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Amongst standard model parameters that are constrained by cosmic microwave background
(CMB) observations, the optical depth τ stands out as a nuisance parameter. While τ provides
some crude limits on reionization, it also degrades constraints on other cosmological parameters.
Here we explore how 21 cm cosmology—as a direct probe of reionization—can be used to indepen-
dently predict τ in an effort to improve CMB parameter constraints. We develop two complementary
schemes for doing so. The first uses 21 cm power spectrum observations in conjunction with semi-
analytic simulations to predict τ . The other uses global 21 cm measurements to directly constrain
low redshift (post-reheating) contributions to τ in a relatively model-independent way. Forecasting
the performance of the upcoming Hydrogen Epoch of Reionization Array, we find that the marginal-
ized 68% confidence limit on τ can be reduced to ±0.0015 for a reionization scenario tuned to fit
Planck’s TT+lowP dataset, and to ±0.00083 for Planck’s TT,TE,EE+lowP+lensing+ext dataset,
assuming early 21 cm data confirm and refine astrophysical models of reionization. These results
are particularly effective at breaking the CMB degeneracy between τ and the amplitude of the
primordial fluctuation spectrum As, with errors on ln(1010As) reduced by a factor of four for both
datasets. Stage 4 CMB constraints on the neutrino mass sum are also improved, with errors reduced
to 12 meV regardless of whether CMB experiments can precisely measure the reionization bump in
polarization power spectra. Observations of the 21 cm line are therefore capable of improving not
only our understanding of reionization astrophysics, but also of cosmology in general.

PACS numbers: 95.75.-z,98.80.-k,95.75.Pq,98.80.Es

I. INTRODUCTION

Through a complementary blend of cosmological
probes, the last decade has seen the emergence and
strengthening of a concordance ΛCDM model of our Uni-
verse. Using just a handful of parameters, the ΛCDM
model provides an adequate fit to data from a wide range
of epochs in our cosmic timeline, ranging from Big Bang
Nucleosynthesis (BBN) to the Cosmic Microwave Back-
ground (CMB) to galaxy surveys and supernovae mea-
surements.

Examined in more detail, however, tensions have
emerged between various datasets. Consider the latest
CMB results from the Planck satellite [1], for instance.
Distance measures inferred from Planck are in mild ten-
sion with Lyman-α baryon acoustic oscillation (BAO)
constraints derived from quasar observations [2]. As an-
other example, Planck data is best fit by a higher am-
plitude of density fluctuations than is preferred by mea-
surements of weak lensing and galaxy cluster counts [3].

∗ acliu@berkeley.edu; Hubble Fellow

While currently still tolerable, these tensions may be the
result of experimental systematics, or may be the first
sign of new physics.

To make progress, it will be necessary to sharpen our
cosmological constraints. In doing so, the hint of incon-
sistencies between data sets will either vanish or become
statistically significant. One way to accomplish this is to
simply take more data. Galaxy surveys, for instance, are
poised to significantly improve their reach with new ex-
periments such as the Dark Energy Spectroscopic Instru-
ment (DESI) [4]. With the CMB, on the other hand, it
is likely that many improvements will come from exploit-
ing qualitatively new probes, such as a measurement of
the primordial B-mode signal, or better measurements of
CMB lensing and secondary anisotropies. These have the
ability to access previously unconstrained phenomena, as
well as to break existing degeneracies between cosmolog-
ical parameters. Better measurements will also pave the
way for expanded cosmological models that constrain the
neutrino mass or the time-evolution of dark energy.

In this paper, we examine the role that the emerging
field of 21 cm cosmology can play in sharpening CMB
constraints. With 21 cm cosmology, one seeks to use the
21 cm hyperfine transition to map the large scale dis-
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tribution of neutral hydrogen at a variety of redshifts.
Existing and upcoming efforts include lower redshift ef-
forts (z <∼ 2) to target baryon acoustic oscillations as
well as higher redshift measurements that will provide a
uniquely direct probe of the intergalactic medium (IGM)
during the reionization epoch, when radiation from the
first galaxies systematically ionized the IGM. Examples
of 21 cm experiments include the Green Bank Telescope
[5, 6], the Canadian Hydrogen Intensity Mapping Exper-
iment [7], and the Baryon Acoustic Oscillation Broad-
band and Broad-beam Array [8] at low redshifts, and the
Precision Array for Probing the Epoch of Reionization
[9], the Murchison Widefield Array [10, 11], the Giant
Metrewave Radio Telescope [12], and the Low Frequency
Array [13] at high redshifts. Although the methods in
this paper are general, we will focus on the upcoming
high-redshift experiment Hydrogen Epoch of Reioniza-
tion Array (HERA [14]) as our main worked example,
with some quick estimates also provided for the future
Square Kilometre Array (SKA [15]).

Whereas reionization is the prime epoch of study for
many 21 cm experiments, it is simultaneously an interest-
ing epoch and a nuisance for CMB studies. Reionization
releases free electrons into the IGM, which Compton scat-
ter CMB photons as they stream from the surface of last
scattering to our detectors, necessitating the introduc-
tion of an optical depth parameter τ that quantifies the
probability of scattering. The free electrons released by
reionization source additional polarization fluctuations,
giving rise to a “reionization bump” feature at large an-
gular scales in polarization power spectra. The amplitude
of the bump scales as τ2, and thus an accurate measure-
ment of this feature enables precise constraints on τ . In
turn, τ can be converted into a crude redshift of reion-
ization, with higher τ implying a higher redshift.

At fine angular scales, the main effect of τ is to dampen
the measured CMB anisotropies (whether in the tem-
perature or polarization power spectra), which unfortu-
nately means that τ is largely degenerate with As, the
amplitude of primordial density fluctuations. Although
this degeneracy is partially broken by the aforementioned
polarization signature (or by CMB lensing if one assumes
no departures from standard ΛCDM evolution), it re-
mains to a large extent. This degrades cosmological pa-
rameter constraints from the CMB, and it is in this sense
that reionization is a nuisance for CMB experiments.

In this paper, we show that 21 cm reionization experi-
ments have the ability to place constraints on reionization
that are stringent enough to allow high-precision deter-
minations of τ . These can then be fed into CMB studies,
effectively eliminating τ as a nuisance parameter. Pro-
vided astrophysical modeling uncertainties are made suf-
ficiently small with upcoming measurements, this would
push CMB measurements into a new regime by avoiding
cosmic variance limits on a determination of τ . Con-
cretely, a known value of τ would improve estimates of
As. In turn, this would sharpen any cosmological tests
that depend on comparing primordial fluctuations (con-

trolled by As) and low-redshift measures of structure
such as cluster counts and CMB lensing. Any discrep-
ancies between early and late time measurements are
potentially indicative of cosmological evolution beyond
that predicted by basic ΛCDM, signaling cosmological
evidence for model extensions such as a non-zero neu-
trino mass or an evolving dark energy equation of state.
Measurements of the 21 cm line will therefore have broad
cosmological implications for future CMB studies.

This work differs from previous cosmological param-
eter estimation forecasts in that previous papers have
mostly arrived at improved constraints by focusing on
the larger co-moving volume of our Universe that can be
potentially accessed by 21 cm surveys compared to tra-
ditional galaxy surveys [16–25]. The framework that we
establish here assigns a more limited—but arguably more
robust—role to 21 cm surveys. In this paper, the CMB
experiments deliver the bulk of the cosmological infor-
mation, and the 21 cm surveys play the secondary role of
providing details about reionization that are difficult to
obtain from the CMB. In this sense, our work builds on
that of Ref. [26], where the possibility of estimating τ
from 21 cm cosmology was briefly considered. The rest
of this paper is organized as follows. In Sec. II we in-
troduce the fiducial experiments and models that we use
for our forecasts. Sec. III discusses the various sources
of uncertainty in a prediction of τ . Sec. IV then es-
tablishes a formalism for folding 21 cm power spectrum
measurements into CMB analyses via τ . Forecasted im-
provements on cosmological parameters based on this for-
malism are presented in Sec. V. In Sec. VI we explore
how direct measurements of the mean 21 cm brightness
temperature field can reduce the model dependence of a
τ prediction, and we summarize our conclusions in Sec.
VII.

II. FIDUCIAL EXPERIMENTS AND
ASSUMPTIONS

Throughout this paper, we will illustrate our frame-
work for sharpening cosmological constraints by consider-
ing various fiducial experiments. From the 21 cm side, we
will consider two types of experiments. Sections IV and
V concentrate on 21 cm power spectrum experiments.
These typically consist of low-frequency radio interferom-
eters, which measure the redshifted brightness tempera-
ture contrast δTb(n̂, ν) of the 21 cm line against the CMB,
where n̂ specifies the direction on the sky and ν is the
observation frequency. Given the spectral nature of the
probe, different frequencies can be translated into differ-
ent radial distances, and the result is a three-dimensional
brightness temperature distribution δTb(r) in terms of
comoving coordinates r. Fourier transforming and bin-
ning this distribution then allows a measurement of the
brightness temperature power spectrum P21(k), defined
by

〈δT̃b(k)δT̃b(k
′)∗〉 ≡ (2π)3δD(k− k′)P21(k), (1)



3

where δD signifies a Dirac delta function, pointed brack-

ets 〈· · · 〉 represent an ensemble average, and δT̃b(k) is the
Fourier transform of δTb evaluated at spatial wavevector
k. Note that since the statistical properties of the bright-
ness temperature evolve substantially as reionization pro-
gresses, one typically does not form a single power spec-
trum over the entire survey volume of a 21 cm survey, as
doing so would violate the central assumption of transla-
tion invariance necessary for forming a power spectrum.
Instead, most analysts break up their wide bandwidth
data into a few (relatively) narrow chunks and compute
multiple power spectra P21(k, z) centered on several dif-
ferent redshifts [27]. Current instruments such as GMRT,
MWA, LOFAR, and PAPER have begun to place scien-
tifically interesting upper limits on such power spectra
[28–31].

As our fiducial 21 cm power spectrum experiment, we
pick HERA, a low-frequency radio interferometric array
that is currently being constructed in the South African
Karoo desert. HERA’s construction plans involve an in-
cremental buildup of a series of 14-m diameter dishes,
closely packed in a hexagonal configuration. In this pa-
per, we assume that observations are made when the ar-
ray consists of 331 such dishes. These dishes are not
steerable, and instead observe in a drift-scan mode. From
HERA’s location, this provides roughly 6 hours of usable
observation time per day, defined to be when the Galac-
tic plane is sufficiently far below the horizon. We further
assume 180 days of observations, providing 1080 hours of
total observation time. This should, however, not be con-
sidered 1080 hours of integration time in the conventional
sense, since drift-scan observations are by definition dis-
tributed amongst different patches of the sky. The obser-
vation time is thus only coherently integrated for a por-
tion of the this time, although all the data are eventually
folded into a single final estimate of the power spectrum.

