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Abstract

Understanding genomic structural variation such as inversions and translocations is a key

challenge in evolutionary genetics. We develop a novel statistical approach to comparative

genetic mapping to detect large-scale structural mutations from low-level sequencing data.

The procedure, called Genome Order Optimization by Genetic Algorithm (GOOGA),

couples a Hidden Markov Model with a Genetic Algorithm to analyze data from genetic map-

ping populations. We demonstrate the method using both simulated data (calibrated from

experiments on Drosophila melanogaster) and real data from five distinct crosses within the

flowering plant genus Mimulus. Application of GOOGA to the Mimulus data corrects numer-

ous errors (misplaced sequences) in the M. guttatus reference genome and confirms or

detects eight large inversions polymorphic within the species complex. Finally, we show

how this method can be applied in genomic scans to improve the accuracy and resolution of

Quantitative Trait Locus (QTL) mapping.

Author summary

Genome sequences are an essential resource for genetic research in many species. How-

ever, most species exhibit considerable variation in genomic organization, making a single

reference sequence inadequate. This variation complicates quantitative trait mapping and

population genomics. We introduce a new statistical method and computational tools

that use linkage information to improve genome assembly and identify structural differ-

ences between individuals or populations. We first use the method to correct many assem-

bly errors in the reference genome of Mimulus guttatus. Analyzing five crosses from the

M. guttatus species complex, we detect eight large chromosomal inversions and improve
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the resolution of a trait mapping study. This work illustrates how genetic mapping can be

applied to a greater diversity of species to address genetic and evolutionary questions.

Introduction

Over the last decade, genetic research has been revolutionized by the availability of whole

genome sequences for many of the world’s medically, ecologically, and agriculturally impor-

tant species. It has also become clear that a single reference genome sequence is insufficient for

many species. For example, a comparison of two maize accessions found that over 2,500 genes

were present in only one of the two genomes [1]. Even in humans, which have much less

genetic diversity than maize, structural and gene content polymorphisms are abundant [2].

Differences in gene copy number [3–6], variation in gene order [1, 7, 8] and chromosomal

inversions [9–13] are not captured by a single reference genome, nor can they be annotated

succinctly in relation to a single reference as is possible for Single Nucleotide Polymorphisms

(SNPs). These structural and gene content variants have important phenotypic consequences

in many species, highlighting the need for intensive study [14–18].

Recognizing structural variation is important for many of the experimental applications of

genomic science. For example, trait-mapping approaches, such as bulked segregant analysis,

rely on accumulating signals from adjacent genomic regions (windows) to establish signifi-

cance. If gene order in the population under study differs from the reference genome, the

proximity of polymorphisms will be incorrectly inferred, which in turn, undermines inference

of both the location and significance of QTLs [19]. Similar issues can arise in population geno-

mic analyses, such as scans for selection or introgression [20, 21] or of response in “Evolve and

Resequence” experiments [22–26]. One solution is to make reference genomes for every diver-

gent accession under study [4]. An alternative approach is to construct ‘pseudo-chromosome’

assemblies to better match structural variation in the focal accessions. Regardless, accounting

for structural variation is an important challenge for the continued development of evolution-

ary genomics.

In this paper, we develop an approach to pseudo-chromosome construction based on com-

parative genetic mapping. In species with repeat rich genomes, whole genome shotgun

sequencing and assembly typically yields many thousands of scaffolds. These scaffolds can be

stitched together to form pseudo-chromosomes. There are various techniques for making

pseudo-chromosomes, such as following a BAC-tiling path [27], optical mapping using nano-

channel arrays [28], or by localizing the scaffolds to markers on a genetic map [29, 30]. Genetic

mapping has proved to be effective for initial genome construction and pseudo-chromosome

assembly, especially for large genomes [31–33]. We extend this approach using comparative

genetic maps from five distinct crosses, allowing us to simultaneously improve the pseudo-

chromosome representation of the reference genome and also identify large-scale variation in

gene order, including chromosomal inversions and translocations.

Our approach utilizes data from low-coverage sequencing. Restriction site associated DNA-

sequencing (RAD-seq) [34, 35] and related reduced-representation methods [36–38] allow

cost-effective genotyping of hundreds of recombinant individuals in species with limited

genetic markers. While RAD-seq data is often used to create de novo markers [39, 40], RAD-

seq reads can also be directly mapped to genomic scaffolds. Recombinant genotypes located to

genomic scaffolds can then be used to assemble pseudo-chromosomes. Unfortunately, there

are substantial challenges in constructing genetic maps from low-coverage sequencing data

and in inferring map differences (i.e., the evidence for structural variation). New approaches

are needed to address the following methodological questions: What is the optimal means to

Detecting genomic structural variation from genetic mapping data
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convert sequence data into markers? How should we accommodate genotyping error in these

markers given that the error rate is often high and variable among samples? After locating

markers to genomic scaffolds, how do we obtain the optimal order and orientation of scaffolds

into pseudo-chromosomes? Finally, how do we determine if putative differences between

maps are real?

We develop a statistical procedure called Genome Order Optimization by Genetic Algo-

rithm (GOOGA) that detects large structural mutations, such as inversions or translocations,

using marker data from multiple genetic mapping populations. Importantly for error-prone

low-coverage genotyping, GOOGA propagates genotype uncertainty throughout the model,

thus accommodating this source of uncertainty directly into the inference of structural varia-

tion. GOOGA couples a Hidden Markov Model (HMM) with a Genetic Algorithm (GA). The

HMM yields the likelihood of a given ‘map’ (hereafter used to denote the ordering and orienta-

tion of scaffolds along a chromosome) conditional on the genotype data. The GA searches map

space by creating new candidate orders which are recurrently fed to the HMM to diagnose their

likelihood. Inference of recombination rate parameters and/or tests for differences in gene

order are enabled by the fact that all calculations are conducted in the currency of likelihood.

As proof of concept, we first apply GOOGA to mapping data simulated from a known

genome sequence. After demonstrating its effectiveness in this context, the pipeline is applied

to real RAD-seq data (multiplexed shotgun genotyping (MSG) type [36, 41]) from five differ-

ent mapping populations, each synthesized from a cross between lines within the M. guttatus
species complex. The complex is a highly diverse clade of inter-fertile North American wild-

flowers [42–45]. The five mapping populations include both intra- and inter-specific crosses as

well as multiple cross types (F2s, F3s, and recombinant inbred lines (RILs)). Recombinant indi-

viduals from each mapping population were scored genome-wide for SNPs and then input to

GOOGA. Starting from a rough-draft scaffold order [46], GOOGA produces an optimized

order and orientation of genomic scaffolds for each population. The M. guttatus reference

genome derives from an inbred line used as a parents in two of our five crosses, which allows

us to correct many errors (misplaced scaffolds) in the reference genome. Improved estimates

for recombination rates indicate the effects of gene density and transposable elements on chro-

mosomal variation in recombination. Comparisons among maps identify eight distinct struc-

tural polymorphisms, five of which were suggested by previous mapping studies [12, 13, 47–

50]. Finally, we demonstrate GOOGA clarifies the results of a QTL mapping study by correct-

ing errors in the reference genome.

Methods

A simulation based on Drosophila

We used the "A4" genome build [51] of D. melanogaster to serve as the reference in the simula-

tion study (downloaded from https://www.ncbi.nlm.nih.gov/assembly/GCA_002300595.1/).

