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Abstract: As new algorithms incorporate occupancy count information into more sophisticated
HVAC control, these technologies offer great potential for reductions in energy costs while enhancing
flexibility. This study presents results from a two-year field evaluation of an occupancy-based HVAC
control system installed in an office building. Two wings on each of the building’s 2–11 floors were
equipped with occupancy counters to learn occupancy patterns. In combination with proprietary
machine learning algorithms and thermal modeling, the occupancy data were leveraged to implement
optimized start, early closure, and adjustments to fan operation at the air handling unit (AHU) level.
This study conducted a holistic evaluation of technical performance, cost-effectiveness analysis, and
user satisfaction. Results show the platform reduced weekday AHU run times by 2 h and 35 min per
AHU per day during the pandemic time period. Simulation shows that 6.1% annual whole-building
savings can be achieved when the building is fully occupied. The results are compared with prior
studies, and potential drivers are discussed for future opportunities. The assessment results shed
light on the expected in-the-field performance for researchers and industry stakeholders and enabled
practical considerations as the technology strives to move beyond research-grade pilot trials into
product-grade deployment.

Keywords: HVAC control; occupancy prediction; field evaluation; smart building

1. Introduction

The United States government has imposed ambitious federal goals to slash carbon
emissions and reach net-zero by 2050 [1]. The building sector is a major energy consumer
globally. Specifically, buildings were responsible for 39% of the worldwide global energy-
related carbon dioxide (CO2) emissions in 2017, corresponding to more than 11 gigatonnes
of CO2 [2]. Therefore, in order to meet these decarbonization goals, a radical advancement
in technologies that can lead to significant emissions reductions from existing buildings is
required. New smart building analytics technologies, referred to as Energy Management
and Information Systems (EMIS), present promising solutions for improving building
operational efficiency [3] and meeting the federal decarbonization goal.

EMIS integrates data coming from multiple sources, such as building automation
systems (BAS), interval smart meters, Internet of Things (IoT) devices, and occupancy coun-
ters, to monitor, analyze, and even control building system performance and energy use.
EMIS offers one or a combination of three main functionalities [4]: (1) energy information
system (EIS) that focuses on the analysis and visualization of interval meter data; (2) fault
detection and diagnostics (FDD) that focuses on the detection of operational faults and
suboptimal performance of building systems and helps to diagnose potential causes; and
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(3) automated system optimization (ASO) that focuses on the optimal control of heating,
ventilation, and air conditioning (HVAC) systems. A two-way interface (read and write)
with a BAS during the HVAC operation process distinguishes ASO solutions from EIS and
FDD tools. ASO tools usually use a dynamic system model and disturbance forecast to
predict system performance with a given control law, thereby allowing the control law
to be optimized for a given objective and taking into consideration future events. They
combine the model with the data from a BAS to determine the optimal schedule or control
setpoints (e.g., static pressure setpoint, chilled water leaving temperature setpoint, and
zone air temperature setpoint) and write analytically based optimal schedules or setpoints
back to the BAS.

There has been significant growth in the adoption of EIS and FDD tools over the
past decade among large commercial buildings. With data from over 15 million square
meters of installed space (28 organizations and 1343 buildings), it was reported that FDD
and EIS software enabled a median annual energy savings of 9% and 3%, respectively, by
the second year of installation [5]. ASO (or optimal control) has gained attention among
researchers in the past few years because of its potential for energy savings. There are
a large number of research studies about optimal control summarized in the published
review papers [6–9], as well as several pilot installations [10–12], but the transfer of this
technology from research to the building market is still in its early stages [13,14]. As the
most emergent technology type in the EMIS family, ASO solutions have a limited number
of commercial product offerings and building users [15].

