parallel (v1.1; Ellinghaus et al.

2008). LTR retriever (v2.9.0; Ou et al. 2018) was then used to filter the intact LTRs and computed

the LAI score for the genome.
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3.10 Population genetics of Poa

The population panel was mapped to the scaffold assembly, excluding the alternate scaffolds, using

bwa mem (v0.7.17; Li 2013). Reads were sorted using SAMtools (v1.7; Danecek et al. 2021), read

groups were added using Picard AddOrReplaceReadGroups, and duplicates removed with Picard

MarkDuplicates (http://broadinstitute.github.io/picard) using default settings.

Site filtering and genotyping was completed with ANGSD (v0.934; Korneliussen et al. 2014).

Reads were filtered, retaining unique reads, reads with a flag below 255, and proper pairs (angsd

-uniqueOnly 1 -remove bads 1 -only proper pairs 1 -trim 0), as well as a minimum

mapping and base quality of 30 (angsd -minMapQ 30 -minQ 30). Sites were filtered with a strict

maximum depth cutoff in order to exclude sites where paralogs may be mapping. Assuming read

depth follows a Poisson distribution with a mean of 0.8, we expect 99% of reads to have a depth of

4 or less. We included sites with a minimum depth of 1 and a maximum depth of 4 and required all

genotypes to have data at a site (angsd -doCounts 1 -setMinDepthInd 1 -setMaxDepthInd

4 -minInd 8). Sites were also filtered for a minor allele frequency greater than 5% in the principal

component analysis (PCA; angsd -doMajorMinor 4 -doCounts 1 -doMaf 1 -minMaf 0.05

).

After filtering, a single-read was randomly sampled at each base to serve as the genotype

(angsd -doIBS 1). This genotyping approach is discussed in Results and Discussion. A genotype

matrix was sampled three independent times for each of the following analyses in order to assess

sampling error.

Population structure and nucleotide diversity were evaluated to demonstrate the utility of the

P. pratensis reference genome. Population structure was assessed using a principal component

analysis (PCA) implemented in ANGSD (angsd -doCov). A PCA was run with all Poa and only

P. pratensis. The covariance matrices were plotted with ggplot2 (v3.4) in R (R Core Team 2017;

Wickham 2016).

Nucleotide diversity was estimated for each P. pratensis genotype in the Poa population panel

as nucleotide diversity per genome using a custom R script. We are defining nucleotide diversity
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per genome as the number of sites with the reference allele divided by the total number of sites.

Only sites that met our filtering criteria and contained no missing data across P. pratensis genotypes

were included. Results were plotted with ggplot2 in R.

4. Results and Discussion

4.1 Species identification and validation

Herbarium vouchers for the Poa reference genome and two of the population panel genotypes

were identified as P. pratensis by their morphology (Table S1). The Poa reference genotype can

be further classified as subspecies angustifolia, characterized by narrower and involute leaf blades,

usually with strigose hairs on the adaxial surface of blades. The blades of P. pratensis subspecies

angustifolia are firmer and tend to be more consistently glaucous. The intravaginal shoots are

often disposed in fascicles of more than one shoot, the inflorescences are generally narrower, and

the spikelets are smaller than other P. pratensis subspecies (Soreng and Barrie 1999; Soreng 2007;

Cope and Gray 2009). P. pratensis subspecies angustifolia is the most likely classification for the

reference genotype, although the infraspecies structure is complex and the subspecies genetically

and morphologically grade into one another (Soreng and Barrie 1999; Soreng 2007; Cope and

Gray 2009).

The remaining Poa population genotypes did not survive long enough for detailed morpho-

logical identification. We identified the remaining genotypes, and confirmed the morphological

IDs, using phylogenetic inference with three commonly used loci (ETS, ITS, TLF). The reference

genome was identified as P. pratensis by all three loci (Figures S1-3). Seven of the 8 genotypes

in the Poa population panel were identified as P. pratensis by two of the three loci (ITS and ETS;

Figures S1-2; Table S1) and held an unresolved position within the subgenus Poa in the third tree

(TLF; Figure S3). The eighth population panel genotype was identified as P. compressa L. by

all three loci. Phylogenetic identification thus supports our morphological identification of the

reference genome as P. pratensis.
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4.2 Genome size and ploidy estimation

The reference individual was estimated to be octoploid given a genome size estimate of 3,525 Mbp

and chromosome count of 54, assuming a basic chromosome number of x = 7 and a loss of two

chromosomes (Figure S4; Table S5; Avdulov 1931; Phylogenty Working Group 2001). Further

cytological studies are required to understand whether the chromosome loss is due to deletion or

rearrangement. Our genome size estimate falls within the large range of genome sizes reported for

P. pratensis, 2 to 9 pg/1C (Eaton et al. 2004; Huff and Bara 1993; Barcaccia et al. 1997; Raggi

et al. 2015).

We also estimated the genome size of four of the eight population panel individuals. Genome

size ranged from 3,248 to 4,856 Mbp with genotypes from the same population having similar

genome sizes (Table S5). The substantial range in genome size variation in the population panel is

not unexpected as P. pratensis is a polyploid series with common aneuploidy (Huff 2010). Given

the range in the population panel, it is likely the genotypes have different chromosome counts and

ploidy.

4.3 Genome assembly

Error-corrected PacBio reads (100 Gb; 70X coverage) were assembled into 27,953 contigs. The

contig assembly was oriented and further scaffolded using a Bionano optical map resulting in 118

primary scaffolds and 10 alternate scaffolds (Table 2.1).

The assembly is approximately 173% of the genome size (Table 2.1). Completeness of the

assembly was assessed using Benchmarking Universal Single-Copy Orthologs (BUSCO) and the

LTR Assembly Index (LAI). The assembly contains 99% of the expected conserved genes (BUS-

COs), 98% of which were duplicated, and a LAI value of 25.8 indicates the transposable element

assembly is also complete (Ou et al. 2018). Given the assembled genome size is approximately

two-times the size of the estimated genome size and nearly all detected BUSCOs are duplicated,

two unphased haplotypes are likely present in the assembly. Additionally, the high rate of dupli-

cated BUSCOs may also be due to similarity among Poa subgenomes.
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Table 2.1: Assembly statistics.

Variable Description
Scaffolds 118
Contigs 8,391
Estimated genome size 3.521 Gbp
Assembled genome size 6.09 Gbp
Scaffold N50 65,127,037 bp
Scaffold L50 31
Contig N50 1,095,498 bp
Contig L50 1548
Longest scaffold 177,118,352 bp
Scaffolds > 1 Mb 110
Scaffolds > 10 Mb 98
Average scaffold length 51,622,171 bp
Average length of gaps 44,233 bp
Complete BUSCOs 99.2%
LAI 25.8

4.4 Genome annotation

We identified 256,281 gene models, approximately 32K per subgenome assuming octoploidy, us-

ing a hybrid gene prediction pipeline that combined ab initio gene models with direct evidence

annotations. Phylostrata demonstrated approximately 13% of the gene models are species-specific,

which is higher than would be expected from orphan genes alone (Arendsee et al. 2014). Since

the phylostratr program uses full proteomes from Uniprot to classify genes to their phylostrata,

and there is lack of high-quality representative genomes for this clade, we observed an excess of

species-specific genes. This demonstrates the important gap a P. pratensis reference genome fills

in the green tree of life.

Transposable elements were comprehensively annotated using EDTA (Ou et al. 2019) and

found to compose 58% of the genome. More specifically, Class I LTR retrotransposons and Class II

DNA transposons comprise 36% and 15% of the genome, respectively. At the level of superfamily,

the RLG (Ty3) LTR retrotransposon superfamily was the most common at 18% of the genome.

79



4.5 Application of the reference genome

The reference genome contains multiple unphased haplotypes, and care should be taken in analy-

ses that require genotypes or allele frequencies. Briefly, we discuss an alternative framework for

estimating allele frequencies and potential pitfalls. Diploid genotypes (AA, Aa, aa) should not be

called, as at least two haplotypes are assembled for many reference positions. Instead, we uti-

lized an approach in which we randomly sampled a read from each position (Green et al. 2010).