To forecast power spectrum sensitivities amidst such
complications, we make use of the 21cmSense code1

[8, 14]. This code also takes into account the seri-
ous challenge of foreground contaminants in any highly
redshifted 21 cm observation. Foregrounds arise from
sources such as Galactic synchrotron radiation, and are
four to five orders stronger than the 21 cm cosmologi-
cal signal in brightness temperature. In this paper, we
use the “moderate foregrounds” setting of 21cmSense to
account for contamination. This makes the assumption
that foregrounds are preferentially confined to certain re-
gions of Fourier space. This confinement is most nat-
urally expressed in terms of spatial Fourier wavenum-
bers for Fourier modes along the line-of-sight, k‖, and
wavenumbers for those perpendicular to the line-of-sight,
k⊥. Foreground contaminants are expected to appear

1 https://github.com/jpober/21cmSense

mostly in modes that satisfy the condition

k‖ < k0
‖ +

H0Dcθ0

[
Ωm(1 + z)3 + ΩΛ

] 1
2

c(1 + z)
k⊥, (2)

where c is the speed of light, H0 is the Hubble parame-
ter, Dc is the comoving line-of-sight distance, Ωm is the
normalized matter density, ΩΛ is the normalized dark en-
ergy density, k0

‖ is some constant offset, and θ0 is a char-

acteristic angular scale on the order of the instantaneous
field-of-view of radio antennas. Detailed derivations of
this formula may be found in, e.g., Ref. [32, 33], but for
the purposes of this paper, it is sufficient to simply un-
derstand the qualitative features of this condition, which
are as follows. The foregrounds that plague 21 cm exper-
iments are generally expected to possess smooth spectra.
Given that redshifted 21 cm observations are mappings
of a spectral line, the spectral axis maps to line-of-sight
distance r‖, and it follows that once they are Fourier
transformed, spectrally smooth foregrounds should be
seen only at k‖ modes below some k0

‖ that quantifies the

degree of smoothness. However, this is complicated by
the inherent chromaticity of interferometers, which may
imprint extra spectral structure into the observations of
foregrounds, and thus cause them to appear at higher k‖.
Such effects are particularly pronounced for the longer
baselines of an interferometer, which are sensitive to finer
spatial structures—higher k⊥ modes—on the sky. This
leads to the second term of Eq. (2). On the “moder-
ate foregrounds” setting of the 21cmSense code, modes
satisfying Eq. (2) are assumed to be irrecoverably con-
taminated by foregrounds and are discarded. The power
spectrum error bars in the other modes are calculated us-
ing the methods of Ref. [34], where standard formulae for
interferometric noise are cast in a cosmological context.
At the low frequencies relevant to 21 cm experiments that
target reionization, these errors are typically dominated
by sky noise, although cosmic variance is also accounted
for in 21cmSense.

The other category of 21 cm experiments that we con-
sider are known as global signal experiments. Here, the
goal is to measure the angle-averaged brightness temper-
ature δT b(ν) as a function of frequency (or equivalently,
redshift). As a fiducial experiment, we will consider a
single dipole observing the Northern Galactic Pole with
a primary beam profile of the form

A(θ, ϕ) = exp

(
−1

2

θ2

θ2
b

)
cos θ, (3)

where θ is the polar angle from zenith, ϕ is the az-
imuthal angle, and θb is a characteristic primary beam
width. We take θb to be 0.3 rad at the lowest observa-
tion frequency (either 150 MHz or 175 MHz depending
on the dataset) and inversely proportional to ν at other
frequencies. Spectral foreground contamination is com-
puted by mock observations of the Global Sky Model of
Ref. [35]. Observational error bars are computed using
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the radiometer equation, where the noise temperature
variance σ2 is given by

σ2 =
2T 2

sys

tint∆ν
, (4)

where tint is the integration time (set to 500 hours for
all global signal experiments considered in this paper),
∆ν is the frequency channel width (set to 1 MHz), and
Tsys is the system temperature (set to be equal to the
sky temperature for low-frequency, sky-noise dominated
regime considered here). The factor of two arises from
the squared nature of auto-correlation experiments like
the single-dipole experiments considered here, where the
variance goes as the four-point function of the (Gaussian-
distributed) output voltages.

For the CMB, we make use of publicly available data
products from the Planck satellite’s 2015 data release.
We use only the best fit values for cosmological param-
eters and their accompanying covariance matrices, es-
sentially approximating parameter uncertainties as be-
ing Gaussian, forgoing the also-publicly available non-
Gaussian posterior distributions. This approximation is
made to match the simplicity of the 21 cm parameter es-
timates, which are based on the Fisher matrix formalism
to avoid the computational expense of a full Bayesian
treatment. Throughout the paper, we will focus on the
“TT+lowP” and the “TT,TE,EE + lowP + lensing +
ext” datasets from the Planck 2015 data release [2, 36].
These datasets bracket the range of uncertainties from
the data release, with the TT+low dataset having rela-
tively large errors by Planck standards, while TT,TE,EE
+ lowP + lensing + ext has the tightest error bars. Con-
veniently, these datasets are also close to representing
the extremes in terms of reionization scenarios allowed
by CMB data. The TT+low dataset implies a relatively
high redshift zion for reionization (zion ≈ 9.9, assuming
a width ∆zion ∼ 0.5 in the ionization history), whereas
TT,TE,EE + lowP + lensing + ext is best fit by a later
reionization epoch (zion ≈ 8.8). As was demonstrated
in Ref. [27], this can have a rather large impact on
reionization constraints from 21 cm measurements. In
either case, HERA’s broad frequency range (from 100 to
200 MHz, with strong possibilities for extensions on ei-
ther end of the spectrum) allows a precise determination
of τ from 21 cm data.

III. INGREDIENTS FOR A PRECISE
PREDICTION OF τ

In practical terms, the optical depth τ is a nuisance
parameter that is self-consistently fit for in CMB stud-
ies. While such an approach is attractive in that it does
not require detailed models of reionization (or any other
process that may produce free electrons), its downside is
that one must simply accept any degeneracies in param-
eter fits. In particular, CMB experiments are much more
sensitive to the overall combination of Ase

−2τ than to

As or τ individually. Our goal in this paper is to show
how this degeneracy can be broken with the aid of 21 cm
data. Typically, this requires modeling the underlying
astrophysics of reionization, and in this section we pre-
cisely describe the various quantities (both astrophysical
and cosmological) that are needed for such modeling.

The optical depth is given by

τ = σT

∫
ne(z)

dl

dz
dz, (5)

where σT is the Thomson cross-section, ne is the free-
electron number density (with the overline denoting an
average over all sky directions), and dl/dz is the line-
of-sight proper distance per unit redshift. Explicitly, ne
may be decomposed as

ne = xHIInH + xHeIInHe + xHeIIInHe

= xHIInb +
1

4
xHeIIInbY

BBN
p

= nb

[
xHII(1 + δb) +

1

4
xHeIII(1 + δb)Y

BBN
p

]
, (6)

where nH, nHe, and nb = nH + nHe are the hydrogen,
helium, and baryon number densities, respectively. The
ionization fractions (defined to be between 0 and 1) are
given by xHII, xHeII, and xHeIII, referring to singly ionized
hydrogen, singly ionized helium, and doubly ionized he-
lium, respectively. The helium fraction Y BBN

p is defined

as 4nHe/nb, and δb denotes the baryon overdensity.2 In
the penultimate equality, we made the standard approx-
imation that the helium is singly reionized at the same
time as hydrogen is, and in the final equality, we used
the fact that nb = nb(1 + δb). With this factorization,
the averaged baryon density can be easily related to cos-
mological parameters via

nb =
3H2

0 Ωb
8πGµmp

(1 + z)3, (7)

where Ωb is the normalized baryon density, G is the grav-
itational constant, mp is the mass of the proton, and µ
is the mean molecular weight, which in our case is given
by

µ = 1 +
Y BBN
p

4

(
mHe

mH
− 1

)
. (8)

Finally, we assume a flat universe and thus have as our
differential line element

dl

dz
=

c/H0

(1 + z)
√

Ωm(1 + z)3 + ΩΛ

. (9)

2 We follow the Planck team’s convention and notation in defining
Y BBN
p as four times the number density fraction, rather than as

the helium mass fraction (which would instead be defined as
4nHe/[nH + (mHe/mH)nH], where mH and mHe are the atomic
weights of hydrogen and helium, respectively).
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Putting everything together, we may express the to-
tal optical depth as τ ≡ τH + τHe, with τH and τHe de-
noting the portions of the optical depth sourced by free
electrons from HI/HeI reionization and that from HeII
reionization, respectively.3 These two contributions take
the form

τH =
3H0ΩbσT c

8πGmp

[
1 +

Y BBN
p

4

(
mHe

mH
− 1

)]−1

×
∫ zCMB

0

dz(1 + z)2√
ΩΛ + Ωm(1 + z)3

xHII(1 + δb), (10)

and

τHe =
3H0ΩbσT c

8πGmp

[
4

Y BBN
p

+

(
mHe

mH
− 1

)]−1

×
∫ zCMB

0

dz(1 + z)2√
ΩΛ + Ωm(1 + z)3

xHeIII(1 + δb), (11)

where zCMB is the redshift of the surface of last scat-
tering. From these expressions, we see explicitly how
various cosmological parameters and astrophysical fields
contribute to a prediction of τ . In what follows, we will
discuss the extent to which these contributions must be
known accurately before a high-precision value for τ can
be predicted.

A. Uncertainties from fundamental constants and
cosmological parameters

Eqs. (10) and (11) both involve a large number of fun-
damental constants and cosmological parameters, all of
which come with their own error bars. Constants such
as G, σT , c, mp, mH, and mHe contribute negligibly to
the error budget of τ . The same is true for Y BBN

p , which
is constrained to be 0.2467 ± 0.0006 by a combination
of Planck data and BBN calculations [2]. The remain-
ing parameters contribute to the error budget in a non-
negligible way and must be accounted for.

Consider first the uncertainties arising from cosmologi-
cal parameters, leaving astrophysical uncertainties in the
reionization process to Sec. III B. To simplify the latter in
order to clarify the former, suppose (for this section only)
that reionization occurs instantaneously at redshift zion

(with different values depending on whether one is dis-
cussing hydrogen or helium reionization, i.e., whether one
is referring to Eqs. 10 or 11). Terms such as xHII(1 + δb)

and xHeIII(1 + δb) thus reduce to step functions that are
1 for z < zion and 0 otherwise. The integrals in our

3 Throughout this paper, we adopt the convention where “hydro-
gen reionization” refers to the joint reionization of HI and HeI,
whereas “helium reionization” refers to the ionization of HeII
only.

expressions can then be evaluated analytically, yielding

τ ∝ hΩb
Ωm

[√
ΩΛ + Ωm(1 + zion)3 − 1

]
, (12)

where we have employed the standard definition H0 ≡
100hkm/s

Mpc , and have omitted the subscripts for τHI and

τHe in favor of a generic τ because the dependence on
cosmological parameters are the same in either case.

To estimate the uncertainty in this prefactor for τ ,
we propagate cosmological parameter uncertainties from
Planck results. To account for error correlations between
different parameters, we use the publicly released covari-
ance matrices to draw random samples of Ωbh

2, Ωch
2,

and θMC, where Ωc is the normalized cold dark matter
density, and θMC is the CosmoMC software package’s [37]
approximation to the angular size of the sound horizon
at recombination. From this set, all the parameters nec-
essary for evaluating Eq. (12) can be obtained. Using
Planck’s TT + lowP covariance from the 2015 data re-
lease (featuring relatively high Ωm and τ), the fractional
error in Eq. (12) is 1.40%. Similar results are obtained
for TT,TE,EE + lowP + lensing + ext (featuring rela-
tively low Ωm and τ), with a fractional error of 0.75%.
Note that these values are merely rough estimates of how
cosmological parameter uncertainties can affect a 21 cm-
derived prediction of τ . This is because we have so far
only considered the influence that cosmological parame-
ters have on the “geometric” portions of τ (e.g., dl/dz).
In reality, cosmological parameters also affect quantities
such as xHII, leading to the possibility that the final er-
rors may be different from what is predicted in this sec-
tion. However, it is reassuring that our estimates are
small enough that it appears to be a worthwhile exercise
to use 21 cm observations to better constrain τ . We will
find this conclusion to be unchanged when we include
the non-geometric influence of cosmological parameters
in Sec. IV.

B. Uncertainties from astrophysical processes

We now consider the uncertainties in predicting τ that
arise directly from uncertain astrophysics (aside from
the subtler changes to astrophysics occurring because
of shifts in cosmological parameters that we alluded to
above). At the crudest level, changes in astrophysics af-
fect the redshift of reionization zion, which affects the
optical depth via Eq. (12). Indeed, working in reverse
and solving for zion given a measured value of τ is how
CMB experiments have traditionally placed constraints
on reionization, although recent advances in higher order
effects such as the kinetic Sunyaev-Zel’dovich effect have
enabled increasingly sophisticated limits [38–40].