This is a high quality build; likely close to the true genome sequence of the line. To estimate

multiplexed shotgun genotyping (MSG) [36, 41] of a mapping population using this genome,

we extracted MSG reads from a QTL mapping study in D. melanogaster [52]. We mapped

reads, downloaded from https://datadryad.org/resource/doi:10.5061/dryad.gc182, to the A4

sequence using the methods described below for Mimulus MSG reads. The mapping locations

of restriction site associated DNA-tags (RAD-tags) were thinned to at most one tag per kb,

and then used for subsequent simulation of MSG data in a population of F2 individuals. To

create the mapping population, we consider a cross between isogenic lines that differ at one

SNP per RAD-tag. For simplicity, we focused on chromosome 2 with F1 flies heterozygous at

each RAD-tag along this chromosome. We synthesize each F2 by crossing a male that produces

Detecting genomic structural variation from genetic mapping data
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gametes without recombination, to a female that produces gametes based on the recombina-

tion frequency map of D. melanogaster [53]. Given the locations and true genotypes at each

RAD-tag, we simulate genomic data by sampling a specified number of reads per individual

per tag. After forming the entire F2 population, we fractured the reference genome into 31

scaffolds by randomly choosing 30 break-locations across the chromosome. The genomic data

were then input to the GOOGA pipeline. The genomic coordinates of RAD-tags, the recombi-

nation map, and the code to simulate F2 genotype and break the reference genome into scaf-

folds are provided in S1 Data.

The GOOGA pipeline

Fig 1 is an overview of the data analysis pipeline.

The first programs take short-read data from recombinant individuals within the mapping

population and make “putative” genotype calls. From the parental genomes and offspring of

each mapping population we identified SNPs with GATK [54]. We retained only diagnostic

SNPs, where bases could be unambiguously assigned to one of the parents (A or B). Window

based calls are based on the aggregate of sequence data from all diagnostic SNP sites located

between a lower and upper coordinate (all reads that map between these coordinates). The size

of windows is a user defined variable chosen based on the density of SNPs and the average

number of reads per SNP per individual. The count of reads matching each parent (A or B) is

the basis for making putative calls although thresholds for these decisions are also user defined.

In our application to both simulated Drosophila data and real Mimulus data, we delineated

markers as windows 100 kb in length within each scaffold. The last marker on each scaffold

included all remaining sequence beyond the last complete 100 kb segment. Given the number

of reads scored as A and B (across SNPs) within a window, the individual was called AA if the

fraction of reads matching parent A exceeded 95%. They were called BB if the fraction was less

than 5%, and AB if the fraction was between 25% and 75%. We default to ignorance (NN = No

Call) if none of these conditions are met or if the number of reads within the window for that

individual is less than a minimum depth threshold (set to 6 for our applications). Ambiguity

can result either from mis-mapping of reads (in which case the read counts are misleading) or

if recombination occurs within the marker (in which case the true genotype is a combination

of two different genotypes, e.g. AA-AB). Scoring either scenario as NN is suitable for down-

stream analysis by the HMM–data from neighboring markers will strongly inform inference

of the underlying genotype at the NN marker. The detailed Methods for making putative geno-

type calls in for the Mimulus data is reported in S1 Appendix.

We use a window-based approach instead of SNP-specific genotyping because the latter

can be highly error prone, especially with low coverage sequencing data and mapping to pre-

liminary (error filled) genome builds. Even after numerous filtering steps (see S1 Appendix),

SNP-level calls remain problematic (see S1 Fig for an illustration with data from three Mimulus
recombinants). Under-calling of heterozygotes is often problematic with MSG data; both

alleles appear less frequently than the binomial distribution predicts [55, 56]. Aggregating sig-

nal from closely linked SNPs addresses both low coverage and allele dropout in heterozygotes.

However, SNP level genotype calling may be preferable if both the reference scaffolds and

recombinant sequencing are sufficiently high in quality. The downstream components of the

GOOGA pipeline are fully compatible with SNP-level calls in this circumstance.

The likelihood

The putative calls are the observed or “emitted” states for the HMM and the hidden states are

the true underlying genotypes (AA, AB, or BB) [36, 57, 58]. The structure of the model and
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transition probabilities depends on the breeding design (e.g. F2 or F3 or RILs) and on recombi-

nation rates. Fig 2 illustrates the HMM for an F2 population.

Fig 1. The GOOGA pipeline is illustrated with inputs and outputs (rectangles) and programs (rounded shapes) at

each stage. Purple denotes main outputs.

https://doi.org/10.1371/journal.pcbi.1006949.g001
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The HMM is non-homogeneous [59] and we report the transitions for F2, F3, and RIL

designs in S2 Appendix. The emission probabilities are determined by individual-specific gen-

otyping error rates (Fig 2). Three distinct error rates are estimated for each individual (i): the

probability that a true homozygote yields a putative call to heterozygote (e0i) or to the opposite

homozygote (e1i), and the probability that a heterozygote yields a call to one of the two homo-

zygotes (e2i). Regarding the last rate, we assume that errors to either of the alternative homozy-

gotes are equally likely.

The HMM is applied in different ways at four stages of the pipeline (Fig 1). The first objec-

tive is to estimate individual-specific genotyping error rates from transitions between geno-

types within scaffolds. The transition probabilities depend on the true recombination rate per

base pair, which is unknown and can vary across the genome. However, to estimate e0i, e1i,

and e2i, we fit a simple ‘homogeneous’ model assuming that recombination rate is proportional

to physical distance between markers within scaffolds. Based on data from prior Mimulus
studies [47, 50], we set rates to the genomic average of 5.0 cM/Mb for F2 populations and 10.0

cM/Mb for F3 and RIL populations. For the simulation study, we use the specified (known)

recombination rates. The likelihood of data from each scaffold of an individual plant is then a

function of e0i, e1i, and e2i, and the likelihood for the entire plant is a product across scaffolds.

For each plant we obtain the maximum likelihood estimation (MLE) of e0i, e1i, and e2i via

application of the forward-backward algorithm [60] coupled with the bfgs bounded optimiza-

tion routine [61] of scipy.optimize (https://docs.scipy.org/doc/scipy/reference/optimize.html).

We also used the bfgs optimizer to obtain MLE for recombination rates as described below.

Fig 2. The structure of the Hidden Markov Model is illustrated for F2 individuals. Transitions between genotype states (AA, AB, or BB) for markers m1

through m4 in the latent state layer are determined by recombination fractions (r) between pairs of markers. The probabilities of each latent state estimate

are then propagated into the emitted state layer with a genotyping error rate term that is specific to each individual (subscript i).

https://doi.org/10.1371/journal.pcbi.1006949.g002
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The individual-specific error rates (reported as S1 Table) can be used to cull highly error

prone individuals from mapping populations (S2 Appendix).

The next step is to obtain preliminary recombination rate estimates between markers

within scaffolds (Fig 1). While error rates were estimated by taking a likelihood across all scaf-

folds within a single individual, we here maximize the likelihood within each individual scaf-

fold (with respect to r values between all adjacent markers) across all individuals within a

mapping population. These intra-scaffold rate estimates are used in the GA search (described

below), but not in the final maps. In our application to the five Mimulus datasets, the intra-

scaffold r estimates were nearly always small, consistent with close linkage. However, we

noticed one very high rate between two adjacent markers on scaffold 13 of the DUNTIL cross.

