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Abstract

Time series data are often well modelled by using the device of an autore-
gressive root that is local to unity. Unfortunately, the localizing parameter (c)
is not consistently estimable using existing time series econometric techniques
and the lack of a consistent estimator complicates inference. This paper devel-
ops procedures for the estimation of a common localizing parameter using panel
data. Pooling information across individuals in a panel aids the identification
and estimation of the localising parameter and leads to consistent estimation
in simple panel models. However, in the important case of models with con-
comitant deterministic trends, it is shown that pooled panel estimators of the
localising parameter are asymptotically biased. Some techniques are developed
to overcome this difficulty and consistent estimators of ¢ in the region ¢ < 0 are
developed for panel models with deterministic and stochastic trends. A limit
distribution theory is also established and test statistics are constructed for ex-
ploring interesting hypotheses, like the equivalence of local to unity parameters
across subgroups of the population. The methods are applied to the empirically
important problem of the efficient extraction of deterministic trends. They are
also shown to deliver consistent estimates of distancing parameters in nonsta-
tionary panel models where the initial conditions are in the distant past. In the
development of the asymptotic theory this paper makes use of both sequential
and joint limit approach. An important limitation in the operation of the joint
asymptotics which is sometimes needed in our development is the rate condition

*The authors thank the Co-Editor, Bruce Hansen, and four anonymous referees for comments on
the earlier version of the paper, and Donald Andrews for helpful discussions. Phillips thanks the
NSF for research support under Grant Nos. SBR 94-22922 & SBR 97-30295, and Moon gratefully
acknowledges financial support from a C.A. Anderson Prize Fellowship. The paper was typed by the
authors in Scientific Word 2.5.



7 — 0. So the results in the paper are likely to be most relevant in panels where

T is large and n is moderately large.
JEL Classification: C22 & C23

Keywords and Phrases: Bias, local to unity, Panel data, pooled regression, sub-
group testing.

1 Introduction

Time series models with roots near unity are extremely common in econometric
applications and this feature of the data is often modelled by using the device of an
autoregressive root that is local to unity, so that the time series has the property of
being near-integrated. Such time series are more general than integrated processes
and they allow more flexibility in the econometric modelling of nonstationary series.
While the local to unity parameter cannot be consistently estimated using existing
time series methods’, it is useful in many different econometric contexts. A few
examples are: the analysis of power properties of unit root tests (Phillips, 1987a); the
construction of confidence intervals for the long run autoregressive coefficient (Stock,
1991); the development of efficient detrending methods (Phillips and Lee, 1996, and
Canjels and Watson, 1997) ; and the construction of point optimal invariant tests for
a unit root (Elliot et al, 1996) and cointegrating rank (Xiao and Phillips, 1997).
This paper develops procedures for the estimation of the local to unity parameter
in panel data models. When there is a common time series local to unity parameter
across independent individuals in a panel, it is apparent that the cross section data
carries additional information that can be used to assist in estimating a common
localizing parameter (¢). By simple pooling of time series estimates, we might expect
that a common local to unity parameter could be consistently estimated with panel
data that combined independent observations across individuals. In the case where
the data generating process involves only a near integrated stochastic trend process,
we show that a simple pooled least-squares estimator does produce a consistent esti-
mator for the local to unity parameter. However, the simple data-pooling heuristic
does not hold in situations where there are both deterministic and near-integrated
stochastic trends in the model. In such cases, it is shown that the pooled least-squares
estimator of the localizing coefficient ¢ generates an inconsistency that depends upon
the true unknown localizing parameter. To resolve this problem, we develop a consis-
tent estimator for ¢ in the important case where ¢ < 0. Asymptotic normality of these
consistent local to unity parameter estimators is established and the limit theory is
used to develop an inferential framework for local to unity modelling in panel data.
In particular, test statistics are constructed for exploring interesting hypotheses, like

!Some recent work by Phillips, Moon and Xiao, 1998, develops new block local to unity models in
which the autoregressive roots are local to unity, but not as close to unity as they are in conventional
near integrated models. In these block local to unity models, the authors show that it is possible to
consistently estimate the block localising coefficient.



the equivalence of the local to unity parameter across subgroups of the population.

Local to unity parameter estimation is useful in many empirical applications. We
illustrate the usefulness of panel estimation of the localizing coefficient with an appli-
cation to efficient deterministic trend extraction and the construction of confidence
intervals for models with roots near unity. According to Phillips and Lee (1996), when
the regression errors are near integrated, efficiency gains in the estimation of deter-
ministic trends can be obtained by quasi-differencing the data. However, in order to
implement this procedure in practice, the localizing parameter in the near integrated
error process must be known or be consistently estimable, neither of which normally
apply. If inconsistent estimates of the localizing parameter are used instead, then
the resulting trend coefficient estimator has a highly nonstandard limit distribution,
which gives rise to new difficulties, for example, in setting up confidence intervals for
the trend coefficient. Because of this problem, Cavanagh et al (1995) and Canjels
and Watson (1997) suggested the use of Bonferroni-type confidence intervals, which
are often very conservative. In panel data models, our consistent estimate of the local
to unity parameter can be used to overcome these difficulties. In fact, our feasible
efficient estimator based on consistent panel data estimates of the local to unity para-
meter has a standard limit distribution and this limit theory leads to a conventional
form of confidence interval for the trend.

Another useful application of panel data for nonstationary time series lies in the
consistent estimation of the distancing parameter that arises in the formulation of
distant initial conditions. The distancing parameter, which is expressed as a fraction
(not necessarily less than unity) of the length of the present time series sample,
measures how far into the past the initialization extends in terms the shocks that have
determined it. It is shown that consistent estimation of this parameter is possible
with panel data when there is common distancing in the intialization across the panel
and a common local to unity parameter in the dynamics. In effect, panel variation
across individuals enables us to learn something very specific about the nature of
pre-sample data — how far its origins extend, in relation to the historically observed
data.

In other recent research (Phillips and Moon, 1999), the authors have developed
some rigorous asymptotic theory for multi-index situations in which two indices may
pass to infinity. This general theory is applied to obtain a nonstationary panel data
limit theory where there are large numbers of cross section (n) and time series (7')
observations. The new limit theory allowed for both sequential limits, where T' — oo
and n — oo sequentially, and joint limits where T,n — oo simultaneously. The
present paper makes use of those methods in the development of the asymptotic
theory here. An important limitation in the operation of the joint asymptotics which
is sometimes needed in our development is the rate condition 7 — 0. This condition
means that the results are likely to be most relevant in panels where T is large and
n is moderately large (as is the case in some cross country macroeconomic panels).

The paper is organized as follows. Section 2 lays out the model and assump-
tions, gives some heuristic discussion and shows how consistent estimation of the
localizing parameter is possible in panel models with no deterministic components.



Section 3 studies the same problem in models with deterministic trend components,
shows the inconsistency of the pooled least squares estimator and develops several
alternative approaches to dealing with the bias problem. A consistent estimator is
given for the case where the common localizing parameter satisfies ¢ < 0. A limit
distribution theory is developed and matters of inference are discussed. Section 4
applies these methods to the testing for the localizing coefficient, to the empirically
important problem of the efficient estimation of the deterministic trend coefficients,
and estimation of the distancing parameter that arises in the formulation of distant
initial conditions. Section 5 concludes the paper. Proofs, technical derivations and a
brief review of some double index asymptotic theory are given in the Appendices in
Section 6.

2 Models, Assumptions, and Heuristics

We start by assuming that the time series process for individual 4, z; 4, has a decom-
position into both deterministic and stochastic elements as follows:

2y = [3i70+[3;gt—|—yi7t, t=1,...T;i=1,...,n, (1)

c
Yit = QYii—1 1 Eit, a= exp(?),
where g: = (t,...,t7)" is a deterministic polynomial trend, 3; = (8; 1, ..., 3; )", and y; +
is a near integrated stochastic process. The initialization is at ¢ = 0 with random
variables y; o that are iid across 7 with mean zero and finite variance 02270 for all 7. In
this paper we assume that the deterministic trends 3; o+ Bgi in (1) are heterogeneous
across i.> These heterogenous trends reflect individual effects in the panel data 2t
The parameter ¢ in the AR (1) coefficient a is the local to unity parameter which
is assumed here to be common to all individuals. One of the aims of this paper is to
find a consistent estimation procedure for the parameter ¢. The common localizing
parameter ¢ can be considered as a common limit of individually different sequences
of local parameters. That is, we may regard the AR (1) error process coefficient a as
the limit of the sequence of coefficients a; v = exp ((¢ + ¢; 1) /T), where ¢; 7/T — 0
uniformly in 4. In this case the common coefficient a = exp (%) is an approximation
of a; 7 = exp ((¢ + ¢;r)/T) . In some empirical applications, it may be too restrictive
to assume a common localizing coefficient in the panel regression model (1) for all
individuals. Therefore, procedures which allow for some cross sectional heterogeneity
in the localizing parameter and procedures for testing cross sectional heterogeneity
in localizing coefficients will certainly be of interest in empirical work. As a partial
solution of the latter problem, this paper develops a testing procedure designed to
assess whether the localizing parameter is the same across subgroups of individuals
in the sample.

?Recently, Moon and Phillips (1999b) study a panel model such as (1) with homogeneous trends.
The present paper considers only the heterogeneous trends model, where there are special complica-
tions in estimation and inference, as we will show. .



With regard to the specification of the trend component in (1), it is important
to note that individual intercept terms f3; ; are not consistently estimable with time
series data when the stochastic component y; + is near integrated, due to the low signal
to noise ratio relative to the latent stochastic trend y;; in (1), viz. 1/var(y:;) =
O(3) — 0 as t — oo. The Op(1) assumption for the initial conditions of y; is
made for convenience and could be extended in the usual way to allow for distant
initialization (Uhlig, 1994, Phillips and Lee, 1996, Canjels and Watson, 1997), at the
cost of some additional complexity.

To develop some quick results, we first consider the simple case where the trend
coefficient vectors 3; are known (but intercept terms 3; 5 are unknown) and the error
processes €; 4 are iid(O, Ug) across ¢ and over t. This covers the case where there is no
deterministic trend in (1) and 3; = 0. In this case, the variables Zit = Zit — B;-gt are
observable. In time series regression, taking into account the relation a ~ 1 + %, the
natural estimator for ¢ is ¢ =T (a — 1) where

T -1 /7
~ ) A A
a= Zzi,tfl Zzi,t—lzi,t .
t=1 t=1

Then, as T' — oo

T
. 1 . 1 5
T(a—a) = |7 Zzz,t—l T Zzz,t—l ((1 —a)Bio+ €z,t)
L7 =1 t=1
1 L -1 1 I
= T2 Z (yzt 1+ 8; o) T Z (yi,t—l + ﬁi,o) ((1 —a) [32'70 + Ei,t)
R =1
1 -1
N ( / Jc,i(r)er> / Jea(P)dWi(r),
0 0
where Jg;(r) = [, e (r=3)edWW;(s) and W;(r) is a standard Brownian Motion (e.g., see

Phillips, 1987b) From

azexp(%)zl—i—%—i—@(%), @)

we have

t—c=T(@a—-1)—c=T(@—a)+0 (%) = (/01 Jc,i(r)er> /01 Je.i(r)dW;(r).

Thus, as is well known, ¢ is not a consistent estimator for ¢ and has a non-degenerate
limit distribution.

Now suppose that panel data for y;; are available. Again, one of the natural
ways to estimate the common AR (1) coefficient a is to pool the data and run a
least-squares regression. Then, we would have

- (zzzzt_l) (zz) | ®)

i=1 t=1 i=1 t=1

-1
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and, again, in view of (2) we define
¢c=T(a—-1). (4)

To take a quick look at the asymptotic behavior of a (or, equivalently, ¢), we consider
the sequential weak limit of T (@ — a) by letting T' — oo first, followed by n — oo,
which we denote by (T',n — 00)seq (see Phillips and Moon, 1999, and the remark
below). Now we have
1g- 1 & J 11
7 [; >3 (s + ) ] [; S A a1+ ) (-1 -
(3)
As T goes to infinity while n is fixed, we have, as above,

n 71 n
T(a—a)= <% > / Jc,i(r)2> <% > / Jc,i(r)dI/Vi(r)> . (6)

Note that E (Jg;(r)dW;(r ))—OandE(me ?) = fo " e2(r=5)dsdr > 0. By the

weak law of large numbers, as n — oo, = 5% | [ J,; dW( ) —p 0. Therefore, in
sequential limits as (T',n — 00)seq, we find that T' ( a) —p 0, and
t—c=T(a—a)+o(l) = (7)

That is, ¢ is a consistent estimator for the local to unity parameter ¢ in sequential
limits as (7,7 — 00)seq-

Remarks

(a) The asymptotic theory above employs a sequential approach in which the index
T passes to infinity first and then the index n passes to infinity later, which is
denoted as (T',n — 00)yeq- In general, depending on how the two indices, n and
T, are treated, it is possible to have variety of limit results for double indexed
random sequences. Recently, Phillips and Moon (1999) have studied this mat-
ter and suggested various limit concepts for multi-indexed sequences, classifying
the main concepts into the following three cases: a sequential approach, a diag-
onal path approach, and a joint approach. The sequential approach passes the
indices to infinity sequentially. In the present case, depending on which index
tends to infinity first, we may have two different sequential limits according as
(T,n — 00)seq OF (n,T — 00)seq, Where the order of appearance of the index
in the notation gives the order of the passage to infinity.. The diagonal path
approach allows the two indices, n and T, to pass to infinity along a specific
diagonal path, say (n,T(n)), in the two dimensional array. This approach sim-
plifies the asymptotic theory by replacing the double indexed process with a
single indexed process. The joint approach allows both indices, n and T, to pass
to infinity simultaneously without placing specific diagonal path restrictions on




the divergence. On the other hand, to obtain some joint limit results, we often
need to exercise control over the relative rate of expansion of the two indices.
One such requirement that is used in the present paper is %z — 0, and in such
cases there will be a presumption that 7' is large relative to n in the limit. While
this requirement is not unreasonable for some recent macroeconomic panels, it
is much less relevant in traditional dynamic panels where n is often very large
and T is quite small. In such cases, fixed T with large n asymptotics or joint
asymptotics with % — 0 will be more relevant. The present paper focuses
mainly on sequential asymptotics with (T,n — 00)seq and joint asymptotics

under % — 0.

(b) We emphasize that the different approaches may yield different limits. Apos-
tol (1974, p 200) gives examples of real number sequences with this property
and Phillips and Moon (1998) give examples for double sequences of random
variables. In the light of such examples, it is natural to ask whether there are
cases where the different approaches yield the same limit. The recent paper by
Phillips and Moon (1999) provides a partial answer to this question, focusing
on the relation between sequential limits and joint limits. The Appendix of the
paper summarizes some important details about these relations.

(c) As the above analysis indicates, sequential limits are often easy to derive. In-
deed, they are usually much easier to derive than joint limits. As a device
for obtaining quick asymptotic results, we will proceed in this paper with
(T,n — oo)seq sequential limits, and then, in the appendix, demonstrate the
results under the more general environment of joint limits. There are two main
reasons for dealing with (T, n — 00),,, limits instead of (n,T — 00),,, limits.