Ultimately, we shall see that it is important to model
reionization astrophysics in detail, beyond the simple
parametrization of zion. However, by considering the
coarse dependence of zion on τ , we can distinguish the
pieces of astrophysics that need to be carefully modeled
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from those that do not. In particular, we will now show
that helium reionization contributes relatively little to τ ,
making simple models of the process sufficient. Consider
the ratio of τHe to τH, which can be written as

τHe

τH
=
Y BBN
p

4

[√
ΩΛ + Ωm(1 + zion,He)3 − 1√
ΩΛ + Ωm(1 + zion,H)3 − 1

]
, (13)

where zion,He and zion,H are the redshifts of helium and
hydrogen reionization, respectively, assuming that both
processes are instantaneous. For a fiducial model with
ΩΛ = 0.6911, Ωm = 0.3089, zion,H = 8.8 (corresponding
to Planck’s TT,TE,EE + lowP + lensing + ext dataset),
and zion,He = 3, this ratio is∼ 1.4%. Any errors in helium
reionization are then suppressed by this factor. Quantita-
tively, if we parameterize the uncertainty in helium reion-
ization by considering a shift δzion,He in zion,He, the frac-
tional error in τ arising from such uncertainty is given ap-
proximately by τ−1

ion,H(∂τHe/∂zion,He)δzion,He. This quan-
tity is shown in Fig. 1, where we have overlaid the frac-
tional errors from cosmological parameter uncertainties
that we computed in the previous section. One sees that
so long as the redshift of helium reionization zion,He can
be constrained reasonably well (say, δzion,He ∼ 1), the
uncertainties in the astrophysics of helium reionization
are subdominant to those from cosmological parameters.
As a proxy for δzion,He, consider the spread in the inferred
zion,He values from HeII Lyα absorption studies. With an
increased number of sightlines, recent studies have shown
significant scatter in zion,He, suggesting a rather extended
helium reionization between z ∼ 3.4 and z ∼ 2.7 [41],
but this still satisfies our requirement that δzion,He

<∼ 1.
Admittedly, this is a rather crude way to estimate error
contributions from helium reionization, one which can be
easily improved upon even with current data. For now,
however, we will assume for simplicity that uncertain-
ties in helium reionization can be ignored based on our
back-of-the-envelope estimates.

In contrast, the astrophysics of hydrogen reionization
must be accurately modeled for precise predictions of τ .
Repeating the above analysis for order unity perturba-
tions in the zion,H, the resulting change in τ is ∼ 17%,
largely because there is no longer a suppression by the
ratio τHe/τH. Of course, this is hardly surprising, for if
changes in zion,H did not generate reasonably large shifts
in τ , CMB-derived constraints on reionization would not
exist. For our goal of predicting τ to be worthwhile, then,
the details of hydrogen reionization must be understood.
In fact, with hydrogen reionization dominating the CMB
optical depth, one must also go beyond simple models of
instantaneous reionization. To see this, consider the fol-
lowing numerical experiment. The astrophysics of reion-
ization enters Eq. (10) via the xHII(1 + δb) term, the
density-weighted ionized fraction. Crucially, it is incor-
rect to simplify this term to xHII(1 + δb) (which would
consequently make it equal to xHII), since xHII and δb
may be spatially correlated, making the angular average
of their product different from the product of their aver-
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FIG. 1. Fractional error in τ induced by uncertainties in he-
lium reionization as a function of the redshift of helium reion-
ization zion,He and the uncertainty in this redshift δzion,He.
For reasonable values of these parameters, the errors arising
from uncertainties in helium reionization are subdominant to
those arising from cosmological parameter uncertainty. It is
thus permissible to neglect uncertainties in helium reioniza-
tion.

ages. In general, spatial correlations are an expected fea-
ture of reionization. For example, in “inside-out” models
of reionization, higher density regions produce a greater
number of ionized photons and preferentially ionize first
[42, 43], resulting in a positive correlation between xHII

and δb. This is in contrast to “outside-in” models, where
recombinations limit the rate of ionization, and thus
higher density regions (where recombinations are more
common) are ionized last [44]. This results in a nega-
tive correlation between ionization and density. Fig. 2
shows the differential contributions to the total optical
depth in various models, all with the same mean ioniza-
tion history xHII(z). These are based on simulations used
in Ref. [45], where the interested reader will be able to
find details. In brief, the curves labeled “Global” refer to
reionization models where the morphology of reionization
is driven by the large scale structure of the density field.
This tends to lead to large ionized regions around clus-
tered high density peaks. On the other hand, the curves
labeled “Local” refer to reionization models where small
ionized bubbles form around individual galaxies. Each
type of reionization morphology (“Global” or “Local”)
is then also paired with the inside-out or outside-in sce-
narios discussed above. One sees from Fig. 2 that these
details of reionization matter, and induce errors of ∼ 5
to 10% in τ if not accounted for.

Mathematically, the fact that xHII(1 + δb) does not re-
duce to xHII is due to our use of angular averages, which
are akin to volume averages. This makes our definition of
the ionized fraction xHII conform to the convention typ-
ically employed in the reionization literature, where it is
often denoted the volume filling factor of ionized fraction.
Such a definition is convenient for relating our measure-
ments to simulations (as we do so in the following sec-
tion), since the simulations provide ionization fractions in
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FIG. 2. Cumulative contribution to the optical depth τ from
low to high redshift, for several different models of reioniza-
tion. The crucial astrophysical quantity for a precise deter-
mination of τ is the density-weighted ionized fraction. This
depends on the correlation between the ionization field and
the density field. The different reionization models shown
here reflect different models for this correlation, which must
be known for a precise prediction of τ , given the spread seen
here.

cells of fixed volume. If one prefers, it is of course permis-
sible to define one’s averages in terms of mass-averages.
Eq. (10) then amounts to an integral (with appropriate
geometric factors) over xHII. In some sense, though, this
is merely a cosmetic change, for in order to accurately
compute a mass-weighted average, the reionization simu-
lations must still model the spatial correlations between
the density and ionization.

In summary, the uncertainties in τ predictions arise
from both uncertainties in cosmological parameters and
uncertainties in astrophysics. If not accounted for in de-
tail, the astrophysics contributes more to errors in τ than
the cosmology does. To make progress, then, our goal is
to use 21 cm data to better understand the astrophysics
of reionization.

IV. RELATING τ TO HI SURVEYS

As we have seen in previous sections, predictions of τ
are currently dominated by uncertainties in astrophysics.
In this section, we establish formalism for incorporating
21 cm-derived astrophysical constraints from reionization
to provide better measurements of τ (and thus other
cosmological parameters) than one can obtain using the
CMB alone.

The brightness temperature contrast δTb of the red-
shifted 21 cm line against the CMB is given by [43, 46]

δTb(n̂, ν) ≈ δTb0 xHI(1 + δb)

(
1− Tγ

Ts

)(
H

H + ∂vr/∂r

)
,

(14)

with

δTb0 =
9h̄c2A10ΩbH0

128πGkBν2
21µmpΩ

1/2
m

(
1−

Y BBN
p

4

)

≈ 28

(
1 + z

10

0.14

Ωmh2

) 1
2
(

Ωbh
2

0.022

)
mK, (15)

where h̄ is the reduced Planck’s constant, A10 = 2.85 ×
10−15 s−1 is the spontaneous emission coefficient of the
21 cm transition, kB is Boltzmann’s constant, ν21 ≈
1420 MHz is the frequency of the 21 cm line, xHI =
1− xHII is the hydrogen neutral fraction, Tγ is the tem-
perature of the CMB, Ts is the spin temperature of the
hydrogen atoms, and ∂vr/∂r is the derivative of the co-
moving radial peculiar velocity with respect to the co-
moving radial distance. The peculiar velocity gradient is
assumed to be small relative to the Hubble parameter H
in Eq. (15), and it is understood that Tγ , Ts, δb, xHI,
H, and ∂vr/∂r are evaluated at redshift z = (ν21/ν)− 1.
The brightness temperature field is sensitive to both the
cosmology (via δb, H, ∂vr/∂r and standard cosmologi-
cal parameters) and the astrophysics (via xHI and Ts)
of reionization. Since the product of xHIδb enters the
expression for δTb, the 21 cm line is clearly sensitive to
the correlations between density and ionization, which
we argued in the previous section are a crucial ingredient
in our quest to understand reionization well enough to
precisely predict τ .

To harness the 21 cm line for a τ prediction, however,
there are two challenges that must be overcome. First,
it is necessary to make redshifted 21 cm measurements
that have high enough signal-to-noise to be useful. Un-
fortunately, a combination of sensitivity limitations and
foreground contamination make direct mapping of the
brightness temperature field unlikely in the near future.
More observationally attainable in the short term are
measurements of the brightness temperature power spec-
trum P21(k), as defined by Eq. (1).

Having identified the 21 cm power spectrum as a
promising near-term, high signal-to-noise measurement
of reionization, the second challenge is the translation of
our measurements into a precise prediction of τ . Fun-
damentally, what is needed for Eq. (10) is the density-
weighted ionized fraction, but as one sees from substi-
tuting Eq. (14) into Eq. (1), the 21 cm power spectrum
probes a much more complicated combination of param-
eters and their correlations. To connect our power spec-
trum observations to the underlying fields needed for our
τ prediction, we appeal to semi-analytic simulations. In
particular, we assume an inside-out model of reioniza-
tion based on the excursion set formalism of Ref. [47], as
implemented in the publicly available 21cmFAST software
[48]. Of course, this is a rather specific model of reion-
ization, and once 21 cm measurements move beyond an
initial detection, it will be crucial to test the validity of
the model. For simplicity, we will assume for the rest of
the paper that such a model selection exercise has already
been performed, which upcoming instruments should be
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FIG. 3. Top row: Simulation of the nonlinear density field over the past light cone that is observed by a 21 cm experiment.
Second row: Corresponding ionization fraction, assuming (Tvir, Rmfp, ζ) = (6 × 104 K, 35 Mpc, 30) to match the optical depth
of Planck TT,TE,EE + lowP + lensing + ext. Third row: Corresponding ionized fraction history xHII (red solid curve) and

the density-weighted ionization history xHII(1 + δb) (black solid curve). The averaged ionized fraction is also seen to be a
poor approximation for the density-weighted ionized fraction, which is the crucial quantity for determining τ . Bottom row:
Corresponding 21 cm power spectra (black) at various redshifts, plotted as ∆2

21(k) ≡ k3P21(k)/2π2. Blue and orange curves
show power spectra for different values of Tvir. In our proposed analysis, one measures the bottom row through observations,
constraining underlying model parameters that are then fed into simulations to produce the top two rows. The density-weighted
ionization fraction (third row) is then extracted and inserted into Eq. (10) to determine τ .

able to do at high significance [45]. We base our forecasts
on the excursion set-based inside-out model of 21cmFAST
because it runs quickly and has been shown to agree rea-
sonably well with state-of-the-art ray-tracing radiative
transfer simulations [49]. However, we stress that our
formalism can be applied to any reionization simulation;
in what follows, one simply replaces Eqs. (16) and (17)
with expressions calibrated to a chosen simulation.

Fig. 3 illustrates how semi-analytic simulations can
be used to connect 21 cm power spectrum measurements
to τ . The bottom row of the figure shows the 21 cm
power spectra at various redshifts, plotted as ∆2

21(k) ≡

k3P21(k)/2π2. These are (after some data analysis) what
21 cm experiments measure. With power spectra in hand,
one can simultaneously fit for astrophysical and cosmo-
logical parameters in an underlying model of reionization,
using priors from other cosmological probes such as the
CMB. Once the underlying parameters have been deter-
mined, semi-analytic simulations can be run to produce
past light cone maps of the non-linear baryon density (top
row of figure) and ionization fields and ionization fields
(second row). These maps can then be used to form

xHII(1 + δb) (third row), which is then inserted into Eq.
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(10) to predict τ . Note from Fig. 3 that there is a clear

difference between the xHI and xHII(1 + δb) curves, again
illustrating the importance of modeling correlations be-
tween density and ionization.

Importantly, the semi-analytic simulations used for the
procedure outlined above must span a wide range of red-
shifts, from before reionization has begun to after reion-
ization is complete. This is necessary because even small
levels of ionization can perturb the predicted value of
τ by more than our final error bars. By producing full
histories of the density and ionization fields, the simu-
lations compensate for the limited reach in redshift of
near-term experiments, which are unlikely to probe the
very beginning of reionization to high precision. The
self-consistency required by a simulation produces a full
reionization history once the model parameters are fixed
by (relatively) low-redshift observations, although longer
term measurements will be less dependent on this ex-
trapolation given ongoing progress in pushing to z ∼ 30
[50–53].