The randomly sampled read can then be used to calculate population allele frequencies and pair-

wise genetic distance matrices that are unbiased to sequencing depth or ploidy (Green et al. 2010;

van der Valk et al. 2021; Pečnerová et al. 2021). Although we don’t detect a bias due to ploidy

or chromosome count in our analyses (see below), these factors should always be considered in

interpretation of results.

4.6 Population genetics of North American Poa

Here, we demonstrate the effectiveness of the reference genome and a single-read genotyping

approach in the estimation of population structure, using PCA and nucleotide diversity.

A PCA was run separately for all Poa genotypes, using 74,876 sites, and only P. pratensis

genotypes, using 140,458 sites. The single-read genotypes were generated three times for the

same set of sites and demonstrated similar results. We present the results for one run here. In the

PCA with all Poa samples, most genetic variation was explained by species (27.9%) followed by

population (16.2%; Figure 2.1A). P. compressa is distantly related to P. pratensis (Figure S1-S3)

therefore we would expect the first principal component (PC) to separate by species. The second

PC separates the P. pratensis genotypes in the Colorado population from two Manitoba P. pratensis

genotypes (Figure 2.1A), while genotypes from the Colorado population remain clustered. The

third principal component further separates the three P. pratensis populations.

The P. pratensis-only PCA demonstrates similar results with the first PC (24.6%) separating the

Colorado genotypes from the two genotypes from Manitoba (Figure S5). The second PC (15.8%)

separates the two genotypes from Manitoba and separates one Colorado genotype from the cluster.

80



Figure 2.1: Population structure of Poa and nucleotide diversity in P. pratensis. (A) The first
two PCs of a PCA of all sequenced Poa genotypes. The percent of genetic variation explained by
each PC is reported in parenthesis on each axis. Sample locations are indicated by shape (circle
= Argyle, Manitoba, triangle = Tolstoi, Manitoba, diamond = Boulder, Colorado) and species are
colors (white = P. compressa, black = P. pratensis). (B) Mean nucleotide diversity per genome
for only P. pratensis genotypes. Mean diversity of each run is plotted as a black circle for all
genotypes.
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These results suggest North American P. pratensis populations are genetically differentiated and

exhibit population structure, rather than being highly homogeneous or clonal. Our results support

previous findings of population divergence in Northern Great Plains populations (Dennhardt et al.

2016).

To further understand the structure of genetic diversity across P. pratensis populations and the

clustering within the Colorado population, we estimated nucleotide diversity per genome using

20,149,358 sites. Single-read genotypes were randomly drawn and nucleotide diversity was cal-

culated three times with little variation between runs (Figure 2.1B; average variation between runs

= 2.85x10−11). Mean diversity across P. pratensis genotypes is high (π = 0.0066, SD = 0.00017),

which is consistent with previous studies of P. pratensis (Bonos and Huff 2013; Raggi et al. 2015;

Bushman et al. 2013; Honig et al. 2018, 2012). The range of mean nucleotide diversity per genome

within the Colorado population (0.0065 - 0.0068) and between the Manitoba genotypes (0.065 -

0.0069) is large, suggesting high within-population diversity.

5. Conclusion

Poa pratensis is a globally popular turfgrass species used in lawns and recreation areas. Despite

its economic value, progression of molecular tools to aid breeding has been slow compared to

other turfgrasses as a result of polyploidy and apomixis (Bushman and Warnke 2013). Utilizing

long read technology and a Bionano optical map, we have assembled and annotated the first high

quality P. pratensis reference genome. We demonstrated the utility and application of the reference

genome by evaluating the genetic diversity and population structure of wild North American Poa.

As a result, we provided the first estimate of nucleotide diversity in P. pratensis.

Since our initial manuscript submission and preprint, Robbins et al. (2023) have published

the genome of P. annua, a distantly related Poa species known as a weed and turfgrass world-

wide. Future analyses, beyond the scope of this paper, comparing the two genomes will likely be

fruitful for understanding the global success of P. pratensis and P. annua. As such, the P. pratensis

reference genome and annotation will serve as an important resource in the study of bluegrasses.
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6. Data availability

The genome assembly and annotation are available from the European Nucleotide Archive (ENA)

under BioProject PRJEB51672. The raw Illumina sequence data for the Poa population panel is

available from NCBI Sequence Read Archive (SRA) under BioProject ID PRJNA730042. The

code for the entirety of assembly, annotation, and population genetic analyses is documented at

https://github.com/phillipsar2/poa_genome.
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1. Abstract

Advancements in genome assembly and sequencing technology have made whole genome se-

quence (WGS) data and reference genomes accessible to study polyploid species. The genome-

wide coverage and greater marker density provided by WGS data, compared to popular reduced-

representation sequencing approaches, can greatly improve our understanding of polyploid species

and polyploid biology. However, biological features that make polyploid species interesting also

pose challenges in read mapping, variant identification, and genotype estimation. Accounting for

characteristics, like allelic dosage uncertainty, homology between subgenomes, and variance in

chromosome inheritance mode, in variant calling can reduce errors. Here, I discuss the challenges

of variant calling in polyploid WGS data and discuss where potential solutions can be integrated

into a standard variant calling pipeline.

2. Background

Recent progress in genome assembly and sequencing technology has increased accessibility to

study the genomics of polyploids, or organisms that have experienced whole genome duplication

and have more than two sets of chromosomes (Formenti et al. 2022; Gladman et al. 2023). Notably,
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improvements in long-read sequencing and the accuracy of scaffolding technology have enabled

the assembly of highly heterozygous and polyploid reference genomes at a chromosome-scale

(Kyriakidou et al. 2018; Hotaling et al. 2023). In parallel, the cost of short-read sequencing has

continued to decline causing whole genome resequencing of polyploid populations to become

increasingly feasible (Fuentes-Pardo and Ruzzante 2017). As polyploidy is a critical character

of cancer cells, common in fish, amphibians, and insects, and ubiquitous in the plant kingdom,

including many economically important crops, the extension of modern genomics technologies

to polyploid systems is important for our broader understanding of medicine, and biodiversity,

agriculture (Udall and Wendel 2006; Wood et al. 2009a; Zack et al. 2013; One Thousand Plant

Transcriptomes Initiative 2019; Román-Palacios et al. 2021; David 2022). These advances have

already begun to improve our understanding of the origins of polyploid species (Bertioli et al.

2019; Edger et al. 2019; Goeckeritz et al. 2023), genome reorganization and stabilization after

polyploidization (Chen et al. 2020; Bohutı́nská et al. 2021; Wang et al. 2022; Session and Rokhsar

2023), and the role of polyploidy in adaptation of wild and domesticated species(Hollister et al.

2012; Chen et al. 2021; Lovell et al. 2021; Ebadi et al. 2023; Hämälä et al. 2023). Nevertheless,

these studies have only scratched the surface of polyploid biology.

Population and quantitative genetics particularly benefit from the availability of reference genomes

and whole genome sequence (WGS) data. These fields use variable loci, loci with two or more alle-

les segregating in a population, to study the genetic composition of populations and complex traits

over space and time in response to selection, genetic drift, mutation, and migration. WGS data in

combination with a reference genome offers genome-wide coverage and the ability to identify vari-

able loci, also referred to as variants, at a higher density than reduced representation sequencing

(RRS) approaches. RRS approaches, such as genotype-by-sequencing (GBS) and restriction site-

associated DNA sequencing (RADseq), are currently used in the majority of polyploid population

and quantitative genetics studies due to their comparatively low cost and the growing number of

user-friendly software packages for analysis (Poland and Rife 2012). RRS approaches are useful

for sampling a portion of the genome to, for example, characterize population structure or com-
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plete quantitative trait locus (QTL) analysis. However, RRS does not have high enough marker

density for genome-wide analyses central to studying patterns of selection, identifying the genetic

basis of adaptive traits, and genomic prediction (Tiffin and Ross-Ibarra 2014; Lowry et al. 2017,

but see de Bem Oliveira et al. 2020). Additionally, WGS data improves the detection of structural

variants (SVs) and transposable elements (TEs), although both are still challenging even in diploid

systems (Ewing 2015; Baduel et al. 2019; Mahmoud et al. 2019; Cooke et al. 2022; Ramakrish-

nan et al. 2022). Detection and inclusion of SVs and TEs are important because they affect gene

expression and function and are signatures of the stabilization and reorganization of the genome

post-polyploidization (Lisch 2013; Kosugi et al. 2019).

