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ABSTRACT

The isobaric charge distributions are discussed in terms of
quantal and classical isospin fluctuations. The roles of mass
asymmetry and of che higher giant isovector modes are treated within
the framework of a cylinder model which is worked out exactly.

Spin fluctuations are considered first in terms of quantal
fluctuations in a cylinder model and second in terms of thermal
fluctuations in a two-sphere model. The results are applied to the
calculation of in- and out-of-plane angular distributions for segquen-
tial fission, alpha and gamma decay. Analytical expressions are
obtained for the angular distributions. The theoretical predictions
are compared witn experimental results for sequential fission, alpha

and gamma angular distributions.
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INTRODUCTION

Isospin tluctuations have been with us since the halcyon days of
fission, when the chemists used to show their virtuoso performance in
measuring isobaric charge distributions. Theoreticians did not make
much of it, and the undarstanding of these distributions did not ex-
tena even to their first moments. Now, with heavy ion reactions, the
situation has changed somewhat. On the theoretical side, there are
suggestions that a connection can be made between the charge distribu-
tions ana the giant isovector modes of the intermediate complex., On
the experimental sice, powertul physical techniques are competing
with brave diehard chemists to produce a great variety of charge
distributions as a function of Q-value, mass, excitation energy, etc.
The results Took so gloriously messy and, I might venture to say, con-
traaictory, that I could not resist the challenge to add a bit or
theoretical confusion to the experimental one. This will constitute
the first part of my contribution.

Angular momentum is at present being given a heavy work-out in
compound nucleus studies both in the spectroscopical and in the
continuum y-ray region. The results are spectacutar, te say the
least, and there is even somebody who claims that they are
understandable as well {always post-factum, ot course).

In deep inelastic processes, angular momentum is a fact of of life
anc cannot be avoided, although sometimes Someone wished he could.

And yet the idea of a spinning intermediate complex has a hidden

fascination of its own. It is perhaps relatea to childhood memories,



when spinning toys and similar rotating .paraphernalia captured our
imagination and intrigued us with their unpredictability and
anticommon sense benavior. Be as it may, "rotation is very much in
fashion” in heavy ion reactions now-a-days,and the most refined
techniques 1like vy, a, fission fragment angular distributions are
applied .hroughout the world and the periodic table to unravel the
mistery of rotating nuclei. Some part of this story both with
experimental illustrations and theoretical captions will be told in
the second part of this contribution.

A. ISOSPIN FLUCTUATIONS

The mass asymmetry degree of freedom is known to be the sTowest to
relax among the collective modes excited in heavy ion reactions, while
the cnarge equilibration appears to occur on a faster time-scale.

Information regarding the isospin fluctuations in the intermediate
complex can be obtained from the isobaric charge distributions.(l)
The observed distributions are Gaussian and the fluctuations can be
characterized by the standard derijvation 02 of the distributions.

An immediate, though not necessarily warranted approximation has
been made by assuming tha. only the lowest isovector multipole,
(corresponding to the tE1 mode, like in the giant dipole resonance) is
invelved in the charge f]uctuations.(l’2’3)

If the phonon energy of the dipole mode is hw and the stiffness
constant is c, then two limiting situations do arise.

The first corresponds to the case in which the collective mode is

weak 1y coupled to the other moces. In this limit and for T << huw one

would expect only ground state guantal fluctuations for which



of = o (1)

On the other hand, if T »>> he (always weak coupling) or if the
collective mode is so strongly coupled to the continuum that its
strength function is very spread out, one obtains the classical limit

in which the fluctuations depend only upon the temperature T:

2 T
o" =2 (2)

It is difficult to argue a priori for either of the two

possibilities. If during the decay stage the decoupling from
adiabaticity occurs while the neck between the two fragments is still
very large and the weak coupling limit holds, one would expect

hw = 96/d MeV where d is the distance between the two fragment
centers. In this case hw >> T in most reactions and large fluctua-
tions, of the order of 02 =] e2 should be observed, independent

of excitation energy. On the other hand, if the strong coupling limit
is prevailing, one would expect fluctuations of perhaps

2 2

o- = 0.3 e” and increasing with excitation energy.