The first is simply convenience. In many of the cases investigated in this pa-

per, deriving (T,n — oc0) seq limits is relatively straightforward and is especially

advantageous when the nonstationary time series y;; in model (1) are gener-
ated from weakly dependent processes such as those in Assumption 1. Second,

(T,n — oo)seq limits seem appropriate for some recent cross country macroeco-

nomic panels like those of the Penn World Tables. Later in the paper and as

relevant matters arise, some further discussion of these issues will be provided.

The consistency of ¢ in (4) depends upon two unrealistic assumptions: (i) the &;¢
are iid(O,Ug) and (ii) the trend coefficient vectors [3; are known. When the ¢; ¢ are
serially dependent, as in Assumption 1 below, the limit of 7' (@ — a) in (6) involves a
bias term which depends on the one-side long-run covariance of ;. In this case, we
can correct the bias easily, for example, by estimating the one-side long-run variance
nonparametically as in Phillips (1987a), or by using parametric autoregressions in
which the order of the autoregression expands with the sample size, as in Said and
Dickey (1984).

When the 3; are unknown, the problem becomes much more complicated. The
obvious point of departure is to remove the deterministic trends by preliminary re-



gression and then to define ¢ = T (a — 1), where the estimator & is obtained by

autoregression with the detrended data. Thus, suppose z and 2 are the de-
i, it—1
trended data, obtained as regression residuals of z;; and z;;—1 on g;. Then, we have

¢=T(a—1), where

n T -1 n T
- 2
a= z z oz .
(ZZ i t—1> (;; ~i,t—1~i,t>
This estimator of ¢ is a simple extension of that used in the case where the trends
were known. Interestingly, however, ¢ is not consistent in this case. Intuitively, the

reason for the inconsistency is that preliminary detrending filters the stochastic trend

Yy and the filtered process is correlated with the stationary error process ¢;; in
it—1
(1). These matters will be explored in the next section.

We close this section with two assumptions on the error process &; ¢.

Assumption 1 ¢;; are linear processes satisfying the following conditions:

(a) eip = Ci(L)uiz = 37720 Cijuig—j-

(b) u;z are #d across i and over t with Fu;; = O,Eu?t =1, and Euft = 04.

(c) Ci ; are sequence of real numbers with C; = sup; |C; ;| < co and >0 J°C; <
oo for some b > 1.

(d) sup; (71270 < 00, where 02270 = E(yi%o).

Let CZ = Ci(l), QZ = CZQ, and AZ = Z;)il Cz',OCi,j~ QZ and Az are the long—run
variance and the one-sided long-run covariance of the error process ¢; ¢, respectively.
The next assumption is about the limits of the averages of the individual long-run
variances and covariances.

Assumption 2 (a) Q = lim, + Y7 | Q; is finite.
(b) A =limy, L Y | A; is finite.
(c) @ =lim, = >°7 | Q2 is finite.

Remark Let (), = Eait. Under Assumption 2, there exists €2, = lim, % oy Qe
and €, = Q — 2A.

3 Estimation of the Localizing Coefficient in Panel Mod-
els with Deterministic Trends

First, rewrite the panel model (1) in augmented regression format as
Zit = aZig1 + Vi + Vigt + it (8)

where 7, o = ;o (1 — a)+aBtp, the deterministic trend component g, is constructed
as

Yigt = Bi(9¢ — agi—1) — afitp = BiAr (c) gt



!
and A (c) is a pxp matrix which depends upon ¢ and T" and ¢, = (—1, (=12, ..., (—l)p) .
As is well know, the formulation (8) has the drawback that the regression leads
to inefficient trend elimination, but it has the advantage that the detrended data is
invariant to the trend parameters in (1). It will be convenient for us to work with
both formulations (1) and (8), depending on the context.

3.1 Iterative OLS: Biased Estimation

We start by introducing some definitions. Let

gt = (]-7g1/‘,)I7 g(T):(T‘,...,T’p),, g(’/“): (179(7‘),)17
Dy = diag(T*,..,TP), Dy = diag (1,Dy)
and define
T -1
hr(t,s) = (Drg)’ < > Tgtgzl‘,DT> Drgs,
t=1
T -1
hr (t,s) = DTgt ( Z TgtgtDT> Drgs

-1

hrs) = g(r) ( /0 grg<r>'dr) o(s)
Rrs) = g0 ( / 1 g<r>g<r>'dr) o).

When ¢ = [T'r] and s = [T'p], it is easy to see that as T' — oo,
Drgi — g(r) uniformly in r € [0, 1],

and
hy (t,s) — h(r,p) uniformly in (r,p) € [0,1] x [0,1].
Let 2z and Az denote the OLS detrended processes of z;¢—1 and Az;y, re-
it—1 -
spectively, i.e., for t > 23

z = Zit— 1__§ hTtSZzs 1,

it—1

1 ~
A;Ziﬂg = Azu — T Z hT(t, S)AZZ‘7S.

3Suppose that Z; = (zi,l,...,zi,T)', Z_1,; = (zi0, ...,zi,T_l)', and G = (gu, ...,gT)'. Then, 2
it—1

and Az ¢ are the tt* elements of QcZ-1,; and Q¢ (Z;i — Z_1,:), respectively, where Qg = Ir —
G(G'G) "G and t > 2.



Then, from model (1), we have

T T -1
z =Y 1—52 Aﬁt—<ZA§s§§> (Zﬁtﬁi) G| =y  fort>2
- s=1 t=1
9)

Also let z =zio=Y =Y.

Tt is well known that under Assumption 1, as T — oo,
= Cides (1) (10)
\/Tyz,[Tr] iJeg

(Phillips, 1987b). Using standard manipulations, it is not difficult to show that when
[Tr]=t,as T — oo,

g: Y
i,t—1

\/— = \/— J (7"), (11)

where J (r) = fo i(s)ds.

C,7
We now discuss an estimation procedure for the local to unity parameter with
panel data when the trend coefficients (3, are unknown. Suppose that A; are consistent
estimators for A; as T — oo. Consider a simple estimator, ¢, defined as a serial
correlation bias corrected (if required) pooled least-squares estimator a* of a,

(l" B ) ;Z< :, Th) (12)

1 i—1 - it—1 it

and
& =T (" —1).

The estimator aT is a bias—corrected* pooled least-squares estimator with OLS de-
trended data. We define ¢t from a* in view of the relation a ~ 1+ %. Hereafter, we
call ¢t an iterative OLS estimator.

In view of (11) we have

1.1 & e Z
T@Er—a)=| = — 22 - z il 13
woo-(3mre ) 1ra(e, e h) w

and, from the limit theory in Phillips (1987b), as T' — oo for fixed n,

T —a) > (% > [ (r)dr> (%Z [ waw, m).
=17 Gt =17 o

*The correction is for serial correlation in ¢; ¢, following Phillips (1987a).

10



Note that

S|

I
&

1,1
/ / Jeji (7 (s)h(r,s) drds)
0 Jo
- - {1 } / / c(r+s) — 6720(7"/\5))}1(7,, s)d’r’ds
2c 0 0

= wi(c), say, (14)

B( 1 s )
E</1J () dWi(r )) E</01 Jc,i(r)dl/lfi(s)ﬁ(r,s)drd5>
= / / e"=9h(r, s)dsdr

), say.

and

(15)

Since both of the iid sequences { fol J2 r)dr} and { g (r)dm(r)} have finite

[X i

second moments, it follows by the WLLN that as n — oo

-1
l . 2 (r)dr l ; r r)| — ws(c)
(n;/{]cﬂ()d> (n;/i]cﬂ()dw( )) Pwl(c)'

Thus, in sequential limits as (T,n — 00)

seq
T(6* — a) -, “29.
( ) D wl(c)
and, in consequence,
. . 1 wa(c)
c+—c:T(a+—a)+O<T> prl(c)' (16)

Hence, the iterative OLS estimator ¢ is inconsistent and has an asymptotic bias

given by the ratio WZEC; which depends on the unknown parameter c¢. The main reason

for the inconsistency of éT is that the detrending procedure produces a correlation be-

tween the lagged filtered regressor 2z and the equation error ¢ . This correlation
it—1 it
yields the nonvanishing limit

1 pr _
—/ / ") (r, s)dsdr (17)
JO JO

11



in the numerator of T (4™ — a).
Define

wa(c)
wi(c)’
Since ws(c) is non zero in general, ¢ is not consistent. However, since the probability
limit of ¢*, F(c), depends only on ¢, we can expect the limit function F(c) to give
some information about the true parameter ¢ especially in regions where F(c) is
a monotone function. The graph of F(c) is plotted for the two cases §: = 1 and
g¢ = (1,t)’, which are the most common in empirical applications.

Flc) = (18)

ia

12 [
8 6 4 2 o 2 4 2 o i 2 !
0
L2
L4
6 1
18 /'10
L12
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Figure 1°. Graph of F (c)when g§; = 1 Figure 2. Graph of F (c) when g, = (1,t)".

When § = (1,t)’, that is, when we detrend the data to estimate c, it is apparent
from Figure 2 that in the region {c : —0.8 < ¢ < 1.2} the limit function of the estimate
¢T does not identify the true parameter, because F' (c) is not a one-to-one function
in the region. Outside of this region the probability limit of the estimate ¢t does
identify the true value of the local to unity parameter ¢ and can be used to construct a
consistent estimate of c. Furthermore, if we assume that the true localizing parameter
is non-positive , i.e. the true localizing parameter set is {c: ¢ <0}, then we can
identify the local to unity parameter ¢ for all ¢ < 0 using ¢'(and its probability
limit) because the probability limit function F'(c) is monotonic with respect to ¢ on
{c: ¢ <0}, the true localizing parameter set. In this case (i.e. under the assumption
that ¢ < 0), there is no unidentifiable region and F~! (¢*) is a consistent estimator
of c.

An analytic form of the inverse function F~! (¢) of the probability limit function
F (c) is not readily available. But the function is easy to calculate numerically and is
given in Table 1 for the case §; = (1,t)’7. We summarize the results in the following
two theorems.

Theorem 1 Let F(c) = c+229  Under Assumptions 1 - 4, ¢ —, F(c) in sequential

wi{c)

limits as (T,n — 00) g, -

In this case, the trend coefficients (3, are zeros, and so we can estimate ¢ consistently as we have
shown in the previous section. However, it is common in empirical practice to use demeaned data,
and use of this estimator results in bias as is apparent from the probability limit F' (c) .

"We consider only the linear trend case because it is the most widely used specification in empirical
application.

12



Theorem 2 Under Assumptions 1 - 4, in sequential limits as (T,n — oo)seq

Vi (65 = F(e)) = N (0,8Vz (),
—wa(c)

where Vzi(c) = < ;ffc()%) L )/ V(e ( “’11(0)2 ) , V(c) is defined in Appendix A,

wi(c) 1
' e

and ® is defined in Assumption 2(c).

The variance V+(c) is a complicated function of the unknown parameter ¢ but,
again, can be calculated numerically as shown in Table 2 for g = (1,t)’.

Remarks

(a) The two results are stated here in terms of (T, n — 00),,, sequential limits for
the indices T' and n. Appendices C and D show that these results continue to
hold when joint limits (7,n — oo) are taken. In fact, according to the results
given there, joint asymptotic normality of \/n (¢t — F(c)) continues to hold
under the additional rate restriction & — 0 as (n,T — oo), while joint conver-
gence in probability, ¢t —, F(c) as (n,T — o0), holds without the additional

rate restriction.

(b) The intuition behind the requirement 7 — 0 for joint asymptotic normality of ¢
is simple. Under the assumptions in the theorem, we usually have E (¢) # F(c)
for fixed T, but E (¢) — F(c) as T — oo. In this case, the restriction % — 0
works to prevent an explosive bias in /n (¢t — F(c)).

(¢) When E (¢) # F(c) for fixed T, which is the case under the assumptions of this
paper, a limit theory based on n — oo with T fixed encounters some additional
difficulties. In the case of the probability limit of é*, when n — oo with T fixed,
we obtain a different limit from F' (c) and one that depends on T'. Additionally,
as far as the limit distribution of é¢* is concerned, central limit theory as n — oo
with T fixed cannot be applied to v/n (¢7 — F(c)), but rather to the recentered
estimator y/n (¢ — E (¢1)), which is not as useful because E (¢7) depends on
additional unknown parameters.

Consistent estimators AZ and QZ for the individual long-run variances A; and §;
can be obtained by employing standard kernel estimates. These estimates can then
be averaged to produce consistent estimates of the quantities A, ® and 2. More
specifically, let @ be the pooled least squares estimator of the regression model (8),
that is,

n T -1, o
~ 2
a= z z z
and &;; be the residual &;; =2 —a 2 from this regression. Define the sample
it it—1
covariances I';(j) = % > &itéit+j, where the summation is defined over 1 <¢,t+4j <
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T. Then, the kernel estimators for AZ and QZ are:
A = zT:w <i> L3 (4) (19)
K
o = Y w (%) 10 (20)
I )

where w(-) is a kernel function and K is a lag truncation parameter. Truncation
occurs when w (%) = 0 for |j| > K. Averaging over cross section observations now

leads to consistent estimators of A, ® and €. The following assumptions concern the
class of admissible kernels and the choice of the bandwidth to be employed in the
kernel estimates (19) and (20). These assumptions are used in our joint convergence
arguments in the Appendices, where it is shown that % Dy A; —p A as (T,n) — oo.
For sequential limits, it is possible to use weaker conditions.

Assumption 3 (Kernel Condition) The kernel function w(-) : R — [—1,1] satisfies
the following:

(a) w(0) = 1,w(x) = w(—w),_ﬁl w(z)?dr < oo, and w(-) is continuous at zero
and all but a finite number of other points.

(b) w(x) =0, || > 1.

(¢) wg = limg_,g %ﬁ is finite for some q € (1,00).

Assumption 4 (Bandwidth Condition) We assume that, as T — oo, the bandwidth
parameter satisfies K — c>o,KT2 — 0, and KQ;H — v > 0 for some % < q<b for

which wy is finite, where b is given in condition (c) in Assumption 1.

The Parzen exponent ¢ in Assumption 3 is related to the smoothness of the kernel
at zero. The most frequently used kernels in applications satisfy this assumption -
see, for example, Andrews (1991) for details.

Remark The iterated OLS estimator discussed above is a pooled least-squares esti-
mator based on OLS detrended data. Naturally, there are many pooled least-squares
estimators based on data that have been detrended in different ways. One procedure
that is used widely in applications is to use first differenced data. This detrending
procedure has difficulties similar to those of iterated OLS. To be specific, assume a
simple linear trend in the panel model (1), so that

zit = Bit+yis (21)
yi,t = ayi7t—1 + 57:7t’ a = exp (%) .