The improvement in variant detection offered by WGS data is useful only when variants can be

confidently called and genotypes accurately estimated. Typical sources of error in diploid variant

calling include sequencing errors, misalignment of reads to the reference genome, misassembly

of the reference genome, and natural structural variation (Li 2014; Mahmoud et al. 2019; Lou

and Therkildsen 2022). Polyploidy exacerbates these sources of error and introduces additional

challenges due to the associated characteristics like large haploid genome sizes, homology between

subgenomes, genome fractionation, and elevated polymorphism (Bennett and Leitch 2011; Page

and Udall 2015; Blischak et al. 2018). As a result, there may be higher variant calling errors in

polyploids. Errors in the variant calling pipeline will subsequently be carried into all downstream

analyses leading to misestimation of metrics like allele frequencies, heterozygosity, and linkage.

Universal solutions to reduce errors in variant calling are challenging to identify as poly-

ploids are not a uniform group. Polyploids are generally categorized as allopolyploids, which

form through hybridization of two or more species, or autopolyploids, which derive from genome

doubling of a single species. Further, they can be described by their chromosome inheritance

patterns. Allopolyploids have disomic inheritance, like diploids where chiasma for between only

homologous chromosomes, and autopolyploids have polysomic chromosome inheritance, where

there is no preferential pairing among chromosomes and chiasmata may form between more than

two homologous chromosomes (Stift et al. 2008). However, the rate of preferential pairing and
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chromosome inheritance mode may vary across the genome in allo- and autopolyploids depending

on the relatedness amongst subgenomes and the time since polyploidization (Stebbins 1947; Ma-

son and Wendel 2020). This distinction between inheritance modes is important because even low

rates of recombination between subgenomes can bias allele frequencies to be more homozygous

than expected (Meirmans and Van Tienderen 2013). Polyploids may additionally vary in haploid

genome size, mating system, repeat content, and degree of diploidization, all of which may impact

variant calling and genotype estimation.

In this review, I identify significant challenges of variant calling in polyploid WGS data and,

where available, propose potential solutions that can be integrated into standard variant calling

pipelines (Fig. 2.1, Appendix 7.1, reviewed in Van der Auwera et al. 2013; De Summa et al. 2017;

Fuentes-Pardo and Ruzzante 2017; Therkildsen and Palumbi 2017; O’Leary et al. 2018; Lou et al.

2021). The scope of this discussion is limited to WGS data aligned to the study species’ reference

genome, although aspects of this discussion may apply to RRS and reference-free approaches.

Additionally, I focus on the identification of single nucleotide variants (SNVs) as well as small SVs

(< 50 bp) that can be identified by some polyploid variant calling software (Cooke et al. 2022).

As the genomics of polyploids is a rapidly growing area of research, established best practices are

limited. By highlighting barriers in variant calling, I aim to raise readers’ awareness of potential

sources of error and motivate the innovation of new and effective solutions.

3. Challenges to variant calling in polyploid systems

3.1 Resource requirements scale with genome size

The foremost barrier to polyploid genomics remains the cost of sequencing and high-performance

computing (HPC) resources for analysis. Sequencing cost increases with both haploid genome size

and ploidy level while computational costs primarily scale with haploid genome size. Sequencing

large genomes is expensive as more sequencing runs are required to reach a target coverage, or

the genome-wide average number of reads sequenced for a given site. For example, Chen et al.
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Figure 2.1: A standard variant calling pipeline (blue) can be adapted for polyploid systems (mod-
ifications in green). (A) Before beginning variant calling, raw sequence data may need trimming
to remove adapters and low-quality bases. An effort should be made to determine the ploidy and
chromosome inheritance mode of the sequenced genotypes, as this information will be incorpo-
rated later in the pipeline. Multiple approaches can be used to determine ploidy and inheritance
mode depending on the researcher’s skillset. (B) Reads are mapped to the reference genome using
an aligner. Binary alignment maps (BAMs) are output from the aligners and processed by adding
read groups, removing duplicate reads, and then sorting. Sequencing and alignment quality are
assessed so low-quality samples may be identified and removed before variant calling. Samples
should be split by ploidy and regions by inheritance mode, if necessary, at this stage. (C) Variants
are called (D) and then genotype likelihoods and genotypes are estimated. Variant calling and
genotyping are often completed using the same software but can be run separately. Genotype call-
ing can be skipped if genotype likelihoods will be used downstream. A variant call file (VCF) is
output if invariant sites are discarded, otherwise the output is a genomic variant call file (GVCF).
(E) Variants are filtered first by removing low-quality sites (i.e. hard filtering). Then, variants
are filtered to prioritize variants specific to downstream analyses (i.e. soft filtering). A more de-
tailed description of the standard pipeline, including useful polyploid aligners and genotype calling
software, is provided in Appendix 7.1.

(2024) have found sequencing the allohexaploid bread wheat genome to 5X coverage currently

costs 473 times that of diploid rice and 21 times that of maize, a diploidized paleotetraploid (Gaut

and Doebley 1997). This disparity in sequencing cost at low coverage is increased by many existing

polyploid genotyping algorithms requiring high coverage to overcome allelic dosage uncertainty,

which is the ambiguity in the number of alternate allele copies in polyploid genotypes (Gerard

et al. 2018; Clark et al. 2019; Cooke et al. 2022). The minimum coverage requirement to obtain

high-confidence genotypes may range from 10 to over 50X depending on the ploidy level and

genotyping software, whereas diploids need only 8X coverage (Cooke et al. 2022; Jighly 2022).

After sequencing has been accomplished, access to HPC is needed for data storage and analysis

because the size of sequence alignment files (BAMs) and variant call files (VCFs) produced in the

variant calling pipeline scale with genome size and sample size (Muir et al. 2016; Weiß et al. 2018).

Failing to sequence to sufficient coverage or limiting sample size to meet budget constraints may

result in insufficient sampling of alleles and rare variants, the misestimation of allele frequencies,

and low power in analyses like admixture analysis and genome wide association (Jighly 2022).
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3.2 Genome-wide redundancy and elevated polymorphism increase errors in read mapping

Aligning reads to polyploid genomes is challenging because polyploids have an elevated level of

polymorphism and multiple occurrences of related sequences (Otto and Whitton 2000; Page and

Udall 2015). Both of these biological features violate assumptions of read mapping algorithms

that assume divergence among loci is larger than divergence among alleles at a single locus (Mu-

sich et al. 2021); polymorphism creates an excess of divergence while repeated sequences are too

similar. Violation of this assumption results in the incorrect and failed mapping of reads. I will

briefly describe how these two biological features may create genotyping errors.

As the density of SNVs and SVs in a locus increases, sequence similarity among alleles de-

clines and reads containing alternate alleles are less likely to align (Nielsen et al. 2011; Brandt

et al. 2015). This is an issue in polyploids as they are expected to have higher diversity than their

diploid progenitors due to functional redundancy between subgenomes enabling the accumulation

of mutations. Additionally, the post-polyploidization process of fractionation, which is gene loss

leading to stabilization of the polyploid genome or diploidization, increases structural variation

(Haldane 1933; Otto and Whitton 2000; Ma and Gustafson 2005; Emery et al. 2018; Beric et al.

2021). As an example in the 1000 Genomes Project (Homo sapiens), 18.6% of SNV calls in highly

polymorphic HLA genes were incorrect due to failed mapping of the alternate allele creating bias

towards the reference allele, known as allele bias (Brandt et al. 2015). Alternate reads may also

fail to align to inversions due to disagreement at the inversion boundaries, and reads mapping to

presence-absence variants (PAVs) will fail to align if the reference contains the ‘absence’ variant

(Sun et al. 2018; Gui et al. 2022). As a result, the reference genotype selected for read mapping

and time since whole genome duplication will determine the extent of allele bias and the variants

detected. Allele bias will be highest in autopolyploids, where reads are aligned to only one copy of

the duplicated genome (see Section 3.4). Allele bias is likely an issue genome-wide, although the

effect of increased polymorphism on read mapping has yet to be quantified in a polyploid system.