Another limitation of our observations lies in the in-
herent uncertainty of a 21 cm power spectrum measure-
ment. Instrumental noise, foregrounds, and degenera-
cies inherent in analyzing a power spectrum observation
mean that our predicted value of τ will come with a cor-
responding set of uncertainties. Fortunately, we will now
see that these errors and degeneracies in 21 cm measure-
ments are unlikely to seriously compromise out ability
to predict τ . Following Refs. [14, 54], we consider a
three-parameter model of reionization, parameterized by
Tvir, the minimum virial temperature of the first ioniz-
ing galaxies; ζ, the ionizing efficiency of those galaxies;
and Rmfp, the mean free path of ionizing photons in ion-
ized regions of our Universe.4 As shown in Ref. [14],
21 cm power spectrum measurements tend to constrain
these parameters in a way that leaves Tvir and ζ largely
degenerate. While multi-redshift information does help
to break this degeneracy, it tends to remain to some de-
gree. This can be seen in Fig. 4, where we show Fisher
matrix projections for parameter constraints on Tvir and
ζ. The black contours demarcate the 68% and 95% con-
fidence regions for a hypothetical power spectrum mea-
surement performed by HERA spanning 6.1 ≤ z ≤ 9.1
at intervals of ∆z = 0.3 (chosen to optimize parameter
constraints [27]). These are calculated by first computing
power spectrum sensitivities using 21cmSense, which are
then fed into a Fisher matrix computation based on that
employed in Ref. [14], except with our current experi-
mental parameters and fiducial astrophysical parameters

4 Of course, there exist a large number of other parameteriza-
tions and models to describe reionization (e.g., [49, 55–58]). Our
intention here is not to imply that the three-parameter model
employed here will be applicable to future 21 cm measurements
without modification. Instead, it is simply a model that is de-
signed to be both reasonably realistic and flexible enough to en-
compass a large variety of reionization histories [54].
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FIG. 4. Forecasted 68% and 95% confidence regions (black el-
lipses) in the Tvir-ζ parameter space for HERA observations,
along with 21cmFAST-predicted optical depth τ (filled color
contours). The rough alignment of the degeneracy directions
suggest that uncertainties in astrophysical parameters aris-
ing from 21 cm power spectrum measurements are unlikely
to seriously compromise one’s ability to make highly precise
predictions of τ .

set at (Tvir, Rmfp, ζ) = (6 × 104 K, 35 Mpc, 30). These
values are chosen to match the best-fit optical depth of
τ = 0.066 from the Planck TT,TE,EE + lowP + lensing
+ ext dataset. Marginalizing over cosmological parame-
ters as well as Rmfp then gives the contours in Fig. 4.

For every point in Tvir-ζ space we also show values for
τ , predicted from 21cmFAST using the procedure outlined
above with cosmological parameters fixed at their fidu-
cial values. Here and in the rest of the paper, we assume
that helium is instantaneously reionized at z = 3, having
argued earlier that uncertainties in helium reionization
are negligible. Immediately striking is the way in which
contours of constant τ are roughly aligned with the con-
tours from our power spectrum constraint on Tvir and ζ.
This would be bad news if our goal was to use CMB mea-
surements of τ to place additional constraints on the as-
trophysical parameters of reionization, since parallel con-
tours mean that the constraints are not complementary,
not to mention the fact that the 68% confidence interval
on τ from the CMB roughly spans the entire color scale of
Fig. 4. However, parallel contours are desirable for the
goals of this paper, since they mean that the inherent
degeneracies in one’s ability to predict reionization pa-
rameters from 21 cm power spectrum measurements do
not detract from one’s ability to make a highly precise
prediction of τ .

Fundamentally, this rather fortunate alignment of con-
tours arises because both the 21 cm line and τ are probes
of reionization that are particularly sensitive to the tim-
ing of the process, but are relatively insensitive to pa-
rameter shifts that leave the timing the same. Consider a
simultaneous increase in Tvir and ζ, for example. Increas-
ing Tvir means that reionization is driven by more massive
galaxies, which are fewer in number. If one correspond-
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ingly increases ζ, however, each galaxy within this rarer
population will produce more ionizing photons, leaving
the timing of reionization roughly unchanged. The re-
sult will have little impact on τ , which is only affected by
the total column density of free electrons between us and
the surface of last scattering, with no regard for whether
these free electrons were produced by a large population
of faint ionizing sources or a small population of bright
sources. As for the power spectrum measurements, previ-
ous work [14] has shown that redshift evolution is one of
the principal ways to break astrophysical parameter de-
generacies. Combinations of parameter shifts that leave
timing unchanged therefore survive as the residual de-
generacies seen in Fig. 4.

Importantly, the similarities between constraints from
τ and those from 21 cm power spectra seem to be gen-
erally robust. Switching to Planck’s TT+lowP dataset,
we match its best-fit τ value of 0.078 by using a fidu-
cial astrophysical parameter set of (Tvir, Rmfp, ζ) = (4×
104 K, 35 Mpc, 40). To better match the higher redshift
of reionization, we also optimize our experimental pa-
rameters by assuming that observations are analyzed in
∆z = 0.5 portions spanning the range 7.5 ≤ z ≤ 10.5
[27]. We find the same qualitative effects as we did for
Planck’s TT,TE,EE + lowP + lensing + ext dataset.

Proceeding with our prediction of τ , it is crucial to in-
corporate cosmological parameter uncertainties into our
estimate (particular those from Ωm and Ωb). As we saw
in Sec. III A, cosmological parameter uncertainties can
induce roughly percent level errors in τ , which will turn
out to be a substantial fraction of the error budget in our
final predictions. It is thus incorrect to simply integrate
over the likelihood contours Fig. 4 against the values of
τ , for those values were computed assuming fixed cosmo-
logical parameters. It is also essential to go beyond the
approach of Sec. III A, where our assumption of instan-
taneous reionization meant that cosmological parameters
only entered “geometrically” via the prefactors of Eqs.
(10) and (11). In our more detailed treatment here, we

expect xHII(1 + δb) to depend on both cosmological and
astrophysical parameters.

Suppose we define a function τsim(p) that returns the
value of τ from our simulations given a set of parame-
ters p. For most of this paper (our later discussion of the
neutrino mass being an exception), we will pick the three
reionization parameters described above, plus the base
ΛCDM parameters used by Planck but without τ , i.e.,
p =

[
Ωbh

2,Ωch
2, 100θMC, ln(1010As), ns, Tvir, Rmfp, ζ

]
,

where Ωc is the normalized cold dark matter density, As
is the amplitude of the primordial curvature power spec-
trum, ns is the scalar spectral index, and the other pa-
rameters retain their definitions from earlier in the pa-
per. In general, τsim is a complicated function of p, and
it is computationally impractical to evaluate it directly
in (for example) a likelihood analysis.5 In practice, how-

5 Recent efforts in Ref. [59] have shown that full Bayesian analyses

ever, it is sufficient to simply linearize the relation, since
we need not understand how τsim varies over all possible
parameter values. Instead, it is only necessary to con-
sider variations induced by perturbations within the nar-
row ranges of cosmological parameters allowed by Planck
and astrophysical parameters in soon-to-exist 21 cm re-
sults. Degeneracies in the 21 cm results (such as the Tvir-
ζ degeneracy discussed above) are of little concern since
we have shown that such degeneracies have little effect
on τ . If we denote by ∆p the perturbation of parameter
p about its fiducial value in our simulations (not to be
confused with the error bar for p in measurements), we
find that numerical fits to τsim yield

τTT+lowP
sim ≈ 0.078 + 0.042

(
∆Ωbh

2

0.02222

)
+ 0.11

(
∆Ωch

2

0.1197

)
−0.0074

(
∆100θMC

1.04085

)
+ 0.22

(
∆ ln(1010As)

3.089

)
+0.27

(
∆ns

0.9655

)
− 0.018

(
∆Tvir

4× 104 K

)
−0.0011

(
∆Rmfp

35 Mpc

)
+ 0.020

(
∆ζ

40 Mpc

)
(16)

for the fiducial model based on Planck’s TT+lowP
dataset, and

τTT,TE,. . .
sim ≈ 0.064 + 0.033

(
∆Ωbh

2

0.02230

)
+ 0.088

(
∆Ωch

2

0.1188

)
−0.0075

(
∆100θMC

1.04093

)
+ 0.18

(
∆ ln(1010As)

3.064

)
+0.21

(
∆ns

0.9667

)
− 0.017

(
∆Tvir

6× 104 K

)
−0.00099

(
∆Rmfp

35 Mpc

)
+ 0.018

(
∆ζ

30 Mpc

)
(17)

for the fiducial model based on Planck’s TT,TE,EE +
lowP + lensing + ext dataset. Drawing 50 random sam-
ples from the final likelihood function (derived at the
end of this section) obtained from combining 21 cm data
with CMB data, we find that the maximum error in our
linear approximation for τ to be 0.6%, and the mean er-
ror to be 0.2%. Since we have (arbitrarily) scaled each
perturbation to the fiducial parameter values, the coeffi-
cients of each term in these relations can be interpreted
as the change induced in τ per fractional shift in param-
eter values. Examining the relative magnitudes of these
coefficients, one sees yet more evidence that cosmological
parameters can have a significant effect on a τ prediction.

Because tensions have often arisen in the best fit val-
ues of the Hubble parameter h from different datasets,
it is worthwhile to consider the dependence of τsim on h.

are viable if only astrophysical parameters are varied. However,
incorporating cosmological parameter variations into such anal-
yses will require further speed-ups of semi-analytic simulations.
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Eliminating θMC in favor of h in our linearized relations,
one obtains

τTT+lowP
sim ≈ 0.078− 0.0015

(
∆h

0.6731

)
+ . . . (18)

and

τTT,TE,. . .
sim ≈ 0.064− 0.0015

(
∆h

0.6774

)
+ . . . , (19)

where we have omitted other terms because their coeffi-
cients change by very small amounts (as is the case with
Ωbh

2 and Ωch
2) or not at all because they are unrelated

to θMC (as with all the other parameters). We see that
our calculated τ depends only very weakly on h. At first
sight, this may seem surprising, given that Eqs. (10)
and (11) appear to be proportional to h. This line of
reasoning would erroneously lead to the conclusion that
the fractional error on τ is equal to the fractional error
on h, which is larger than what is seen here. To under-
stand this discrepancy, note that if we temporarily return
(for the sake of simplicity) to the assumption that reion-
ization happens instantaneously reionization at zion, and
further make the approximation that ΩΛ � Ωm(1 + z)3

for z ≈ zion, the integrals in Eqs. (10) and (11) can be
evaluated analytically. The prefactor of our expression
for τ then becomes τ ∝ Ωbh

2(Ωmh
2)−1/2 to leading or-

der. Now, recall that Ωbh
2 and Ωmh

2 are proportional
to physical energy densities and hence are combinations
that are directly constrained by the CMB. As a lone pa-
rameter, h therefore enters only at higher order, or in the
detailed astrophysics of xHII(1 + δb) and xHeIII(1 + δb),
where its influence is much weaker. This weak depen-
dence is welcome news in our quest to compute τ , since
it immunizes our estimate against possible systematic bi-
ases in h, such as those that are suggested by tensions
between Planck -derived values of h and those determined
from some supernovae measurements [2, 60, 61].