(2,3) are observed in

Extraordinarily enough, both situations
various reactions as illustrated in Figs. 1 and 2. While this
problem, in view of the puzzling experimental data is in a state of
substantial confusion, we believe that one should exercise some
caution in the assumptions which are commonly made, tacitly or not.

In particular the allegedly contradictory findings of large and small

charge fluctuations at large and small mass asymmetries respectively,



and the related attempts to infer the relevant E1l phonon energies
suffer from a lack of systematic understanding of the role played by
the various giant isovector modes in the charge fluctuations.

1(4) that, while it may not

We are proposing here a simple mode
be adequately realistic, is complete and points out important facts
which have been overlooked.

we shall disregard the extremely important dynamical aspects of
the prob]em(s) and assume that the particular shapes considered in
our model just precede the rapia division into two fragments. In par-
ticular, let us consider the axial isovector modes in a cylinder of
length 2a, radius r, which is suddenly split at a distance b from one
of the bases. The standing isovector waves are clearly trigonometric
functions and the boundary conditions require them to be cosine
functions.

According to the Steinwedel-Jensen model, the tluctuation of the

charge density for the mode of order n is:

1 o
P —-?pza

. cosk x (3)

n

where pg is the equilibrium charge density, an is the amplitude
of the mode, x is the distance along the cylinder axis from one of the
bases, and the wave number kn is given by kn = (nf/2a) n. The

frequency of each mode is given by wy = knu, where



is the isospin sound velocity, which is assumed to be frequency-
independent; X is the Tiquid drop symmetry energy coefficient and m is
the nucleon mass.

If we cut the cylinger at b, we can define the charge excess of

one ot the fragments by the relation:

o 2 ’ Y [neQ]
p,a, T 0/ cosknxax = - (5)

™~
n

ll
N —

where the degree of symmetry ¢ = p/Za.

Since the transformation from the coordinate x to the variable
Zn does not involve time, we can conclude that Ln oscillates
harmonically, because a, does. Classically, for a fixea value of Q,
each Zn is a separate normal mode.

Let us now determine the stiffness constant of each of these
normal modes; we know the freguency already. We can do this by cal-
culating the potential energy (aisregaraing coulomb forces for the

moment ) :

V=X _n___z__ 41 = ~—— A \b)

ana substituting the amplituae a, obtainea from Eq. (5) into
Eq. {b). The potential energy is indeed quadratic in L,

V= (1/2) cnzﬁ with



2
T (7)

L sin“LnnQ]

Note that the stiffness constant depends stronaly on n. For any n
some of tne charge tluctuations averagesout and do not contribute to
the fragment charge fluctuation; this is all the nore true the larger
n is, since it takes more energy to aisplace a given amount of charge
into any given fragment. Even for the lowest mode (n = 1), some of
the energy goes into polarizing the fragments rather than displacing
charge. This is to be contrasted with the standard way in which ¢ has
been calculated so tar, using a potential which neglects fragment
polarization: V = VLD(l) + VLD(Z) + VC(1,2) where VLD(l) and VLD(Z)
are the liquid drop energies of two touching spheres and Vc(l,Z) is

their Coulomb repulsion. The stiffness constant follows as:

82

2

“Lu

Q2

— A<
—
oc
-

constant A

where Zl is the charge of one of the fragments. In Fig. 3, ¢, ana

¢,,. can be compared as a function of §. The large error introduced

Lu
by neglecting the fragment polarization is obvious, especia]ly'at
large asymmetries.

Notice also that for the special values of ( for which sin[naG]} is
zero, the stiffness constant is infinite; no matter how much work is
done, no charge displacement arises. Tnis is true in particular at

symmetry (Q = 1/2), where none of the even modes contribute to

displacement.



After having identified the zn as classical normal modes, we can

immediately quantize them., For each mode we obtain a phonon energy:

ho,, = f‘;; n (9)

These phonon energies are very large even for the lowest moaes, so

that the limit T/ﬁwn << 1 is typically encountered (T = nuclear

temperature) ana only zero-point fluctuations need to be considered.

For each mode n the zero-point charge wiath is given by:

2 n 2 s1nd[an]
1(symmetry) Bt (10)

From Fiy. 3 and Eq. (8}, one expects these widths to be smaller at

large asymmetries than those calculated neglecting fragment polari-

(2,3)

zation, and experiment inagicates such an effect. The
contribution of the nth moae to 02 goes like 1/n, so that the con-
tribution of the higher modes becomes less relevant the higher n is.