The difference detrended data is then simply

2 =Zit— ﬁzta
it
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where Bi,l =7 Z?:z Az; ;. Define
n T -1 n T
=t — ~ 52
cor(ayy s )o(axyac e )
i t=2 bt i=1 t=2

1
where ., = 1 D DR Zt 9 <A z > In this case, applying similar arguments to

those used earlier in this section, we find

1
=+
—p —2&)3 (0)7 (22)
where w3 ( [0 {26 ( 2re _ ) —2r (% (1 — 6_2‘”’) ec(l‘”)) + 7“2% (€2c — 1) } dr. >From

this outcome it is apparent that the probability limit of ¢*, sl is different from

¢ in general, and therefore, the estimator ¢, like ¢*, is not consistent. ( More details
on this estimation procedure are given in the previous version of this paper, Moon
and Phillips, 1999a).

3.2 Double Bias Corrected Estimation

This section explores a new estimation procedure which corrects for two sources of
bias, one from serial correlation and the other from detrending. As observed in the
previous section, the iterative OLS estimator has an asymptotic bias which depends
only on the unknown localizing parameter c¢. The idea behind the method we now
investigate is to introduce a modification that adjusts for the bias that arises from the
correlation of the filtered data and the regression error. In particular, using a linear
representation of the exponential term that appears in (17), we can approximate the
asymptotic bias, ws (¢), of the numerator of ¢* — ¢ as follows

ZZ[1+ ———)]hT(t s).

t=1 s=1
Since Wy (c) is linear in ¢ it is possible to utilize this information to adjust the estimator
¢T. The adjustment can be designed so that the new estimator, ¢™, satisfies the
system:

Gi%if )(é**—c)

nz:lT t=1 it—1

-y ) oo (L33 (14 - 2 i
= a2 T; 2, 5, M) T 2;2 + (= 7)E ) b (8, 9)




It follows that, as T"— oo for fixed n, the RHS of (23) converges in distribution to
_ZQ (/ J dW; —ws(c ))

which converges in probability to zero as n — oo because E (.lbl J dm> = wa(c)

and 137  Q; — Q.
These heuristics lead to the following panel estimator for the local to unity para-
meter ¢

) |

¢,

i—1 = Ot =1 s=1
xzn: lzT:z Azzt A—l—Qzl izt:hq«ts (24)
T\ T T2t 1 s—1

The inclusion of Al in the formulation of ¢ accounts for the usual serial correla-
tion bias correction. The adjustment of the numerator and the denominator with
Qe ST S hp(t,s) and (Zle S (t— 8)hp(t, s)) corrects for the bias
from the use of detrended data.
>TFrom the definition of ¢, we have

é++ —

_Z{TLET: : i izx%_%)ﬁm’s))}]_l

S | ,
Pt iz Yoo Spmr ¢ (L = ) hr(t s) +rrgs Yoy 22

i,t—1
where 7y = T2 (exp (%) — (1+ %)) and the equality holds because z = a z
it it—1
t+e
it
To derive a probability limit of ™ under sequential limits, we first let T — oo for

fixed n. Then, by the continuous mapping theorem and cross-section independence,
we have

n

ettt o = [ Z </ J? dr_/ / r—s) rsdsd’r‘)]_
%zn; (/ (r)dVVZ-(r)—k./O. /0 e<”>cﬁ(r,s)dsdr>. (25)

In view of (14) , we have

E</ ~2 dr—//r—s rsdsdr>
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= c—//r—s (r,s)dsdr = w(c), say,

where wi(c) = F {1+ 5(1—e*)} — .[01 .[01 erts) L(1 — e 2" )) (r, s)drds. We
know that [01 J? (r)dr has finite second moments. Also, it is assumed that sup; |C;| =

X B
C < o0 s0 sup; [€;] = C? < co. Then, by the weak law of large numbers, as n — oo

(E3oa ([ = [ [0 oftroar)) <000 o

For the time being, assume that w (¢) # 0 at the true value of c.
Similarly, in view of (15) we have

. 1 pr
E (/ J dW}) + / / e3¢ (r, 5)dsdr = 0.
. c,i Jo JO

Since lim,, & =319 = Qand lim, 5 1 >o% 1 Ai = A, and using the weak law again, as
n — 00, we have

( < /J r)dw; +/ / (r=s)¢h(r, s)dsdr)) —, 0. (27)

Combining (26) and (27), and provided w(c) # 0, we then have under sequential
limits as (T',n — 00) .,

ettt —, e (28)

In summary, we have the following result for the consistency of ¢t+ under sequential
limits. Appendix B extends this result to give consistency of ¢t+ under joint limits.

Theorem 3 Under Assumptions 1 and 2, if w(c) # 0, then as (T,n — o)
ottt =

seq

p C.

Remarks

(a) The consistency of ¢™* in the above theorem holds only for values of ¢ such that
w(c) # 0. In general, w(c) is quite a complicated function of ¢ and is dependent
on the explicit form of the deterministic trends in the model. Consequently,
it is hard to find analytically the set of ¢ such that w(c) = 0. Figures (3) and
(4) plot the graphs of w(c) for the most commonly used trends g, = 1 and

gt = (17 t), .
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Figure 3. Graph of w (¢) when g =1 Figure 4. Graph of w(c) when § = (1,t)’

(b) These graphs show three important features of w (¢). First, we see that w(c) # 0
when ¢ < 0; second, w(c) = 0 when ¢ = 0; and, third, there is another point of
¢ for which w(c) = 0 in the region ¢ > 0 when g = (1,t)".

(c) Unfortunately, at ¢ = 0, w(c) is always zero regardless of the form of the de-
terministic trends assumed in the model. This can be verified by the following
simple calculation for the general case. We have

w(0) = (/ W dr—// r—3s) rsdsdr)
= /rdr—/ / (rAs)h rsdsdr—/ / r—s) rsdsdr
— /rdr—/ /rhrsdsdr—/ / rhrsdsdr
= /rdr—/ /rhrs)drds—/ rdr—/ sds = 0,
Jo Jo Jo

where the last line holds for the following reason. Let Ls[0,1] be a space of
square integrable functions on [0, 1] with inner product < f, g >= _[01 f(r)g(r)dr.
Let Q denote a space of polynomial functions of degree p on [0,1] generated
by {1,7,..,7P}. Let g(r) = (1,r, )' Then the operator P from Ls[0,1]

) =
to Q defined as P (f) = g(r)’ (] ( ) (Io ds) is a projection.
Hence, when f(r) =r, P(f(r)) = (7") = r and so we have .[0 rh(r, s)dr = s.

(d) As Figures (3) and (4) show, even though w (¢) # 0 for ¢ < 0, w (¢) is very close
to zero around ¢ = 0. Because of this, we can expect that the estimator ¢t
may perform poorly for ¢ ~ 0.

Next we derive the limit distribution of ¢™+ using sequential limit arguments.
Here we consider only the case w (c) # 0. First, standardize ¢ — ¢ by \/n. Then,

NG
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For fixed n, as T' — oo, we have

ﬁ(é**—c)
= Bya ([ 2 o [ [ o=t
x%iﬂz(/jbjm( // <H%rsdsdr> (29)

E [Q < /0 1 J (r)dW;(r) + /0 1 /0 ' e(T_S)CfL(r,s)dsdr>] =0.

Appendix A derives the variance of the numerator in (29) 8. It is

. [Q ( /0‘1 J )+ /0 1 /O " R, s)dsdr)r
(o[ g, emi) ([ [ i na) |

QVeit (),

where

(30)

Varr (
PAS
// 2 =9 dsdr — 2 /// P +5=22) qrh(p, s)dsdp
—2/ / / =)= h(p, s)drdsdp
o Jo Jo
1 1,1 “DAQ _ ~
—l—/ / / (/ ec(p+q_2m)dw> h(q,m)h(p,r)drdpdq
q 3
/ / </ (q s)d)(/ ec(qr)h(p,r)dr> dpdq.
Jo

8See vgg (c) in Apendix A.
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Since sup; ? < oo and limy, % S Q2 = @, it follows by the Lindeberg Levy central
limit theorem that, as n — oo

% XZ;Q ( /'1 J )W)+ /0 1 | /0 "9y, s)dsdr> = N(0,8Ve (¢)).

J0O (X

Combining this with the probability limit for the denominator of (29), Qw (c), we
have established the following theorem under sequential limit arguments. The same
limit theory is obtained in the Appendix under joint limit arguments.

Theorem 4 Under Assumptions 1 and 2, as (T,n — oo)seq,

A OVt (C)
vn (C++ —c¢)=>N <0, W) , (31)

where Vet (¢) and w (¢) are defined in (30) and (26), respectively.

Remarks

(a) In Table 3 we calculate numerical values of ,/‘%}Jr(—;(gc), —8 < ¢ < 8, where

Gt = (1,t)". When c is close to 0 or 1.3, w(c) ~ 0 (see Figure 4), and so

Vet + (9

REL takes high values around ¢ =0 and ¢ = 1.3.

(b) Appendices C and D establish joint consistency as in (28) for (n,T — co) (see
Theorem 13) and joint asymptotic normality as in (31) for (n,T — oo) with
# — 00 (see Theorem 14).

Remark The asymptotic bias in iterative OLS estimation arises because of the corre-
lation between the detrended regressors and the regression errors. The usual econo-
metric approach to the consistent estimation of regression coefficients when there
is correlation between the regressors and the errors is instrumental variables. In
the present case, an instrumental variable procedure is possible in which backward-
recursive detrended data is used to produce an instrumental variable for the regressor
in a forward-recursive detrended regression model. To explain this idea, take the re-
gression model (8) and consider the following two recursive detrending procedures.
First, detrend the data recursively through t = tg, ..., T, starting at some observation
to > p, where p = dim(g¢) and calculate the backward-detrended data

¢ -1 /4
Ziy = zit — §, (Z gsﬁé) (Z gszi,s> :
s=1

s=1

Similarly, for ¢ = 1,...,T — t1, we have the forward-detrended data as follows:
T -1,
Zit = Zit — gllf ( Z gsg;) ( Z gszi,s> .
s=t+1 s=t+1
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Then, we employ the forward-detrending procedure in the regression equation (8)
and have
Zit = QZjt—1 + &€t

Now, using the backward-detrended data as an instrument, we construct the following
IV estimator

Cry = T(dlﬁ/ - 1) )

where

n T—t; -1 n T—11
d}i_v = (Z Z Ei,t—léi,t1> (Z (Z Zjﬂfé@til — AZ>> .

i=1 t=tg i=1 \t=to
The forward-recursive detrended data use future information in detrending, whereas
the backward-recursive detrended data use past information in detrending. Thus,
we might expect that the forward-recursive detrended error &;; in the numerator of
d}'rv — 1 might be asymptotically uncorrelated with the backward-detrended regressor
2; 1—1- In the earlier version of the paper (Moon and Phillips, 1999a), we showed that
the IV estimator é}rv is consistent for almost all the values for ¢. However, it turns
out that é;rv has a similar problem to the one that arises with the earlier estimator
¢TT. That is, when ¢ = 0, the limit of the denominator of é}v degenerates to zero
in probability, and so the instrumental variable estimator é;rv is not consistent in
this case. As with the estimator ¢T, resolving the bias problem that arises in the
numerator yields a degeneracy problem in the denominator for some values of ¢, and
in particular at ¢ = 0. In effect, with both estimators, there is insufficient information
(in terms of persistent excitation in the regressor/instrument) about the true value
¢ = 0 to deliver a consistent estimate for this value of c.

4 Applications

4.1 Tests on the Localizing Coefficient

The asymptotic normality of \/n (¢ — F (c)) and \/n (¢t —¢) given in Theorems
2 and 4 enable us to construct tests for many interesting hypotheses. Suppose, for
instance, that we are interested in testing the null hypothesis

HO . C = (g, (32)

where ¢y belongs to a consistently estimable parameter set.” Then, for example,
Theorem 4 suggests the following simple t-test based on ¢t

\/ﬁ(é—H_ — CO)

lstat = —F——",
BV (eth)
O20(et+)?

“For example, in the case of iterative OLS estimation, ¢o € {c: F'(c) is monotonic}, and in the
case of double bias corrected estimation, co € {c: w(c) # 0}.
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where Q=157 O, & =257 02 By Theorem 4, we have
tstat = N (0, ].)

as (T,n — o)
Appendix C.

As mentioned earlier, the panel model specification in model (1) which allows
for a common local to unity parameter across individuals can sometimes be too
restrictive. In such cases it may be of interest to test the difference of local to unity
parameters between specific subgroups of individuals. Suppose that I, and I, denote
two subgroups of individuals and we are interested in testing hypotheses about the
local to unity parameters of model (8) in the following form:

seq. The joint limit convergence of tsiar to N (0,1) is established in

Cu ,
Zit = exp (T) Zit—1 + VGt + €it,

where ¢, = ¢, if i € I, and ¢, = ¢ if 7 € I;,. A natural hypothesis is

Hy : ¢cq = cp.
Let ng = # (1,) and ny = # (1) , respectively. Also, assume that ng/ny, — K < 0o as
Ng, Ny — 00. The null hypothesis can be tested by computing the Wald statistic
(e =+

Wa,b L S S —
(na/1w)Va + Vo

where ¢! is a consistent estimator for ¢ in group p € {a,b}, and Vu = JAQMV@++ (&) (Q
p € {a,b}. By theorem 4, as (T,n — 00),,, , we know

seq
14% 2
a,b = X1

a chi-square distribution with degree of freedom one.

4.2 An Application to Efficient Trend Elimination

In this section we show how consistent estimation of the localizing coefficient ¢ can be
used for efficient estimation of the trend coefficients. Suppose a trending time series
z; 1s generated by the system

Zt = ﬁo—Fﬁllt—}—yt,t:l,...,T, (33)

Yy = ay_1+ep, a=el <21+£) )

T
where ¢ denotes a local departure from unity, &, has mean zero and finite variance and
yo = Op(1) with a finite variance as T' — oo. Suppose that our primary interest is in
estimating the trend coefficient 3; and in constructing confidence intervals for 3;. We
assume a linear trend in model (33) because it is the most widely used specification
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in empirical applications. It is straightforward to allow for general polynomial trends
but to keep the algebra simple we do not discuss the general case here.

According to recent research (Phillips and Lee, 1996 and Canjels and Watson,
1997), when the residual term y; in (33) is nearly integrated, a partial GLS pro-
cedure based on quasi-differencing the data (called quasi-differencing detrending or
QD detrending) is asymptotically more efficient than OLS in estimating the trend
coefficient 3;. However, to execute feasible QD detrending it is necessary to estimate
the unknown local to unity parameter c. But consistent estimation of ¢ from a single
time series trajectory is not generally possible and this complicates estimation and
inference about 3, and the construction of valid confidence intervals for 3;. However,
if panel data is available!?, then the parameter ¢ can be consistently estimated almost
everywhere, as discussed in previous sections, and this makes efficient estimation of
the trend coefficients (3;;, say) possible and facilitates statistical inference.