The same interval exhibits normal (r< 0.01) recombination rates in other crosses. Given evi-

dence for an inversion breakpoint (further evidence below), we split scaffold 13 into 13a and

13b.

The third application of the HMM is within the GA as it searches for the optimal map

(ordering and orientation of scaffolds within a chromosome). Here, the log-likelihood is for

the entire chromosome of an individual, summed across all individuals in the mapping popu-

lation. This requires an assignment of scaffolds to linkage groups. In the absence of other

information, this can be obtained by applying a standard map making program such as R/QTL

[57] to the putative genotype calls. We wrote a simple end matching program (make.ends.

meet.py) to accomplish this task for the simulation study. This program, and all others used in

the pipeline, are available at (https://github.com/flag0010/GOOGA).

For a chromosome, there are L– 1 + K recombination rates to be estimated, where L is the

number of scaffolds on the chromosome and K is the number of intra-scaffold rates within

these scaffolds. The likelihood of a particular map is determined mainly by the data at the

“joins” (where two scaffolds meet). The genetic algorithm searches map space with intra-scaf-

fold rates held at their estimates from the second application of the HMM (Fig 1). Evaluation

is based on the likelihood of the map after optimizing the inter-scaffold rates. However, we

apply the full model, with all intra- and inter-scaffold recombination rates re-estimated, to our

final map for each chromosome of each mapping population. In both cases, we obtain the

maximum likelihood via application of the forward-backward algorithm.

The genetic algorithm

GOOGA maximizes the likelihood of the HMM using a genetic algorithm (GA) applied to

each chromosome of each mapping population. A GA is an algorithmic optimization scheme

inspired by sexual reproduction and natural selection [62]. Below we use terms such as “indi-

vidual”, “mutation”, “recombination”, and “fitness” as they are frequently used in the GA liter-

ature; not to the biological processes. To build the GA, we first coded unique scaffold orders,

including scaffold orientations (i.e. forward strand vs. reverse complement), to make an "indi-

vidual." Each individual represents a candidate solution among a population of size N compet-

ing in a given generation. The likelihood of the map provides the fitness of individuals. To

preserve the best scaffold orders, we used a strategy called elitism (E), which allows a predeter-

mined number (E = 4 in our case) of the best individuals (i.e., highest likelihood scaffold

orders) to go on to the next generation unchanged. To fill the remaining N-E spots in the next

generation, we applied rank-based selection to select pairs of individuals to “mutate” and

“recombine” into new individuals for the next generation. The details of the mating and muta-

tion scheme, and well as the strategy for optimizing computation, are reported in S3 Appendix.

After extracting the optimal map from the GA, we run the HMM with both inter- and intra-

scaffold rates as free parameters. This yields the final MLE for recombination rates across each
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chromosomes and also the posterior probabilities of genotypes for each individual in the map-

ping population.

Comparing recombination rates to genomic features

We extracted MLE recombination rates from each Mimulus mapping population to compare

to DNA level features such as amount of coding DNA, number of transposable elements, and

the presence of centromeric DNA. For these analyses, we defined a 200 kb interval around

each 100 kb-long marker, starting at the midpoint of the preceding marker and ending at the

mid-point of the next marker. The analysis is defined at this scale to absorb recombination

events that occur mid-marker. Consider the first three markers on a scaffold defined on the

position ranges 0–100 kb, 100 kb-200 kb, and 200 kb-300 kb, respectively. We related the

sequence interval from 50 kb-250 kb to the sum of the two rates (r1,2 + r2,3 of Fig 2). This analy-

sis neglected very small scaffolds, the sequence at the ends of longer scaffolds, and the esti-

mated rates between scaffolds (the amount and the features of the interceding DNA are

unknown). In this analysis, we also excluded regions where recombination is suppressed due

to inversions (S2 Table). We obtained a single rate for each interval by first standardizing map

specific rates by the total length of each map and then calculated a weighted mean across popu-

lations. The weight given to estimates from each cross is proportional to the reciprocal of the

genome-wide recombination rate variance: IMPR = 1.0, IMSWC = 0.899, IMNAS = 0.790, and

DUNTIL = 0.677, and IMF3 = 0.380 (see Table 1 for mapping population abbreviations).

QTL mapping in the IMSWC population

We compared quantitative trait locus (QTL) mapping results for the IMSWC cross using either

the optimized scaffold order generated by our pipeline or the scaffold order of the M. guttatus
V2 reference genome. For each of the 873 F2s used for genetic map construction, genotype pos-

terior probabilities were emitted for each of the 111 markers defined for chromosome 11. This

chromosome harbors a major QTL that contributes to variation in the ability to flower under

13/11 hours of light/dark (Kooyers et al. 2018, in prep.). Genotypes were then assigned at each

marker for each individual based on the genotype with a posterior probability> 0.95; otherwise,

the genotype was called as missing. For each marker order, we calculated recombination fre-

quencies (Haldane map function), imputed genotype probabilities at 1 cM steps (error probabil-

ity = 0.001), and performed interval mapping using the binary model in R/QTL [57].

Results

The efficiency and limitations of GOOGA are demonstrated by simulated

data

We simulated data with Drosophila chromosome 2, fragmented in different ways into 31 scaf-

folds, which were then input to the GOOGA pipeline. Fig 3 is a typical result.

Table 1. Details about the five Mimulus crosses. For each cross we list the parental lines used, their species, and the cross and mapping population type.

Cross Name Parent 1

genotype

Parent 1 Species Parent 2

genotype

Parent 2 Species Cross Type Mapping Population Type

DUNTIL DUN10 M. guttatus LVR M. tilingii Interspecific F2

IMNAS IM160/IM767 M. guttatus SF5 M. nasutus Tri-parental Interspecific F2

IMSWC IM62 M. guttatus SWC M. guttatus Intraspecific F2

IMPR IM767 M. guttatus PR M. guttatus Intraspecific RIL

IMF3 IM62 M. guttatus IM767 M. guttatus Intraspecific F3

https://doi.org/10.1371/journal.pcbi.1006949.t001
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The initial map, constructed from putative genotype calls at scaffolds ends, is misassembled

in several places, mainly where recombination rates are low. GOOGA converged in 26 steps

for this simulation replicate, increasing the log-likelihood (lnLk) by over 500 and reducing the

map length by ca. 40%. Genetic map shrinkage occurs because maximum likelihood adjust-

ments of the rate parameters will compensate for bad joins by increasing recombination frac-

tion (r) values. Over the course of a run, bad joins are corrected. Importantly, the final

GOOGA order is not completely correct–two small scaffolds near the centromere are inverted.

The likelihood of the data under the GOOGA final map and the correct map are exactly equiv-

alent. There are simply no recombinant individuals in the mapping population to resolve the

Fig 3. A typical GOOGA run on simulated data for D. melanogaster Chromosome 2 (200 F2 individuals genotyped for 31 scaffolds).

The input map is given on top and the final optimized map at the bottom. The grey shaded region in between are the 26 steps GOOGA

took to transform the input order into the final optimized map. The scaffolds in the grey shaded region are all drawn to a uniform length,

while the scaffold lengths for input and final maps are drawn to their genetic map length. Green indicates forward orientation, red reverse.

Grey lines connect the same scaffold between steps. The log likelihood (lnLk) value for each step is given to the left of the map order.

https://doi.org/10.1371/journal.pcbi.1006949.g003
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orientation of these scaffolds because it is a low recombination region. In all of simulation rep-

licates, GOOGA converged on the correct map or on a map with an equivalent likelihood to

the correct map.

