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Motivation	
•  DC	buildings	are	efficient	
–  Up	to	14%	more	efficient	than	AC	
– Most	loads	are	internally	DC	

•  Barriers	to	entry	
–  Lack	of	DC	loads	on	the	market	
– Many	380	V	DC	demonstrations	use	loads	that	are	not	
designed	for	380	V	

•  This	work	explores	how	DC	loads	can	be	designed	to	
leverage	the	benefits	of	DC	distribution	
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Categories	of	Loads	

Lighting

Electronics

Motor Loads

Heating 
Element

Electric Loads

Incandescent 

Fluorescent

LED

Computer

HVAC Unit 
Compressor

Refrigerator

Water Heater

VFD Motor

Fixed Speed 
Motor

Wireless 
Charger

Water Heater

Cheap Low 
Power Motor

DC-connected

DC-converted

DC-indifferent

•  DC-connected:	
Internal	DC	stage	of	
these	loads	can	be	
connected	or	
hardwired	directly	to	
the	DC	distribution	

•  DC-converted:	
Requires	a	DC/DC	
converter	in	order	to	
connect	to	the	DC	

•  DC-indifferent:	
Equivalent	benefits	
with	AC	or	DC	input	
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Motor	Loads	–	BLDC	Motors	
•  The	most	efficient	motor	

loads	use	variable	speed	
drive	brushless	DC	(BLDC)	
motors	

•  AC	BLDC	motors	have	a	
rectifier,	internal	DC	
capacitors,	and	inverter	

•  The	internal	DC	caps	can	
connect	directly	to	DC	
distribution,	avoiding	the	
rectification	stage	

AC
Input

AC
120 VRMS

60 Hz

CDC

AC
PWM Amplitude

Variable Frequency
DC

Rectifier Inverter

AC
Input

AC
120 VRMS

60 Hz

CDC

AC
PWM Amplitude

Variable Frequency

DC
Input

DC

Rectifier
Inverter

AC	BLDC	Motor	Load	

Internal	DC	Caps	can	connect	
to	DC	distribution	
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Motor	Loads	–	Bath	Fan	
•  Internal	DC	bus:	12	V	
•  Modify	for	48	V	PoE	input	
1.  Use	a	48/12	V	DC/DC	converter:	

-4%	consumption	
2.  Redesign	inverter/motor	for	48	V:	

potentially	-14%	consumption	

AC	
Terminal	

DC	
Terminal	

12	V	DC	Capacitor	Bus	

DC	High-side	
Filter	Capacitor	

Bridge	
Rectifier	

DC-DC	Flyback	Switch	

DC-DC	
Flyback	
Transformer	

EMI	Filter	
Components	
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Motor	Loads	–	DC	Bus	Voltage	
•  No	need	for	DC/DC	

converter	if	DC	bus	voltage	
equals	DC	distribution	
voltage	

•  BLDC	motors	can	be	
redesigned	for	any	DC	bus	
voltage	
–  Replace	inverter	if	needed	
–  High-voltage	motors	will	use	

thinner	wire	and	more	turns	
on	the	stator	coil	

–  Winding	area	and	loss	is	
equivalent	

High-voltage	DC	bus	

Low-voltage	DC	bus	

Defrost	Coil	Terminal	
and	Relays	

Control	
Electronics	

340	V	DC	Capacitor	Bus	

Bridge	
Rectifier	

DC-DC	Flyback	Switch	DC-DC	Flyback	
Transformer	

AC	Input	EMI	Filter	and	
Protection	Components	

340	V	DC	
Inverter	

340	V	Inverter	Board	

24	V	Inverter	Board	
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Lighting	–	Today’s	Integration	Paradigm	
•  Most	LED	drivers	are	integrated	into	bulb,	allows	plug-and-play	

–  Pros:	
•  Plug-and-play	compatibility	

–  Cons:	
•  High	conversion	ratio	is	inefficient	
•  Components	must	tolerate	high	voltage:	bulky	and	expensive	