However, the total charge width in this mouel diverges logarithmically:

o° = of(symmetry) Slﬂ_%Q{Qi (11)

This is not surprising because we are assigning an infinite number of
degrees of freeaom to a system of finite particle number, Further-
more, it is likely th-: the higher-frequency modes "drown® in the

(1)

doorway states directly coupled to them, as illustrated in thus



removing the collectiveness from the respective degrees of freedom.
The location of the cutoft in n, or even whether a fully guantal
treatment is warranted for the lowest mode, is most relevant.

The wavelength of the oscitlations cannot be much smaller than the
aiameter of a nucleon; thus one obtains the following cutoff in n:
Nmax = 4.8 A1/3 for Amin = 1.5 fm.

A very important feature of this model is that the role of each
mode strongly depends upon the asymmetry of the system. In Fig. 4(a)
the normalized partial width is given as a function of asymmetry for a
few values of n, in Fig. 4(b}, they are given as a tunction of n for a
tfew asymmetries. At values close to symmetry, the lowest mode domi-
nates, but with increasing asymmetry the higher n modes play an ever
increasing role. The widaths are zero when a half-multiple of the
wavelength for a mode matches the value of b. In Fig. 5 the width
arising from the first n moages is given for a few n values as a

functica of Q. This shows that an experimentally observed width,

contribution of several modes.

It is clear tnat any attempt to relate such width to a single El
mode rather than to the combination of several isovector modes may be
doomea to failure. The aifficulties are compounded by the use of a
stiffness constant which may dramatically depend on the form of the
standing wave and which has been calculated incorrectly so tar even
for the lowest mode. The cylindrical geometry is 1ikely to be a poor

approximation, but the introduction of a neck to better simulate the



separation of the fragments leads to complications which may fnv01ve
non-linear and dispersive effects. Dynamics is especially important,
since the salient feature of this problem is the configuration
associated with the neck snapping.

In conclusion, information on the isovector moges fron the
measurement of the charge fluctuation at high temperatures can only be
obtained by properly accounting for both the effect of mass asymmetry
and the role of higher order modes.

B. ANGULAK MUMENTUM TRANSFER

The interactions between two colliaing nuciei, especially thase
associatea with short range forces, both conservative and dissipative,
create strong torques responsible for transfer of angular momentum
from orbital motion to intrinsic rotation of the fragments. The
magnitude of the transferrea angular momentum can be determined in
various ways. The measurement of the y-ray multiplicity is one such
method of quite general application. By this technique, the angular
momentum transfer has been studies as a function of Q value and of
exit-channel mass asymmetry.

Tne general rise of the multiplicity with increasingly negative Q
values (rFig., 6) is attributed mainly to the progressive tendency
towards the rigia rotation 1limit expected as the 7, value and the
{6)

interaction times increase. The V shapea cependence of the y-ray

multiplicity upon mass usymmetry (Fig. 7) in the quasi elastic

region(7) is interpreted as a general tendency to transfer angular

momentum with transferred mass on o:e hand, and as due to an increased
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Q value observed with increased net mass transier on the other., Of
course if energy is transferred only through mass exchange, the two
expianations are identical.

In the deep inelastic region two extreme cases have been
observed. In the first case, when a narrow l-window is available for
deep inelastic products. a multiplicity rising with increasing asym-

metry is observea(s’g)

in agreement with the rigid rotation limit,

as shown in Fig. 8. 1In the second cas<, when a very large 1 window is
available, the y-ray multiplinity is essentially constant as a func-
tion of mass asymmetry. Examples ot this case are readily available
in the Kr-induced reactions(7) shown in Fig. 9. The accepted
explanation of this behavior is an angular momentum fractionation
along the mass asymmetry coordinate. Since large 1-waves are associ-
ated with sho~t Tlifetimes and vice-versa, small l-waves pcpulate
prevalently the large asymmetries, far removed from the entrance
channel asymmetry. In this way the tendency of y~ray multiplicities
to increase with increasing asymmetry, as reguired by rigid rotation
is more or less compensated by the progressive decrease of the average
angular momentum. All these effects are reasonably well understood on
a more quantitative theoretical ground, as shown in Figs. 6 and 10
where the results of a diffusion model calculation are shown.(ﬁ)