GOOGA optimization rebuilds the M. guttatus reference genome

We used GOOGA to optimize chromosome-scale genetic maps for all 14 chromosomes

among five Mimulus mapping populations (Table 1, S2–S15 Figs, and S3 Table). In each case

the current M. guttatus genome assembly was used as the starting point with 100 kb windows

as genetic markers. For each chromosome, GOOGA produced an MLE pseudo-chromosome

construction. The overall map lengths for the F2 crosses are 1278 cM for the DUNTIL cross,

1523 cM for the IMNAS cross, and 1258 cM for the IMSWC cross. The average map length,

1353 cM, is shorter than previous F2 maps generated in Mimulus through PCR-based genotyp-

ing methods [12, 47, 50]. The map from the IMF3 cross is�50% longer than the F2 average

(2043 cM), as expected given the extra generation of recombination between F2 and F3 genera-

tions. Finally the map from the IMPR cross (1489 cM) is only slightly longer than the F2 aver-

age. There is additional recombination in the formation of these RILs, but the recombination

parameter is specified differently (as related to crossover events) in the RIL HMM (see S2

Appendix).

Comparison of the five GOOGA optimized maps to the M. guttatus V2 reference genome

order (hereafter V2 map; [46]) indicates that a large number of updates to the reference

genome are necessary. Although the five mapping populations differ importantly from each

other, changes in scaffold order and orientation from the V2 map are nearly always shared–

the five estimated maps differ from the reference in the same way. These regions likely reflect

errors in genome assembly given that the reference genome was sequenced from an inbred

line (IM62) that is used in two of the crosses that we analyze here (IMF3 and IMSWC). Fig 4

illustrates this point, comparing the maximum likelihood map of the IMF3 data from

GOOGA to the V2 map for three chromosomes.

Fig 4. The improvement of the chromosome map between the M. guttatus V2 reference genome and the GOOGA optimized order for three chromosomes (IMF3

cross). Within each panel, the V2 order is shown above the IMF3 optimized order. Each genomic scaffold is drawn to its genetic map length (in Morgans) and denoted in

green if it maps on the forward strand or red for the reverse strand. Grey lines connect the same scaffold in the V2 and optimized order.

https://doi.org/10.1371/journal.pcbi.1006949.g004
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This intra-population cross is likely to be most congruent with the true order of the IM62

reference genome. The difference in log-likelihood (ΔlnLk) provides a measure of improve-

ment in fit of the GOOGA relative to V2. ΔlnLk is computed by fitting the genotype data to

both the GOOGA optimized and V2 maps, and then subtracting the former from the latter. In

each case, recombination rates are estimated independently, and so ΔlnLk is determined

entirely by differences in scaffold order and orientation. The maps for chromosome 14 (Fig

4A) are largely similar. However, differences such as the changes in location and orientation of

scaffolds 127, 211, 178, and 140b (inconsistency near the center of Fig 4A, S3 Table), are suffi-

cient for a large improvement in likelihood. The ΔlnLk of 77.1 (S4 Table) corresponds to a

likelihood improvement of 1033, suggesting this new order fits the segregation data in the

IMF3 population far better than the V2 map. Importantly, the updated ordering of scaffolds

127, 211, 178, and 140b is shared by the IMSWC, DUNTIL, and IMPR maps (S14 Fig and S3

Table). The IMNAS map retains the [211,127] ordering of the V2 map, albeit with a flip of 127.

However, this inconsistency is not compelling because genome assembly by genetic mapping

will fail when there is no recombination to provide signal, and there is no evidence of recombi-

nation in this region among the 91 F2s genotyped in the IMNAS population.

Chromosome 2 (Fig 4B) is typical of most IMF3 contrasts. Numerous scaffolds are rear-

ranged (e.g. the IMF3 sequence [44a, 212, 249] is inverted in the V2 map) and several are

flipped in place (including scaffold 81 that flanks [44a, 212, 249]). There is an increase in likeli-

hood from the V2 map to the GOOGA optimized order (ΔlnLk = 255.8), and the genetic

length of chromosome 2 shrinks by�15% from V2 to GOOGA. This effect is even more pro-

nounced for chromosome 10 (Fig 4C), where there is a large increase in likelihood

(ΔlnLk = 710.1). Among 70 chromosomes (5 crosses x 14 chromosomes), 23 (33%) chromo-

somes had ΔlnLK improvements greater than 500, while only 5 (7.1%) improved less than 100

(S4 Table). The most significant alterations to the V2 map are in genomic regions harboring

inversions, particularly on chromosomes 5, 8, and 10 (Fig 4C, S6 Fig, S9 Fig, and S11 Fig). The

V2 map is based partly on genetic mapping data from approximately 70 recombinant inbred

lines from a cross between IM62 and DUN10 (J. Willis pers. comm.). DUN10 is a parent in

our DUNTIL cross [35] and the aggregate of evidence (see below) suggests that DUN10 has

chromosomal inversions (relative to IM62) on each of these chromosomes.

Comparison of GOOGA maps confirms extensive structural diversity in

Mimulus
Our five mapping populations (Table 1) contain one intra-population cross (IMF3), two inter-

population crosses (IMPR, IMSWC), a close interspecific-cross (IMNAS), and a more distant

interspecific cross (DUNTIL). We observe structural polymorphisms by aligning the five maps

to each other by chromosome. Fig 5 compares the maps for chromosome 10 which had previ-

ously been shown to harbor an inversion in IMPR [48].

As described in METHODS, we broke scaffold 13 into 13a and 13b based on a preliminary

analysis of the DUNTIL data. GOOGA reassembled 13a and 13b into a continuous sequence

for the IMF3 cross, but not the other crosses (Fig 5). There is minimal recombination between

13a and 13b in IMPR, IMNAS, and IMSWC because 13b is flanked by a large block of markers

with nearly complete recombination suppression. This suppressed region, which represents at

least 4.5 Mb of DNA, is freely recombining in IMF3 and DUNTIL but with a perfect reversal

of marker order/orientation between those two crosses. From this, we infer that the IMF3

parents (IM62 and IM767; Table 1) each have inversion karyotype “A”, the DUNTIL parents

(LVR and DUN) each have karyotype “B”, and the other three crosses are heterokaryotypic

(one parent A and one B) for this inversion (S3 Fig). Noting that IM767 is orientation A,
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recombination suppression in the IMPR suggests the other parent in this cross (Point Reyes)

has orientation B. By similar reasoning, we can conclude that SF5 and SWC also have orienta-

tion B (S3 Fig). The right half of chromosome 10 is largely collinear among all five crosses,

indicating the inversion is the primary influence on chromosome-wide likelihood. The

GOOGA lnLk of the IMF3 data is -3784. If the IMF3 data is forced into the optimized DUN-

TIL order, the lnLk drops to -4074 (ΔlnLk = 290; S5 Table). This gives strong statistical support

of the inversion between the A and B homokarytypic crosses. The effect is less pronounced in

the heterokaryotypic crosses. For example, the ΔlnLks of the IMNAS data when forced into

the DUNTIL and IMF3 maps are 59 and 124, respectively (S5 Table). Thus, as expected, the

recombination suppression in this heterokaryotypic cross results in relatively weak support for

either a pure A or B inversion orientation.