Let ¢ be a consistent estimate of ¢, e.g. ¢ = F~!(¢T), where c is in the identifiable
region of OLS estimation, or ¢ = ¢t and w (¢) # 0. Define g, = (1,t)’ and set

i =i — (142 ) gea=( 7 der=g1=| 1
gC7t_gt T gt—l_ 1_%(t_1) I gC,l_gl_ 1 )

. ¢ .
Zet = 2t — (1 + ?> Zt-1, Zel = 21,

and

for t = 2,....,T. The QD estimator of the trend coefficient in a particular equation,
say 8 = (By,31) where we omit the subscript i for convenience, is defined as

T -7
/60 = (Z §c7t§é7t> (Z gqtéc,t) . (34)
t=1 t=1

Let Fr = diag(1,T'). Then, it is easy to verify that, as T (and n) — oo,

T
- - 10
JometE: Gories | V2 ‘ .
T (Z'g 7tg 7t> T _>P O ]01 (1 _ CT’)Q dT‘ (35)
t=1 :
Since the limit in (35) is block diagonal,

ﬁ(Bl,c_ﬁl)
1< ¢ 217
T;<1—?(t—1)>]

2
Write Q = limyp_oo F (% Zthl 6,5) .As T (and n) — oo,

VT (Bre—61) = 9 </01 (1—cr)2dr>_1 </01

10The panel data are assumed to have common localizing parameter ¢ but may have individually
different unknown trends.

(1-cr) dW(r)>
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AfQLQQ<[f(1—cm2m>1>

This estimator has the same limit distribution as the GLS estimator of 5 and, hence,
attains the efficiency bound for the estimation of  in this class.

Next, suppose that () is a consistent estimate of (2. Then, using the consistent
estimate of ¢, ¢, we can conduct statistical inference about (3;. For example, a (1—a)%
asymptotic confidence interval for 3; can be constructed as

5 1 02 y 1 92
Le "= /T 1—¢é+ 3¢

where z1_g is the two sided a% percentage point of the N(0,1) distribution. In
addition, to test hypotheses such as

Hy: 51 = 510;

(36)

we can use the Wald statistic

A -1
y 2 02
W=T (51,c - 510) (m) ~
3

Since ¢ — ¢, the Wald statistic converges in distribution to x% as T' (and n) — oo.

4.3 Estimation of Distant Initialization

As a referee has mentioned, if the initial conditions are random and in the distant
past, then the limit theory and confidence intervals like (36) need to be modified to
account for their effects. Thus, suppose we have, in place of the Oy, (1) condition on
Yi,0,the alternate initialization

0T
yie,() = Z ajsi,*jv (37)
g=0

(as in Phillips and Lee, 1996, and Canjels and Watson, 1997) where yg o 1s parameter-
ized by the distant past parameter 8 which measures the distance into the past that
the initialization extends in terms of some fraction 6 of the present sample of time
series data T. When ¢; _; satisfies Assumption 1, the distant past intialization (37)
gives data at the beginning of the time series sample statistical properties similar to
those of the sample itself. Then, as T'— oo we have

1 0
ﬁyzo = CiK.; (0) =a N (0792' /0 emdr) (38)
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where K.; is a diffusion process with the same properties as J.;. Furthermore, in
place of (10), we now have

%%’,[Tr] = CiJei (1) + e CiK; (0), (39)
where K. ; and J.; are independent, in view of the short memory of the errors ;. It
follows that 8, as well as ¢, now plays a role in the limit theory and any confidence
intervals constructed from it.

Just as ¢ can be consistently estimated in panels by ¢ = F~1(¢") under certain
conditions, we might expect there to be some prospect for estimating 6 in a related
way. Indeed, if the initialization parameter 6 is the same across ¢, it follows from

independence across i and (38) that as (T,n — 00),,

2
1 (o 0 020 _ 1
~92 ,1 2cr
_ 1 L) 0 dr =05 =
=02 <\/T> P /o o 2

i=1

>From this formula, it is apparent that, when c is known, a simple consistent esti-
mator of 6 is given by

E(C):iclog [1+ ﬁ%}, (40)

where () = %Z?:l Q. Notice that in cases of panel models with unit roots (i.e.,
¢ = 0) the corresponding consistent estimator of 6§ would simply be the variance
ratio 0 (0) = 75/€2. When ¢ is unknown, and a preliminary consistent estimate, ¢,
is available (e.g. the double bias corrected estimator discussed in Section 4 should
suffice), we can construct a consistent estimate of 6 using 6 (¢) . Joint estimation of ¢
and 6 is also possible, and the following outlines a consistent estimation procedure.
With initial observations as in (37), the probability limit of ¢ is dependent on the
two unknown parameters ¢ and 6. Suppose we write this dependence as F (c,@).
Then, a consistent estimator of ¢, say ¢, can be found by inverting the concentrated

limit function F (c,@(c)) in the range of ¢ where F' (c,@(c)) is monotonic, just as

we did in the case of the iterated OLS estimator in Section 3. A consistent estimate
of 8 is then found as 6 (¢) . Note that in all these cases 6 is also consistent when § = 0
and the initialization is Op (1).

What the above discussion indicates is that, under the assumption that all mem-
bers of the panel originate at the same time in the distant past, there is the prospect
of consistently estimating the distance parameter 6. Intuitively, estimates like 6 work
because if there is distant initialization in the elements of the panel, it can be ex-
pected to show up in the extent of the observed variation in the first sample data
point across the panel. The estimator 6 simply assesses this observed variation (viz.,
38) relative to a consistent estimate of the average long run variation displayed by
the panel (viz. 1), with some adjustment to account for the presence of a root that
is local to unity rather than at unity.
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5 Concluding Remarks

This paper has studied the estimation of a common localizing parameter for models
with near unit roots using panel data. First, it was shown that the local to unity
parameter in a simple panel near integrated regression model can be consistently
estimated by straightforward pooling and ordinary least-squares regression. When
deterministic trends are present in the panel regression model, the situation is much
more complex. We have shown that the nice results for the model with no trends do
not extend easily.

In particular, the simplest pooled estimator that is based on the use of ordinary
least squares with detrended data has an asymptotic bias which depends upon the
unknown localizing parameter. One solution suggested here is to use the numerical
inverse of the bias function to obtain a consistent estimate of the localizing parameter.
However, this suggestion works only when the true value of ¢ is in the identifiable
region.

As a second method, we developed an estimation procedure which corrects for
the bias from the serial correlation and from the use of the detrended data. This
double-bias corrected estimator is consistent except for a finite number of values in
the parameter space of ¢. However, the set of values where this estimator is not
consistent contains ¢ = 0, which is an especially interesting case. Also, when the
true parameter takes a value close to zero, in practice, we can expect the double-
bias corrected procedure to provide a poor estimate of the true localizing parameter
because the denominator of the double bias corrected estimator will be close to zero
in this case. Similar problems arise in the case of an instrumental variable estimator
that avoids bias by prudent instrumenting. Thus, even with panel data and a common
localizing coefficient, consistent estimation of the localizing parameter is a challenging
task when we want to allow for deterministic trends in the model.

For those cases where consistent estimation of the localizing coefficient is possible
(notably when ¢ < 0), the methods are used to show how to perform efficient trend
extraction for panel data. This gives us an empirically useful algorithm for efficiently
estimating a deterministic trend in the presence of stochastic trends generated by near
integrated processes with a common localizing parameter. Another useful application
of panel data lies in the consistent estimation of the distancing parameter that arises
in the formulation of distant initial conditions. This parameter (which is expressed
as a fraction of the length of the present time series sample) measures how far into
the past the initialization extends in terms the shocks that have determined it. It
is shown that the observed variation in panel observations at the initial point in the
time series sample provides enough information about pre-sample observations to
construct a consistent estimate of this parameter.

In the development of the asymptotic theory we make use of both sequential limits
and joint limits for the indices (n,T"). A limiting feature of the joint asymptotics that
is sometimes needed in our development is the rate condition 7 — 0, which means
that the results are likely to be most relevant in panels where T is large and n is
moderately large.

Finally, although we do not report the analysis here, the authors have been able to
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show that the Gaussian maximum likelihood estimator of ¢ is also inconsistent in panel
models with deterministic trends and near integrated stochastic trends. This panel
data example provides an interesting new case where maximum likelihood estimation
is inconsistent in the presence of an infinite number of nuisance parameters. It is
explored in Moon and Phillips (1999b).

6 Appendices

6.1 Appendix A:

Proof of Theorem 2
This proof derives the limit distribution of & under sequential limits. First, note
that

wi(c)
_ oy wa(c) Vn
— \/7_1<T(a ) wl(c)>+O<T>
Let
1.1 &
_ 2
Anr = Ezﬁzgit—l
=1 t=1 ’
B = 23 (Ey. o i
wl nz:l Tt:l Tit—1"4t ’
Then,

_ e (Brr (0 ) wa(o)
- f(An,T ¥, Qi)wl(c)>'

To establish asymptotic normality of ¢*, we first show that

— (A — (330 ) wi() )
v ( By — (3 Xy ) wale) ) = N 0,2V (c), (41)
)
)

is given at the end of this proof. Define f(a,b) = g. Then, application of the delta
method leads directly to

where

a0

V()= < v (e) vz (

V12 (C) V22 (




= Vn(f (Aur, Bar) — f (Qui(c), Quwa(c)))

—wa(e)
—wa(c) 1 ! w 202
— N(o,cp( e ) V(c)< 11((; ))
wi(c

= N(0,9Vg+ (c)), say.

We now establish (41) with sequential limits.
As T — oo for fixed n,

where J  (r) = Jic(r) — [ Jic(s) h(s,r)ds. Note that sup,; < co. Then, by the
multivariate Lindeberg-Feller central limit theorem with lim,, % Y02 =@, we
have

5 i1 (fﬁ rYdr —wi(c ))

4,C

T (g ) -

4,C

= N0,V (c)),
<c>)

where

o (€) E</ 2 (r)dr —wn (e ))2
/1,

022 () ( w2<c>) 2

nafe) = E ( /7 <r>dr—w1<c>) ( [ aw —w2<c>),

and @ = lim,, 2 > | Q2. The limit covariance matrix V (c) has components that are
as follows. For notational brevity, we omit the individual index ¢ in the following
expressions.

(a) v11 () :

)
([ >
= < r)dr — / / Q)h(p q)dpdq>
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e

// E (J2(r)JZ(s)) drds 2/// ,p)drdsdp

/0/0/0/0 h( )h(p q)dqdpdsdr — wl(c)2
_ /0 1 /0 W s, s)drds — 2 /O 1 /0 1 /0 W, 5, p) (s, p)drdsdp

+%fA{AIAIWQJJLQMﬂ@ﬁ@ﬂmeﬁﬂT—wﬂ@a

where

WWSP@
= E(/ «(9)

- </ / / / T (v >dW<w>dW(y>dW(Z>>
TAp sAq
= / eClrts—2x )dx/ eArta—2 )dx+/ (7"+p2x)dx/ pols+a—22) g,
rA\q PAS
+/ ec(r+q2x)dx/ eCPts—22) g
0 0

(b) w22 (c) :
Note that
E(Al{}>mv<02
[ (R - R b, oav @)
8 <'f01 fo fo h(zx,y)dW (y )dw)

- [ [ = /// 00v10)
//// Vi(q, )W (3)dpda.
Using Lemma 5 below, we have
B ([ 1 aw)- @02
/ / > =9) dsdr — / / / o e“PHa=22) qah(p, q)dgdp
—2/ / (/ )dr> e“P~Dn(p, q)dgdp
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+

1/01/01 (/O oclpta—2z )dx> )h(p,r)drdpdg
(e ) ()
P

2

/01 e, as dp) — (o). (42)

NN

_|_

+

VR

(C) V12 (C) :
Note that

p( [ i —te )(/ J ) = ale))
- (/ J? T)d?“/OlJ r)dW ( )) wi(c)wa(c)
(

= / /E(JQrJ(s

1 pl
/O/O/OEJ ) Jo(s)h )dW())ddr
1 1,1
/O /0 /0 B (720 1), p)awW (p )) dsdr
+/01 /01/01/01E (r)Jo(s (p)h(p, q)dW (g )) dpdsdr — wy(c)wa(c).
By simple modifications of (d) and (e) in Lemma 5 below, we have

E(/O 7 (r)dr — (e )(/ 7 ()W) — (C)>
:2010</Oe( Q)dac) 9 dsdr

/O /01/0 (/O Y et 2>dw> =P dph(r, s)dsdr
2/01 /01</0 el )( TPy (s, p)dp> dsdr
/01/01</0 o >< s, )dp>ddr

AT )(/0 )i ) dir )ty
+/01/01/01< e 2y)d?f> </OT = Dh(p,q)d > ph(r, s)dsdr
/0/01/01< e d)(/‘s = Dh(p, q)d > ph(r, s)dsdr — wi(c)wz(c). B

0

Nmo\ﬁ
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Lemma 5 The followz'ng hold.
) E Io /0 /0 (s)Je(p)dW (r )dW( )dp
— fO I‘O fp/\s c(p+s Qw)dmdsdp + fo fo ( 5 pcl(s— T)dr) C(pfs)dsdp.

E[O [0 (s)dW (r)dW(s)
—fo " e2e(r— Sdsd”r‘
E[o fo fo fo (q)dW (r)dW (s)

I /0 /0 ((IPA‘J 0p+q 2x)dx> drdpdq + [0 ]0 ([p eclp— S)ds) (‘]6‘1 ec(qfr)dr) dpdq

o Jo (o e v Tdr) (fq l=*)ds) dpd.
(@) B 2 2 2 Ju(r) els) o)W (p)dsdr
=2 [O ]0 IN <.]Mp C(Tﬂj 2”")ala:) e“5=P) dpdsdr.

Efo fo fo fo (s)Je(p)dW (q)dpdsdr
‘TS cr s—2x c
= /0 /0 Io < te=20)qy) (f¥ e“P=Ddq) dpdsdr

)d

)(
+ /0 /0 Io < g eelprs= zy)dy> (]Tec(r 9) dq) dpdsdr
+ /0 Jo Io < o eclprr—20) dﬂc)( [; e*=9dq) dpdsdr.

_l_
\

Proof
(a) Note that

E /0 1 /0 1 /O ' Tu(8) Tu () AW (P W (5)dp (43)
/(; 1 /0 1 /0 1 /O ) /0 " eels=2) oelo=) £ (AW (2) AWV (1)) AW () AW (5)) dp.