Angular Mome:tum Fluctuations

Hints of fluctuations in the fragment spins have been seen in the

second moment of the y-ray mu]tiplicities!lo) However, a much

better inagicator of spin fluctuations is the degree to which the
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fragment spins are misaligned. This misalignment, as we shall see,
can be readily detected by measuring the angular distributions of
y-rays, o particles, fission fragments emitted from the primary deep
inelastic fragments. The origin of these fluctuations can be quantal
or classical, ana can be due either to non equilibrium or equilibrium
processes. Let us consider first one example of equilibrium guantal
fluctuations and examples of thermal fluctuations later on.

Quantal Effects

In view of the analogy between spin and isospin we can take
advantage of the cyiinder model results obtained in the previous
section.

Instead of neutron ana proton fluids, we consider now two new
nuclecn fluids, one with positive and the other with negative spin
projection on the cylinder axis.

Let us assume that the density of the doubly degenerate single
particle levels is g and that the average spin projection of each
particle on the cylinder axis is M. Then n aligneu broken pairs will

generate an angular momentum:
I = 2nM (ld)

and an energy:

_n
u=3 (13
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wnicn leads to the relation:

v-L—-L (14)

where & = 2M29 is the moment of inertia of the cylinder.
In analogy with the symmetry energy we can write the rotational

energy U as:

G A _
U= X] i with XI = 7d (lb)
Now a perturbation consisting in a variation of the angular velocities

of contiguous perpendicular slices of the cylinder will move with a

velocity {(spin velocity):

+ - fa s

where o, pg» o, are the equilibrium densities of

right~handed, left-handed ana total fluid, and m is the nucleon mass.
The eigen modes are defined as in the case of isospin. Their

quantization leads to the phonan energies:

— (17)

a being the haif-length of the cylinder and n the order of the mode.

The stiftness constants are:



4, 2
Cn = ‘_/.—\"" ‘-—“2—-"—‘—'_ (18)
sin“[nnQ]
Q being the asymmetry of the cut as in the previous section.
The widths are:
2 Z sinz[n Q]
of = o7(symmetry) 2—-= T ’ (19)
n 1 n
where
, huw
2 1
oy (symmetry) = EI— = g%g ﬁfﬁ (20)

For a cylinder apprcximating two equal touching spheres and for
A = 200 the width of the lowest mode is
cl(symmetry) = 1.7k

As we shall see this gquantal width is negligible as compared to that

expected from thermal fluctuations.

Let us consider a frame of references where the z axis is parailel
to the entrance-channel angular momentum, the x axis paraliel to the
recoil direction of one of the fragments, and the y axis perpendicular
to the z,x plane.

A misalignment of the fragment angular momentum arises when

non-vanishing x and y components of the fragment angular momentum are
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present. Among the possible sources of these components, the thermal
excitat = of angular momentum-bearing modes of the intermediate
complex appears very likely and can be readily investigated.

If the intermediate complex is assumed to have the shape of two
equal touching spheres, the angular momentum bearing normal modes are
easily identifiable. In Fig. 11 and Fig. 12 these modes are
illustrated. We shall call them "bending," B (doubly degenerate),
“twisting" Tw {degenerate with bending), "wriggling" w (doubly
degenerate) and "tilting" Ti.

In & recent work, the statistical mechanical aspects of the

)

excitation of these modes has been studied in detai].(ll Here we
report only the relevant conclusions.
The thermal excitation of these collective modes leads to Gaussian

distriobutions in the three components Ix’ Iy, IZ, namely:

2 2 T2
I I (I, -1.)
P(i) exp - —xz. + _JLZ + —_Z___Z-._Z_..... (21)
Zcx ch Zcz

where:

Q
> N
I
Q
=N

x
+
Q
- P
-
€
-
+
T
-
]
e
—_

£ e Ml 50y -
2 2 2 1 5 6
OZ=UB+UW=?— T+-I— T=-7—JT .
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The quantitycﬂis the moment of inartia of one of the two touching

spheres, and T is the temperature.