The inversion on chromosome 10 is the only case among these crosses where we see free

recombination in both homokaryotypes and suppression in the heterokaryotypes. In all other

cases, one or more crosses reveal recombination suppression, with at least one homokaryoty-

pic cross also present among our five populations (S11 Fig and S3 Table). Lowry and Willis

[13] showed a reversal of marker order (as in Fig 5) for the inversion on chromosome 8. This

feature is associated with annual versus perennial life-history within M. guttatus. Here, we see

free recombination over the inverted region on chromosome 8 in IMF3, IMSWC, and IMNAS

(annual x annual crosses), and suppression in IMPR and DUNTIL (annual x perennial M. gut-
tatus and perennial M. guttatus x perennial M. tilingii, respectively). A similar pattern is noted

for previously hypothesized inversions on chromosomes 5 (suppression in DUNTIL and

IMPR) and 13 (suppression in DUNTIL) [49] and for the meiotic drive locus on chromosome

Fig 5. A reversal of genomic scaffolds due to an inversion is illustrated by the comparison of chromosome 10 maps for all five crosses. Each genomic

scaffold is drawn to its genetic map length and denoted in green if it maps on the forward strand or red for the reverse strand. Grey lines connect the same

scaffold between maps.

https://doi.org/10.1371/journal.pcbi.1006949.g005
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11 (suppression in IMF3) [63]. Given comparable evidence, we also identify three novel puta-

tive inversions (S2 Table). A region of at least 1.2 Mb spanning scaffolds 19, 73 and 65 on chro-

mosome 2 is completely suppressed in the IMPR (S3 Fig). There is substantial recombination

across this region in other crosses: 8 cM in DUNTIL, 10 cM in IMF3, 7 cM in IMNAS, and 2

cM in IMSWC. A larger physical region (�5 Mb on chromosome 7) is fully suppressed in

IMPR but not the other crosses (20–45 cM; S8 Fig). Finally, a stretch of�4 Mb on chromo-

some 14 is suppressed in the IMSWC cross but not in other crosses (about 30 cM, S15 Fig).

To provide a more general comparison of the extent of gene order differences among the

crosses, we imposed the optimal map in every cross onto the genotypic data from every other

cross and computed the ΔlnLk. Then we summed these for each chromosome. The larger this

sum, the greater degree of structural discrepancy between maps for each cross (Table 2). As

quantified by this metric, chromosome 10 has the greatest degree of structural discrepancy, an

unsurprising result given the large polymorphic inversion (Fig 5). Chromosomes 5 and 11 are

next, both of which show large tracts of reordered scaffolds and shared regions of recombina-

tion suppression among several crosses (Table 2). Surprisingly, the lowest value is for chromo-

some 8, which has a pairwise sum of ΔlnLk of only 75.4. The large inversion on chromosome 8

suppresses recombination in annual x perennial mapping populations, and as a consequence,

the ordering of scaffolds within the inverted region is fairly arbitrary in those heterotypic

crosses. There are few map changes for chromosome 8. This result arises because the strongly

supported, co-linear maps from the homokaryotypic crosses (IMF3, IMSWC, and IMNAS)

are also largely reiterated in the suppressed crosses (DUNTIL and IMPR). However, all

GOOGA maps of chromosome 8 represent a vast improvement over the V2 map (mean ΔlnLk

vs V2 = 985, S4 Table), suggesting the shared order that emerges from the inversion region is a

large improvement over the reference genome.

DNA composition predicts recombination rate variation in Mimulus
We tested whether recombination rate is associated with the proportions of DNA annotated as

coding sequence, transposable elements (TEs), and putative M. guttatus cent728 centromeric

Table 2. Summed pairwise changes in log-likelihood values by chromosome given in descending order. For each

chromosome we imposed the final scaffold order from every cross onto every other cross and calculated the difference

in the natural log likelihoods (ΔlnLk) between the crosses own order versus this imposed order. Sums are given on the

set of ΔlnLks for each chromosome. A large positive ΔlnLk indicates a pair of crosses with highly incompatible orders.

Chromosome Sum of Pairwise ΔlnLk

10 5581.1

5 5330.1

11 3503.0

3 2263.3

12 1449.2

13 1301.0

1 1203.7

7 845.8

6 828.2

2 782.0

4 610.8

14 551.0

9 442.1

8 75.4

https://doi.org/10.1371/journal.pcbi.1006949.t002
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repeats [55] within a genomic window (Fig 6). Recombination rate is positively correlated with

coding sequence density (Pearson’s r = 0.218) and is negatively correlated with TE density

(Pearson’s r = -0.478). To test the impact of centromeric repeats [63] on recombination rate,

we binned our 200 kb windows into those with< 5% centromeric repeat sequence vs. those

with> 5%. Centromeres are expected to suppress recombination, and consistent with this pre-

diction, we see a significant drop in recombination in windows with> 5% centromeric repeats

(t-test p-value = 0.0003; Fig 6C). These results indicate that the recombination rates estimated

by GOOGA fit well with biological expectations.

Discussion

There has been a resurgence of interest among evolutionary biologists in structural variation,

particularly in the contribution of chromosomal inversions to phenotypic variation, adaptive

divergence among populations, and speciation [15–18, 64–68]. Inversions are routinely dis-

covered from recombination suppression in genetic maps. They can be verified cytologically

[11] or by reversal in marker order when comparing different genetic maps (e.g. [13], Fig 5).

Our capacity to generate genetic maps has significantly advanced with RAD-seq and related

genotyping platforms [34–38], particularly in non-model organisms. We developed GOOGA

in response to these data, with an eye toward detecting structural variation. Accommodating

error in map construction is particularly important with low-coverage sequencing and unpol-

ished genome builds. Propagating genotype uncertainty throughout the process to the assign-

ment of map likelihoods provides a means to determine how strongly the underlying genotype

data support apparent differences in scaffold order and orientation. The application of

GOOGA to detect previously identified structural polymorphism in Mimulus illustrates how

evidence of map differences manifest as differences in likelihood (Figs 4 & 5).

Andolfatto et al. [36] developed an HMM for use with RAD-Seq like data in genetic map-

ping. We have adopted the HMM approach here, although with numerous updates to both the

model and implementation. First, we define markers within genomic windows, each inclusive

of many SNPs, e.g. [48]. SNP calls from closely linked sites are aggregated to make a putative

call for the ancestry of each genomic region (e.g. AA, AB, or BB) of each recombinant individ-

ual. Given that the quality of individual DNA samples can vary greatly, we fit a model with

Fig 6. The effect of genomic features on recombination rate is illustrated. Panel A shows the positive correlation between the proportion of coding sequence

and recombination rate. Panel B shows the negative correlation between the proportion annotated as a transposable element (TE) and recombination rate. For

both panel A and B the red line markers the least squares best fit. Panel C shows the recombination rate distributions for 100 kb regions with>5% centromeric

repeat content, or<5% centromeric repeat content.

https://doi.org/10.1371/journal.pcbi.1006949.g006
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individual specific genotyping error rates. The intervals between markers are treated differ-

ently depending on whether markers are within a genomic scaffold or between distinct scaf-

folds. The former are subject to tests for genotyping consistency given implied close linkage.

The latter are explored using a genetic algorithm to order and orient scaffolds into chromo-

somes based on the likelihood of the data. Window-based genotype calling sacrifices resolution

to obtain robust markers. In this application, we used 100 kb windows, which is about 0.3% of

the average Mimulus chromosome. The resulting marker density is high relative to the number

of recombination breakpoints per chromosome in F2, F3, and RIL individuals (typically 1–3;

S3 Table) and sufficient for testing alternative maps. However, scoring recombination events

at the scale of 100 kb does limit inference of genomic features that determine recombination.