Then, part (a) holds because

“pAS
(43) = / / / P H5=2) qudsdp if x = y(<p)<s=r

// (/ cs Td’f’>€(p S)dsdplfx—’f’<y—5<p

= 0 otherwise.l

E//J ) o)AV (r)dVV ()

//// =) =) B (AW () AW (y) AW () d W (s // $2e=3) g

because only when v =y <r =s, E (dW (z)dW (y)dW (r)dW(s)) # 0. R
(c) Note that
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S S S S |
E /0 /O /O /0 Jo(p)Je(q)dW (r)dW (s)dgdp
1 1 ~1. .1. D g
/0 /O /O /0 /0 /0 =) T E@AW (a)dW (y)dW (r)dW (s))dpdg. (44)

Then, part (c) holds because

1 1 1 “PAG
(44) = / / / </ ec(p"'q_Q‘”)dx) drdpdq if x =y, r=s,x #r

q

= / / </ ec(P—3) > </ ec(q_”)dr>dpdqifwzs,yzr,w;éy
0
q

= / / </ ec(p_T)dr> (/ ec(q_s)ds> dpdgifx=ry=sx#y

Jo Jo \Jo Jo

= 0 otherwise. B

E / / / To(r)Jo(8) Je(p)dW (p)dsdr

_ / / / / / / o€r=2) o€ls—9) 02V E ATV ()W () dVV () dW () dsclr (45)

= / / / (/r/\p e(r+p— 2x)dw> C(S*p)dpdsdr,
where the last equality holds because
(45) = / / / (/ eclrtr— 21)dw> e Pdpdsdrif z=z<p=y<s
= / / / </ s tP— 2y)dy> U Pdpdsdrif z=y <p=x<r

= 0 otherwise.

(e) Note that

E/ / / / Telr e(p)dW (q)dpdsdr
///////

xE (dW (z W (q)) dpdsdr. (46)
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Then, part (e) holds because

1 r1 r1 rAS »
(46) = / / / </ eC(H—s—Qm)dw) (/ ec(p—fI)dq> dpdsdr if = y 75 =g
0
p/\s r
= / / / </ c(pts— 2y)dy> (/ ec(r—q)dq> dpdsdrif x =q# 2=y
0
p/\r g
J0

= O otherw1se. I

6.2 Appendix B:
6.2.1 Background of Joint Convergence Theory

The primary object of this paper is to develop asymptotic theories of inference for
localizing coefficients in panel data models. In many applications of large n and T
panel regression models, we are interested in the limit behavior of double indexed
quantities like X,, 7 which are constructed as averages of iid random variables Y; r,
i.e.,

1 n
Xn,T = E z; Y;,T7 (47)
=

where the Y;r are independent across i for all T. Typically, we need to find the
probability limit of X,, 7 or the limit distribution of scaled quantities like \/ﬁXn,T
when (n,T — o0). In earlier work, the authors (Phillips and Moon, 1999) provide a
conceptual framework and rigorous definitions for joint convergence in probability and
joint convergence in distribution for double indexed processes. This section briefly
reviews some concepts and helpful results from that earlier work which will be used
frequently for establishing joint limits in this paper. All of the results given in this
section are proved in Phillips and Moon (1999).

As mentioned in the text of the paper, the sequential probability limit of X,, 7 =
%Z?:l Y; 7 is established by letting the index T' go to infinity first and then the
second index m is passed to infinity later. Using existing time series limit theory
we can often easily obtain the limit behavior of Y; 7. For example, suppose that as
T — o0

Yir =Y (48)
or
Y1 —p Y for all 4. (49)

Then, by the independence of Y; 7 across ¢ for all T} it follows X, r = X, or X, 7 —p
X, as T — oo for all n,where X,, = % oY

Also, in the case of (48), it is assumed that the Y; are defined on the same
probability space for all i so that the sum of the limit random variables + =y Yiis
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meaningful.'! By allowing n — oo and applying an appropriate law of large numbers
to

1 n
Xn =~ X;Y (50)

with some regularity conditions we may then find the sequential limit of X,, 7. Let
1 n
fix = lim Zl EY, (51)

Then
1 — 1 &
Xn ==Y Yi —as fix =lim=Y " EY;
n n n
=1 =1

so as (T, n — 00)seq
XTL,T —>p I&’X

In general, the sequential probability limit fiy of X, 7 is not the same as the
probability limit of X,, » under joint divergence of the indices (n,T), and, in fact, the
latter may not even exist without further conditions. The following theorem gives
a set of sufficient conditions under which the joint probability limit and sequential
probability limit of X,, 7 are equivalent.

Theorem 6 Suppose that we have (k x 1) random vectors Y; p which are independent
across i for all T and integrable. Assume that Y;m = Y; as T — oo for all i. Define
Xng =3 20 Yir and Xp = 3 37, Y.

Suppose the following conditions (i)-(iv) hold:

(1) limsup,, 5 > iy El|Yiz|l < oo,

(i) limsup,, % Y77y E|Yi < oo,

(i) limsup,, ;- Y7 [|EY;r — EYil| =0,

(iv) limsup, 7 & 30y B Vo (Vi > ne} =0 Ve > 0.

If iy = lim, % >or | EY; exists and Xy, —p fix as n — oo, then X,, 7 —p fix as
(n, T — 00).

An interesting special case arises when the Y; 7 are scaled versions of some iid
random vectors Q; 7. Suppose that Y; 7 = C;Q; 7, where @); 7 are iid across 7 for all
T, and C; are (k x k) nonrandom matrices for all . Suppose that Q;+ = Q; as
T — oo for all 7, so that ¥; = C;Q;. In general, Y; 7 are heterogeneous across 4 unless
C; are same for all 7. The source of the heterogeneity in Y; 7 is the scale effects C;.

Corollary 7 Suppose that Y; 7 = C;Q; 1, where Q; 1 are iid across i for all T and
C; are (k x k) nonrandom matrices for all i. Assume that Q;  are integrable for all
T and Q;r = Qi as T — oo. Assume that C' = lim, 2 3% | C; ewists. If (i) |Qir|
are uniformly integrable in T for all i,and (i) sup; ||Cs|| < oo, then 3% | Yip —
CE(Q;) as (n,T — 00).

1 The assumption that the Y; are defined on the same probabilty space can be justified. For this,
see Phillips and Moon (1997).
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Remarks Here we present four useful ways to verify condition (i) of Corollary 7, the
uniform integrability of ||Q; || in T. For notational simplicity, we omit the individual
index, 7.

(a) Suppose that Qr = @ as T — oo. Then, uniform integrability of ||@r| is
equivalent to E||Qr| — E||Q| as T — oo. (see Theorem 5.4 in Billingsley,
1968).

(b) Suppose that E ||Qr]|" < oo for some 0 < r < oo and Qp —p Q as T — oo.
Then the following are equivalent. (i) ||@Qr||" are uniformly integrable in T, (ii)
EQr|" — E|Q|", and (iii)) E||Qr — Q|| — 0. This is the Vitali theorem.

(c) Suppose that there exist a sequence of random variables Ur such that Up >
|Qr|| for all T. Then, uniform integrability of Uy implies the uniform integra-
bility of ||Q7]| .

(d) Suppose that Qp = Wy Zg. If |[Wrp||* and || Z7||* are uniformly integrable in T,
then ||@r| are uniformly integrable.

Next we consider the joint convergence in distribution of the \/n—standardized
double indexed sequence /nX, 1 given by

1 n
VnX,r=—)» Yir.

In many nonstationary panel applications, we find that a standardized sum of the
time series for individual 4, Y; 7, can be approximated by a scaled version of #id
random variables (or vectors), that is,

Yir =~ CiQ;ir,

where Cj is a constant and Q); 7 is 7id over the cross section with mean zero and finite
variance.

The following lemma is helpful in deriving the joint limit distribution of a double
indexed process such as /nX, 1 = ﬁ Sv Yir, when Y, r = CiQir.

Theorem 8 Suppose that Y; p = C;Q; 1, where the (k x 1) random vectors Q; T are
1id (0,X7) across i for all T and C; are nonrandom matrices. Assume the following
hold:
) Let 02 = Apin, (X7) and liminfr o2 > 0,

max; i 2
) /\mm(ggzlllCC!C{). =0 (%) asn — oo,
i) |Qir||* are uniformly integrable,
iV) limmT % Z?:l CZETCZ/ =Q>0.
Then,

(i

(i

(ii

(

% ZY;vT = N (0,9) as (n,T — 00).
i=1
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6.2.2 Some Preliminary Results

This section gives some useful results which will be used repeatedly in the following
subsections.

(a)

A particularly useful tool in treating the linear process ¢;; is the BN decompo-
sition which decomposes the linear filter into long-run and transitory elements.
Phillips and Solo (1992) give details of how this method can be used to derive
a large number of limit results. Under Assumption 1, the linear process ¢;; is
decomposed as

git = Ciugy + & 4—1 — it (52)

where Cz = Ci(]-)agi,t = Z;‘;O C’i’juw,j, and é@j = Zzij+1 C/L‘7]€- Under the
summability condition (c¢) in Assumption 1,

ICi| <) Cj < o0 (53)
§=0
and - -
EE, < () _iC)* < (D _5"Cy)* < oo, (54)

J =0

=0
where b > 1 and C; = sup; C; ; (see Phillips and Solo, 1992).
Let C' =2 0. Define

Eiy = Z Cj luig—j| (55)
§=0
and -~
Ez‘,t = Zég |ui,tfj| > (56)
=0

where C’j = Zzozj 11 Ck. The two random variables defined above are dominat-
ing random variables for ¢; ; and &; ;, respectively, in the sense that E;; > |e; |
and Ei7t > |&;¢| for all ¢ and t. By definition, E;; and E,»¢ are iid across 7 for all
t and satisfy

E(EM) =F |ui71| ZOJ <M
=0

and
2

x
E (Egt) <Bd, (Y 6] <M, (57)
=0

for some M < oco. Throughout this Appendix and elsewhere in the paper we
use M to denote a generic constant.
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(c¢) Next, recall that
T ~1
hy(t,s) = Dr ( Z Tgtﬁéﬁ:r> §sDr.
It is easy to see that when ¢ = [T'r] and s = [T'p], as T — oo

-1
it =70 ([3) a0) =i
uniformly in (r,p) € [0,1] x [0, 1]. The following limit also holds

sup BT(t,s)—> sup 71(7‘,]9)- (58)
1<t,s<T 0<r,p<1

(d) Using the BN decomposition of ¢;;, we can decompose y;; into two terms -
a long-run component of y;; and a transitory component. By virtue of the

definition of y; 4,
t

{=s) . to.
Yit = g e T "gs+eT Y.
s=1

Using the BN decomposition (52) of €;¢, we can decompose y; ; as
Vit = Ciip + Ry, (59)
t—s t—=1) . ~ t—s—1)
where x; ; = 22:1 eT ‘ugand Ry =e T “€;0—E54 —|—Zz:1 e T 51—

c t
et )+ eTY; 0.

Next we introduce bounds for the moments of some random variables which will
be frequently used in the following proofs. In particular:

N =
M“
@

tege / =925 < M if t = [Tr],  (60)
0

w
I
—_

1
M|
M=

1 t

§ I=s9¢
— eT
T5:1

1 r %
— < / e(T_s)chs> dr < M, (61)
0

o~
I
—

0
and
2
sup sup ER;,
i 1<t<T
t—1 - ~
e T %€ sup; Esio + sup; Esit
< sup 4 t—1—s

2 1
< t t—1—-p ~ o~ t
1<t<T + (1 — eT) > =1 § 1€ T ‘e T “sup; E(&;Eip) + eT2 sup, Eyz-z,o
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(1) (55006,

< 4 sup <\ 2 2-2-p—s \ y y L.
Ist<T +(1—€T) (SUP1§p,s§t€ T )Zp:l > o1 5up; | E (& sEip)

4 Lo E 2
+4 sup eT**sup By,
1<t<T i
2

x
— ]_ c 2 2t—2—p—s t2
< 4 3C; sup (e 20+1>+—(1—6T> sup e T  °| sup —
jz; ! {1<t<T T2 1<p,s,t<T 1<e<r T?
+4 sup e%zcsup(rgo
1<t<T i
2

x0

— 4 ZjC’j sup (62” +1) + ¢ sup  e@Pe ) L L4 sup e sup o?y(62)
= 0<r<1 0<p,s,r<1 0<r<1 i

< MasT — oo ift=][Tr],

where the first inequality uses (a + b + ¢ + d)? < 4(a® + b? + ¢* + d?), the second
inequality uses (54), and the third inequality holds by applying the Cauchy-Schwarz
inequality and (54) to |E(&;s&ip)] -

The next two lemmas will be useful in proving joint limits.

Lemma 9 Under Assumptions 1 and 2, as (T,n — oo) the following hold:

T
(a) % Z?:l % Zt:l ?Qt 1—>p le(c)
7

L
where w1( {1 —l— +(1—e%) )} - fl fl o(rts) L 52 ( _QC(TAS))B(r,s)dsdr,
=— ]0 Jo e(r S)ch(r s)dsdr, and h(r,s) = §(r <]0 g )_ g(s).
Proof
(a)
Since 137 LS 22 =15 LS 942 by (9), we will establish
z’ -1 it—1
% Z?:l T2 Zt:l y?t—1—>p Qi (e).
Definer =3 1—4 S0 Tisihr(s,t)and R = Ri_1—5 > _; Ris—1hy(s,t).
it—1 Tit—1
>From the decomposition (59), we have

1L 1 &

W2
1T2 1

- ks e alSaky s

= I, +211,+1I1,, say.

In what follows we show that I, —, Qwi(c) and I1,,111, —, 0as (n,T — 00).
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For I, recall that
Ign o1«
I, =~ 2___ 2

Define Q;1r = %Zle @?t o Note that {Q;r}; are iid across i and Q;1 =
,l—

= .]61 2]2' (r)dr. Since EQ; = wi(c) and limn%Z?zl C% =Q, I, —, Quwi(c)

as (T,n — o7o)seq. Thus, to conclude that I, —, Qwi(c) as (T',n — o0) it suffices to
verify conditions (i)-(ii) in Corollary 7. Condition (ii) of Corollary 7 clearly holds by
Assumption 1(iii). For condition (i) of Corollary 7 observe that

1o~ 1 sy,

EQir = thzfgeT
TN e (1 tAs
_?;TZ{QT <TZ(2T )hT(ts)}

-1 A
— / (r—s)2cqq / / e(r+s) </ _chdk‘> h(r, s)drds
0o Jo

= wi(c)=EQ; as T — oo.

Since Q; 7 > 0, Qi 7 = Q; and EQ; 7 — EQ;as T — oo are enough to assert that
{Qir}r are uniformly integrable by Theorem 5.4 in Billingsley (1968), it follows that
(i) in Corollary 7 is satisfied.

Next, we prove that

n T
1 1
L=- 0=y
n =1 C T2 t=1 ajivt_lR' 1—>p 0

7t7

and
T

11 )
IIIazgz;ﬁ;Bm_ —p 0asn,T — 00

by showing that E |I1,|,E|II1,| — 0 as n,T — oo.
First, we have

Ign 1«
E|llIl] = EI-Y =S =z
| a| nzzl: ZTQZ; Z'7t_1 i1
1< 1 &
< - Ci|E|l= x R
< ;{| | TZ}
1 n T
< CHZE 2 Zﬂﬁzt 1R 1+ 73 2 I;HCH 1Ris—1hp(t,s)
1 n 1 n 1 T T
< ¢-YE|= C ‘71 t,s)| = — 1| [Riso1] | -
e S L LY (Tzz\ s n)
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Observe that

1 T
T_Z i,t— let 1

E
where the equality holds because sup; sup;<;<p E |Ri; 1|* = O(1) by (62) and the
=O0(1) by (61).

i

=1

Lgt—1

R’L -1

IN
:In—*

- gl

71

E|Ru: 1| _O( )

T

N[~

’ﬂ|
MH HMH i

1
S——
TL

i

t

I
—

xi¢—1 are iid across ¢ with % Zthl E
Next

%;’%%ii! it R ﬂ)
( lem 1 (TDR” 1|>

1 <& ya; . 1; ! ’
E(T sup E TZ\RZ»,S_11>

-
HM

IN
ﬂ|"
S _— S|

7

Ly (Zﬁ)(r)

Since supy < ;<1 )ET(s,t)) = O(1), we conclude that E |II,| = O (ﬁ —0asT —
0.