Ultimately, the goal of a 21 cm-derived τ is not the
measurement of τ itself, but rather, its elimination as a
nuisance parameter for cosmological parameter estima-
tion. With our linear relations for τsim, we have tight
constraints between τ and other cosmological parame-
ters, considerably sharpening the likelihood function. To
obtain some intuition for how a 21 cm-derived estimate
of τ may reduce error bars, consider Fig. 5. There we
plot a set of pairwise likelihood contours from Planck’s
TT,TE,EE + lowP + lensing + ext dataset, pairing
τ with each of the other cosmological parameters and
marginalizing over all other parameters. Overlaid in red
are the constraints between each parameter and τ im-
posed by Eq. (17), assuming all other parameters are
fixed at their fiducial values. Crudely speaking, once a
21 cm-derived τ is folded into one’s data analysis, pa-
rameter constraints must lie on the slices defined by the
red lines, with a small allowance for the fact that uncer-
tainties on the other parameters will cause the lines to
become slightly blurry. One sees that in most cases there

will be a non-negligible, though small, decrease cosmolog-
ical parameter errors. The major exception to this is As.
CMB temperature data alone have a strong degeneracy
between As and τ , and remain largely unchanged if the
combination Ase

−2τ is kept constant. Polarization and
lensing data break this degeneracy to some extent, but
there remains some residual effect (as illustrated in Fig.
5 by the alignment between the ellipses and the blue line,
which is a contour of constant Ase

−2τ ). Though As and
τ are also positively correlated in reionization simulations
(essentially because larger primordial fluctuations lead to
earlier structure formation, and hence earlier reionization
and higher τ), the slope of the relation is rather differ-
ent. We may thus expect errors in As to be considerably
suppressed by the introduction of 21 cm data.

To be more quantitative, we may incorporate a 21 cm-
estimated τ into our constraints on the parameter set p
by performing a constrained marginalization over τ to
obtain a likelihood function L(p). In other words, our
final likelihood is given by

L(p) =

∫
dτ Lexpt(p, τ) δD(τsim(p)− τ) , (20)

where Lexpt is the likelihood function of parameters from
experiments alone (without the extra information im-
posed by our self-consistent simulations). In this pa-
per, we will limit ourselves to considering CMB and
21 cm experiments, although in principle, other probes
of reionization such as Lyman-alpha observations can be
folded into Lexpt. Note that without simulations, the
21 cm power spectrum measurements place no direct con-
straints on τ . The appearance of τ as an argument
of Lexpt is thus purely due to CMB experiments. The
Dirac delta function term ties simulations and observa-
tions together, requiring that the inferred value for τ is
consistent with the one predicted by inputting all the
other cosmological parameters into simulations. If de-
sired, modeling/simulation uncertainty may be incorpo-
rated by widening the delta function into some function
of finite width (e.g., a Gaussian), although for simplicity
we leave this for future work.

We note that the formalism here is a departure from
the picture we have painted thus far in the paper. Until
now, we have thought of τ as a parameter to be first de-
termined by 21 cm measurements, and then fed into CMB
data analyses to refine constraints on other cosmologi-
cal parameters. While conceptually tidy, this approach
misses the fact that once the errors on other parameters
have been brought down, the uncertainties on τ itself can
be reduced once more, since Eqs. (16) and (17) exhibit
a non-negligible dependence on cosmological parameters.
To account for these complications, our method here is to
self-consistently require that the CMB-measured τ match
a value of τ that is predicted from 21 cm observations.
With real data, this would be enacted by performing a
joint fit over CMB observations and 21 cm observations,
tied together by semi-analytic simulations.

Moving forward, we will approximate Lexpt. as a cor-



12

1.04

1.041

1.042
10

0
M

C

0.0218

0.0222

0.0226

b
h2

0.114

0.118

0.122

ch
2

0.95

0.96

0.97

0.98

n s

0.02 0.04 0.06 0.08 0.10 0.12
2.95

3.00

3.05

3.10

3.15

ln
(1

010
A s

)

FIG. 5. Likelihood contours for ΛCDM cosmological param-
eters as defined in the publicly released Planck TT,TE,EE +
lowP + lensing + ext dataset. Black ellipses show 68% and
95% confidence regions for every parameter against τ . Red
lines indicate values of τ as predicted in 21cmFAST and ap-
proximated by Eq. (17), holding all other parameters fixed.
The blue dashed line in the τ -ln(1010As) plot indicates con-
stant Ase

−2τ , illustrating the strong degeneracy inherent in
CMB observations that we expect to be broken by 21 cm ob-
servations.

related higher-dimensional Gaussian, which is equivalent
to saying that the forecasts presented in Sec. V will be
based on a Fisher matrix formalism. Under the Fisher
formalism, the likelihood takes the form

Lexpt(p, τ) ∝ exp

[
− 1

2

(
Fττ (∆τ)2 +

∑
i 6=τ

Fiτ∆pi∆τ

+
∑
j 6=τ

Fτj∆pj∆τ +
∑
ij 6=τ

Fij∆pi∆pj

)]
, (21)

where ∆pi and ∆τ are the deviations of ith parameter
and τ about their fiducial values, respectively, and co-
efficients such as Fij , Fiτ , and Fττ are part of a Fisher
matrix F. In the Gaussian approximation, F is equal
to the inverse covariance of (p, τ), and is an additive
property of two independent experiments. In our case,
it may therefore be computed by summing two contri-
butions: the inverse covariance matrices from Planck for
basic cosmological parameters, and the 21 cm power spec-
trum Fisher matrices for cosmological and astrophysical
parameters (calculated in Ref. [27]).

Now, evaluating the integral in Eq. (20) is tantamount
to replacing τ with τsim(p) in this expression. Continu-
ing with the linear approximations to τsim(p) that we
employed above, we have

∆τ =
∑
i

ai∆pi, (22)

where {ai} are coefficients chosen to match our linearized
relations, Eqs. (16) and (17), and substituting this into
Lexpt(p, τ) yields another Gaussian likelihood for L(p),
but with modified Fisher matrix elements F ′ij given by

F ′ij = Fij + aiFjτ + ajFiτ + aiajFττ . (23)

Once this modified Fisher matrix has been obtained, it
can be manipulated in the usual manner to obtain pro-
jected uncertainties on parameters. This expression will
form the basis of our predictions in the following section,
where we forecast the improvement in cosmological con-
straints from combining Planck results with upcoming
21 cm power spectrum measurements from HERA.

V. COSMOLOGICAL PARAMETERS WITH A
21 cm-DERIVED τ CONSTRAINT

Having established intuition and a formalism for re-
ducing cosmological parameter uncertainties via 21 cm-
derived constraints on τ , we now provide some quan-
titative forecasts. For each of our two selected Planck
data sets, we add their inverse covariance matrices to
tailored 21 cm power spectrum Fisher matrices. These
matrices are tailored in the sense that they are centered
on different fiducial parameters, chosen so that when in-
put into the 21cmFAST simulations, the predicted values
of τ match the best-fit values from the relevant Planck
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TABLE I. Fiducial values and marginalized 68% confidence
intervals for astrophysical parameters, within reionization sce-
narios tuned to fit the Planck TT+lowP and TT,TE,EE +
lowP + lensing + ext datasets. In each case, astrophysi-
cal and cosmological parameters were constrained simulta-
neously, with Planck results imposed as a prior on the latter.
The “Errors from P21(k)” are reproduced from Ref. [27] and
constitute forecasted errors from HERA using power spec-
trum measurements only. The final column shows the er-
rors that result from also requiring that the parameters self-
consistently reproduce τ in semi-analytic simulations. Impos-
ing self-consistency in τ has a negligible effect on astrophysical
parameters, as one expects from Fig. 4.

Planck TT+lowP priors

Fid. value Errors from P21(k) +21 cm τ

Tvir [K] . . . . . . 40000 ±7500 ±7500

Rmfp [Mpc] . . . 35.0 ±1.2 ±1.2

ζ . . . . . . . . . . . . 40.0 ±4.6 ±4.2

Planck TT,TE,EE + lowP + lensing + ext priors

Fid. value Errors from P21(k) +21 cm τ

Tvir [K] . . . . . . 60000 ±6700 ±6600

Rmfp [Mpc] . . . 35.0 ±0.82 ±0.82

ζ . . . . . . . . . . . . 30.0 ±2.0 ±1.9

datasets. We then evaluate Eq. (23) using either Eq.
(16) or Eq. (17), giving final Fisher matrices that we in-
vert to obtain final covariance matrices. As in the previ-
ous section, we assume that observations are used to form
power spectra at intervals of ∆z = 0.3 from z = 6.1 to
9.1 inclusive for Planck TT,TE,EE+lowP+lensing+ext,
and ∆z = 0.5 from z = 7.5 to 10.5 inclusive for Planck
TT+lowP.

Table I lists the marginalized 68% limits on the as-
trophysical parameters that describe reionization in our
model, showing the error bars that can be expected
from combining Planck priors on cosmological param-
eters with 21 cm power spectrum measurements, as well
as those from additionally requiring self-consistency be-
tween the CMB-measured τ and a 21 cm-informed esti-
mate from semi-analytic simulations. Comparing the two
sets of error estimates, one sees that as far as astrophysi-
cal parameters are concerned, there is little to be gained
from the consistency constraint. This is to be expected
from our earlier discussion of Fig. 4, where we saw that
the alignment of parameter degeneracy directions meant
that incorporating τ was unlikely to improve one’s astro-
physical parameter constraints.

In contrast, Table II shows that there are some im-
provements to cosmological parameters. While some pa-
rameters (100θMC being the best example) are already
known to such precision with Planck that the addition
of 21 cm information does little to reduce errors, oth-
ers do show improvement. In general, a better perfor-
mance is obtained when the fiducial parameters are cho-
sen to match the Planck TT,TE,EE + lowP + lensing

+ ext dataset than when they are based on the Planck
TT+lowP dataset. For example, by adding 21 cm power
spectrum measurements and our τ self-consistency con-
straint to Planck priors, the former dataset sees a ∼ 15%
reduction in errors on ΩΛ and Ωm, whereas there is neg-
ligible improvement with the latter dataset. This is be-
cause the Planck TT,TE,EE + lowP + lensing + ext
parameters imply a lower redshift of reionization, which
shifts the most non-trivial features in the evolution of
the 21 cm power spectrum to higher frequencies. There,
both foregrounds and instrumental noise are smaller in
amplitude, allowing high-significance measurements of
the power spectrum that are more effective at break-
ing parameter degeneracies. The Hubble parameter H0

stands as an exception to this general trend, with Planck
TT+lowP showing a larger error reduction. However,
Planck TT,TE,EE+lowP+lensing+ext still has smaller
final error bars, having started with a more precise esti-
mate of H0.

In our formalism, τ is marginalized out of our set of
parameters in a self-consistent manner. It is for this rea-
son that τ appears as a measured parameter in Table II
prior to our inclusion of 21 cm τ information, but only as
a derived parameter afterwards. To estimate errors on τ ,
one may draw random samples of our parameters p from
the final likelihood L(p) given by Eq. (20). Samples
of τ may then be obtained by inserting these randomly
drawn parameters into our linearized relations for τ , Eqs.
(16) and (17), and uncertainties on τ can be estimated
by examining the spread of these samples. For Planck
TT+lowP, the 1σ error on τ is ±0.0015, representing a
2% measurement. Now, suppose we artificially fix the
astrophysical parameters in our drawing of p. Our error
on τ then drops to ±0.00055. Note that this represents a
fractional error of 0.7%, which is smaller than the 1.4%
predicted in Sec. III A. This occurs because there are de-
generacies between the cosmological parameters and the
astrophysical parameters, and thus fixing the latter im-
proves the former. If we fix the cosmological parameters
and allow the astrophysical parameters to vary, the τ er-
ror is ±0.00054, almost equal to the error from only vary-
ing cosmological parameters. The patterns for the Planck
TT,TE,EE + lowP + lensing + ext dataset are similar:
varying only the cosmological parameters yields an error
of ±0.00028; varying only astrophysics gives ±0.00036;
and varying everything gives ±0.00083, which is a 1%
measurement. These results confirm our intuition that
once 21 cm data are introduced, astrophysical parameter
uncertainties become small enough that cosmological pa-
rameter errors must be jointly included in one’s errors
analysis.

As expected from Fig. 5, the inclusion of 21 cm in-
formation most benefits our constraints on As, since an
independent constraint on τ breaks the CMB degeneracy
where any changes keeping Ase

−2τ constant are difficult
to detect. For both Planck datasets, an error reduc-
tion of about a factor of four is achieved in the quantity
ln(1010As). Shown in Fig. 6 are the 68% and 95% con-
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TABLE II. Fiducial values and marginalized 68% confidence intervals for cosmological parameters in ΛCDM, within reionization
scenarios tuned to fit the Planck TT+lowP and TT,TE,EE+lowP+lensing+ext datasets. The “Errors” columns show error
bars using Planck data only, “+P21(k)” includes 21 cm power spectrum information (reproduced from Ref. [27]), and “+21 cm
τ” also requires self-consistency between the CMB-measured τ and the 21 cm-predicted τ . The 21 cm observations are assumed
to come from HERA. Boldfaced entries represent substantial reductions in error (arbitrarily defined as a halving or more of
error bars) compared to using Planck data only.