Factors defined effectively at the 100 kb scale, such as the density of genes or transposable ele-

ments exhibit clear correlations with recombination (Fig 6; [69]).

On the other hand, it is too coarse to evaluate finer scale determinants of recombination

events. For example, population LD patterns suggest that recombination is strikingly elevated

near the start site of genes in M. guttatus [46]. Fig 6A is fully consistent with this result: Mean

recombination rate is correlated with the proportion of coding sequence, which is strongly

correlated with number of gene start sites per window. However, at the resolution we selected,

we cannot distinguish the effect of start sites from other features of gene rich regions.

The emission probabilities in the HMM portion of GOOGA are based on individualized

genotyping error rates. This model feature stems from our observation that the quality of gen-

otyping data varies quite substantially among samples, even of the same batch. This variability

likely reflects stochastic factors, such as variation in the amount/quality of input DNA per indi-

vidual. Regardless of cause, we find important differences in error rates among samples in all

mapping populations (S1 Table), justifying the need to account for these error rates explicitly

and individually. While rates are typically low in absolute terms (medians around 0.01 for e0i

and e2i, much smaller for e1i; see METHODS), they are not negligible relative to actual recom-

bination rates between adjacent markers. Differences in genotyping error rates provide key

weights on the contributions of different individuals to the overall likelihood of a map and its

associated collection of recombination rate estimates. A practical example of the utility of

genotype filtering and genotyping error estimation is that it enabled the discovery of two novel

putative inversions in the IMPR cross (on chromosomes 2 and 7). These were not identified in

the original paper [48] because those authors imposed conservative thresholds both on marker

inclusion and on whether individuals were included in the final map construction. Twice as

many of the plants from the IMPR population are included in the present analysis and 25%

more of the genome is included in the map.

A diversity of factors may complicate marker construction from low-coverage sequencing

data [55, 70, 71]. We implement filtering steps in GOOGA to mitigate these factors including

SNP quality and allele frequency, SNP-level neighbor consistency tests, read-depth thresholds,

marker-level (100 kb interval) neighbor consistency and heterozygosity tests, exclusion of indi-

viduals based on a high proportion of missing genotype calls, and/or high genotyping error

rates. The goal of this filtering is to produce a marker set that is consistent with Mendelian seg-

regation, but the filters will not always succeed. For example, a region on chromosome 5

involving only 7 markers in the IMF3 cross (corresponding to the small scaffolds 226, 252, 94,

368 and 358) contributes 97 cM to the map length (over 40% of the total for this chromosome).

It is possible that this a high recombination region (an unknown amount of DNA resides

between these scaffolds), but it seems more likely a spurious inflation. These scaffolds map

inconsistently in the other crosses–if they appear at all, they are not always adjacent. Of course,

incorrectly locating good markers can produce the same “map inflation” effect as properly

locating misleading markers.
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The simulation study (Fig 3) reinforces the limitations of using genetic map data to guide

genome assembly. Even with fully accurate genotyping, recombination based methods cannot

resolve non-recombining regions. Sequencing-based methods [72] may be required to identify

structural variants in these situations. Additionally, as GOOGA requires genetic segregation

data, it cannot be used in species where segregating families cannot be created experimentally

or sampled from nature. We here analyzed standard designs (e.g. F2, F3, and RIL), but the

HMM could be adapted to other situations such as outbred families or pedigrees. Finally,

because GOOGA was designed to work with low-coverage sequence data, it requires several

informative reads per windows, which may not be possible in species with extremely low

genetic variation. However, outside of these exceptions, the GOOGA methodology is highly

flexible and can be readily adapted to work in many species.

Mimulus results

A tangible product of the application of GOOGA to Mimulus guttatus is that we substantially

revise the reference genome of this species. The reference line (IM62) is used in two of our

crosses, including in a cross to another line from the same population (IM767). Excepting the

meiotic drive locus on chromosome 11 [63], IM767 appears to be largely collinear with IM62

(the two lines have the same orientation at other putative inversions). Despite this, the

GOOGA realignment of scaffolds yields a dramatic increase in IMF3 likelihood over the V2

assembly: ΔlnLk is 5464 when summed over all chromosomes (S4 Table). Map revisions are

found on each chromosome, and supported not only by ΔlnLk within IMF3, but also the maps

from the other crosses. Incomplete assembly is a common and important problem in geno-

mics, particularly in species with complex patterns of repeats. The promising implication of

Fig 4 is that the rough genome assembly of many species can be dramatically improved with a

low-coverage sequencing of a mapping population. Moreover, GOOGA quantifies the magni-

tude of improvements in terms of increase in likelihood.

The alignment of maps for Mimulus chromosome 10 illustrates the effect of an inversion. A

5 Mb region (left portion of Fig 5) was previously identified as a putative inversion from

recombination suppression in the IMPR [48]. This is clearly confirmed here by the inclusion

of both homokaryotypic crosses (AxA and BxB) and the ‘map flip’ (top two panels in Fig 5)

effectively ascertains the scaffolds within the inversion and their ordering. This example also

highlights the importance of marker construction. While it is possible to construct markers de
novo with RAD-seq data [40], here we delineate markers on a previously assembled set of ref-

erence DNA sequences (the genomic scaffolds from the M. guttatus reference genome)

obtained from sequencing of the IM62 inbred line. There are clear advantages to defining

markers in this fashion, but care must be taken with this approach, especially in distantly

related populations. For example, we initially assumed that the IM62 reference genome scaf-

folds correctly reflect the gene order for the other mapping populations. However, in our anal-

ysis of chromosome 10, we found it necessary to break scaffold 13 into two parts (13a and

13b), though it is continuous in IM62. GOOGA reannealed 13a and 13b in the IMF3 cross but

inserted other scaffolds between them in other crosses due to a segregating inversion with a

breakpoint contained within scaffold 13 (particularly DUNTIL; Fig 5). This implies that scaf-

fold 13 was correctly assembled for IM62, but not for DUNTIL.

In the five Mimulus crosses, chromosome 10 is the only of the eight putative inversions

where both homokaryotypic crosses are included. Reversal of marker ordering between homo-

karyotypic crosses was previously demonstrated for chromosome 8 [13], and could be demon-

strated for others with appropriate selection of parental lines. However, the sort of reversal of

genetic maps evident in Fig 5 requires polymorphism within both karyotypes. The derived
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karyotype is essentially homogeneous (few or no SNPs) for several structural polymorphisms

in M. guttatus [12, 73]. Polymorphism should be evident within both karyotypes for inversions

that have had time to accumulate variants through mutation or gene flux [74, 75], but perhaps

not for very young inversions.

The inclusion of phenotype data with the IMSWC cross illustrates the importance of scaf-

fold ordering for downstream genetic analyses (Fig 7).