Analogously, genomic features like loci of common ancestry, repetitive elements, and copy

number variants (CNVs) promote mismapping because there are multiple occurrences of similar
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sequences across the genome. In autopolyploids, whole genome duplication produces duplicate

loci between subgenomes that are indistinguishable immediately after duplication. Whereas in

allopolyploids, loci of common ancestry are brought back together by hybridization. Both diploids

and polyploids contain repeat dense regions and CNVs caused by small-scale duplications and

retrotransposons (Brandt et al. 2015). As a result, reads may have equal similarities to multiple

positions in the reference genome causing reads to equally map to multiple loci (i.e. multiply

mapping reads) or improperly align to a closely related locus (Li et al. 2008). The extent of error

in read mapping due to these redundant genomic features is dependent on the divergence among

the loci of common ancestry, known as homologous loci, the age of the polyploidization event, the

divergence between parental genomes, mutation rate, and strength of selection on a given locus.

Given these factors, read mapping will be most challenging where loci of common ancestry have

not accumulated mutations, such as immediately after whole genome duplication or in genes under

purifying selection. Additionally, read mapping may be challenging in recently formed polyploids

if purifying selection is relaxed genome-wide post-polyploidization allowing rapid TE expansion

(McClintock 1984).

If the errors in read mapping discussed here are not resolved, failed alignment of reads may lead

to the undercalling of variants, overestimation of homozygosity, and underestimation of population

alternative allele frequencies. The mismapping of reads further exacerbates these issues in addition

to creating false variants which could create false signals of allele sharing and alter patterns of

genome-wide heterozygosity. This can significantly increase downstream errors in the estimation

of population divergence, gene flow, genome-wide diversity, and identification of causal variants

in GWAS and selection scans.

3.3 Incomplete or misassembled polyploid reference genomes increase genotyping error

Undetected errors in the assembly of polyploid genomes create genotyping errors similar to ho-

mologous loci and SVs. For instance, chimeric subgenome assemblies, where scaffolds from one

subgenome are misassembled into another subgenome, cause reads to fail to map at misassem-
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Figure 2.2: A syntenic block between subgenome A and subgenome B in an allotetraploid is
depicted. This region in subgenome A contains three genes (light gray) while subgenome B (dark
gray) contains two. The genes contain one or two segregating sites, with alleles depicted as yellow,
pink, and blue. The assembly of subgenome A is incomplete, missing the farthest right gene
(dashed line). Reads that should have aligned to the missing gene (red reads) instead may (I)
align to a homolog in subgenome B resulting in a false heterozygote call, (II) map equally to
other homologs within or across subgenomes, or (III) fail to align. This figure was created with
BioRender.com.

bled scaffold junctions. This leads to genotyping errors at scaffold junctions and incorrect variant

positions that impact analyses using linkage information, such as genome scan approaches and

estimating runs of homozygosity. In an incomplete reference genome, reads belonging to missing

regions will either not align or map to homologous loci (Fig. 2.2). Reads that successfully map to

a homolog are likely to be biased toward the reference allele. However, if reads with the alternative

allele do align to a homolog, false heterozygotes may be called (Fig. 2.2A). Comprehensively ad-

dressing the challenge of poor read mapping caused by low reference genome quality will require

continued improvement of the reference genome. As comprehensive reviews on genome assembly

are available elsewhere (Zhang et al. 2019b; Zhou et al. 2022; Gladman et al. 2023), I later discuss

practical solutions to mitigate these issues and enhance the accuracy of genotyping when using

existing genome assemblies.
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3.4 Allele dosage cannot be determined if ploidy and inheritance mode are unknown

Determining the allele dosage, the number of reference and alternate alleles, present at each se-

quenced site for a given individual is imperative for accurate genotyping. In diploids, the reference

genome is ideally phased, meaning the maternal and paternal copy of each chromosome is assem-

bled so each chromosome in the assembly has two ‘haplotypes’ (Gladman et al. 2023). All reads

are aligned to only one of the two haplotypes and, as a result, the possible genotype values at a site

are 0, 1, and 2 corresponding to the number of alternate alleles. The range of potential genotypes

for a polyploid is less clear as there are multiple factors to consider: ploidy level, chromosome

inheritance mode, and the reference genome quality. This is because autopolyploids and allopoly-

ploids have distinct reference genome structures (Kihara and Ono 1926; Kyriakidou et al. 2018;

Zhang et al. 2019b). Ideally, autopolyploid assemblies are phased so all copies (i.e. haplotypes) of

the genome are assembled. Assuming the autopolyploid has no preferential pairing amongst chro-

mosomes (i.e. complete polysomic inheritance), all reads should be aligned to only one haplotype,

similar to diploids, and the maximum allele dosage would be equal to the ploidy (Fig. 2.3B). In

allopolyploids, the paternal and maternal haplotypes of each ancestral subgenome are assembled

and reads are aligned to one haplotype of each subgenome simultaneously (Fig. 2.3A). Here, the

maximum allele dosage would be the ploidy divided by the number of subgenomes. As an exam-

ple, consider the allotetraploid switchgrass (Panicum virgatum) reference genome, which contains

two phased subgenomes (Napier et al. 2022). Switchgrass is a mixed-ploidy species composed of

tetraploids (2n = 4x) and octoploids (2n = 8x). As both subgenomes were successfully assembled,

Napier et al. (2022) concurrently aligned reads to one haplotype of each subgenome and called

genotypes for the tetraploid and octoploid samples as diploid (0, 1, 2) and tetraploid genotype

values (0, 1, 2, 3, 4), respectively. If the switchgrass reference genome was not phased, the ploidy

of each sample was unknown, or if it was unclear whether the species is allo- or autopolyploid,

the correct allele dosage could not be determined. Unknown or incorrect allele dosage can result

in the misestimation of allele frequencies and heterozygosity, similar to co-dominant markers like

AFLPs (Dufresne et al. 2014).
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Figure 2.3: Read mapping and the called allele dosage in allo- and autopolyploids differs due to the
structure of the reference genome. Reads (gray) are shown aligning the reference genome (black)
with alleles for the focal variant in pink or yellow. (A) In an allotetraploid with two subgenomes
(subgenome K in light gray and subgenome N in dark gray), reads are mapped to one haplotype of
each parental subgenome, and diploid genotypes are called. (B) In an autotetraploid with no pref-
erential pairing, all reads are mapped to a single haplotype. Here, reads are aligned to a haplotype
carrying the yellow A allele at the focal variant.

3.5 Existing tools cannot account for further biological complexity

The reach of polyploid population and quantitative genetics is limited by further biological com-

plexities. Commonly, populations may be mixed-ploidy, meaning they contain genotypes of vary-

ing ploidy levels (Kolář et al. 2017). Additionally, inheritance mode may vary along the genome

(Allendorf et al. 2015). Variance in inheritance mode occurs because, following whole genome

duplication, it is likely that all homologs pair together, and thus experience polysomic inheri-

tance. However, over time, sequence divergence among homologous chromosomes may lead to

preferential pairing and allow the return of disomic inheritance in some regions of the genome
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(Allendorf et al. 2015). In addition to mixed ploidy and inheritance mode, polyploid species may

have multiple origins (Holloway et al. 2006; Soltis et al. 2009) and often hybridize (Alix et al.