Occupancy-based automated system optimization integrates occupancy data into
control decisions. At present, a lot of the HVAC systems in commercial buildings are
designed to provide space conditioning for maximum occupancy levels [16], often operating
on a predefined or fixed schedule that does not account for occupancy. Ballinger [17] reports
that 58% of the 109 buildings participating in the Building Tune-Up Accelerator Program
in Seattle, Washington, United States, were advised to improve schedules to optimize
operations for actual building occupancy patterns. Delivering the right amount of cooling,
heating, or ventilation only when and where they are needed is a key to saving energy
and associated carbon emissions [18]. Thus, research on occupancy-based ASO has grown
significantly over the past decade. Reviewed papers about occupancy-based control for
commercial buildings are summarized in Table 1. In the literature, multiple methods are
used for occupancy detection—such as passive infrared (PIR) sensors and cellular network
Wi-Fi to get a binary indication if a space is occupied, and camera/thermal sensors and
PIR sensors to indicate the occupancy level (i.e., the number of people occupying a space).
Binary sensing has been used for HVAC system scheduling or space temperature control.
The number of people in a room has been used for ventilation rate control.

The majority of studies of occupancy-based control technologies for commercial build-
ings are based on simulation, as shown in Table 1. The field evaluations documented in
prior work are constrained in terms of scale of implementation (a limited area of university
office buildings) or duration of the study (days to a month). There are very few papers
that document the performance of occupancy-based control technologies based on in situ
deployment in existing buildings, as used by operational staff. Simulation-based studies
have the advantage of ease of implementation but do not reflect the effort needed for
implementation in the real world and may not reveal the real performance of non-idealized
building operations. Long-term field evaluation is important, as such a study can draw a
full picture of technology’s effectiveness under various weather conditions and building
operations. It is also critical for understanding the state of commercial offerings in spite of
the performance documented in vendor-provided case studies and customer testimonials.
Compared with previous works, this paper presents its contributions in several ways. The
study: (1) evaluated a commercialized occupancy-based control product that was installed
in a 12-floor commercial office building, which offers relevant benchmarks and references
from the market to help researchers develop improved solutions; (2) conducted holistic
evaluation including technical performance, cost-effectiveness analysis, and user satisfac-
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tion, which enabled practical considerations as we strive to move beyond research-grad
pilot trials into product-grade deployment through commercial products; and (3) identified
the drivers of savings achieved by occupancy-based control for future opportunities. More
information on field testing in real buildings can allow building stakeholders to make better
decisions with regard to the aforementioned trade-off between the cost of installation and
the benefits and will thus encourage building designers and owners to take advantage of
new developments in ASO technologies with a greater degree of certainty.

Table 1. Summary of studies on occupancy-based control technologies that have been developed and
tested in commercial buildings.