Here, each F2 plant was scored for progression to flowering, a dichotomous trait in the

experimental photoperiod, which was restrictive to floral induction for one parent. Applica-

tion of the same QTL mapping procedure to the data produces radically different outcomes if

markers are placed according to the current M. guttatus reference genome (V2 map is the top

panel of Fig 7) or by the GOOGA optimized map (bottom panel of Fig 7). Using the latter,

which has a ΔlnLk improvement of 1089 over the V2 map (S4 Table), the data suggest a single

large-effect QTL localized to a map position 44–45 cM into chromosome 11. QTL mapping to

the V2 orientation yields three distinct peaks, each with a high LOD score. The specific mark-

ers near the QTL peak in the GOOGA map are jumbled in the V2 map which splits the geno-

type-phenotype association into three distinct parts. The V2 map is also “stretched”–expanded

in recombination length by over 20 cM–likely to compensate for bad scaffold joins. Both of

these effects impede QTL inference in places where the reference genome is misassembled.

Application

The GOOGA pipeline is a set of modules (Fig 1): (A) procedures to make genetic markers

from low-coverage sequencing data in conjunction with a collection of genomic scaffolds,

(B) a method to estimate genotyping error rates specific to each individual, (C) an HMM to

Fig 7. The results of QTL estimation using the V2 map (top panel) versus the IMSWC optimized map from GOOGA (bottom panel). The

maps are aligned in middle panel. Each genomic scaffold is drawn to its genetic map length and denoted in green if it maps on the forward

strand or red for the reverse strand. Grey lines connect the same scaffold between maps. QTL estimates are plotted for both panels as the log of

the odds (LOD) score on the y-axis, and genetic map location on the x-axis.

https://doi.org/10.1371/journal.pcbi.1006949.g007
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estimate recombination rates and obtain a likelihood for a specific ordering and orientation

of genomic scaffolds, and (D) a genetic algorithm (GA) to search map space to obtain

pseudo-chromosomes that maximize the likelihood of the data. While GOOGA was devel-

oped as an integrated series of steps, one or more of the components might be used apart

from the rest. Below, we outline a few options that could be appropriate for different species

or scenarios.

Most basically, one might use (A) to create markers and then apply standard map making

software [76, 77] to the resulting genotype matrix. If this is done with the Mimulus mapping

populations (or comparable datasets), the resulting matrices contain a great excess of missing

data. As a consequence, extensive culling (both of individuals scored for too few markers and

markers scored for too few individuals) is then required to apply standard map making pro-

grams. An alternative is to apply (A)-(B)-(C) to generate genetic markers. Assuming that the

genomic scaffolds are generally reliable, the HMM will leverage data from neighboring win-

dows to inform genotype calls. After obtaining the MLE on rates, one can extract posterior

probabilities on genotypes and then impose ‘hard calls’, e.g. [41], to create a genotype matrix.

We found this approach effective with as few as 10 informative reads per windows (see METH-

ODS). Another possibility is to replace the front end of the pipeline. If one has high certainty

in the validity of individual SNPs (their location and scoring), it is natural to replace windows

(A) with individual SNPs as the observed states of the HMM ([36], Fig 2). Finally, while we

found the GA effective for searching map space (D), other map optimization methods may

prove useful in searching order/orientation space given that the HMM provides a likelihood

for each (e.g., [78, 79]).

Like Mimulus, many species and species complexes harbor significant segregating inver-

sions and other gene order polymorphisms including Drosophila, Zea, Anopheles and

Helianthus [80–83]. The simulation study suggests a way that GOOGA could test whether

sequences in a novel population under study are collinear with the reference genome. One

could start by breaking the reference genome into ‘pseudo-scaffolds’ to be reassembled using

data from the novel population. This is essentially what we did in the simulation experiment

on D. melanogaster chromosome 2 (Fig 3). Sequences from recombinant individuals of the

novel population would be mapped to the pseudo-scaffolds and the data input to GOOGA.

Metrics like ΔlnLk can evaluate the reference genome map and identify necessary changes (as

we have done in IMSWC in Fig 7). In this way, a necessary solution for species with incom-

plete genome assemblies (e.g. Mimulus) could be used in species with high-quality reference

assemblies (e.g. D. melanogaster) but in populations that are structurally diverged from the ref-

erence genome. This application would be particularly convenient in cases where trait map-

ping is being performed via RAD-Seq genotyping, as no additional data would need to be

generated.

Supporting information

S1 Data. Input data and software needed to simulate GOOGA inputs from Drosophila.

This compressed .zip file includes genomic locations and recombination map used to simulate

MSG like markers on simulated scaffolds (made by randomly breaking the genome assembly),

and also Python programs use to perform these simulations. Running this code will produce

inputs appropriate for GOOGA.

(ZIP)

S1 Fig. The SNP level data is reported for each polymorphism within a particular scaffold

in each of three plants of the IMSWC mapping panel. At each SNP, the number of reads

that match parent A and parent B are reported. Each plant is heterozygous for their
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respective scaffold–there is extensive representation of both parents across SNPs. However, a

number of specific SNPs (color coded) exhibit strong bias towards one parent or the other

(one allele is absent). These regions exhibit the usual tendency (typical of this mapping popula-

tion and all the others) for allele counts to be over-dispersed relative to the binomial distribu-

tion. In other words, the fraction of SNPs that appear homozygous are much greater than

expected if reads were sampled independently from heterozygous individual in library con-

struction and sequencing. The graphs illustrate the mixed signal at the SNP level along each

scaffold of each plant.

(XLSX)

S2 Fig. Comparative genetic maps of Mimulus Chromosome 1 for each of the five popula-

tions used in this study. Each genomic scaffold is given in a separate color.

(PDF)

S3 Fig. Comparative genetic maps of Mimulus Chromosome 2 for each of the five popula-

tions used in this study. Each genomic scaffold is given in a separate color.

(PDF)

S4 Fig. Comparative genetic maps of Mimulus Chromosome 3 for each of the five popula-

tions used in this study. Each genomic scaffold is given in a separate color.

(PDF)

S5 Fig. Comparative genetic maps of Mimulus Chromosome 4 for each of the five popula-

tions used in this study. Each genomic scaffold is given in a separate color.

(PDF)

S6 Fig. Comparative genetic maps of Mimulus Chromosome 5 for each of the five popula-

tions used in this study. Each genomic scaffold is given in a separate color.

(PDF)

S7 Fig. Comparative genetic maps of Mimulus Chromosome 6 for each of the five popula-

tions used in this study. Each genomic scaffold is given in a separate color.

(PDF)

S8 Fig. Comparative genetic maps of Mimulus Chromosome 7 for each of the five popula-

tions used in this study. Each genomic scaffold is given in a separate color.

(PDF)

S9 Fig. Comparative genetic maps of Mimulus Chromosome 8 for each of the five popula-

tions used in this study. Each genomic scaffold is given in a separate color.

(PDF)

S10 Fig. Comparative genetic maps of Mimulus Chromosome 9 for each of the five popula-

tions used in this study. Each genomic scaffold is given in a separate color.

(PDF)

S11 Fig. Comparative genetic maps of Mimulus Chromosome 10 for each of the five popu-

lations used in this study. Each genomic scaffold is given in a separate color.

(PDF)

S12 Fig. Comparative genetic maps of Mimulus Chromosome 11 for each of the five popu-

lations used in this study. Each genomic scaffold is given in a separate color.

(PDF)
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S13 Fig. Comparative genetic maps of Mimulus Chromosome 12 for each of the five popu-

lations used in this study. Each genomic scaffold is given in a separate color.

(PDF)

S14 Fig. Comparative genetic maps of Mimulus Chromosome 13 for each of the five popu-

lations used in this study. Each genomic scaffold is given in a separate color.