IN
|

Similarly, 111, —, 0 as (n,T — oo) because E[[11,| — 0 as (n,T — o0) in 1],
and we have all the required results to complete the proof of part (a). B

(b) From (9) we know that 1 "7 1 LT 2 o g =230 % ST y . Eig-
By definition,

S|
Mz
N =
[M]=
S

~
Il
—
-
I
—_

Eit
it—1

n

Yit—1€it — Z ;2 ZZ@/M 16:.shr(t, s).

1 t=1 s=1

I
S|
M:
N~
M=

~
Il
—
-
I

To complete ;he p;oof we shoyv % Dy % Zthl Yit—1€ir —p N and
e 77 21 2o Yirt— 185 (t, 8) —p —Qua(c) as (n,T — 00).
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Recall that y;+ = ay;r—1 + €+, where a = eT. Note that by squaring y;: =
ayit—1 + €i¢ and averaging over ¢t and ¢ we have

1on 1
a Z T Z%,t—l&',t

2;:1” ;1 1 n 1 T , 1 n T )
= %;f sz 1= yzO) (a* —1) %; ;ym 71— n; X;Ei,t

= a’l,—II, — QIIIb, say.

Modifying the arguments in the proof of part (a) by substituting Ay (t,s) = 0, we

have 5= 577 | % ST yztil —p %Q_fol I e(r=92¢ds as (n,T — o0). Also, it follows

that T(a? — 1) — 2c as T — co. Combining these two results, we have

n T 1
1 1
_ 2 il il 2 (r—s)2c
1, =T(a" —1) o 2221 T2 ;1 Yit1 —p cSZ‘/O ./0 e ds (63)

as (n,T — 00).
Next, we show, using Theorem 6, that as (n,T — oo)

n

1 &1 11 1
IU,):%;TZ p 5 lin HZQ&:?)—A. (64)

i=1

Define Y; r = %erzl 522,,5 and Y; = Esit = Q.,. Then, by the ergodic theorem, as
T —

T
1
Va= L3 0=,
t=1
so, for fixed n, % S Yir —p % S, YiasT — oo. Also % v, Y, — lim, % S Qe =
Q2 — 2A as n — oo. Thus, according to Theorem 6, verifying conditions (i)-(iv) is

enough to ensure that (64) holds under joint limits as (n,7" — oo). Conditions (ii)
and (iii) clearly hold by the arguments above. Condition (i) holds because

nTn

lim sup — ZE Yir| = hmsup Z ZE&M = hm ZQ& = —2A.
For condition (iv), note by the definition of E;; in (55) that
L I
0<Yir=Yiz| <5 B
t=1

Since the sequence E7, is strictly stationary and ergodic in ¢ for all 7, 7 Ly EZ, —p
E (Eft) by the ergodic theorem. Then, by Vitali’s theorem (see Remark 6.2.1(b)),
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T Zt o F t are uniformly integrable in T'. Hence, for given ¢ > 0,

>n5} =0,

Finally, consider I,. Since it holds that & ", TE (yZ 0) < grsup; 07 — 0 as

1 n
li — FEY; Y;
msup 252 B[l (¥ir| > ne)

n, T’

T 1z
< hmsupE( Z ){—
t=1 t=1

TZEZ%L‘

and we have verified condition (iv).

(n,T — o0) by Assumption 1(d), we con31der only o > FYip_ -

1 1
TyzQT 1 (65)

- %zoz; W zo 1mT1+—ZT

= Iy + Ib2 + Iy3 say,

where the second equality holds by the decomposition (59) of y; 7 1.
We now employ the principle used in the proof of part (a). Write Q; 7 = %x?’Tfl
and Q; = sz(l) Then,

I =53 C2Qur = —ZCQQZ
=1

as T — oo for fixed n. Since sup; C; = C' < oo and Q; have finite second moments
(note that J.;(r) is a Gaussian process), by the strong law of large numbers for
independent, non-identically distributed random variables, we have

1Ny L Nt (L2
2”;@ Qi —p 2QE(QZ) = QQ <2C(e 1)) .

Thus, as (T,n — o0)

seq

1 1 5
Ibl —p 5@ (%(e 1)) .

We now verify conditions (i) and (ii) Corollary 7 to obtain the joint probability
limit of Ip;. First, Condition (ii) clearly holds by Assumption 1(c). For condition (i),
note by (60) that as ' — oo

EQ;r = fois xlT L= / 21=9)¢ds = BJ,;(1)? = EQ;.
Clearly, the Q; 7 are positive. It follows therefore from the above and theorem 5.4 of

Billingsley (1968), that the @; v are uniformly integrable. Combining this with the
fact that a? — 1, as n, T — oo, finally we have
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1 ! S)c 1 C
aly — 59/0 e21=3)eds = —Q (26( e — 1)) : (66)

By similar arguments to those used in the discussion of term I, in part (a), we

can show that as n,T — oo
Iy, I3 —p 0.

Now, in view of (63),(64), and (66), we have as n,T — oo

1 1 1 1
2c o &2 - =\ = —
(e 1)—Q <4Ce " 2) 2Q+A A.

Since as (n,T — oo) we have

1 n 1 T 1 n 1 T
a Z T Zyi,t—lgi,t - Z T Zyi,t—lgi,t —p 0
; =1 t=1

it follows that as (n,T — oc0)

n T

% > % D i€t —p A
i—1 =1

Next, we prove that + i) S T2 Zt 1 ZS 1 Yit—1€i ShT(t 5) —p Qwa(c) as T,n —
oo. Using the decomp051t10n of yi4—1 in (59) and the BN decomposition of £;+ and

% 2?21 yi,o% Zstl 5i,sﬁT(0, 5)‘ < % (SUPZ' \/Uioﬂe) (SUplgng BT(Oa 5)) =

(1)

%z;zzym ihr(t, )

1 - t=1 s=1 1 . 1 o ~
= _ZCE Zzwzt 1U;, shT t 3 + E Zczﬁzzxi,tfl (gi,sfl _gi,s) hT(t,S)
] =1

mn
t=2 s=1 t=2 s=1

n T T
+— ZC T2 ZZth 1U;, shT t 8 + % Z 12 ZZR@tfl (51,571 - 51,5) FLT(t, S) + Op (1)
i=1

t=2 s=1 t=2 s=1

= Ip +Ubb + Iy + IV, say.

We show that as (T,n — 00), Iy —p Qwa(c) and Iy, I11y,, IViy —p 0.
Note that

T

T
EIbb = ZCQ 12 ZZE Lit—1Us s hT(t S)

t=2 s=1
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t;s )CBT (ta S)

1
— Q / / e =9)h(r, s)dsdr = Qua(c) as (T,n — oo).

Thus, for Iy, —p Qwa(c) as (T',n — o00) it remains to show that

n T t—1
Ibb_EIbb = %ZCE (TQZZth 1ulshTt S ZZG )
=1

t=2 s=1 t=2 s=1
—p 0 as (T',n — 00).

Define Q;r = % Zrir=2 ZST=1 xi,t—lui,sﬁT(ta s) — T2 Zt 2 Zs 1 el
as T — oo

T t—1
Qi,T = <T2 Zzwzt 1U; shT t 3) % Z e(t;s)ciLT(ta S))

t=2 s=1

t—

: )CBT(t, s). Then,

t s
1 1 N t s\~
= / { / Tea(OR(t, s)dwi(s) — [ (T )ehyt, s)ds}dt = Q;, say.
0 0 0
For fixed n, as T — oo

1 1o

E 20). _§ 20).
E' 1CiQZ7T:>n4 ICZQZ
1= 1=

@ = E/ {/ Jei(h(t, 5)AW;(s) — /0<
+./0 {/t b (‘] Ot S)dWi(S)) } dt = 0.

Since sup; 02 C? < 00, and the second moments of ; are finite (Q; is a stochastic
integral of a Gaussian process with respect to a standard Brownian motion), by the
weak law of large numbers, as n — oo we have

RN 2 . 1¢ 2
- 20; lim — ‘FQ; =0,
n;qQ —p %nnzzgq Q;=0

Note that

Jedy(t, s)ds} dt

and so, as (T,n — 00),,,

1
_ZCEQLT _>p0
n i=1

Now, verifying conditions (i) and (ii) in Corollary 7 is enough to conclude that
I—EI'= 157" C}Qi1r —p 0as (n,T — oo). Condition (i) holds by the assumption
that sup; 02 C? < 0. To verify Condition (i), note that

|Qi,T| 2 szzt 1Ug, shT t 5)

t=2 s=1

T t—-1

e(t}s

t=2 s=1

Ti Ve (t,s)|.
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Since the nonstochastic term | ST, Le(T )szT(t, s)

integrability of the |Q; r| it is enough to prove that ‘% Z,:ng Zle $¢7t_1ui75ET(t, 5))

= O(1), for the uniform

. 2
are uniformly integrable, which holds by (d) in Remark 6.2.1 if )%ﬁ 23;2 Z; 11 D7 gy H

2
are uniformly integrable. Since

and H% ZST:1 ui,sﬁTgs

. 2 . 2
1 ~
—— S z;;1D = Jei(r)g(r)dr|| as T — oo
It B RACHD
and
1 < 2
E ﬂ;xi,t—ll}ﬂaﬁ
A . .
-7 (ﬁ 22 BiipatisaDrdd QDT)
t=2 s=2
1 Lo e
=229 e o
— 4 EZZ > T Drgyg Dy
t=2 s=2 g¢=1
L p1 p(rhs)
- / / elrts=aeg(1)5(s) dgdsdr
Jo Jo Jo

N 2
it follows that HT;\/T Z,:TZQ mm_lDTgtH are uniformly integrable in 7T'. Similarly we
2
are uniformly integrable. So condition (i) is

can verify that H% ZST:1 ui7sl~)T§s
satisfied.
Next, we show

Iy, = — ZCT2ZZ$” 1 515 1— 5zs)hT(t 3)—> 0.

t=2 s=1

Write

n

T
Iy, = - Z iTa Zﬂﬁzt 1&i1hr(t,1) Z 2 Zmi,t—lgi,TﬁT(t;T)
1—2

=1
-1

N~

T 1

1 1 = 1 ~ ~ .\~

D T > Ciwir 1§ Dr T > DrgigDr Dr (Gs+1 = Js) Eis
i=1 t=2 t<T s=1

= Iy + Il + I3, say.
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For IIy, —p, 0 as (T,n — oo), we show that E|[l| — Oas (T,n — oco) for all

i=1,2,3.

First, E |IIa| — 0 as (T,n — oco0) because

E Iy <

IN

IN

<

n T
1 1
sup h (t,T)E C; Tip-1E;
1<t£T { (TLZ T22| - T|>
1 1 1 O |2y
sup hp(t,T)= Ci—E || = Sl
i >z{ L (T; = )| |]}
1 1 1 & ’
~ T t—1 ~ 2
sup hp(t,T)— Ci—\|FE | = : FE|E;
2 P 2 | G (Z f) e
1 T 2 2 1
7 A T t—1 -
sup hp(t,T)C—= — E’ of—),
\<or r(t:T) VT TZ ) . <\/T>

where the third inequality uses Cauchy-Schwarz, the fourth inequality holds by the
definitions of C' and E; 1, and the equality holds by (58) with s =T and ¢ = 1, (61),

and (57).

By similar arguments to those above, we can also show that

E |l | — 0 as n, T — oo.

For 11,3, observe that

|1 Tppa]|

~ ~ ~ ~ -1 .
wheve fr(t,s) = 3Dy (4 X0, Drgi D) TDr (G

114

T T
Z C; iLit— lgt (Z gtgt> Z g8+1 gs 51 s
t= t=1 s=1
n T T—
Z Ci—= 3 Z Z |3t 1E44] 5
i=1

t=2 s=1

z”:1

i=1

3|>—‘

< sup fT (t,s)
1<t,5<T

—Gs). Then Iy —p 0 as

(T',n — 00) because

E|ITys| <

<

1<t,s<T

1<t,s<T

sup fT(t, 5)C

5~

. _ 1 <&
sup fr(t,s)C— E<?Z

5[~

To show that III —, 0 as (T,n — 00), it is enough to show that E |III| — 0

as (T,n — 00).

. . Lo\ -1 .
Write Gp = (% Z?:l DTgtggDT> . By the definitions of hrp(t,s),
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C = sup, |C;| and by the triangle inequality, we have

n T T
E|Illy| = E %Z;Oi%tz;z;mﬂuwhm,s)
1< 1 [& N . .
= FE -~ Zciﬁ (Z Rd,t—lDT§1I:> Gr (Z DTgsui,s>
B ;:1 1 t;Q ~ 57?1~
< C; ;E T2 (;Ra,t—lDT§£> Gr (; Tgsuz,s>
T 1 I & . N
< C )GTHEZ 1ﬁE ?;R@t 1D7g ‘ﬁ SX;DTgsUz,s )

where the last inequality uses Cauchy-Schwarz and the inequality ||AB|| < ||A]| || B]| .
Again, by Cauchy-Schwarz, the last term above is less than

n 2
vl < P

1=

LT
T Z Rit—1Drg:
t—2

2 L
FEl|l— Drisu;
o

2

T 2 T
1 = 1 ~ 1 ~
<—CHGH supE||= S Riy1Drgl|| E|l—=3" Drgsu; 67
— ﬁ T Zp th; ’l,t 1 Tgt ﬁ; TgS 1,8 ( )
Note that
LT 2 , LT 2
sup F ||= Ri_[)~ < su Dygl| supE | = R;_
P HT; i—1Drg; S || Prg| sup (T;‘ i 1\)
. 2
< sup ||Drg|| supsupE R?t
1<t<T i t<T '
= O(1) as T — oo, (68)
. 2
where the last equality holds by (62) and sup;<;<p DTgtH = 0(1). Also it is easily

seen that
2

E

T T
1 ~ 1 - .
— Y Drgsuis|| =tr | =Y DrgsgiDr | =0(1) as T — oo. 69
= ;1 T3sui, <T ;1 735 T) (1) (69)
In view of (67), (68), and (69), it follows that E |11 = O (%) , and so we have

the required result. The proof of Vi, —p 0 as (T, n — o0) is analogous to that of
Ilys. A

Lemma 10 Let A = %Z?:l A; and Q) = %Z?:l Q. where A; and ; are defined
in (19) and (20), respectively.. Suppose that Assumptions 1 - 4 hold. Then, as
n,T — oo A —, A and 2 —, ).
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Proof of Lemma 10. R
In this proof we show only that A —, A as (T,n — co). Then, by the same

principle as that used in the proof of A —, A, we find that Q —p Qas (T,n — o0)

holds by a simple change of the summation of the lag window from ZJT:1 to ZJT:_T .