Literature Building Control Variables Occupancy
Detection

Evaluation
Approach Results

[19] University office
building

Space temperature
setpoint and

ventilation rate

Camera + PIR
sensors Simulation 42% less energy use

[20] Office, a workplace
shared by six users

HVAC system
schedule

Cellular network
Wi-Fi Field evaluation 26% energy saving

during one month

[21] University office
building

Space temperature
setpoint and

ventilation rate

Thermal sensors +
PIR sensors Simulation Up to 25% annual

energy saving

[22] University office
building

Space temperature
setpoint and

ventilation rate

Camera + PIR
sensors

Field evaluation;
Simulation

26% energy savings
during 4 weeks in field

test; 30% annual savings
in simulation

[23]
23% HVAC zones
in an university
office building

Space temperature
setpoint

Thermal sensors +
PIR sensors Field evaluation

HVAC electrical energy
savings of 17.8% during

one day

[24] University office
building

Space temperature
setpoint

PIR Ultrasonic
sensors Simulation Up to a 28% energy

saving

[25] Small office
building

Space temperature
setpoint NA Simulation

10.4–28.3% monthly
load reduction during
one-year simulation

[26] Small office
building

Space temperature
setpoint NA Simulation

22–50% and 47–87%
reduction in annual

electricity and natural
gas use, respectively

[27] Eleven rooms in an
office building

Space temperature
setpoint Motion sensors Field evaluation

7–52% energy saving in
three types of offices

during experiment days

[28] Open-plan office
Space temperature
setpoint, lighting
system schedule

Bluetooth tags Simulation 15% energy saving

[29] An office room Space temperature
setpoint NA Simulation 20% energy savings

[30]
Medium and large

offices in 16 U.S.
climate zones

Space temperature
setpoint,

ventilation rate,
and outdoor air

flow rate

NA Simulation Up to 45% energy
savings

[31] Experiment lab
Space temperature

setpoint and
ventilation rate

Radio-based
sensor Experiment 17–24% weekly energy

savings
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In the remainder of this article, Sections 2 and 3 describe the technology, the demon-
stration site, and the methodology that was used to evaluate the technology’s performance;
Sections 4 and 5 present the evaluation findings, followed by a discussion of the results.
Concluding remarks and potential avenues for future research are outlined in Section 6.

2. Technology and Site Description

The technology evaluated in this study is a commercialized building EMIS product
that integrates disparate building data streams and provides occupancy-based HVAC
control and analytics. The technology provides a single integrated operating platform
connecting all building functions and has the following unique features:

Data Integration and Visualization: It integrates and visualizes the data from various
sources, including but not limited to BAS, utility meters (e.g., electricity, gas, and water),
occupancy counters, IoT sensors, isolated HVAC units, and localized weather. It provides a
“single pane of glass” interface to monitor multiple real-time data streams.

Occupancy-based Automated System Optimization: Traditional control algorithms
do not consider real-time building occupancy, as it is not monitored in the BAS. In this
study, 22 occupancy counters were installed (two on each floor) to track the occupancy. The
occupancy data were combined with the other data streams (weather, operational trends)
and proprietary machine learning (ML) algorithms to determine the AHUs’ start and stop
times, as well as enable and disable the static pressure setpoints’ adjustments to reduce
total energy consumption while satisfying estimated human thermal comfort. Specifically,
the following four energy conservation measures (ECMs) are included in the offering.

1. Optimal start: The startup of AHUs is based on proprietary ML algorithms that
aggregate historical occupancy data, space temperature, space temperature setpoints,
and the next day’s weather. The recommended start time for AHUs is designed to
consume the least amount of energy while ensuring the space reaches its desired
temperature by the time required in the lease agreement. It uses day-ahead prediction
of interior space temperatures, occupancy profiles, and building thermal capacity
developed using ML methodologies. As defined in the BAS sequence of operations,
the chiller plant turned on after the startup of the AHUs.

2. Early shutdown: The shutdown times of AHUs are based on real-time occupancy.
If the occupancy count on a particular floor reads as 0 after a specific time pre-
determined by the building operator, the unit waits 15 min before shutting down the
AHU for the rest of the day. This measure is applicable during the pandemic, as only
limited tenants come to the building on weekdays, and they typically do not stay in
the building for the whole day.

3. Midday ramp-down/up: During the lunch hours, HVAC ramp-down sequences (ten-
tatively reducing AHU static pressure setpoint) are implemented based on variations
in occupancy. The reduction in the static pressure setpoint decreases fan speed. Thus,
fan electricity use decreases while chilled water energy use may increase as the supply
air temperature setpoint might be reset to lower values. Occupancy is estimated using
historical occupancy data and a proprietary ML algorithm to decide the enabled and
disabled time of the midday ramp-down/up strategy. When the occupancy level is
decreased, the strategy is enabled, and the static pressure setpoint is reduced to a
pre-defined minimum static pressure setpoint.

4. End-of-day static pressure setpoint ramp-down: The same occupancy-based control
also allows for the end-of-day ramp-down to occur as soon as the occupancy level
starts to decrease.