Particle Emission

The magnitude ot the angular momentum misalignment can be measured
through the in and out-of-plane angular distribution of the decay
products of one of the two fragments. we h. : shown elsewhere that
the angular distribution of fission fragments and of light particles
emitted by a compound nucleus can be treated witnin a single
framework.(lz)

The direction of emission of a decay product (fission fragment,
a-particle, etc) is defined by the pro ection K of the fragment
angular momentum on the disintegration axis. Simple statistical

mechanical considerations show that the distribution in K values is

Gaussian. More precisely, the decay width is given by:

FI =T exp |- 57~ 1 —G;— exp - KZ/ZKS (23)
1

This distribution in K determines the angular distribution:

1
P« exp —(L-n)z/ZKg (24)

where n is a unit vector pointing in the decay direction.

The aot product [.n can be explictly written down:
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I-n = Ixsine cos¢ * Iysins sin¢ + Izcose (25)
Assuming the statistical distribution(ZI) one can obtain the angular
distribution for any given 1 by integrating over Ix’ Iy, Iz:(17)

-1 1 12c0529 (

I'' « ¢ exp - —_— 26)

Se.6] 25%(0,9)
where
Sz(e,é) = Kg + (oic052¢ + aisinz¢) sinzg + aicosze (27)

Integration over the fragment angular momentum distribution, assumed
to reflect the entrance channel angular momentum distribution through

the rigid rotation condition, leads to the following expression:
max +1 IKK
w(e,9) = / ZIIf a;—-- (28)
Ifr

I
max 2
Wie,p) = %l exp - 15[5‘2’—259 - s] dl (29)

or

wie,b) = — 11 - exp (-A)] (30)
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where

2 coszg
A=1 —s= -8 (31)
max 252

s=n2_$(;r-¢;_

n 1

The quantitygﬂ; is the mcment of inertia of the nucleus after
neutron emission,.gl is the perpendicular moment of inertia of the
critical shape for the decay (e.g., saadle poiat).

It is important to notice that the angular momentum dependence of
the partic]e/neutron competition or fission/neutron competition is
taken into account through 8. This point seems tu have been neglected
in recent work on sequential decay. The final ingredient necessary
for an explicit calculation of the angular distributions is the
quantity Kﬁ. This quantity can be expressed in terms of the
principal moments of inertia of the critical configuration for the

decay:

. -1
2 1. {1 1 ,
Ke=asfi--L) 18 7 (32)
o B2 J" 41) eff

For fissionaﬁLff can be taken from the liquid drop calculations of
c.p.s. (13)

For lighter particle emission, the calculation of'a%ff can be
worked out trivially. Let m, M, A be the masses of the light,

resiaual and total nucleus. One obtains:
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D, -2 a2 (33)

Jett (P [1 £2 A (_R_)z]
Dsph A 5 m\R+r
where r and R are the rauii of the light particle and residual nucleus
respectively.
Now we are in the position to calculate both in-plane and out-of-

plane anisotropies.

The in plane anisotropy gives:

1/2
Wig = 90° K<2> * °5
Wp=90) - (33— (34)
Wig =0 |ougps  \Ko ;'3

Since in most cases Ks is fairly large, or at least comparable
with ui or os it is difficult to obtain a sizable in-plane
anisotropy. Even by letting oy = 0 one needs 05 =3 Ks

Jjust to obtain the anisotropy of 2! The out-of-plane anisotropy is

somewhat more complicated:

1/2
W(e = 90°)] 1% * o7 1
== = 2| —5—- I B (35)
W(e = 0°) $=0° 8 K0 + Q—E Z(IZE + ag)
1- exPBI;ax

-exp I°  f8 ~ ——5-=5-
max( 2(K§ + 0%))
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At ¢ = 90° the anisotropy is obtained from the above equation by
interchanging oy with oy A calculation of in-plane and out-of-
plane sequential fission angular distributions is shown in Fig. 13 for
the reaction Kr + Au at 600 MeV. The in-nlane anisotropy has been
created by artificially setting o, = 0.
In Fig. 14 the experimental width of the out-of-plane distribution
for the same reaction is shown.(14)
In Fig. 15 the theoretical calcuiation, again for the same

reaction indicates an excellent agreement with experiments.