Planck TT + lowP Planck TT,TE,EE+lowP+lensing+ext

Best fit Errors +P21(k) +21 cm τ Best fit Errors +P21(k) +21 cm τ

Measured parameters

Ωbh
2 . . . . . . . . . . . . . . . . . 0.02222 ±0.00023 ±0.00021 ±0.00020 0.02230 ±0.00014 ±0.00013 ±0.00013

Ωch
2 . . . . . . . . . . . . . . . . . 0.1197 ±0.0022 ±0.0021 ±0.0018 0.1188 ±0.0010 ±0.00096 ±0.00087

100θMC . . . . . . . . . . . . . . . 1.04085 ±0.00046 ±0.00046 ±0.00045 1.04093 ±0.00030 ±0.00029 ±0.00029

ln(1010As) . . . . . . . . . . . 3.089 ±0.036 ±0.023 ±0.0063 3.064 ±0.023 ±0.016 ±0.0053

ns . . . . . . . . . . . . . . . . . . . . 0.9655 ±0.0062 ±0.0057 ±0.0053 0.9667 ±0.0040 ±0.0037 ±0.0035

τ . . . . . . . . . . . . . . . . . . . . . 0.078 ±0.019 ±0.013 — 0.066 ±0.012 ±0.0089 —

Derived parameters

τ . . . . . . . . . . . . . . . . . . . . . — — — ±0.0016 — — — ±0.00083

H0

[
km s−1Mpc−1

]
. . . 67.31 ±0.96 ±0.91 ±0.81 67.74 ±0.46 ±0.43 ±0.41

ΩΛ . . . . . . . . . . . . . . . . . . . 0.685 ±0.013 ±0.013 ±0.011 0.6911 ±0.0062 ±0.0057 ±0.0053

Ωm . . . . . . . . . . . . . . . . . . 0.315 ±0.013 ±0.013 ±0.011 0.3089 ±0.0062 ±0.0057 ±0.0053

σ8 . . . . . . . . . . . . . . . . . . . 0.829 ±0.014 ±0.009 ±0.0067 0.8159 ±0.0086 ±0.0062 ±0.0036

fidence regions on the τ -ln(1010As) plane for the Planck
TT,TE,EE + lowP + lensing + ext dataset. (The re-
sults for Planck TT+lowP are qualitatively similar). One
clearly sees that the Ase

−2τ degeneracy is strongly bro-
ken. For reference, the grey band indicates a range of
τ values that are reflective of the spread (but not the
mean) of values given in Fig. 2 for various models of
reionization. This provides an extremely conservative
sense for how modeling uncertainties could degrade con-
straints, and even then there is some improvement from
using the CMB alone. We stress, however, that this
would be a very pessimistic scenario. It essentially as-
sumes no progress in our ability to distinguish between
different topologies of reionization, whereas expectations
are that 21 cm observations will be easily able to make
such distinctions [45, 62]. It thus seems quite likely that
incorporating 21 cm data will result in smaller error bars
on As.

To interface with the large scale structure literature,
it is helpful to express the normalization of the power
spectrum not in terms of As, but in terms of σ8, the root-
mean-square of matter fluctuations in 8h−1Mpc spheres
at the present day, assuming linear perturbation theory.
Explicitly, this is given by

σ2
8 ≡

∫ ∞
0

k2dk

2π2
Pm(k)

[
3j1(kR)

kR

]2

, (24)

where R = 8h−1Mpc, Pm(k) is the matter power spec-
trum at z = 0 in linear theory, and j1 is the first order
spherical Bessel function of the first kind.

In Fig. 7, we translate our parameter constraints into
constraints on Ωm and σ8. Shown in blue solid lines are

0.02 0.04 0.06 0.08 0.10 0.12
2.95

3.00

3.05

3.10

3.15

ln
(1

010
A s

)

Planck TT,TE,EE+
lowP+lensing+ext
With 21cm
No modeling
improvements

FIG. 6. Likelihood contours on the τ -ln(1010As) plane, with
bold lines signifying 95% confidence regions and light lines sig-
nifying 68% confidence regions. Blue contours denote the con-
straints using Planck TT,TE,EE + lowP + lensing + ext data
only, while the red contours show the effect of adding 21 cm
power spectrum and—crucially—self-consistency between the
CMB-measured and 21 cm-predicted τ . The 21 cm observa-
tions break the CMB degeneracy between As and τ , enabling
much better constraints on both parameters. The grey band
shows a width of optical depths representative of the spread of
models shown in Fig. 2, and is indicative of a scenario where
the ionization history is known, but the density-ionization
correlation is unknown. Even in the midst of such modeling
uncertainty, one sees an improvement in As errors, although
we stress that such a scenario is rather pessimistic since early
21 cm measurements will place constraints on the correlation.
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FIG. 7. Likelihood contours on the Ωm-σ8 plane, with bold
lines signifying 95% confidence regions and light lines signi-
fying 68% confidence regions. Blue contours denote the con-
straints using Planck TT+lowP data only, while red incorpo-
rates 21 cm power spectrum and self-consistent τ information.
Dashed contours denote constraints from combining Planck’s
SZ cluster counts, BAO, and BBN (as published in Ref. [3]).
In green are constraints using a CMB lensing-calibrated prior
on the cluster mass bias factor (CMBlens). In orange and
purple are constraints based on calibrations using gravita-
tional shear mass measurements from the Canadian Cluster
Comparison Project (CCCP) and Weighing the Giants (WtG)
program, respectively.

the 68% and 95% likelihood contours from the original
Planck TT+lowP dataset, while the solid red contours
show the improvement from adding P21(k) and our τ con-
straints. In addition to a general shrinking of the errors,
one also sees a reorientation of the likelihood contours.
Whereas the errors in σ8 and Ωm are largely independent
of each other using Planck data alone, this is not the case
once 21 cm information is included. To understand why
this occurs, recall that computing σ8 requires integrating
the present-day matter power spectrum. It thus depends
not only on the primordial fluctuation amplitude As, but
also on the evolution of perturbations, which depends on
parameters such as Ωm. In the case of the Planck data
alone, the error on σ8 is dominated by the error on As,
which masks the dependence on other parameters. With
21 cm τ constraints, the errors on As are reduced by so
much that they no longer drive the errors on σ8. Instead,
uncertainties in perturbation growth become the domi-
nant source of error, leading to correlations between σ8

and Ωm.
Sharper constraints on σ8 have the potential to shed

light on current tensions between cosmological con-
straints derived from the primary CMB and those that
are derived from galaxy cluster measurements combined
with BAO and BBN [3]. Aside from our Ωm-σ8 projec-
tions, Fig. 7 also shows likelihood contours from galaxy
cluster counts of Sunyaev-Zeldovich (SZ) clusters (repro-

duced from Ref. [3]) using various calibration methods
for the mass bias. Orange and purple contours are con-
straints from gravitational shear-based calibration meth-
ods using data from the Canadian Cluster Comparison
Project (CCCP) and the Weighing the Giants (WtG)
program, respectively. The green contours use a CMB
lensing-based calibration for the mass bias. Here we fo-
cus exclusively on the Planck TT+lowP dataset in an ef-
fort to separate the high redshift constraints on the CMB
from the low redshift constraints from clusters. Moder-
ate tensions are visually present at varying degrees de-
pending on the SZ calibration method. In tandem with
further SZ mass calibration studies, the reduced errors
on σ8 from the addition of 21 cm τ constraints have the
potential to either resolve or sharpen tensions. If tensions
remain, their increased statistical significance would hint
at the existence of systematics or the need for an exten-
sion to Planck’s six-parameter base model.

As an example of an extended cosmological model, con-
sider a non-zero neutrino mass. Massive neutrinos alter
the kinematics of our Universe’s expansion [63]. Addi-
tionally, neutrinos dampen structure growth on scales
finer than their free-streaming length [64–66], leading
to deficits in power on small scales that are more pro-
nounced if the sum of the neutrino masses

∑
mν is large.

Upcoming precision measurements targeting both the
kinematic and structure growth signatures may therefore
yield a detection of a non-zero neutrino mass. Among
other studies, Ref. [67] provides forecasts for the ex-
pected performance for the combination of DESI and
“Stage 4” (S4) CMB experiments [68, 69]. That work
assumes DESI measurements of the BAO signature and
CMB measurements of lensed TT, TE, and EE power
spectra, along with a measurement of the CMB conver-
gence power spectrum. A crucial parameter in the fore-
casting exercise is the minimum multipole `min that is
assumed to be recoverable in an S4 measurement. Ref.
[67] found that with `min = 5, S4 experiments could con-
strain

∑
mν to ±15 meV (68% confidence) when ana-

lyzed in conjunction with Planck polarization and DESI
data; with `min = 50, the error degrades to ±19 meV.
Now, neutrino oscillation measurements constrain

∑
mν

to have a minimum value of 60 meV [69–72]. If we
take this to be our fiducial value for

∑
mν , going from

`min = 5 to `min = 50 then represents a degradation from
a ∼4σ to a ∼3σ detection. At this point, it is not clear
what `min would be for ground-based S4 experiments,
due to difficulties with atmospheric and ground contam-
ination [67], and it is likely that the best measurements
will come from a combination of ground-, balloon-, and
space-based experiments, particularly when foregrounds
are taken into account [73].

That the neutrino mass forecasts depend on `min is
largely due to a degeneracy between τ and

∑
mν . This

arises because neutrinos suppress structure on small
scales, which can be mimicked by a lower As. As de-
scribed above, this is in turn degenerate with τ , leading to
a τ -

∑
mν degeneracy. Accessing the lowest ` modes en-
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TABLE III. Fiducial values and 68% confidence limits on a
ΛCDM plus neutrino mass (

∑
mν) model, within a reioniza-

tion model tuned to fit the Planck TT+lowP dataset. The
errors are computed first assuming a Stage 4 CMB exper-
iment able to access multipoles down to `min = 50, ana-
lyzed in conjunction with DESI and Planck polarization data
(“S4`<50+DESI+Planck Pol”). These datasets are then sup-
plemented with HERA measurements of the 21 cm power
spectrum and self-consistent reionization simulations. The
addition of 21 cm information reduces error bars on

∑
mν

and allows a 5σ detection of the neutrino mass even if
∑
mν

is at its minimum value of 60 meV allowed by neutrino oscil-
lation experiments.