Analytics, Reporting, and Data Export: It incorporates machine learning to correlate,
trend disparate data streams, and learn, thus providing predictive and prescriptive insights.
Benchmarks consider similar operating and weather days from the past, calculating the
expected amount of energy to use throughout the current day. It provides an operational
guide for demand and consumption performance daily. The technology also provides
reporting and data export features.
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The site where the technology was installed for evaluation as a single-site pilot demon-
stration is a 12-floor, 27,778-square-meter commercial office building located in downtown
Washington, DC, USA, built in 1965. Each floor has two wings, an East and West wing, with
the first floor consisting of retail space, while office space occupies floors 2 through 11. The
HVAC system is mostly hydronic, with a central plant consisting of two chillers (1760 and
1230 kW), two primary chilled water (CHW) pumps (one for backup), two cooling towers
with variable speed fans, two secondary CHW pumps (one for AHUs, the other for fan coil
units [FCUs]), four boilers, and three hot water pumps (one for AHUs, one for FCUs, and
the other for backup). Four unitary heat pumps serve the ground floor, while 22 AHUs
serve the second to twelfth floors, with each AHU serving a wing on each floor. All AHUs
have variable speed supply fans, and all but six AHUs also have variable speed return
fans. Cooling or heating is provided to the space by a large number of variable-air-volume
terminal units and FCUs. The HVAC controls are provided by a Tridium JCI Niagara AX
BAS. HVAC units are set to turn on and off based on a programmed operating schedule
(M–F 6:00–18:00). The AHU controls the supply air temperature setpoint, which is reset
by the return air temperature. Supply and return fans modulate to maintain the supply
air static pressure setpoint. In addition to the existing BAS, there is also an energy meter
data management system provided by MACH Energy. The building’s operational hours
are Monday to Friday, from 8:00 to 18:00.

3. Evaluation Methodology

Lin et al. [5] proposed a standardized field evaluation protocol to assess EMIS energy
and non-energy benefits in order to produce consistent evaluation results that can be
generalized across multiple studies to support the adoption and further advancement of
EMIS. The evaluation of this study follows this evaluation protocol. It assessed the ease
of installation, the capability to enable energy efficiency, energy and utility cost savings,
cost-effectiveness, and user satisfaction.

3.1. Ease of Installation

The EMIS installation and commissioning process is a comprehensive process involv-
ing multiple stakeholders, such as the site’s facilities team, IT security team, BAS contractor,
and EMIS vendor. The evaluation of the installation process was completed based on
surveys with site operation engineers and activity documentation during the evaluation
process. This portion of the evaluation documented: (1) the activities undertaken and the
lead time to complete them; and (2) the type of support needed from on-site engineers and
other staff, as well as estimated labor hours.

3.2. Capability to Enable Energy Efficiency

Validating the capability to enable energy efficiency confirms whether or not the
targeted control schedule or setpoints can be successfully changed by the technology.
The validation results can explain how savings are generated in this machine learning,
occupancy-based control optimization, and verify the ECMs being modeled for savings
determination in Section 3.3. The main energy savings of the technology can be directly
attributed to the occupancy-based ASO capability that covers the four ECMs discussed in
Section 2: optimal start, early shutdown, midday static pressure setpoint ramp-down/up,
and end-of-day static pressure setpoint ramp-down. The implementation of those four
ECMs is fully automated on the platform and the BAS. The optimal operation schedule
and setpoints are determined in the platform and then written into the BAS. To validate
the successful implementation of ECMs, the data trends of the targeted control settings or
measurements are plotted in the post-installation period (2021 COVID-19 time period) to
validate if the settings change successfully.
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3.3. Energy and Utility Cost Savings

Energy savings associated with each of the ECMs were quantified using the Interna-
tional Performance Measurement and Verification Protocol (IPMVP) Option D calibrated
simulation approach [32]. Option D was used because the technology was installed in July
2020, just as the COVID-19 pandemic drove a deep reduction in building occupancy, from
100% to 5% of standard levels. This change in occupancy meant that the 2019 energy use
data could not be used as a baseline to compare 2020–2021 energy use data, challenging
the application of meter-based Option C or Option B savings approaches. As such, a
calibrated simulation was used to model the energy savings potential of the technology
under fully occupied conditions. Utility cost savings were calculated with a blended,
estimated cost of electricity and natural gas from site-specific utility bills, together with
energy savings results.

EnergyPlus [33] was the simulation tool used to model the savings. The savings
calculation followed five steps:

(1) Collect data and building information: Various data and information were collected
for modeling inputs, including monthly energy use and weather data in 2019, building
architecture, mechanical, control drawings, site survey, energy-consuming loads, and
space use conditions. Occupancy information was collected from building managers.
The occupancy profile in the EnergyPlus model was adjusted to match the time-
averaged electric power profile of 2019.