Sequential « Decay

In Fig. 16 the out-ot-plane angular distributions for seq..ntial «
decay from Ag-like fragments are shown for the reaction 664 MeV
Kr + Ag. In crder to show the sensitivity to misalignment, the
angular distribution is also calculated assuming 0 =0, =9, = 0.
Experimental kinetic energy spectra for the a-particles emitted by Ag
at different out-of-plane angles are shown in Fig. 17. These spectra
are in the frame of the recoiling Ag and indicate that we are indeed
dealing with evaporation.

In Fig. 18 the Q value and / dependence of the experimental
angular distribution are shown. The Q value dependence is under-
standabie as follows. In the Tower part of the Q value spectrum
(higher fragment kinetic energies) one has contribution from the
higher 1-waves, while in the higher part of the Q value spectrum as
one moves towards the Coulomb barrier ana below, the main contribution

is expected to come from the low l-waves. As a consequence, with
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progressively increasing § value the ratio 02/12 increases and the
angular distributions become less sharp. The increase of the
anistropy with decreasing fragment atomic number can be understood
from the rigid rotation condition. As the splitting becomes more
asymmetric, a larger fraction of the total angular momentum goes into
fragmen spin, and the larger fragment (Ag-like fragment) gets the
larger part of it (the fragment spins are in the ratio (A1/A2)5/3).
Consequently, es the Z of the detected fragment is lowered, the spin
of the Ag-like fragment increases and the anistropy of the alpha
particles emitted by it increases accordingly.

In Fig. 19 the use of a y-ray multiplicity filter shows that the
angular distribution becomes sharper when a larger number of y-rays
are required to be in coincidence with the o-particle. This effect is
readily understood since a large y-ray multiplicity indicates large
angular momentum which in turn implies a smalier misalignment.

h detailed analysis of these data has not been performed as yet.

Gamma ray angular distributions

Fragments with large amounts of angular momentum are expected to
aispose of it mainly by stretched E2 decay. The relative amounts of
dipole ana quadrupole radiation depends mainly upon the ability of the
nucleus to remain a good rotor over the whole anguiar momentum range.

If the anguiar momentum of the fragment is aligned, the typical
angular pattern of the quadrupole radiation shouid be observed. Any

misaligrment should decrease the sharpness of the angular distribution.
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If the distribution of the angular momentum components Ix’ 1

»

y
IZ is statistical, it is straightforward to derive analytical
expressions for the angular distributions.
For a perfectly aligned system we have:
Wa) =3 (1+cosba) 5 W(a) =7 (1- costa) (36)

for E1 for EZ

If the angular momentum is not aligned with the z axis, one must
express « in terms of e, ¢ which define the direction of the angular
momentum vector. In particular we have:
I'n I _sine cos¢ + I sin® sing + I_cos®
~ ~ X Z 3
C0Sa = —— = ——*——----——"-“——"——1—/'2- ——————— —_— (37/
I ,12 + I2 . 12)
Vi Tty 'z
For any given I, the angular distribution is obtained by integraiion

over the statistical distribution P(I) of the anguiar momentum

components:
Wo.9) = fula) PLL) al (38)

It is not possible tu obtain exact analytical expression. However, an
expansion to order °§/I§’ ci/fi, etc. is adequate and expressions
can be obtained in closed form.

For the dipole decay we have:
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2
a
w(e,6) = %(1 - cosze) + % (sinze coszt - cosze) :% (39}
I
o2
+ (sinze sin2¢ - cosze) L

I

NP

Notice that there is no dependerice upon o;. In the case in which

o, = ay = g, we obtain the simplified expression:

2 2

W(e,p) = % (1 + cos%e) + % (sinze - 2cos?e) %7 (40)
Iz
A weak in-plane anisotropy is possible:
2,72 2 2
° + -
.‘Lw_i_O__LL = ! U;/_Ié =1 4+ OX_Z_?,X (41)
W(g = 90 ) <50 1+ °y/Iz IZ
The out-of-plane anisotropy is:
2,72
° (1 -o%/13) _
w(Oo) =2 5 _; = 2(1 - 202/15) (42)
W(90") (I+6°/1)