Fiducial S4`>50+DESI +P21(k)

Parameter Value +Planck Pol +21 cm τ

Ωbh
2 . . . . . . . . . . 0.0222 ±0.00003 ±0.00003

Ωch
2 . . . . . . . . . . 0.1197 ±0.00038 ±0.00022

100θMC . . . . . . . . 1.04085 ±0.00031 ±0.00022

ln(1010As) . . . . . 3.089 ±0.0091 ±0.0016

ns . . . . . . . . . . . . . 0.9655 ±0.0017 ±0.0015

τ . . . . . . . . . . . . . . 0.078 ±0.005 ±0.00058∑
mν [meV] . . . 60 ±19 ±12

able S4 experiments to make precise measurements of the
reionization bump signature discussed in Sec. I, breaking
the τ -As degeneracy (which we saw in Fig. 6 still exists
with current Planck data). Higher `min values for S4 ex-
periments compromise their ability to do this degeneracy
breaking. With the 21 cm line, however, we recover this
ability. Using Fisher matrices from Ref. [67], we use the
formalism of Sec. IV to again predict the effect of self-
consistently including 21 cm information. Fig. 8 illus-
trates how this breaks the τ -

∑
mν degeneracy, with the

blue contours showing the constraints from S4(` > 50)
+ Planck polarization + DESI and the red contours ad-
ditionally incorporating 21 cm information from HERA.
The fiducial value for

∑
mν is taken to be the minimal

60 meV; the fiducial value for τ is taken to be 0.078. This
is the best-fit τ value for the Planck TT+lowP dataset,
so we use the 21 cm Fisher matrix that is matched to
Planck TT+lowP parameters, but in practice we find
that the results are essentially the same assuming Planck
TT,TE,EE + lowP + lensing + ext. We see from Fig. 8
that the τ -

∑
mν degeneracy is broken, with the error on∑

mν reduced from ±19 meV to ±12 meV. (Forecasted
errors6 on all cosmological parameters are given in Ta-
ble III). This demonstrates that even if S4 experiments

6 Importantly, note that with S4 and DESI cosmological parame-
ters, the fractional errors on a 21 cm-predicted τ are comparable
to the uncertainties from τ due to helium reionization, as pre-
dicted in Sec. III B. We have thus implicitly assumed that by the
time S4 and DESI data are available, current probes of helium
reionization will have improved astrophysical models sufficiently
to enable tight predictions of τHe.
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FIG. 8. Likelihood contours on the τ -
∑
mν plane, with bold

lines signifying 95% confidence regions and light lines signify-
ing 68% confidence regions. Blue contours denote the con-
straints using S4(` > 50) + Planck polarization + DESI
data only, while the red contours show the effect of adding
21 cm power spectrum and self-consistency between the CMB-
measured and 21 cm-predicted τ . Early 21 cm observations
will confirm models of reionization, allowing high sensitivity
measurements to predict τ . This will break the CMB degen-
eracy between τ and

∑
mν and enable improved constraints

on the neutrino mass.

are unable to precisely constrain the reionization bump,
21 cm cosmology can fill in the missing information. With
an error of 12 meV, a cosmological determination of the
neutrino mass becomes a 5σ detection even with the most
pessimistic fiducial value of

∑
mν = 60 meV.

Though the predictions in this section have been
primarily based on HERA, our qualitative conclusions
should hold for any next-generation high signal-to-noise
21 cm experiment. For example, consider the SKA’s con-
straining power under the base ΛCDM model (i.e., with-
out fitting for the neutrino mass). Rerunning our compu-
tations using the “halved dipoles per station” SKA con-
figurations7 presented in Ref. [74], we obtain an error of
±0.00060 for τ and an error of ±0.0052 for ln(1010As)
using the Planck TT,TE,EE + lowP + lensing + ext
dataset. With Planck’s TT+lowP dataset, we obtain a
±0.0013 error on τ and a ±0.0060 error on ln(1010As).
(In all cases, the quoted errors refer to 68% confidence).
Comparing these numbers to the HERA results in Table
II, we see that the SKA delivers small improvements in
precision, but not at a level that results in qualitatively
new science. We find this to be true whether we use the
“standard” SKA baseline configuration of Ref. [74] or
their “compact” configuration. There are a number of

7 The “halving” is with respect to the original SKA design, and
is a consequence of the recent re-budgeting process within the
SKA collaboration.
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reasons for the lack of significant improvement beyond
HERA with the SKA.8 First, recall from Fig. 4 that
astrophysical degeneracies from 21 cm power spectrum
measurements are mostly aligned with contours of con-
stant τ . For the most part, this is a helpful feature, as
it decreases (though does not eliminate) the exposure of
our τ estimate to astrophysical uncertainties. However,
this also means that once a high signal-to-noise measure-
ment of the 21 cm power spectrum is achieved, one is in
a regime of diminishing returns. Greater collecting area
does result in the shrinking of the ellipses in Fig. 4, but
the degeneracy direction is already so well aligned with
the τ contours that the decrease in errors on τ is not as
large as one might hope for. Additionally, the effect of a
more precise, SKA-based τ on As is rather small. This is
again due to diminishing returns. From Fig. 6, one sees
that a HERA-based τ has (for all intents and purposes)
broken the CMB τ -As degeneracy. Even greater preci-
sion on τ thus does little to further improve constraints
on cosmological parameters.

VI. USING GLOBAL SIGNAL
MEASUREMENTS TO DERIVE

MODEL-INDEPENDENT τ CONSTRAINTS

In the previous section, we saw how 21 cm power spec-
trum measurements could be used in conjunction with
semi-analytic simulations of reionization to place strin-
gent constraints on τ , considerably reducing errors on
cosmological parameters in the process. While powerful,
the danger in such an approach is that it is rather model-
dependent, and requires that the semi-analytic simula-
tions correctly capture the essential features of reioniza-
tion. In this section, we discuss how direct observations
of the 21 cm temperature field (rather than its power
spectrum) can provide direct, model-independent con-
straints on τ .

Ignoring hard-to-measure patchy effects [75, 76], τ is
effectively an angularly averaged quantity, with one value
across the entire sky. Correspondingly, in an attempt to
use direct measurements of the 21 cm brightness tem-
perature to constrain τ , it is not necessary to measure
the three-dimensional distribution δTb(n̂, ν). Instead, it
is sufficient to measure the angularly averaged quantity
δT b(ν). This is precisely the domain of “global signal”
experiments, which typically use a small number of el-
ements (often even just single dipole antennas) to mea-
sure δT b(ν). If a high significance measurement can be
made with such experiments, it will not be necessary to

8 Note that this does not preclude the possibility of precision cos-
mology with the SKA using methods beyond the formalism of
this paper. Our claim here only encompasses improvements in
cosmological parameters that arise from a better τ measurement,
and does not include the extraction of other cosmological infor-
mation that the SKA might provide.

use the imaging capabilities of late-stage HERA or the
SKA for τ constraints, although of course imaging stud-
ies contain a wealth of other information on astrophysics
and cosmology [77–79]. A number of projects (current
or proposed) aim to detect the 21 cm global signal, e.g.,
the Experiment to Detect the Global Epoch of Reioniza-
tion Signature [80], Large-Aperture Experiment to De-
tect the Dark Ages [81], Dark Ages Radio Explorer [51],
Broadband Instrument for Global Hydrogen Reionization
Signal [82], Shaped Antenna Measurement of the Back-
ground Radio Spectrum [83], Zero-spacing Interferometer
Measurements of the Background Radio Spectrum [84],
and Sonda Cosmológica de las Islas para la Detección de
Hidrógeno Neutro [85].

To see how global signal measurements can be used
to constrain τ , suppose that peculiar velocity term can
be ignored (we will address it below). Further assume
that the hydrogen spin temperature is much greater than
the CMB temperature, Ts � Tγ . This approximation is
expected to be justified towards the middle and end of
reionization, when the spin temperature is tightly cou-
pled to the kinetic temperature of the IGM, which is
strongly heated by X-rays and/or shocks from filamen-
tary structure or exotic mechanisms such as dark matter
annihilation [86–90]. Under these assumptions, Eq. (14)
simplifies to δTb(n̂, ν) ≈ δTb0 xHI(1 + δb). Taking the an-
gular average of this, the resulting global signal δT b(ν)
and the density-weighted ionized fraction are seen to be
related via a simple linear equation, namely

1− δT b(ν)

δTb0
= xHII(1 + δb). (25)

As we saw in Sec. III B, the density-weighted ion-
ized fraction is the crucial quantity in an accurate es-
timate of τ . Whereas power spectrum measurements re-
quire model-dependent simulations to infer xHII(1 + δb),
global signal measurements can do so directly in a model-
independent way.

Of course, our claim of model-independence holds only
if our assumption of Ts � Tγ is true, since comput-
ing Ts requires detailed models of the radiative back-
grounds and atomic physics [91, 92]. The spin temper-
ature approximation will almost certainly fail at the be-
ginning of the reionization epoch, prior to the comple-
tion of reheating. Unfortunately, discarding this approx-
imation requires simulating the complicated astrophysics
and atomic processes that govern Ts, which of course re-
quire a reionization model. The best that we can do is to
lower our ambitions, and to restrict our global signal con-
straints to the lower redshift contributions to τ . Ideally,
one would first use the model-dependent power spectrum
methods of the previous sections to derive an overall τ
constraint, which could then be checked for consistency
against a model-independent estimate of the low-redshift
contributions from global signal measurements.

We now consider the peculiar velocity term. This is
due to redshift space distortions, where peculiar veloci-
ties mean that it is incorrect to assume that frequencies
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and comoving radial coordinates are simply related by
the Hubble flow. The distribution of emission is thus dif-
ferent in frequency (or redshift) space than in real comov-
ing spatial coordinates. However, whether one works in
redshift space or real space, the total integrated emission
along the radial line-of-sight is by definition the same.
Such an integral is precisely what is evaluated when pre-
dicting τ . The peculiar velocity term can therefore be
neglected. We do note that in practice, our simulations
show a small (<∼ 0.2%) difference between integrating

1− δT b(ν)/δTb0 and xHII(1 + δb). This is likely because
Eq. (14) is itself an approximate treatment of redshift
space distortions, strictly valid only when ∂vr/∂r � H.
For the forecasts below we simply ignore this discrepancy
(because it is small), and note that it would not appear
in an actual measurement.

Having established that 1− δT b(ν)/δTb0 is a good ap-

proximation to xHII(1 + δb), we may substitute Eq. (25)
into Eq. (10). Limiting our computation of the optical
depth to the contribution between z = 0 and some rel-
atively low redshift z (in keeping our assumption that
Ts � Tγ), we obtain

τ(z) =
H0ΩbσT c

4πGΩmµmp

[√
ΩΛ + Ωm(1 + z)3 − 1

]
−16σT ν

2
0kB

3h̄c2A10

∫ z

0

dz′ δT b
√

1 + z′, (26)

where it is understood that δT b is to be evaluated at fre-
quency ν21/(1 + z′). In deriving this expression, we used
Eq. (15) to express δTb0 explicitly in terms of fundamen-
tal constants, and for the second term only, made the ap-
proximation that ΩΛ � Ωm(1 + z)3. This is an excellent
approximation even at the high levels of precision being
pursued here, since the approximation becomes bad only
at the lowest redshifts, but by then reionization is com-
plete and δT b is zero.

The first term in our expression for τ(z) is the op-
tical depth that would have resulted had our Universe
been ionized throughout cosmic history. Conveniently, it
takes the same form as Eq. (12), which as we argued in
Sec. IV, has errors that are dominated not by the Hub-
ble parameter, but by the much more precisely known
combinations Ωbh

2 and Ωmh
2. At z = 8.5, this term has

a standard deviation of 4.7×10−4 for Planck TT,TE,EE
+ lowP + lensing + ext and a standard deviation of
8.7× 10−4 for Planck TT+lowP, with a central value of
0.063 for both.

The second term in τ(z) is a deficit term. It quantifies
the deficit in the CMB optical depth that arises because
our Universe was neutral for part of its past. Importantly,
we see that all cosmological parameters have canceled out
of this term, leaving only fundamental constants that can
be determined to high precision in a laboratory. Though
this cancellation is remarkable, it is not surprising, since
the 21 cm brightness temperature is ultimately a direct
measurement of the optical depth of clouds of neutral
hydrogen at high redshift. This neutral hydrogen optical

depth is precisely what sources the deficit in the CMB
optical depth. The factor of σT /A10 in the prefactor of
the expression acts as a conversion factor to account for
the relatively small cross-section of the 21 cm line com-
pared to that of Thomson scattering.

With cosmological factors canceling out, the only
source of error in the deficit term is thus the measure-
ment uncertainty of the global signal δT b. Computing
the variance (∆τ)2 of τ(z), we have

(∆τ)2 =

(
16σT ν

2
0kB

3h̄c2A10

)2

×
∫ z

0

∫ z

0

dz′dz′′Σ(z′, z′′)
√

(1 + z′)(1 + z′′), (27)

where Σ(z′, z′′) is the error covariance between measure-
ments of the global signal at redshift z′ and z′′

To forecast the performance of our fiducial experiment,
then, we require an expression for Σ. We suppose that
the data is analyzed using the methods of Ref. [27].
Briefly, we assume that a prior measurement of the 21 cm
power spectrum is available, and that these results can
be fit to cosmological and astrophysical parameters. Sim-
ulations are then run to predict a fiducial global signal

history δT
fid

b (ν) as well as a plausible set of alternate
histories that are allowed within the error bars of the pa-
rameters. Forming a covariance matrix of these alternate
histories, one may then perform an eigenvalue decompo-
sition to obtain a set of principal component eigenmodes
that compactly describe deviations from the fiducial his-
tory. The global signal can then be expressed as

δT b(ν) = δT
fid

b (ν) +

Nd∑
i

bidi(ν), (28)

where δT
fid

b is the fiducial history, Nd is the number of
eigenmodes needed to adequately fit the data, di(ν) is the
ith deviation eigenmode, and bi its amplitude. The goal
of the global signal measurement is to constrain the set of
amplitudes {bi}. The effects of changing the amplitudes
of the two strongest modes are shown in Fig. 9 for a fidu-
cial history tuned to match Planck TT,TE,EE + lowP +
lensing + ext. Importantly, we note that even though our
deviation eigenmodes are informed by simulations, our
global signal measurement remains model-independent,
since large deviations from the fiducial global signal his-
tory will simply result in stronger measured deviation
amplitudes, and possibly a higher Nd.