(2) Build and test the baseline model: Input data for the envelope, internal load, and
HVAC system configuration in EnergyPlus to create the baseline model, run a few
simulations to debug the model, and check the model output files to verify that there
are no errors in the program.

(3) Calibrate the simulation model: Model calibration was accomplished by adjusting
simulation inputs to actual operating conditions and comparing simulation results
with monthly whole building electricity and natural gas energy use data. ASHRAE
Guideline 14 [34] recommends acceptable tolerances for calibration using monthly
data: a mean-bias error (MBE) within ±5% and a coefficient of variation of the root
mean squared error (CV(RMSE)) of less than 15%. In this study, MBE and CV(RMSE)
were calculated following Equations (1) and (2), where yi is the actual metered value,
ŷi is the predicted value, y is the average of yi, and n is the total number of data points.

MBE =
∑n

i (yi − ŷi)

y
× 100 (1)

CV(RMSE) =

√
1
n ∑n

i (yi − ŷi)
2

y
× 100 (2)

(4) Create and refine the post-installation model: Starting with the calibrated baseline
model, the model is updated to include the building’s ECMs to create the post-
installation period model. Four individual ECMs (optimal start, midday ramp-down
and up, early shutdown, and end-of-day ramp-down) were simulated in this study.
The technology provider of the platform used its internal algorithm to determine
the optimal start time of each AHU, the enabled and disabled times of midday
ramp-down/up, the early shutdown time, and the enabled time of the end-of-day
ramp-down for each weekday in 2019 based on simulated 2019 space temperature
data, correlating 2020–2021 actual space temperature and normalized occupancy, and
weather data. In the post-installation simulation model, we used EnergyPlus’ Energy
Management System (EMS) to model the detailed control of static pressure reset for
each weekday of 2019. In the EMS codes, we defined a “sensor” object as a 10 min
interval schedule of static pressure ramp-down. The schedule was set as 0 when
the AHU was off, as 1 when the AHU was on and there was no change in the static
pressure setpoint, and as 0.5 when the AHU was on and the static pressure setpoint
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was scheduled to ramp-down. The sensor schedule for each AHU was provided via a
csv schedule file, which marked the 10-min interval timestamp and schedule value
(0, 1, or 0.5). We also set fan pressure rise as the actuated component control type in
the EMS “actuator” object. The EMS program links the “sensor” and the “actuator”
together. When the “sensor”, aka the static pressure ramp-down schedule label, equals
0.5, the “actuator”, the fan pressure rise of the AHU supply fan, is set to the minimum
static pressure setpoint (Table 2) accordingly. The results of optimal start and early
shutdown were applied in the post-installation model via a schedule:file item. Each
AHU’s status was marked as 0 (AHU off) or 1 (AHU on) with a 10 min time interval
in a schedule csv file that was fed into the EnergyPlus model file. The AHU start time,
shutdown time, and static pressure setpoint were changed day by day, accordingly, in
the post-installation EnergyPlus model.

(5) Calculate energy savings: Run the baseline model and post-installation model under
2019 conditions. The savings are calculated by subtracting the post-installation model
results from the baseline model results.

Table 2. Comparison between the AHU normal and minimum static pressure setpoints.

Static Pressure
Setpoint AHU_2E AHU_3E AHU_4E AHU_4W AHU_5E AHU_5W AHU_6E AHU_6W AHU_7E AHU_7W

Normal (Pa) 270 100 235 225 250 230 250 250 275 300
Minimum (Pa) 225 75 220 200 200 200 200 200 270 250

Static Pressure
Setpoint AHU_8E AHU_9E AHU_9W AHU_10E AHU_10WAHU_11E AHU_11WAHU_12E AHU_12W

Normal (Pa) 200 100 75 250 200 200 200 273 150
Minimum (Pa) 150 50 40 200 150 150 150 225 100