For the quadrupole decay we have:
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5 4 5 . 2 2 2 4y “x
W(e,d) = "y (1 - cos's) = > (3 sin“e cos“e cos“ ¢ ~ cos e) »E—Z (43)
z
- 02
+ (3$inze cos‘e sinzﬁ - cos4e) =5
Iz
Again, no dependence upon 32 is predicted. If pna acsumes
o, =g = o as before, one obtains:
X Y
W(e) = %—(l - cosae) - g (3sin29 cosze - 2cos4e) 02/35 (44)
and
° 2
ML o g e (45)
w(90") IZ
For the in plane anisotropy we have:
NW_-‘-;__Q_:)_ ~1 {46)
Wio = 90)) 6 gp°

to order azlii. This can be easily understood. The rms

nisalignment is ~o/I, thus, at e = 90°:

4

4 o g o
W(90) = 1 - cos (O0°- 2} =1 - % (47)
( I) I4
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Thus, no second order term exists. This result shows that its is
impossible to study anistropies in the angular momentum misalignment
by means of y~ray angular distribution.

These results are summarized in ig. 20 where the anisotropy is
plotted as a function of the fraction of El radiation for various
values of ozlfz. If one has a fairly good experimental idea of
the amount of £l radiation to be expected from a given fragment, the
measurement of the anistropy yields directly the value of czliz,
which is of course the most direct information about the misalignment.

The 1060 MeV Xe + Au Experiment(ls)

The predictions of the model just described can be compared with

(15) A window in

the y-ray anistropy measured for the above system.
mass was set in the neighborhood of symmetric splitting, in order to
consider fragments in the heavy rare-earth region which are good
rotors and for which the amount of dipole radiation has been measured
to be ~20 percent. The temperature of the system at symmetry is

estimated to be T = 2 MeV, and

02 Ei-lz: = 140 .
h

In the absence of angular momentum fractionation, the rms fragment
spin should be IF = 46h. However, the measured y-ray multiplicity
yielas I = 32h indicating that fractionation occurs along the mass
asymmetry coordinate and that the lower l-waves have a better chance
to reach symmetry. Thus the misalignment parameter is 02112 = (.14,
With 20 percent El transitions, Fig. 20 predicts antisotropies close

to 0.70. Tne experimental results, shown in Fig. 21 indicate that
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such an anisotropy is indeed observed in the region of gamma ray

energies where the quadrupcle bump is observed.

165Ho 165 (16)

The 1400 MeV + Ho experiment.

In this experiment the most probable exit channel is already
symmetric and in the mass region where a good rotor behavior is well
established. Angular momentum fractionation is not expected to occur
due to the strong concentration of the cross section near symmetric
splitting. The temperature is estimated to be T = 2.1 MeV and the rms
fragment spin is IF = 52h, leading to a misalignment parameter uzliz = 0.055.
With 20 percent E1 one would expect anisotropies of ~0.4 or their
reciprocal in excess of 2. An inspection of the gamma-ray spectra
(Fig. 22) shows that at 90° out-of-plane no quadrupole bump is
observed, while in-plane a strong gquadrupole bump is visible. In the
region of the bump, the anisotropy reaches values higher than 2, while
in the region above the bump the anisotropy disappears (Fig. 23).

Thus one can conclude that the system is strongly aligned and that the
misalignment is close to that predicted by the statistical model. A
remarkable dependence of the anisotropy upon Q value is also observed,
the anisotropy being largest at intermediate Q values. This pheno-
menon is readily explained. At small inelasticities, little angular
momentum is transferrea to the fragments. Thus the amount of
quadrupole radiation is small, while that of dipole should be almost
independent of Q value. Thus weak anisotropies should be expected.

At intermediate inelasticities a large amount of angular momentum is

transferred and a large amount of quadrupole rotation is emitted while
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the misalignment parameter czlfz is relatively small, This
results in large anistropies. At the largest inelasticities only the
lowest 1-waves are known to contribute. Thus czlfz becomes
larger and the anisotropies are weaker.
CONCLUSION

Someone of my 25 listeners (and readers), if that many have
negotiated this long trek with me, may still be curious as to what the
connection may be between the isospin and the spin part of my talk.
Frankly, I would rather not answer directly such a question. Perhaps
it may suffice to say that Tike many other colleagues, I am inordi-
nately enjoying both subjects. And it may be worth meditating again
on this beautiful toy that the nucleus is, so flexible and multi-
faceted to span micro and macrophysics, moving from spectroscopical to
statistical regimes with an ease and an open mind that some of us

observers may have not mastered quite yet.
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FIGURE CAPTIONS