Define
ZEE Zw< > Zgztgthr]; EEZ%ZA (70)

Before we start the proof of Lemma 10 we introduce the following useful lemma.

Lemma 11 Suppose the assumptions in Lemma 10 hold. Then, as (n,T — o), f\ag —p

A

Proof of Lemma 11.
We show that as (n,T — o0)

" 2
" 1
E (A - = ZA) =0. (71)
Then, because 1 ZZ 1 Ai — A it follows Ae ¢ —p . Observe that
" 1 @ 1 & 2
E(AE,E_E;Ai> = EXI:E< 1,6, )

R D)
< supuwar (Ai@g) + sup {bms (Ai,s,s)} .

%

A

Let Ti(j) = E (€it€it+5) and cum;(0,k,1,m) denote the fourth order cumulant of
(€465 i t+ks €i i1, Eijt+m)- We know by Assumption 1 that

sup Iyi( Z Ckck+]

and
sup |cum; (0, k,1,m)| < |og — 3| ZC Ci11Cit1C)m.
7=0
Also, from the summability condition (c) in Assumption 1, it follows that if ¢ < b
where b is given in condition (c) in Assumption 1, then

> () Z] chckﬂ < chz ) Chyj < 00 (72)
7=0

k=0 7=0
and
oo oo oo oo oo oo o
sup Z Z cum;(0,k,l,m) < |og — 3 Z Z Z Ci11Ci11Citm
k=0 {=0 m=0 k=0 {=0 m=0 j=0
4
o0
< |O’4 — 3| Z g < 00
=0



Choosing ¢ as in the condition of the lemma and following the same lines of proof
as that in Theorems 9 and 10 of Hannan (1971), we have as T' — oo

%sup var (Ai,5,5> = 0(1), (73)

qugpbias (Ai,w) = 0(1),

which leads to

" 2
E<Ae,e_%;/\i> =O(%> —0asn,T — oco.l (74)

Now, we start the proof of Lemma 10. Let

jo)
1
N
()=
(]~
N
2o
|
—
~_—
L
(]
(]~
@.XN
T
—

. z
i=1t=1 Y i=1 t=1
and
1 -
gt =2 —az gt —(a—a) 2 —— eishp(t,s
’ it Tit-1 e ) “ige1 T ; shr(t;s)
Also, let
. 1 F=g
FZ(.]) = T Eitit+j
t=1
If we prove that as (T, n — o0)
1 n T-—1 ]
A= 33w (f) B A
1= j:

then, in view of Lemma 11, we have the required result, viz.,

/A\—>pA:li7IZn%ZAZ’ as (T,n — 00).
i=1

Notice by the triangle inequality that

T—1 PN 1A T—j
A-Aee| = D w <F> 27 2 Citfine — cigsinj)
j=1 i=1 t=1
T-1 PN 1A T=j
< 2w <E> n 2T 2 B m s e
j=1 i=1 t=1
T-1 PN 1A T
T2 (_> = = e Cirrg — iy (75)



By the Cauchy-Schwarz inequality the first term in (75) is less than

n T

T-1 .
o () n g et B T
=1 i=1 t=1 =1 t=1
2 K-1 . n T n T
= K? % Zw <%> %Z (éi,t €i,t)2\l %Z%Zéit’
=1 i=1 t=1 i=1 t=1

where the equality holds because w <%) vanishes, by assumption, if j > K. First, we

have

i=1 t—1 Gt—1 s—1
11 & 2 1 & ’
2~ 2 2 7
< 2T ( CL) EZEZ%’Zt . +E ZZ (T Zgz,shT(ta S)) (76)
=17 =1 b i=1 t—1 s—1
= 21+ 211, say.

It follows by Lemma 9(a) that & 3% | ST 22 = 0p(1) as n,T — oo. Also,

1,

from Lemma 9, it is not difficult to see that T%(a@ — a)? = Op(1) as n,T — oo. In
consequence, I = Op(1) as n,T" — oco. Note that

_ . )
E|Il| = E %ZZ(%Z%ET@SO

i=1 t=1 s=1
11 T T T
A P W IERECRID
t=1 s=1 p=1
~ n
RN LS ol i (W) LY
1<t,s<T 1<t,p<T i=1 h=—T+1

where the last inequality holds by (72) , which implies that 1T = O,(1) as (T',n — 00) .

Hence, 1 37 S0 (854 — €it)® = Op(1) as (T,n — o) .

Also, in a similar way, 1 Y7 | 1 e &, =0, (1) as (T,n — oo) because

IA
3w
]
N =
™
Do
+
[O%]
’ﬂw
:fL
M:
OJ ot
MH



3¢al 1 ’
2313 1Y et —o0
=1 t=1 s=1
Finally,
K21 J

J=1

where the convergence holds because KTQ — 0 and % Zszl w (}%) — ([61 w(z). Hence,

the first term in (75) is 0,(1) and the second term in (75) is also 0,(1). We now have
all the desired results. W

6.3 Appendix C: Joint Consistency
Theorem 12 Under Assumptions 1, 2, 3, and 4,

et —p F(c).
as (T,n — 00) .

Proof
The theorem holds by Lemmas 9 and 10. B

Theorem 13 Suppose that the assumptions in Theorem 14 hold. Also assume that
w(c) #0. Then, as (T,n — 00),

Proof
Recall that

11 &, (1St s B
W2\ TE LA, M E LG )

Then, the consistency ¢ —, ¢ as (n,T) — oo is straightforward in view of the fact
that ro = T? (exp (%) — (1 + %)) = O (1) and Lemmas 9 and 10. W

6.4 Appendix D: Joint Weak Convergence

To establish asymptotic normality of ¢t and ¢*+ under joint convergence, we need
a stronger assumption on the bandwidth parameter used for the estimation of the
long-run variance.

Assumption 5 (Bandwidth Condition!) As (n,T — o0), the bandwidth parameter
satisfies K — o0, ”—552 — 0, and @ — v > 0 for some % < q < b for which wy is

finite, where b is given in condition (c) in Assumption 1.

o1

I~ [l [ ol S e 2
X D3 g, ~hit zﬁzgc +f—f r(t, S)+7’1T3Z

7,0—

i



Theorem 14 Suppose that Assumptions 1 — 3 and 5 hold. Then, as (n,T — 00)
with 7 — 0,

e R (]

where Vit (¢) and w (¢) are defined in (30) and (26), respectively.

Proof
To establish the joint limit distribution of ¢t it is enough to show that

n T T ¢ T
1 1 1 t s 1 )
%Z{ngitlgit —A¢+QiﬁZZc<l+? —T> hT(t,s)—I—’r‘TﬁZ?“l}
i=1 =1 " ’ t=1 s=1 t=1 ©
= N(0,2Vz+ (c)) as (T,n — c0).

The proof consists of the following two steps:
Step 1:

:|H
(]
—
N~
]~

T

1 pr
e —A+ QZ/ / ey, s)dsdr} = N (0,PVe+ (¢)) as (T, n — 00).
7 i1 it 0o Jo

i=1

Step 2
Ly IS A N AR t s 1 &

s z e —N+Qim (14 =—=)hp(t,s) +rip= Y 22
AR PRI LN I

|
:|H
3
N[~
e
e
()
|
=
_l_
=
c\

1 pr
/ er=2)n(r, s)dsdr}
0

= 0p,(1) as (T,n — 00).

1 .
IIl . % — <AZ — AZ) = Op (1)
IIQ i

n

n . T t s 1 pr
\/_Z{QZ%ZZCO—F%_?) hT(t,s)—Qi,/O ./0 e(rs)ch(r,s)dsdr}:op(l)
1 1 &
I3 % TTEZLZ. =0p (1),
%Z(A"—A") _ ”TKQopu) 0 (78)
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by (74),(77), and the condition in Assumption 5 that ”—?2 — 0. In the same fashion,
it holds also that

1 &/ nk?
% - <Qz - Qz) = TOp (1) —p 0. (79)
Write
1 R t s
Ih = <ﬁ > (@ QZ)) (?;;C<l+?—?> hT(t’s)>
1 & 1< t s
1 1 L. (r—s)e
+< ZQ>\/E<T;; 1k T)hT (t,s) / / hr s)dsd78>>)
>From
AN
su su — | —=7rfl==0 for k=1
1§t£T(t—1)/T£rgt/T <T> T M
and 1
sup sup eT — | = ?O(l),

1<t<T (t—1)/T<r<t/T

we can show that

= ZZ (1 +- - —) hr(t,s) = /; /0 ey, s)dsdr + O (%) ,

tlsl

Thus, we have Il = 0, (1) O (1) +0 (1) O (Tn) = 0p (1) . Finally, 113 holds because

1 & 11 & n
%;TTTSZ it T (5.2:?2?1_1):01) <%):0p(1)-

We now show Step 1. Recall wy(c) = — [ fo elr=3)ep(r, s)dsdr. Using the decom-
positions (52) and (59), we write

R
Nl =
e
o

3 —AZ' — Qﬂdg(C))

i1 it

=1 t=2 )
1 i 1 T 1 n 1 T
"o 2 (TZ (& “E”) SV IR <?Z e, - 1))
1 n
+_n Z (r1im —r2im) + gOp (1),



where 7137 = a’1 (20ini,T%,T + R?,T) ~T(a* = 1) 72 Yoy <QCixi,t—1Rfut—1 + Rg,t—l)?
T T

ruT = o ZZ{th 1he (t,8) wi s + Rig—1hr (t,8) (€5 5—1 — Eis)
t=2 s=2

+Cix;t—1hr (t,5) (Eis—1 —&is)} -

The first line holds because E |—= = %Op (1) and the second line

n 1
i=1T7Y €
3,0 4,1

'2 n
holds because (a — 1)% S A Viiigin, ﬁ S G = %Op (1).
In view of Iyo, I3, I Iy, I1Iy,, and IVy, in the proof of Lemma 9(b), it follows that

ZTIZT“‘TQZT \/gOp(l):op(l)

Next, ﬁ S8y (% ST, <u12t — 1)) because

(FEn (1))

(E)efige)
- (Zm)E(uit 1)? = 0.

Also, ﬁ Dy <% S, <5127t - Q€l>) —p 0 because

I
N~

=
g

T — |h]
T )E(5z2t5zt+h QQ)
) (24 04) ZC,JCJHM to ZC%JOZJ‘HM

INA IN

Nl = N[ =

~ 3| 3

©

+ N

N

< ;

(] -
/N 7 N

s |™

Qi ! J_

Ko =

s

4

pO

N

[]e

i []e

%

Z

j=0 h=0 j=0
r 2

+ 204 ZCJQ — 0.

IA
N~
[N}
o
+
Q
s
(]2
<
N
|
SN
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Next, we write

1 & 1 &
— Q| = x u  —wa(c
n ; (T ; Tit—1" 4t 2( )>
= —n ;Qz (? tz; @z,tflyi,t —CUQT(C)> — <E ;Qz> \/ﬁ (LUQT(C) — CUQ(C)),
where
1 T
wor(ec) = FE | = x U
2r(e) (T ; ”z‘,tfz’,t)
1 & 1 &
= ? Z E (xz,t—luz,t) T2 ZZE (wz t—1U4 s) hy (ta S)
t=2 t=2 s=1
1 T T t—1 -
—=—P)¢
- __222 el )E(uz,p“i,s)hT(taS)
t=2 s=1 p=1
t—1

sup sup
1<t<T (t—1)/T<r<t/T

we can show war(c) = wa (¢) + O (%) . Thus, since it is assumed % S — Qand

2,0, we have (1Y, 0;) Vi (war(c) — walc)) = O (1) O (#) =o(1).
To finish Step 1, it remains to show that

n T
1 1
— Q| = z u —wor(c) | = N(0,2Ve+ ().
Vn ; (T ; Tit—1 it 21 )> ( ++(0))
Let
1 & ’
Vieri(c) = E| = T U — war(c
rer () (T ; ”z,tfz’,t) 21(¢)
1 I 2 1z AR )
= FE (T Z%’,t—l%t) —2F (f Zwi,t—lui,tﬁ Z Ziﬁz‘,t—lui,sh:r (t,s)
=2 =2 (=2 s—1
A ) 2
B <—2 SN (ansre)  ( s>>
t=2 s=1
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Since

1 I 2 | L=l Tose1 )
S1p s—1-g
E (fzmi,tlui,t> = EZZZZe( T )Ce( T )CE (ui,pui75ui,tui75)
t=2

t=2 p=1 s=2 g=1

| Lol — 1
= @2 T <:7)

t=2 p=1

(Tzwzt 1Ui ¢t zzzwzt 1uish (t 8)>

t=2 s=1
1 T t-1 T s-1 T e a1y ~
= ﬁzz el T e )CE(ui,pui7tui7qui,w)hT(t,s)
t=2 p=1 s=2 q=1 w=1
1 T T (ths)—1 e oo B 1 T s—11t—1 1p 1
- L i 19) + 5 Y5> el CF iy (19 +0 ()
t=2 s=2 p=1 s=3 t=2 p=1
and
| LT i 2
E (ﬁ Z ZE (@i —1uss) hr (1, s))
t=2 s=1
1Tt—1TTs—1TiEm 3 ~
= _42 ZZ Ze( r )Ce( T )CE(ui,pui,rui,qui,w)hT(t,T)hT(S,w)
t=2 p=1r=1 s=2 g=1 w=1
1 T T (tAs)—1 T 1y R
= =) T hp (8, 7) o (5, 7)
t=2 s=2 p=1 r=1
1 T t-1 T s—1 e i1y
i 9 2L > 9 Tl T T () o (s,0)
t=2 p=1 s=2 g¢=1
1 T t—1 T s—1 -
+ﬁz DN el el hyp (t,q) by (s p)+O<T>
t=2 p=1 s=2 g=1
we have
Vet (c)
1 T t—-1 - 1 T T (ths)—1 e -
SO W sEEL D I M A
t=2 p=1 t=2 s=2 p=1
1 T s—11t—1 - e 1 T T (ths)—1 e - 5
275 > D T T hy () > Y YT ¥y () ey (s,)
s=3 t=2 p=1 t=2 s=2 p=1 r=1
1 T t—1 T s—1 - e 5 1
e Z Z T )Tl (8, q) By (,p) + O <T> . (81)



Now employ Theorem 8. Write Q; 7 = %Zthl r u  —wop(c). The Q;r are
it—1"it
iid with mean zero and variance vr. Also, we know that

Qur = Q= [ 1 )W) —wnle)
and it is not difficult to verify that

E(Qir)’ = Vier+(c) = Varr(c) = E(Q)*.