2017), which makes population and quantitative genetics challenging. It is difficult to develop a

variant calling pipeline that considers this complexity in a meaningful way while also producing

genotypes that can be used in existing downstream tools. For example, existing software packages

that estimate genotypes for mixed-ploidy populations require separate estimations for each ploidy

(Blischak et al. 2018; Gerard et al. 2018; Clark et al. 2019; Van der Auwera and O’Connor 2020;

Cooke et al. 2021). In multi-sample variant calling, which incorporates information from multiple

samples to improve genotype estimates, the separation of samples by ploidy reduces the utility and

power of this approach (Liu et al. 2013). The mismapping of reads further exacerbates these issues

in addition to creating false variants which could create false signals of allele sharing and alter

patterns of genome-wide heterozygosity. Alternative approaches such as estimating genotypes at

the same allele dosage for all cytotypes will result in underestimating heterozygous genotypes for

higher ploidy levels and inaccurate allele frequency estimations.

4. Proposed solutions to incorporate polyploid complexity in variant calling

4.1 Balancing sequencing depth and precision may reduce sequencing costs

Careful experimental design, consideration of downstream analysis, and alternative genotyping

approaches can be leveraged to reduce the cost of working with polyploid WGS data. Although

a certain level of sequencing coverage is required to overcome allelic dosage uncertainty, high se-

quencing depth is not required for all analyses. Jighly (2022) argues that sequencing depth should

be selected depending on the research question and analysis plan, in conjunction with the ploidy

level, as sequencing depth has diminishing returns. Analyses that require the detection of low-

frequency and rare variants, such as inferring novel alleles, will require a higher depth. In contrast,

studies examining population structure and differentiation, which rely on common alleles to differ-

entiate groups, may accommodate a lower sequencing depth. Therefore, considering the research
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question and analysis plan when determining the target coverage will prevent over-sequencing and

extend a budget.

The increased allele dosage uncertainty that comes from low sequencing depth (<10X) can be

partially mitigated by the use of genotype likelihoods (GLs) or continuous genotypes in place of

categorical genotypes. A GL is the probability of the sequencing data given the possible genotypes.

GLs can be directly used in some software or they can be used to infer genotypes. Polyploid-

capable software such as GATK, EBG, Updog, and polyRAD (Blischak et al. 2018; Gerard et al.

2018; Clark et al. 2019; Van der Auwera and O’Connor 2020), infer categorical genotypes from

GLs. Updog and polyRAD can also estimate continuous genotypes, which are continuous values

of the likely allele count (Gerard et al. 2018; Clark et al. 2019; Njuguna et al. 2023). The combi-

nation of low-coverage data and GLs or continuous genotypes is becoming increasingly popular in

large-scale studies due to its affordability (Korneliussen et al. 2014; Grandke et al. 2016; Batista

et al. 2022). Further, GLs and continuous genotypes reduce allelic dosage uncertainty by incor-

porating genotyping certainty and may be beneficial in moderate or high-coverage sequence data.

These alternative genotypes have been shown to provide more accurate estimates than categorical

genotypes in numerous population and quantitative genetics analyses (Korneliussen et al. 2014;

Grandke et al. 2016; Gerard 2021b; Shastry et al. 2021; Batista et al. 2022; Rasmussen et al.

2024). Continuous genotypes can be easily integrated into existing software, however, software

for downstream population and quantitative genetic analysis with polyploid GLs is still limited.

4.2 Alternative read alignment approaches, genotype callers, and variant filters may reduce

errors caused by poor read mapping

Several strategies can be applied to reduce read mapping errors caused by homology, high polymor-

phism, or low reference genome quality throughout the variant calling pipeline. First, alternative

alignment approaches could be applied to improve read mapping and assignment to subgenomes.

For example, iterative read mapping is a promising strategy. Here, all reads are mapped to the ref-

erence genome but only reads that map to exactly one place in the genome (i.e. uniquely mapped

97



reads) are retained. Then, a pseudo-reference genome is generated by replacing variable sites with

the alternate alleles from the uniquely mapping reads, reads are re-mapped to the pseudo-reference,

and, again, only uniquely mapped reads are retained (Rozowsky et al. 2011; Xu et al. 2020). When

applied to maize whole-genome bisulfite sequencing data to reduce mapping bias, this approach

was found to increase the detection of methylated cytosines by 5% (Xu et al. 2020). Alternatively,

the software WASP alters the mapped reads, instead of the reference genome, to have the opposite

allele. The altered reads are remapped and only kept if they map in the same location (van de Geijn

et al. 2015). Both iterative read mapping approaches are particularly useful for reducing the num-

ber of multiply mapping reads and reducing false heterozygotes. Other alternative read mapping

solutions have been developed specifically to identify subgenome differences in allopolyploids by

either comparing polymorphisms to modern diploid progenitors (Mithani et al. 2013; Page et al.

2013; Peralta et al. 2013; Khan et al. 2016) or competitively mapping reads between subgenomes

(Page and Udall 2015). The former approach requires knowledge of the diploid progenitors and

the ladder approach has limited benefits if both subgenomes of the allopolyploid are assembled.

As a result, iterative read mapping is currently the most promising solution for improving read

mapping.

Second, a genotype caller that considers allele bias and read-mapping errors could be used

in addition to iterative read mapping to reduce the extent of false heterozygous or homozygous

calls. The popular polyploid genotype caller Updog estimates the degree of allele bias simultane-

ously with genotype estimation (Gerard et al. 2018). No other polyploid genotype callers, to my

knowledge, account for allele bias. Emerging solutions to reducing genotyping error from poor

read mapping include the modification of variant calling algorithms developed for CNVs (Layer

et al. 2014; Prodanov and Bansal 2022) or ancient DNA (Günther and Nettelblad 2019). For ex-

ample, the software ancient DNA software, snpAD (Prüfer 2018), iteratively estimates genotype

probabilities and r, the frequency at which the sequences are sampled from the reference allele at

heterozygous sites, to account for reference bias. Although snpAD is not currently able to esti-

mate polyploid GLs, algorithms such as this have the potential to improve uncertainty in polyploid
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genotyping caused by poor read mapping.

Third, variant filters may be applied to exclude any remaining false-positive variants and geno-

typing errors caused by mismapped reads. Filters that have been used for this purpose discriminate

variants by mapping quality, maximum coverage, and local linkage disequilibrium (Fig. 2.1E).

I will briefly review these filters. To begin, mapping quality is a commonly applied ‘hard’ filter

(Appendix 7.1) and is estimated as the phred-scaled probability a read is aligned to the wrong posi-

tion. It is determined by the number of mismatches in the alignment while considering the quality

of all other possible alignments (Li et al. 2008). Reads that map equally to multiple homologs

(i.e. multiply mapping reads; Fig. 2.2C) will have a mapping quality of zero and be removed in

standard variant filtering pipelines. Typically, a mapping quality is applied to remove reads below

a quality of 10 to 40 (Van der Auwera et al. 2013; Korneliussen et al. 2014; Puritz et al. 2014),

which is equivalent to removing sites with greater than 0.01-10% probability of alignment error.

Exclusion of mismapped reads could also be accomplished using a maximum coverage filter.

If reads improperly map to a given site, the site would have higher coverage than expected given

the average genome-wide coverage (Fig. 2.2A). Applying this logic, maximum depth filters are

commonly used to exclude false heterozygotes in repetitive regions of the genome (Li 2014), but

these are generally set too high to exclude reads mismapping in non-repetitive regions. In polyploid

systems, this approach has been adopted to set a low per-site maximum depth threshold using

models of expected read depth (Bohutı́nská et al. 2021; Korani et al. 2021; Phillips et al. 2023;

Yu et al. 2023), although the efficacy of this filter and the best read depth model has not been

determined.

A promising novel approach to exclude false-positive variants is to leverage the expectation

that two true neighboring variants may have correlated allele frequencies within a population,

known as local linkage disequilibrium (LD; Bukowski et al. 2018). Variants in low LD with

nearby variants would be excluded. This approach may also be useful in resolving the alignment

of multiply-mapping reads by measuring local LD at each site the read is aligned to determine the

most likely position, although this is likely computationally time-consuming and is yet to be tested
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in diploids or polyploids. LD estimates are biased by genotype uncertainty, which is exaggerated

in polyploid genotypes, but this can be remedied with the recently developed R package ldsep

that provides computationally efficient methods to estimate LD from diploid and polyploid GLs

(Gerard 2021a,b).