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

1)

2)

3)

4)

6)

7)

Variances of the £ distributions at fixed mass asymmetry vs.
excitation energy in the reaction 136Xe + Au. The dashed

and solid curves indicate the expected variance from gquantal

(2)

and classical statistical fluctuations.

widths of the Z distributions for several masses vs. total

kinetic energy for the reaction 86K. + 98Mo.(3)

The stiffness constant for the oscillation of the charge
excess is plotted against asymmetry (Q = AllAtotal) for

A = 100. The dashed curve cc.responds to the Tiquid drop
potentials for two touriing spheres. The solid curve corres-

ponds to the cylinder model for the Towest mode. The Coulomb

(4)

term is included in both calculations.
The square of the normalized partial width is plotted

a) against asymmetry at fixed n; b) against n at fixed

asymmetry.(4)

The sum of the squares of the normalized partial widths up to

Mmax is plotted against asymmetry.(4)

Gamma ray multiplicity vs. total kinetic energy for three Kr

induced reactions. The solid and dashed curves are fit to

the data.(e)

Gamma ray multiplicities vs. Z for the quasi elastic compo-

nents of the reactions lbeo, 197Au + 618 MeV 8er.(7)

Gamma ray multiplicities for the reaction 175 MeV 20Ne + Ag

at 9u° Lab,(g) and for the reaction 237 MeV 4OAr + 83y,
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Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

9)

10)

11)

1z)

13)

14)

15)

16)

30

Gamma ray multiplicities vs. Z for the deep inelastic compo-

nents in 618 MeV 86Kr + natAg, 165Ho, 197Au.(7)
Gamma ray multiplicity vs. Z for three reactions. The open

circles represent the quasi elastic components and the solid
circles the deep inelastic components. Solid curves are fit
to the data.(s)

Schematic illustration of the tilting (Ti) mode and of the
doubly degenerate wriggling (W) mode. The long arrow origi-
nating at the point of tangency is the orbital angular momen-
tum, while the shorter arrows represent the individual
fragment spins.(ll)
Schematic illustration of the twisting (Tw) and of the doubly
degenerate bending (B) modes. Notice the pair-wise cancella-
tion of the fragment spins.(ll)
In-plane and out-of-plane angular distribution for sequential
fission in the reaction 600 MeV Kr + Au. The in-plane
anistropy is generated by explicitly setting o, = a.

Full width at half maximum of the out-of-plane fission and
non-fission components as a function of Z in the reaction

618 MeV 86Kr + 197.L\u.(14)

Calculated out-of-plane sequential fission angular distribu-

tion of the reaction 620 MeV 86Kr + 197Au.

Calculated out-of-plane angular distribution for sequential
alpha decay from the Ag-like fragment in the reaction 664 MeV

84 nat

Kr + Ag (dashed line). The solig line has been

obtained by setting ¢ = 0.



3

Fig. 17) Kinetic energy spectra at various out-of-plane angles for the
alphas evaporated from the Ag-like fragment in the reaction
664 MeV 84Kr + NatAg. The spectra are in the center-of-
mass of the Ag-like fragment.

Fig. 18) Q-value and Z dependence of the alpha particle out-of-plane
distribution for the same reaction as in Fig. 16.

Fig. 19) Dependence of the alpha out-of-plane angular distribution
upon the gating on various folds in the gamma multiplicity
filter,

Fig. 20) Calculated out-of-plane gamma ray anistropies as a function
of the %El for various values of 02/32.

Fig. 21) (Please observe only left-hand side) OQut-of-plane gamma ray
anistropy as a function of gamma ray energy for the reaction

1064 Mey 136

Xe + Au in the product mass range 152 < A < 172
at three different Q-value bins.
Fig. 22) a, b In plane gamma ray pulse-height spectra for the reac-

tion 1400 Mev 1094 + 165

Ho + Ho for different Q bins. In the
first bin, the quadrupole bump is absent. The 90" out-of-
plane pulse height spectrum closely resembles the in-plane
spectrum for the first bin at all Q values.

Fig. 23) a, b Out-of-plane gamma ray anistropies for the same reac-
tion and ¢ value bins as in Fig. 22 as a function of gamma

ray energies.,
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