In addition to the deviation mode amplitudes, a global
signal experiment must also contend with foreground
contamination (in addition to other systematics, which
may introduce additional degrees of freedom [93]). Given
that the foregrounds are spectrally smooth, we follow pre-
vious works [16] and model them as a sum of Np Legen-
dre polynomials in log ν with a set of foreground am-
plitudes that are fit alongside the deviation amplitudes.
This gives a total of Np + Nd parameters that are fit
for in the analysis of global signal data. To quantify the
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FIG. 9. Fiducial global signal history (black solid lines) cho-
sen to match the fiducial model tied to the Planck TT,TE,EE
+ lowP + lensing + ext dataset. Dashed lines show pertur-
bations about the fiducial history driven by excitations of the
deviation eigenmodes (first eigenmode on top plot; second
eigenmode on bottom plot) of our power spectrum-informed
principal component basis.

errors in such fits, we employ the same Fisher matrix
formalism that was used in Ref. [94], which was in turn
based on the treatments of Refs. [53, 87]. Inverting the
Fisher matrix to the obtain a covariance and marginal-
izing over the nuisance foreground amplitudes, we arrive
at an Nd ×Nd matrix C of error covariances on the de-
viation amplitudes. These can then be converted into
a error covariance matrix Σ between different frequency
bins by computing

Σ = DtCD, (29)

where Dij = di(νj). This is essentially the dis-
crete, frequency-space version of Σ(z, z′), the continu-
ous redshift-space covariance that is needed to evaluate
Eq. (27). However, the discrete version is sufficient for
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FIG. 10. Fractional error in a global signal measurement of
τ(z = 8.5) as a function of the number of foreground pa-
rameters Np and number of signal parameters Nd that are
necessary for an adequate fit to the data. The assumed reion-
ization scenario is chosen to match parameters from Planck
TT+lowP. A discretized contour of the fractional error on
Planck measurement of τ is given by the thick black line for
reference. As long as the number of parameters in a global
signal remains small, global signal experiments can provide di-
rect, model-independent constraints on relatively low-redshift
portions of τ .
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FIG. 11. Similar to Fig. 10, but for the Planck TT,TE,EE +
lowP + lensing + ext dataset.

all intents and purposes, since the deviation eigenmodes
can be interpolated and evaluated at whatever frequen-
cies (or redshifts) one desires. With this, Eq. (27) can
be evaluated to compute the error contribution to τ(z)
from the global signal measurement, which can then be
combined in quadrature with the errors from cosmologi-
cal parameter uncertainties, since the two contributions
are independent.

In Fig. 10 and Fig. 11 we show the forecasts resulting
from our analysis for the Planck TT+lowP and Planck
TT,TE,EE + lowP + lensing + ext datasets, respectively.
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Shown in color are the fractional errors in a global sig-
nal measurement of τ(z = 8.5). One sees that as long
as global signal spectra can be fit with relatively few pa-
rameters, small error bars on τ(z = 8.5) can be attained.
These typically compare favorably with fractional errors
in τ from Planck, which are denoted by the thick black
lines on each plot (∼ 24% for TT+lowP and ∼ 18% for
TT,TE,EE + lowP + lensing + ext). We note, however,
that these lines are included for reference purposes only
and should be interpreted with caution, since any CMB-
derived τ must necessarily be an integral measurement
up to the surface of last scattering. From the perspective
of a CMB experiment, it is thus impossible to measure
τ(z = 8.5) (the contribution to τ from 0 < z < 8.5) using
the CMB. Nonetheless, the fractional errors from Planck
convey the rough sense that global signal measurements
have the potential to provide independent and competi-
tive constraints on τ .

VII. CONCLUSIONS

The optical depth parameter τ serves a dual role in
CMB studies. On one hand, it serves as a crude tool
for probing reionization, since the optical depth arises
from the scattering of CMB photons off free electrons
produced during reionization. On the other hand, it can
be viewed as a nuisance parameter that simply needs to
be marginalized out, in the process degrading the pre-
cision of constraints on other cosmological parameters,
particularly As.

In this paper, we advocate the use of highly red-
shifted 21 cm observations to provide an independent
constraint on τ , thereby breaking parameter degeneracies
that arise in CMB data analyses (many of which remain
even when complementary probes like galaxy surveys are
introduced). If modeling uncertainties in our current un-
derstanding of reionization can be reduced (as is expected
to be case once a cosmological 21 cm detection is made),
the opportunity to eliminate τ as a nuisance parame-
ter has the potential to push CMB observations into a
qualitatively new regime, where one would not need to
contend with the inherent limitations of solving for τ in-
ternally using CMB data, such as an `min cut-off or even-
tually, a cosmic variance limit.

We propose two approaches for relating 21 cm obser-
vations to τ . Towards the end of the reionization epoch,
the complicated astrophysics of the neutral hydrogen spin
temperature Ts drops out of the expression for the bright-
ness temperature δTb of the 21 cm line. Measurements
of the sky-averaged brightness temperature δTb (“global
signal measurements”) then provide a direct probe of
the density-weighted ionized fraction, which can be in-
tegrated in redshift to estimate τ . Our forecasts sug-
gest that as along as the observed global signal can be
fit without an unreasonably large number of parameters,
this technique can be used to provide precise estimates of
the lower redshift contributions to τ (up to, for example,

z ∼ 8.5, but this depends on precisely how reionization
proceeds). Provided we limit ourselves to these lower red-
shift portions of τ , the resulting global signal estimates
of τ are relatively model-independent and represent an
improvement upon the Planck constraints.

To compute the full optical depth from 21 cm obser-
vations, it is necessary to resort to higher signal-to-noise
observations, and here we focus on measurements of the
power spectrum P21(k) of 21 cm brightness temperature
fluctuations as a function redshift. We envision a scheme
where power spectrum measurements are used over a rel-
atively narrow range in redshift (e.g., 6 ≤ z ≤ 9) to
constrain reionization parameters. These parameters are
then fed into semi-analytic simulations of reionization to
predict the density-weighted ionized fraction to high red-
shifts, which can again be integrated to yield τ . In prac-
tice, the simulations themselves depend on cosmological
parameters in addition to astrophysical parameters, and
to properly account for all uncertainties, parameter esti-
mation must be performed jointly. Under such a scheme,
information from the 21 cm line is incorporated by self-
consistently requiring the CMB-measured τ to agree with
values of τ predicted by the 21 cm-tuned simulations.

Forecasting the performance of our method for HERA,
we find that while parameter errors are reduced for all
cosmological parameters with the introduction of 21 cm-
derived τ information, the effects are the most pro-
nounced for As. This arises because of the known
degeneracy between As and τ in CMB observations.
With HERA, this degeneracy is broken and errors on
ln(1010As) decrease by more than a factor of four. Im-
proved measurements of As can sharpen (or alleviate)
current tensions between cosmological parameters de-
rived from cluster counts and those from primary CMB
anisotropies.

The 21 cm line may also be instrumental in future cos-
mological detections of the neutrino mass. To obtain pre-
cise estimates of the sum of the neutrino masses

∑
mν ,

Stage 4 CMB experiments must accurately constrain the
low ` reionization bump signature in their polarization
power spectra. Failing to do so would limit the preci-
sion of a CMB-derived value of τ , which propagates to a
degraded

∑
mν constraint since the two parameters are

partially degenerate. This degeneracy can be broken by
complementing the CMB with 21 cm cosmology. Assum-
ing that multipoles below `min = 50 are inaccessible to
ground-based Stage 4 experiments, the addition of 21 cm
information from HERA improves the 1σ error bars on∑
mν from ±19 meV to ±12 meV. The latter represents

a ∼ 5σ detection of on the minimum allowed
∑
mν of

60 meV.

Future work can improve upon the results derived
in this work by incorporating a greater variety of sig-
natures in the CMB. The essential idea in this paper
is to demand self-consistency between reionization con-
straints from the CMB and the 21 cm line. This require-
ment of self-consistency need not be limited to τ ; our
choice to focus on τ is based simply on the fact that
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it has a clear degeneracy with As and is measured by
all CMB experiments. Future high-precision CMB mea-
surements will yield additional constraints on reioniza-
tion beyond τ . For example, upcoming high sensitiv-
ity arcminute-scale resolution polarization experiments
will make high-significance measurements of the kinetic
Sunyaev-Zel’dovich effect, allowing CMB experiments to
be sensitive to the duration of reionization [95]. Further
details regarding the ionization history may also be ob-
tainable from high-sensitivity polarization measurements
[96, 97], with up to five independent modes of the ion-
ization history potentially observable [98]. All of these
constraints can be self-consistently combined with 21 cm
measurements and simulations in the manner described
in this paper, thus further improving cosmological con-
straints. Importantly, 21 cm measurements will always
remain a crucial check for CMB reionization results, since
the CMB does not in general contain enough information
to accurately reconstruct the full richness of a physically
motivated ionization history [99]. Additionally, observa-
tions of the 21 cm signal may be the first to detect any
unexpected features in the ionization history, which may
in turn inform how CMB reionization constraints are in-
terpreted.

The aforementioned advances will only serve to im-
prove the already sharp forecasts provided in this work.
Upcoming high signal-to-noise measurements of the
21 cm line from arrays such as HERA and SKA will there-
fore provide not only a transformative understanding of
the astrophysics of reionization, but also the opportunity
to further push the frontiers of precision cosmology.
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P. Labropolous, V. Jelić, L. V. E. Koopmans, M. A. Bren-
tjens, G. Bernardi, B. Ciardi, et al., Mon. Not. R. Astron.
Soc. 425, 2964 (2012), arXiv:1205.3449.

[78] A. P. Beardsley, M. F. Morales, A. Lidz, M. Mal-
loy, and P. M. Sutter, Astrophys. J. 800, 128 (2015),

arXiv:1410.5427.
[79] G. Mellema, L. Koopmans, H. Shukla, K. K. Datta,

A. Mesinger, and S. Majumdar, Advancing Astro-
physics with the Square Kilometre Array (AASKA14)
, 10 (2015), arXiv:1501.04203.

[80] J. D. Bowman and A. E. E. Rogers, Nature (London)
468, 796 (2010), arXiv:1209.1117.

[81] L. J. Greenhill and G. Bernardi, ArXiv e-prints (2012),
arXiv:1201.1700 [astro-ph.CO].

[82] M. Sokolowski, S. E. Tremblay, R. B. Wayth, S. J. Tin-
gay, N. Clarke, P. Roberts, M. Waterson, R. D. Ek-
ers, P. Hall, M. Lewis, M. Mossammaparast, S. Padhi,
F. Schlagenhaufer, A. Sutinjo, and J. Tickner, PASA
32, e004 (2015), arXiv:1501.02922 [astro-ph.IM].

[83] N. Patra, R. Subrahmanyan, A. Raghunathan, and
N. Udaya Shankar, Experimental Astronomy 36, 319
(2013), arXiv:1211.3800 [astro-ph.IM].

[84] N. Mahesh, R. Subrahmanyan, N. Udaya Shankar, and
A. Raghunathan, ArXiv e-prints (2014), arXiv:1406.2585
[astro-ph.IM].

[85] T. C. Voytek, A. Natarajan, J. M. Jáuregui Garćıa, J. B.
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