>From sup; Q2 < oo, the convergence of Vrz++(c) — Vai+(c), and %Z?Zl Q02 — 9,
we verify conditions (i), (ii), and (iv) of Theorem 8. Also, condition (iii) is satisfied by
applying Remark(a) following Corollary 7 (see also theorem 5.4 of Billingsley, 1968)
with Q?,T = @? (by the continuous mapping theorem) and E(QLT)2 — E(Qi)Q.
Thus, by theorem 8, ﬁZ?zl Q; (% ST ru —wQT(c)> = N(0,2Vz1+(c))

it—1" 4t
and we have all the required results. l

Theorem 15 Suppose Assumptions 1, 2, 3, and 5 hold. Then, as (n,T — o0o) with

§o0,
Vn (et = F(c)) = N (0,9V,+ (¢)),
—wa({c)

where Va1 (c) = < —wa(¢) L) )/V(c) ( “’11(0)2 ) and V (c) is defined in the pre-

wi(c)?  wilc
1 1 e,

vious section.

Proof

The proof is entirely analogous to that of Theorem 14. We simply sketch the
proof here. To establish the joint limit distribution of ¢* it is enough to show that
(41) holds under joint limits as (n,T" — c0). The idea of the proof is similar to that
of Theorem 14.

First, by definition,

n Aan - (% Z?:l Ql) wl(c)
Vvn < B, — (% Y QZ) wa(c) > (82)

ﬁ it | 72 i 2 —in1(6)>

i,t—1

Flim (7 Xim 2 e —Ai- in2(0)>

it—1" 4.t
By applying similar arguments to those in the proof of theorem 14 we can show that
the main component for the joint asymptotic normality of (82) is the following:

1 n T 2

on dic1 Sk T2 2 t— @ivt_l —W1(0)>
s o0 (AT 2 U  —ws(c
N Zz:l i\ T Lat=1 “it1 i 2( )



+ i,t—1
Ly Q(E(LST 2 uw | -w c)
ﬁZz 1 Tthl "1 i 2( )
= I+ 11,

In much the same fashion for the Step 2 in the proof of Theorem 13, we can show
that II; — 0 as (T,n — o0). Thus, to complete the proof it remains to show that
I; = N (0,9Vz+ (c)), for which we use Lemma 8. Conditions (a) and (b) are obvious.
Also, after some tedious algebra similar to the derivation of (81) in the proof of
Theorem 14, we can show that

E (I41}) — @V (c),

which is enough by Remark 6.2.1(a) to assert that conditions (c) and (d) are satisfied.
]

Proof of the Joint Weak Convergence of tg,;
For the joint limit of ¢s4 to N (0,1), in view of the joint asymptotic normality
in Theorem 14, it is enough to show that as (T',n — oo)

9‘5—>p<1>,

that is,

Note that

IN
/N
:‘H

NE
ﬂ:)
|
2
N———
[\]
w0
N
2
/N
Bl
NE
=2
|
2
N———

We know sup; ;] is finite and so, to show 1 3% <QZQ - QZ) =0y (1), it is enough

to show that ﬁ S % = =0, (1).
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Let QZ-@E be a kernel estimator for €); using the unknown errors ¢; ¢, defined in an
analogous way to (70) . By the triangle inequality,

L3
vn i=1
By Cauchy-Schwarz, we have
vn i=1

The square of the last term is less than

1,66 Qz

1 -
+%;Q

< z”: (E Qe — )2 < zn:E (Qi,as _Qi>2~

i=1 =1

1,66 Qz

~

nsup £ (Qi,gg — Qi)Q < msupvar (Qi,gg) + nsup [bz’as (Qi’%)r = ﬁO (1), (83)

% %

where the last equality holds by (73), and so ﬁ Dy
Next, by the triangle inequality again,

Qi,se - Qz

=0, (1).

§ 52 t52 gt+7 _52 t€4q t+j)

§ 52t Ezt 52 t+7
t

IA
:|H
||M:
S
L
g
—
==
N

IA
:|H
M:

S
L
g
N
==
N———

i=1 j=—T+1
1 n T—1 1
R S ST (A5 3 o R
i=1 j=—T+1 t

where the summations over ¢ satisfy 1 < t¢,t+j < T. Then, following the same lines as
in the argument below (75) with a change of summation in the lag kernel to Zf(_f K
leads us to

This, together with \/_Zle Qi — Qice| =i Qi — Q| = 0p(1), gives us
77 i [ Qi =op(1). W
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Table 1. Numerical Values of Bias Function F (c) in (18) when g = (1,t)’

c  F(eo) ¢c F(¢) ¢ F(o ¢ Flo
-8 -1309 4 971 0 -75 4 397
-9  -13 -39 -963 0.1 -75 41 4.09
-7.8 -1291 -3.8 -955 0.2 -751 42 4.2
-7.7 -12.82 -3.7 -948 0.3 -7.52 43 431
-7.6 -12.73 -3.6 -94 04 -754 44 442
-7.5 -12.64 -35 -933 0.5 -7.56 4.5 4.52
-74 -1256 -3.4 -925 06 -758 4.6 4.63
-7.3 -1247 -33 -9.18 0.7 -76 4.7 4.73
-7.2 -1238 -32 -9.1 0.8 -7.62 48 483
-7.1 -12.29 -3.1 -903 09 -763 49 493
-7 -12.2 -3 89 1 -761 5 5.03
-6.9 -12.12 -29 -888 1.1 -738 5.1 5.13
-6.8 -12.03 -2.8 -881 1.2 -7.51 5.2 5.23
-6.7 -11.94 -2.7 -874 13 -738 53 533
-6.6 -11.86 -2.6 -8.67 14 -72 54 543
-6.5 -11.77 -2.5 -86 1.5 -693 5.5 5.52
-6.4 -11.68 -24 -854 1.6 -6.57 56 5.62
-6.3 -11.6 -23 -847 1.7 -6.1 5.7 5.72
-6.2 -11.51 -22 -84 1.8 -5.54 58 582
-6.1 -11.43 -2.1 -834 19 -488 59 5.92
-6 -11.34 -2 828 2 -414 6 6.02
-5.9 -11.26 -1.9 -821 2.1 -336 6.1 6.12
-5.8 -11.17 -1.8 -815 22 -256 6.2 6.21
-5.7 -11.09 -1.7 -8.09 23 -1.77 6.3 6.31
-5.6 -11  -1.6 -8.04 24 -1.03 64 6.41
-5.5 -10.92 -15 -798 2.5 -0.34 6.5 6.51
-5.4 -10.84 -14 -793 26 027 6.6 6.61
-5.3 -10.76 -13 -788 2.7 0.82 6.7 6.71
-5.2 -10.67 -1.2 -783 2.8 129 6.8 6.81
-5.1 -10.59 -1.1 -7%8 29 1.7 69 691
-5 -1051 -1 -7v4 3 206 7 7.01
-49 -1043 -09 -769 3.1 236 7.1 7.11
-4.8 -10.34 -0.8 -766 3.2 263 72 721
-4.7 -10.26 -0.7 -762 33 28 73 7.31
-4.6 -10.18 -0.6 -759 34 3.07 T4 741
-45 -101 -0.5 -756 3.5 325 75 75
-4.4 -10.02 -04 -754 3.6 342 76 7.6
43 -994 -03 -752 3.7 357 17 1.7
-42 98 -02 -751 38 371 78 78
41 -97 -01 -75 39 384 79 79
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Table 2.

Numerical Values of Asymptotic Standard Error
erative OLS Estimator when §, = (1,t)" 12

Vz+ (c) of It-

c Vel) ¢ Ve@ ¢ Ja© ¢ Vel ¢ Vel
-8 6.0079 4.6 5.5106 -1.2 5.1166 2.2 4.9802 5.6 0.0864
-7.9 5.9932 4.5 5.4965 -1.1 5.1097 2.3 4.6617 5.7  0.0782
-7.8 5.9785 -4.4 5.4824 -1 5.1032 2.4 4.2764 5.8 0.0709
7.7 59638 -4.3 54683 -09  5.0971 2.5 38520 5.9 0.0642
-7.6 5.9491 -4.2 5.4544  -0.8 5.0913 2.6 3.4167 6 0.0582
-7.5 5.9344 -4.1 5.4405 -0.7  5.0858 2.7 29939 6.1 0.0528
-7.4 5.9197 -4 5.4267 -0.6 5.0806 2.8 2.6001 6.2 0.0479
-7.3 5.9050 -3.9 5.4131 -0.5 5.0758 2.9 2.2447 6.3 0.0435
-7.2 5.8902 -3.8 5.3995 -0.4 5.0711 3 1.9316 6.4  0.0395
-7.1 5.8755  -3.7 5.3860 -0.3 5.0667 3.1 1.6603 6.5 0.0358
-7 5.8608 -3.6 53727 -0.2 50624 3.2 1.4281 6.6  0.0325
-6.9 5.8460  -3.5 5.3595  -0.1 5.0583 3.3 1.2307 6.7  0.0295
-6.8 5.8313 -3.4  5.3465 0 5.0640 3.4 1.0637 6.8 0.0268
-6.7 5.8166 -3.3 5.3336 0.1 5.0503 3.5 0.9226 6.9 0.0244
-6.6  5.8019 -3.2  5.3208 0.2 5.0463 3.6  0.8032 7 0.0221
-6.5 5.7871 -3.1 5.3082 0.3 5.0424 3.7 0.7021 7.1 0.0201
-6.4  5.7724 -3 5.2958 0.4 5.0386 3.8 0.6160 7.2  0.0183
-6.3 5.7577 2.9 5.2836 0.5 5.0351 3.9 0.5425 7.3 0.0166
-6.2 5.7430 -2.8 5.2716 0.6 5.0321 4 0.4794 7.4 0.0151
-6.1 5.7283  -2.7  5.2598 0.7 5.0301 4.1 0.4250 7.5  0.0137
-6 5.7136 -2.6 5.2483 0.8 5.0299 4.2 0.3779 7.6 0.0125
-5.9  5.6989 -2.5  5.2369 0.9 5.0323 4.3 03368 7.7 0.0114
-5.8 5.6843 -2.4  5.2258 1 5.0387 4.4  0.3009 7.8 0.0103
-5.7  5.6696 -2.3 5.2150 1.1 5.0510 4.5 0.2694 7.9 0.0094
-5.6 5.6550  -2.2 5.2045 1.2 5.0711 4.6 0.2416 8 0.0085
-5.5 5.6404 -2.1 5.1942 1.3 5.1016 4.7  0.2170

-5.4 5.6258 -2 5.1843 14 5.1444 4.8 0.1951

-5.3 5.6113 -1.9 5.1746 1.5 5.2000 4.9 0.1757

-5.2 5.5968 -1.8 5.1653 1.6 5.2658 5 0.1584

-5.1 5.5823 -1.7 5.1563 1.7 5.3330 5.1 0.1429

-5 5.5679  -1.6 5.1477 1.8 5.3853 5.2 0.1290

-4.9 5.5535  -1.5 5.1394 1.9 5.3991 5.3 0.1166

-4.8 5.5392 -1.4 5.1314 2 5.3481 5.4  0.1054

-4.7 5.5249 -1.3 5.1238 2.1 5.2114 9.5 0.0954

12The numerical values are obtained by 10,000 iterations of the simulation with size 1,000 data.
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Table 3. Numerical Values of

c++( o) .

w(c)?

in Theorem 4 when §; =

(L,0)"

\/ VQ++(C \/ Vit + (C \/ VQ++(C \/ Vit + 0) \/ Vit + 0)
w(c)? w( w(c)? w( w(c)?
-8 49136 46 T 5581 -1.2 446729 22 4. 8422 5.6  0.0944
-7.9 49572 45 77080 -1.1 519287 2.3  4.0131 5.7  0.0856
-7.8  5.0019 44  7.8665 -1 61.4285 2.4  3.3761 5.8  0.0777
=77 5.0477 43 8.0343 -09 742174 2.5  2.8747 5.9 0.0705
-7.6 50948 42 8.2123 -0.8 92.0310 2.6  2.4718 6 0.0640
-7.5  5.1430 4.1 84015 -0.7 1179273 2.7 21423 6.1  0.0581
-7.4 51926 -4 8.6030 -0.6 157.7059 2.8 1.8690 6.2  0.0527
-7.3 52436 -39 88181 -0.5 223.5227 2.9 1.6394 6.3  0.0478
-7.2 52960 -3.8 9.0481 -04 344.4371 3 1.4446 6.4  0.0434
=71 53499 3.7 9.2947  -0.3 605.2925 3.1 1.2778 6.5  0.0395
-7 5.4054 -3.6  9.5597  -0.2 1349.9285 3.2 1.1339 6.6  0.0358
-6.9 54625 -3.5 9.8451 -0.1 5369.5697 3.3 1.0090 6.7  0.0325
-6.8 55214 -3.4 10.1535 0 N/A 3.4 09000 6.8 0.0296
-6.7  5.5822 -3.3 104875 0.1 5376.2421 3.5 0.8044 6.9 0.0269
-6.6  5.6448 -3.2 10.8503 0.2 1355.8429 3.6  0.7202 7 0.0244
-6.5  5.7095 -3.1 11.2457 0.3 612.2524 3.7  0.6459 7.1  0.0222
-6.4  5.7764 -3 11.6780 0.4 353.0930 3.8 0.5800 7.2  0.0201
-6.3  5.8455 -29 12,1523 0.5 2344024 39 0.5215 7.3  0.0183
-6.2 59171 2.8 12.6746 0.6 171.4487 4 0.4694 7.4  0.0166
-6.1 59912 2.7 13.2520 0.7 1354350 4.1  0.4228 7.5 0.0151
-6 6.0680 -2.6 13.9830 0.8 114.7475 4.2 03813 7.6  0.0137
-5.9  6.1477  -2.5 146078 0.9 104.6621 4.3  0.3440 7.7 0.0125
-5.8  6.2305 -2.4  15.4088 1 104.6484 44  0.3106 7.8 0.0113
-5.7 631656 -2.3  16.3110 1.1 120.5580 4.5 0.2806 7.9  0.0103
-5.6  6.4061 -2.2  17.3329 1.2 189.3297 4.6  0.2537 8 0.0094
-5.5 64993  -2.1 184976 1.3 N/A 4.7 0.2294

-5.4  6.5965 -2 19.8338 1.4 123.3519 48  0.2076

-5.3  6.6980 -1.9 213779 1.5 51.3654 4.9  0.1879

-5.2  6.8040 -1.8 23.1768 1.6  29.0267 5 0.1701

-5.1 69150 -1.7 25.2913 1.7 18.7699 5.1  0.1541

-5 70312 -1.6 27.8017 1.8 13.1506 5.2 0.1396

-4.9 71532 -1.5 30.8156 1.9 9.7317 5.3  0.1266

-4.8 72813 -14  34.4803 2 7.4963 5.4  0.1147

-4.7 74161  -1.3 39.0012 2.1 5.9536 5.5  0.1040

13% The numerical values are obtained by 10,000 iterations of the simulation with size 1,000 data.

** Since w (0) = 0 and w (1.3) ~ 0, we do not report the values of
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