Other variant filters, such as the removal of loci with excess heterozygosity or departure from

Hardy-Weinberg equilibrium (HWE), have also been explored for removing false-positive vari-

ants. If the mismapped reads carry the alternate allele, these filters may be able to remove false

heterozygous sites (Keller et al. 2013; McKinney et al. 2017; Ahrens et al. 2020; Clark et al. 2022;

Bohutı́nská et al. 2023). Researchers should exercise caution in applying filters that assume pop-

ulations are at HWE because many biological factors, such as a non-panmictic population struc-

ture, small population sizes, and genetic drift, cause deviations from HWE (Pearman et al. 2022).

Polyploidy itself deviates from diploid HWE therefore methods developed in Gerard (2022b) and

Gerard (2023) should be used to properly account for unknown rates of double reduction (Gerard

2022a).

4.3 Information on ploidy, chromosome inheritance mode, and reference quality can be

integrated to determine allele dosage

Investment in the determination of ploidy level and inheritance mode of the reference genotype and

sequenced genotypes towards the beginning of an experiment, although potentially time-intensive,

is strongly recommended to identify the correct allele dosage. Traditionally, ploidy and inheri-

tance mode have been determined using chromosome squashes (Goldblatt and Lowry 2011), flow

cytometry (Bennett and Leitch 2011; Pellicer and Leitch 2020) and fluorescence in situ hybridiza-

tion (FISH), where fluorescent probes are used to label specific DNA sequences to identify and

track chromosome pairings (Szadkowski et al. 2010; Chester et al. 2013; Parra-Nunez et al. 2020).

Unfortunately, these approaches are time-intensive, require specialized equipment, and are an un-

common skill set. With the advent of next-generation sequencing, there has been a large research

effort to determine ploidy from allele frequency distributions (Margarido and Heckerman 2015;
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Augusto Corrêa Dos Santos et al. 2017; Weiß et al. 2018; Ranallo-Benavidez et al. 2020; Soraggi

et al. 2022; Sun et al. 2023; Viruel et al. 2023; Gaynor et al. 2024). Sequence-based approaches

have also begun to be explored for determining inheritance mode. One approach proposed by

Scott et al. (2023) compares estimated allelic depth distributions to those expected under disomic

and tetrasomic inheritance, although this approach is sensitive to demography. Other approaches

include leveraging divergence among genes duplicated during whole genome duplication to de-

tect windows of disomic or tetrasomic inheritance along the genome (Campbell et al. 2019; Scott

et al. 2023) and the joint inference of inheritance mode and demography (Blischak et al. 2023;

Roux et al. 2023) or genotypes (discussed in Section 4.4; Gerard et al. 2018; Clark et al. 2019).

Sequence-based approaches are exceptionally promising for determining ploidy and inheritance

mode in systems where flow cytometry and FISH are especially difficult or impossible, such as

succulents and herbarium samples.

In cases where allele dosage cannot be determined because the ploidy and inheritance mode of

the reference genotype is unknown, the reference scaffolds could be filtered to only one copy of

syntenic scaffolds for read mapping. If the scaffolds can be assigned into subgenomes, such as in

an allopolyploid, scaffolds would be filtered within each subgenome. This is a strategy applied in

many systems with contig assemblies (Hellsten et al. 2013; Neale et al. 2022; Phillips et al. 2023).

The risk of aligning to only a subset of scaffolds is that a large proportion of reads may not align

and variants could be underdetected.

4.4 Current accepted practices for navigating polyploid data with additional biological

complexity

Existing tools are limited in their ability to incorporate complexity such as mixed ploidy and inher-

itance mode, but variant calling pipelines have the potential to accommodate this additional axis

of diversity in several ways. For datasets with mixed ploidy, the current best practice is to call

genotypes separately for each cytotype, if using a joint genotyping approach (Napier et al. 2022;

Bohutı́nská et al. 2023; De Luca et al. 2023). In cases where the secondary cytotype is rare or un-
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dersampled, it is advisable to exclude the minority cytotypes from the study because variability in

downstream analyses attributable to cytotype differences may not be detectable with small sample

sizes. If multiple cytotypes are included in the study, it should be noted that polyploid genotypes

have inherently different expected variations in allele frequencies which can significantly impact

downstream analyses (Faske 2023). Similarly to mixed-ploidy analyses, allele dosage should be

specified per-site in species with mixed inheritance modes. If the regions of the genome with

polysomic inheritance are known, the per-site specification can be accomplished with any poly-

ploid genotype caller, although this has rarely been applied outside of the Salmonids (Campbell

et al. 2019). Alternatively, if polysomic regions are known, sites could be filtered to include only

disomic or polysomic regions (Bourret et al. 2013). In the majority of cases, the rate of preferential

pairing or the regions undergoing polysomic inheritance will be unknown. Here, the genotype call-

ing software Updog (Gerard et al. 2018) and polyRAD (Clark et al. 2019) may be useful as their

approaches determine inheritance mode during genotype estimation. Updog accomplishes this by

simultaneously estimating genotypes and the rate of preferential pairing in a population, assuming

bivalent pairing only. Comparatively, polyRAD determines inheritance mode by estimating geno-

types for all possible user-specified genotypes and then uses a χ2 statistic to determine the best

genotype at each site. The polyRAD approach is particularly useful as it allows both ploidy and

inheritance mode to vary among genotypes. There is no current best practice for mixed inheritance

mode among these approaches, but they should be considered as even low rates of polysomic in-

heritance can affect allele frequencies across subgenomes (Meirmans and Van Tienderen 2013).

Consequently, careful consideration is required when analyzing populations with biological com-

plexity beyond polyploidy.

5. Conclusion

Complex polyploid biology may produce errors in read mapping, variant calling, and genotyping.

The extent of error often depends on the quality of the reference genome and biological reasons

like the age of the polyploidization event, extent of fractionation, divergence between parental
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genomes, and strength of selection at a given locus. As such, bioinformatic solutions can be

selectively applied to resolve sources of error prevalent in a given polyploid system. In Figure 2.1,

I summarize where existing solutions can be integrated into a standard variant calling pipeline.

The study of polyploid genomes is a growing field and, as such, there may be additional solutions

in active development.

Further improvements to variant calling in polyploids will require focused research in three

primary areas: evaluation of variant filters, development of downstream software that incorporates

genotype uncertainty, and high-throughput estimation of ploidy and inheritance mode. First, em-

pirical studies evaluating the efficacy of variant filters are needed to understand when their appli-

cation is appropriate and which thresholds are effective. It is equally as important to set a threshold

that excludes low-quality variants while also not over-filtering the data, as variant classes important

in downstream analyses may be unintentionally excluded (Linck and Battey 2019; Pearman et al.

2022). Second, continued development of population and quantitative genetics software that utilize

GLs is needed (Korneliussen et al. 2014; Grandke et al. 2016; Gerard 2021b; Shastry et al. 2021;

Batista et al. 2022; Rasmussen et al. 2024). The adoption of GLs to reduce sequencing costs is

likely to be limited until more user-friendly software becomes available. Theory and tools are also

lacking for the analysis of mixed-ploidy and mixed-inheritance mode datasets. Third, continued

development of methods for high throughput estimation of ploidy and inheritance mode is greatly

needed. While there has been substantial development in this area (see Section 4.3), the majority

of approaches still necessitate ample ground truthing (Gaynor et al. 2024).

Emerging technologies may have the potential to improve variant detection. Long-read se-

quencing data overcomes many read mapping challenges as the extended read length increases

the information available to determine the best alignment (Chen et al. 2024). Similar to short-

read sequencing, long-read sequencing is increasingly cost-effective and accurate (De Coster et al.