(PDF)

S15 Fig. Comparative genetic maps of Mimulus Chromosome 14 for each of the five popu-

lations used in this study. Each genomic scaffold is given in a separate color.

(PDF)

S16 Fig. Diagram of the inferences of inversion karyotypes in Mimulus chromosome 10.

Chromosome diagrams for all five crosses are listed each in a separate panel, with each parent

listed to the right of the diagram. The inversion karyotype is indicated by color (red or blue)

and by either ‘>>>>>>>‘ or ‘<<<<<<<‘. The IMF3 and DUNTIL crosses were both

formed by homokaryotypic parents and show free recombination. Thus these parents can be

inferred as karyotypes A (IMF3) or B (DUNTIL). The next three crosses represent A/B hetero-

karyotypes and show strong recombination suppression. However, because parents from the

IMF3 cross (A karyotype) were used in these crosses, we can infer that these parents are A and

that the other must be B.

(PDF)

S1 Table. Estimated genotype error rates for every individual from every population used

in this study.

(XLSX)

S2 Table. All putative chromosomal inversions identified by GOOGA among the five map-

ping populations.

(DOCX)

S3 Table. This spreadsheet includes the maps of every chromosome for each cross, and

physical and genetic location of each marker. The last marker of each chromosome gives the

map lnLk.

(XLSX)

S4 Table. Delta natural log likelihood (ΔlnLk) between GOOGA and V2 marker order. For

each chromosome and each population the ΔlnLk is given. Large positive values indicate that

the mapping data fits the GOOGA optimized order much better than the V2 genome order.

(XLSX)

S5 Table. Likelihood differences from imposing each GOOGA optimized map order onto

every other population. All pairwise contrasts between population are given for each chromo-

some. “Home” is the focal data set, and “away” indicates the imposed map order. ll1 is the like-

lihood of “home” in it’s own map order, and ll2 is “home” in the “away” order. “Diff” is the

difference between ll1 and ll2.

(XLSX)

S6 Table. Unplaced V2 genome scaffolds which were given a physical location from

GOOGA. The table gives the v1 scaffold name and intervals for scaffolds that we were able to

assign to one of the 14 Mimulus chromosomes. Their specific locations can be found in S1

Table.

(XLSX)
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21. Pyhäjärvi T, Hufford MB, Mezmouk S, Ross-Ibarra J. Complex Patterns of Local Adaptation in Teosinte.

Genome Biology and Evolution. 2013; 5(9):1594–609. https://doi.org/10.1093/gbe/evt109 PMID:

23902747

22. Long A, Liti G, Luptak A, Tenaillon O. Elucidating the molecular architecture of adaptation via evolve

and resequence experiments. Nature Reviews Genetics. 2015; 16:567. https://doi.org/10.1038/

nrg3937https://www.nature.com/articles/nrg3937#supplementary-information. PMID: 26347030

23. Nuzhdin SV, Turner TL. Promises and limitations of hitchhiking mapping. Current Opinion in Genetics &

Development. 2013; 23(6):694–9. https://doi.org/10.1016/j.gde.2013.10.002.

24. Kelly JK, Koseva B, Mojica JP. The Genomic Signal of Partial Sweeps in Mimulus guttatus. Genome

Biology and Evolution. 2013; 5(8):1457–69. https://doi.org/10.1093/gbe/evt100 PMID: 23828880

25. Beissinger TM, Hirsch CN, Vaillancourt B, Deshpande S, Barry K, Buell CR, et al. A Genome-Wide

Scan for Evidence of Selection in a Maize Population Under Long-Term Artificial Selection for Ear Num-

ber. Genetics. 2014; 196(3):829–40. https://doi.org/10.1534/genetics.113.160655 PMC3948809.

PMID: 24381334

Detecting genomic structural variation from genetic mapping data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006949 April 15, 2019 22 / 25

https://doi.org/10.1371/journal.pgen.1000734
http://www.ncbi.nlm.nih.gov/pubmed/19956538
https://doi.org/10.1038/nbt.2979
https://doi.org/10.1038/nbt.2979
http://www.nature.com/nbt/journal/v32/n10/abs/nbt.2979.html#supplementary-information
http://www.nature.com/nbt/journal/v32/n10/abs/nbt.2979.html#supplementary-information
http://www.ncbi.nlm.nih.gov/pubmed/25218520
https://doi.org/10.1101/029900
https://doi.org/10.1093/molbev/msw045
http://www.ncbi.nlm.nih.gov/pubmed/26929245
https://doi.org/10.1126/science.1077769
https://doi.org/10.1126/science.1077769
http://www.ncbi.nlm.nih.gov/pubmed/12364623
https://doi.org/10.1534/genetics.112.138578
https://doi.org/10.1534/genetics.112.138578
http://www.ncbi.nlm.nih.gov/pubmed/22542971
https://doi.org/10.1534/genetics.115.183566
https://doi.org/10.1534/genetics.115.183566
http://www.ncbi.nlm.nih.gov/pubmed/26868767
https://doi.org/10.1371/journal.pbio.1000500
http://www.ncbi.nlm.nih.gov/pubmed/20927411
https://doi.org/10.1146/annurev-med-100708-204735
http://www.ncbi.nlm.nih.gov/pubmed/20059347
https://doi.org/10.1016/j.cub.2014.01.056
http://www.ncbi.nlm.nih.gov/pubmed/24698381
https://doi.org/10.1111/mec.13888
http://www.ncbi.nlm.nih.gov/pubmed/27759895
https://doi.org/10.1111/evo.12954
http://www.ncbi.nlm.nih.gov/pubmed/27174252
https://doi.org/10.1111/mec.13624
http://www.ncbi.nlm.nih.gov/pubmed/27213696
https://doi.org/10.1111/tpj.13262
http://www.ncbi.nlm.nih.gov/pubmed/27436134
https://doi.org/10.1038/ng.2309
https://doi.org/10.1038/ng.2309
http://www.nature.com/ng/journal/v44/n7/abs/ng.2309.html#supplementary-information
http://www.nature.com/ng/journal/v44/n7/abs/ng.2309.html#supplementary-information
http://www.ncbi.nlm.nih.gov/pubmed/22660546
https://doi.org/10.1093/gbe/evt109
http://www.ncbi.nlm.nih.gov/pubmed/23902747
https://doi.org/10.1038/nrg3937
https://doi.org/10.1038/nrg3937
https://www.nature.com/articles/nrg3937#supplementary-information
http://www.ncbi.nlm.nih.gov/pubmed/26347030
https://doi.org/10.1016/j.gde.2013.10.002
https://doi.org/10.1093/gbe/evt100
http://www.ncbi.nlm.nih.gov/pubmed/23828880
https://doi.org/10.1534/genetics.113.160655
http://www.ncbi.nlm.nih.gov/pubmed/24381334
https://doi.org/10.1371/journal.pcbi.1006949


26. Beissinger TM, Rosa GJM, Kaeppler SM, Gianola D, de Leon N. Defining window-boundaries for geno-

mic analyses using smoothing spline techniques. Genetics Selection Evolution. 2015; 47(1):30. https://

doi.org/10.1186/s12711-015-0105-9 PMID: 25928167

27. Chen M, Presting G, Barbazuk WB, Goicoechea JL, Blackmon B, Fang G, et al. An Integrated Physical

and Genetic Map of the Rice Genome. The Plant Cell. 2002; 14(3):537–45. https://doi.org/10.1105/tpc.

010485 PMID: 11910002
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