•  The	problems	of	integration	are	even	worse	at	380	V	DC	
•  We	propose	(1)	remote	drivers,	(2)	series	fixtures	

Hot
Neutral

Dimmer

Fixture 1

VFIX+
_

Fixture 1

VFIX+
_

Fixture N

VFIX+
_

Fixture N

VFIX+
_
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Lighting	–	Why	Remote	Drivers?	
•  Reduces	life-cycle	cost	by	up	to	58%	

–  Separating	the	driver	from	the	fixture	doubles	the	fixture’s	life	span	(40%)	
–  Clever	driver	placement	reduces	maintenance	costs	for	replacing	light	bulbs,	

especially	in	high	bay	(30%)	

•  Easy	to	add	ancillary	services	
–  Wireless	dimming	
–  Battery	backup	

•  Most	remote	drivers	on	the	market	wire	fixtures	in	parallel	

VFIX+ _VFIX+ _ VFIX+ _VFIX+ _

Ho
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N
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Fixture 1 Fixture N
Driver

Positive
Negative
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Lighting	–	Why	Series	Fixtures?	
•  Reduces	life-cycle	cost	(10%-20%)	

–  One	driver	powers	many	fixtures	

•  Improves	efficiency	(>98%)	
–  Can	stack	fixtures	such	that	N*VFIX	is	close	

to	380	V	
–  In	prototype,	adding	extra	bulbs	increased	

efficiency	from	94%	to	98%	

VFIX+ _VFIX+ _ VFIX+ _VFIX+ _
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G
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Fixture 1 Fixture N Driver
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Conclusion	
•  Design	DC	loads	to	avoid	unnecessary	
conversion	stages	

•  Motor	loads	can	be	easily	redesigned	with	any	
DC	bus	voltage	

•  Zone	lighting	at	380	V	can	benefit	from	series	
remote	drivers	



Thank	you!	
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Project	Goals	
•  Categorize	loads	based	on	how	they	benefit	
from	DC	

•  Modify	several	AC	loads	for	DC	input	and	
demonstrate	reduced	consumption	

•  Determine	how	to	optimally	design	various	
classes	of	loads	for	DC	input	
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Motor	Loads	-	Sizing	the	DC	Capacitors	
•  Reasons	for	DC	capacitors	

–  Filter	PWM	ripple	(20-100	kHz)	
–  Provide	a	buffer	for	transients	

in	load	current	
–  Filter	120	Hz	AC	ripple	from	the	

DC	bus	

•  DC	loads	do	not	need	to	filter	
120	Hz	AC	ripple	

•  DC	loads	allow	for	smaller	DC	
capacitors	for	both	motor	
loads	and	lighting	

TABLE II: DC bus voltage ripple due to each effect

C (uF) AC Ripple (V) PWM Ripple (V) Transient Ripple (V)

10.0 78.02 3.32 0.82

100.0 7.8 0.33 0.26

1000.0 0.78 0.03 0.08
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Lighting	–	Low	Voltage	
•  Many	task	lamps	or	PoE	fixtures	have	their	

own	integrated	LED	drivers	
–  Two	conversion	stages:	power	distribution	module	

(PDM)	and	LED	driver	

•  Allowing	the	PDM	to	act	as	an	LED	driver	
reduces	conversion	stages	

•  USB	task	lamp	
–  USB	charging	station	acts	as	LED	driver	
–  Uses	Qualcomm	quick	charge	to	control	current	

DC
380 V

DC
~15-20 V

DC
20 V

Desktop 
USB-C 

Charging 
Station

LED 
Driver

Wall
Mains

Current
Control
Signal

DC
380 V

DC
~15-20 V

Desktop 
USB-C 

Charging 
Station

Wall
Mains Current 

Sense
PDM	 PDM	

Fixture	with	integrated	LED	driver	 PDM	acts	as	LED	driver	
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