2021; Kim et al. 2024). Additionally, pan-genomic approaches, such as haplotype graphs and

sequence variation groups, have recently been applied in polyploid systems to detect a diversity

of SVs as well as multiallelic sites (Gordon et al. 2020; Bayer et al. 2021; Della Coletta et al.
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2021; Lovell et al. 2021; Wang et al. 2022). The adoption of the variant calling practices reviewed

here, continued investment in the assembly of polyploid reference genomes, and early adoption

of novel genomic tools will enhance contemporary population and quantitative genetics studies in

polyploids.
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7. Appendix

7.1 A brief overview of variant calling

In diploid and polyploid systems, variant calling involves a series of qualitative decisions that de-

pend on the biology of the study system and data quality. A variant calling pipeline, as described

here, includes the alignment of reads to the reference genome, variant calling, genotype estima-

tion, and variant filtering. Consideration of ploidy in downstream analyses has been well-reviewed

elsewhere (Dufresne et al. 2014; Meirmans et al. 2018; Ackiss and Balao 2020; Bohutı́nská et al.

2023). Here, I aim to provide an overview of a general variant calling pipeline to support dis-

cussions of where this pipeline may be improved for polyploid systems. I provide citations for

commonly used software where relevant.

To begin, reads are mapped to a reference genome using a short-read aligner to generate the

sequence alignment maps (SAMs) or binary alignment maps (BAMs). The aligner is selected

depending on the read length, sequencing method, and divergence of the sequenced sample from
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the reference genome (Altmann et al. 2012; Bak et al. 2021; Musich et al. 2021). The Burrow-

Wheeler aligner (BWA-MEM and BWA-MEM2) is a highly popular short-read aligner (Liu et al.

2013; Md et al. 2019). Additionally, the best practice is to use a reference genome closely related

to your samples of interest, but how closely related your reference genome needs to be to your

samples will depend on the divergence between species and amongst populations (Günther and

Nettelblad 2019). For example, in a Zea mays RNA-seq study, as much as one-half of alleles with

increased gene expression were not detected when reads from the inbred line, B73, were mapped

to the reference of a second inbred line, Mo17, because Z. mays has high nucleotide diversity and

structural variation (Zhan et al. 2021).

The SAMs or BAMs are processed to remove duplicate reads and add read groups, which

provide an improved evaluation of sequencing and alignment quality but have limited effect on

variant detection (Ebbert et al. 2016). SAMtools (Danecek et al. 2021) and GATK (De Summa

et al. 2017; Van der Auwera and O’Connor 2020) provide useful guidelines and pipelines for effec-

tively processing the alignment files. The sequencing and alignment quality should be evaluated

for attributes such as mapping quality, the percent of reads mapping, and coverage before variant

calling (Nielsen et al. 2011). Although this can be accomplished with custom scripts, software

like Qualimap provides a user-friendly evaluation of sequence quality (Garcı́a-Alcalde et al. 2012;

Okonechnikov et al. 2016). If the quality is poor, reads may need to be trimmed to remove adapters

or low-quality bases and re-mapped (Sewe et al. 2022). Trimmomatic (Sewe et al. 2022) and fastp

(Chen et al. 2018; Chen 2023) efficiently detect and trim a wide variety of adaptor sequences.

Variants are then identified using a variant caller, which determines whether a particular site in

a sequenced sample is different from the reference genome. Many variant callers, such as GATK

(Van der Auwera and O’Connor 2020), were developed for human genomes and have been adopted

for use with highly repetitive plant genomes. Before genotype calling, sites that are fixed across

sequenced samples, known as invariant sites, are often excluded to improve computational effi-

ciency. It should be noted that the inclusion of invariant sites is important for many population

and quantitative genetics analyses, such as the estimation of nucleotide diversity and demographic
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history, and they can be added back into the pipeline after variant calling. Genotypes are subse-

quently called where the most likely genotype is estimated based on the number of references and

alternate reads that are mapped to a given site (Nielsen et al. 2011).

The same software is often used for both variant calling and genotyping. Importantly, the geno-

type caller selected should be able to estimate polyploid genotypes. Polyploid genotype callers

have been sufficiently compared and reviewed elsewhere (Grandke et al. 2016; Blischak et al.

2018; Clark et al. 2019; Cooke et al. 2022). Briefly, polyploid variant and genotype callers that

can be applied to whole genome sequence data include GATK, freebayes (Garrison and Marth

2012), EBG (Blischak et al. 2018), Updog (Gerard et al. 2018), polyRAD (Clark et al. 2019),

and Octopus (Cooke et al. 2021). Additionally, GATK, freebayes, and Octopus can identify small

structural variants under 50 bp (Cooke et al. 2022). Each polyploid genotype considers different

aspects of polyploid biology in their estimation, and as such, researchers should select the caller

that fits the biology of their study system the best. For example, Updog considers allele bias (see

Section 4.2) and preferential pairing in genotype estimation, while polyRAD considers per-site

variance in inheritance mode (see Section 4.4, Gerard et al. 2018; Clark et al. 2019). Notably,

Updog, polyRAD, and Octopus support binomial priors, which are considered ‘informative’ priors

because they assume genotypes follow HWE, unlike GATK which uses uniform priors that assume

genotypes have equal probabilities (McKenna et al. 2010; Gerard et al. 2018; Clark et al. 2019;

Cooke et al. 2021). Additionally, polyRAD offers additional informative priors that consider popu-

lation structure and mapping populations (Clark et al. 2019). Genotype callers and priors should be

carefully selected as genotypes will be heavily influenced by the priors at low sequencing coverage

(Clark et al. 2019).

Finally, variants are filtered to remove sites with false-positive variants and low-confidence

genotypes. This is often accomplished using custom scripts, GATK, VCFtools (Danecek et al.

2021), or several other packages. Variant filtering is often grouped into two parts: ‘hard’ and ‘soft’

filtering (De Summa et al. 2017). In hard filtering, sites that fail to pass a set of quality controls

are removed to reduce the likelihood of falsely identifying them as polymorphic. The quality
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controls may include mapping quality, base quality, depth, and strand bias (defined in Van der

Auwera and O’Connor (2020)). Biallelic sites are typically selected when hard filtering, regardless

of ploidy, as most empirical and theoretical population and quantitative genetics assume only two

alleles (but see Karlin (1990); Balding and Nichols (1995); Ferretti et al. (2018); Broman et al.

(2019) for examples of multi-allelic approaches). After hard filtering, soft filters are applied to

prioritize variants specific to downstream analyses, often ad-hoc. For example, a minor allele

frequency filter is a soft filter often applied to exclude sites with rare variants. Thresholds for hard

and soft filtering are user-defined and formal testing of the significance of a given threshold is

uncommon. Researchers often derive thresholds from those previously applied within their study

system, review articles (Van der Auwera et al. 2013; Clevenger et al. 2015), or, less commonly,

those tested in an empirical study (Linck and Battey 2019; Pearman et al. 2022). Importantly,

researchers should take care not to over-filter their datasets as many population and quantitative

genetics analyses can be biased by datasets where particular variant classes were excluded (Linck

and Battey 2019; Pearman et al. 2022).
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Conclusion

The collective findings from my dissertation underscore the dynamic nature of genomic research

in polyploid plant species. In Chapter 1, I investigated the role of mixed-ploidy in the adaptation of

Andropogon gerardi Vitman, revealing the influence of polyploidy on growth and physiology. We

find mixed-ploidy is a product of recurrent polyploidization where each individual of the higher

ploidy level is a new polyploid, or neopolyploid. The study highlights the environment-dependent

effect of polyploidy and the need to consider polyploidy in conservation and restoration. Chapter 2

presents a serendipitous assembly of a reference genome for Poa pratensis. The accidental assem-

bly provides a valuable resource for turfgrass breeding and showcases the potential for unexpected

breakthroughs in genomics. Finally, in Chapter 3 I review the challenges and potential solutions in

variant calling for polyploid species, emphasizing the importance of addressing polyploid biology

rather than ignoring it. I highlight the ongoing efforts to improve genomic methods for polyploids

and propose a literature-informed variant calling pipeline. Overall, my dissertation contributes to

a deeper understanding of the interplay between polyploidy, environmental adaptation, and plant

evolution.
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Veselỳ, P., P. Bureš, P. Šmarda, and T. Pavlı́ček, 2012 Genome size and DNA base composition of

geophytes: The mirror of phenology and ecology? Annals of Botany 109: 65–75.

Vieira, F. G., M. Fumagalli, A. Albrechtsen, and R. Nielsen, 2013 Estimating inbreeding coef-

ficients from NGS data: Impact on genotype calling and allele frequency estimation. Genome

Research 23: 1852–1861.

Vile, D., E. Garnier, B. Shipley, G. Laurent, M.-L. Navas, et al., 2005 Specific leaf area and dry

matter content estimate thickness in laminar leaves. Annals of Botany 96: 1129–1136.

Viruel, J., O. Hidalgo, L. Pokorny, F. Forest, B. Gravendeel, et al., 2023 A bioinformatic pipeline

to estimate ploidy level from target capture sequence data obtained from herbarium specimens.

Methods Mol. Biol. 2672: 115–126.

Vorontsova, M. S., K. B. Petersen, P. Minx, T. M. Aubuchon-Elder, M. C. Romay, et al., 2023

Reinstatement and expansion of the genus Anatherum (Andropogoneae, Panicoideae, Poaceae).

Systematics and Biodiversity 21: 2274386.

Walczyk, A. M. and E. I. Hersch-Green, 2023 Genome-material costs and functional trade-offs in

the autopolyploid Solidago gigantea (giant goldenrod) series. American Journal of Botany 110:

137



e16218.

Wang, J., D. Li, F. Shang, and X. Kang, 2017 High temperature-induced production of unreduced

pollen and its cytological effects in Populus. Scientific Reports 7: 5281.

Wang, L.-G., T. T.-Y. Lam, S. Xu, Z. Dai, L. Zhou, et al., 2020 Treeio: An R package for phyloge-

netic tree input and output with richly annotated and associated data. Molecular Biol. Evol. 37:

599–603.

Wang, M., J. Li, Z. Qi, Y. Long, L. Pei, et al., 2022 Genomic innovation and regulatory rewiring

during evolution of the cotton genus Gossypium. Nat. Genet. 54: 1959–1971.

Wang, T., A. Hamann, D. Spittlehouse, and C. Carroll, 2016 Locally downscaled and spatially

customizable climate data for historical and future periods for North America. PloS ONE 11:

e0156720.

Weaver, J. E., 1968 Prairie plants and their environment. A fifty-year study in the midwest. .

Weaver, J. E. and F. W. Albertson, 1943 Resurvey of grasses, forbs, and underground plant parts at

the end of the great drought. Ecological Monographs 13: 63–117.

Weiß, C. L., M. Pais, L. M. Cano, S. Kamoun, and H. A. Burbano, 2018 nQuire: A statistical

framework for ploidy estimation using next generation sequencing. BMC Bioinformatics 19:

122.

Wickell, D., J. Landis, E. Zimmer, and F.-W. Li, 2024 Population genomics of the Isoetes ap-

palachiana (Isoetaceae) complex supports a ‘diploids-first’approach to conservation. Annals of

Botany 133: 261–272.

Wickham, H., 2016 ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.

Wood, D. E. and S. L. Salzberg, 2014 Kraken: Ultrafast metagenomic sequence classification using

exact alignments. Genome Biology 15: 1–12.

Wood, T. E., N. Takebayashi, M. S. Barker, I. Mayrose, P. B. Greenspoon, et al., 2009a The

frequency of polyploid speciation in vascular plants. Proc. Natl. Acad. Sci. U. S. A. 106: 13875–

13879.

Wood, T. E., N. Takebayashi, M. S. Barker, I. Mayrose, P. B. Greenspoon, et al., 2009b The

138



frequency of polyploid speciation in vascular plants. PNAS 106: 13875–13879.

Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, et al., 2004 The worldwide leaf

economics spectrum. Nature 428: 821–827.

Wu, T. D. and S. Nacu, 2010 Fast and SNP-tolerant detection of complex variants and splicing in

short reads. Bioinformatics 26: 873–881.

Xu, G., J. Lyu, Q. Li, H. Liu, D. Wang, et al., 2020 Evolutionary and functional genomics of DNA

methylation in maize domestication and improvement. Nat. Commun. 11: 5539.

Yu, G., 2020 Using ggtree to visualize data on tree-like structures. Curr. Protoc. in Bioinformatics

69: e96.

Yu, R.-M., N. Zhang, B.-W. Zhang, Y. Liang, X.-X. Pang, et al., 2023 Genomic insights into biased

allele loss and increased gene numbers after genome duplication in autotetraploid Cyclocarya

paliurus. BMC Biol. 21: 168.

Zack, T. I., S. E. Schumacher, S. L. Carter, A. D. Cherniack, G. Saksena, et al., 2013 Pan-cancer

patterns of somatic copy number alteration. Nat. Genet. 45: 1134–1140.

Zhan, S., C. Griswold, and L. Lukens, 2021 Zea mays RNA-seq estimated transcript abundances

are strongly affected by read mapping bias. BMC Genomics 22: 285.

Zhang, R.-G., Z.-X. Wang, S. Ou, and G.-Y. Li, 2019a TEsorter: Lineage-level classification of

transposable elements using conserved protein domains. bioRxiv .

Zhang, X., S. Zhang, Q. Zhao, R. Ming, and H. Tang, 2019b Assembly of allele-aware,

chromosomal-scale autopolyploid genomes based on Hi-C data. Nat Plants 5: 833–845.

Zhou, Y., J. Zhang, X. Xiong, Z.-M. Cheng, and F. Chen, 2022 De novo assembly of plant complete

genomes. Tropical Plants 1: 1–8.

139


	Introduction
	Chapter 1: The consequences of polyploidy in adaptation of a dominant prairie grass 
	Abstract
	Introduction
	Results
	Assembly of a subgenome- and haplotype- resolved reference assembly
	Assessment of the impact of habitat fragmentation on population structure and genetic diversity
	Origins of mixed-ploidy populations
	The effect of polyploidy on growth and reproductive effort
	The effect of polyploidy on leaf morphology and economics

	Discussion
	Minimal population structure and high genetic diversity in Andropogon gerardi despite modern habitat fragmentation
	Mixed-ploidy is maintained by recurrent polyploidization
	The consequences of neopolyploidy in adaptation

	Conclusion
	Methods
	Sample collection
	Short-read sequencing of population panel
	Genome sequencing for the A. gerardi reference genome
	Genome size estimation
	Genome assembly and construction of pseudomolecule chromosome
	Genome annotation
	Variant calling and genotyping
	Assessment of population structure and diversity
	Estimation of hexaploid genetic diversity
	Common garden experiment
	Phenotyping leaf functional traits
	Phenotyping performance traits
	Trait data analysis
	Data availability

	Acknowledgements
	Supporting Information

	Chapter 2: A happy accident: A novel turfgrass reference genome
	Abstract
	Background
	Materials & Methods
	Sample collection
	PacBio sequencing
	Bionano optical map generation
	Preparation and imaging of metaphase spreads
	Illumina sequencing of the Poa population panel
	Species identification
	Genome assembly
	Genome annotation
	Assessment of the assembly
	Population genetics of Poa

	Results and Discussion
	Species identification and validation
	Genome size and ploidy estimation
	Genome assembly
	Genome annotation
	Application of the reference genome
	Population genetics of North American Poa

	Conclusion
	Data availability
	Acknowledgments
	Funding
	Supplement

	Chapter 3: Variant calling in polyploids for population and  quantitative genetics 
	Abstract
	Background
	Challenges to variant calling in polyploid systems
	Resource requirements scale with genome size
	Genome-wide redundancy and elevated polymorphism increase errors in read mapping
	Incomplete or misassembled polyploid reference genomes increase genotyping error
	Allele dosage cannot be determined if ploidy and inheritance mode are unknown
	Existing tools cannot account for further biological complexity

	Proposed solutions to incorporate polyploid complexity in variant calling
	Balancing sequencing depth and precision may reduce sequencing costs
	Alternative read alignment approaches, genotype callers, and variant filters may reduce errors caused by poor read mapping
	Information on ploidy, chromosome inheritance mode, and reference quality can be integrated to determine allele dosage
	Current accepted practices for navigating polyploid data with additional biological complexity 

	Conclusion
	Acknowledgments
	Appendix
	A brief overview of variant calling


	Conclusion
	      References