3.4. Cost-Effectiveness

Simple payback period (SPP) is a widely used and easily interpreted financial metric
for energy efficiency projects. It quantifies the time required to recover the initial technology
investment through project savings, as defined in Equation (3):

Simple payback period [yrs] =
Technology Cost

Annual Energy Cost Savings
(3)

For many efficient technologies, costs are primarily composed of the “up-front” pur-
chase as well as the installation and commissioning labor. However, for smart building
software-based technologies such as those tested in this work, ongoing annual subscription
fees may also accrue. In applying the simple payback metric, we framed the findings using
2-year, 5-year, and 10-year horizons, consistent with the range of hurdles that are commonly
used in corporate efficiency investment decisions. In so doing, we quantified an x-year
cost by summing up front and ongoing subscription fees and determined x-year savings
by multiplying field testing annual savings by 2, 5, or 10. This methodology allowed us to
assess cost-effectiveness scenarios while incorporating ongoing costs into the most widely
used and well-understood financial metric.

3.5. User Satisfaction

The assessment of user satisfaction was based on interviews with site operation staff.
Interviews were structured around a set of 12 survey questions (Appendix B), each framed
according to a 1–5 Likert score, with 5 representing most satisfactory and 1 representing
least satisfactory. The 12 questions assessed satisfaction with respect to four key dimensions:
(1) the technology overall and its usefulness during the pandemic; (2) features accessible
through the interface, for example, the AHU scheduler, energy and demand tracking,
custom KPIs, dynamic graphs, and data export; (3) occupancy counting and reporting; and
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(4) technical support offered by the technology provider. Interviews and surveys were
administered to three different staff members in sustainability management and day-to-day
operations. The results that are reported correspond to the average Likert scores across
these three staff members.

4. Results
4.1. Ease of Installation

In this study, two FLIR occupancy counters were installed at each elevator bay on
floors 2 through 12 in the building. The occupancy sensors are camera-based 3-D vision
counters that were installed at the egress and ingress points on each wing on each floor.
They calculated occupancy in real-time by collecting the enter/exit counts from the cameras.
The occupancy counter installation took several steps, including (1) running Ethernet cables,
(2) installing recess mount kits and occupancy counters on the ceiling wall, (3) installing
network switches and bringing them online, (4) labeling counters and integrating occupancy
data sources into the platform, and (5) working with onsite facility engineers to run several
tests validating the occupancy counter accuracy. Each of the counters was calibrated to
ensure accurate counting.

Fifty Monnit wireless temperature and humidity sensors were also installed in the
building to provide increased visibility of the interior environments in various tenant spaces.
As the existing BAS zone temperature sensors were found to be inaccurate at times, Monnit
sensors provided zone temperature readings on each wing of the floor that fed into the
optimal start algorithms. The technology successfully integrated ~21,000 data points from
the BAS (all associated AHUs, fan coil units, variable air volume (VAV), chilled/condenser
water systems and associated pumps/sensors/valves/chillers/cooling towers, and all
equipment associated with the hot water system such as boilers and heat exchangers),
existing and new wireless sensors, electric and natural gas meters, and occupancy counters
(Figure 1). The data points from the BAS were integrated through pathway 1, and the data
points from the Monnit wireless sensors, meters, and occupancy counters were integrated
through pathway 2. A graphical user interface dashboard was created inside the BAS
to allow building operators to enable or disable the new schedule or setpoint sent by
the platform.

The standard process to implement the platform starts with a period of installation and
configuration, which took about one month in total. This process involved both building
staff and the technology provider and included data integration, connecting the platform
to the BAS, tagging all points, installing and connecting gateways and additional IoT
sensors, and finally validating the accuracy of the occupancy counters. The technology
provider team then set up, reviewed, and configured the user interface for the building
operators. The configuration step was followed by a machine learning period, which
involved the technology provider collecting data over a period of two and half months to
train the ML algorithms. The algorithms were tuned to fit the specific site using measured
operational, energy use, and occupancy data. Finally, the commissioning period consisted
of the technology provider working with building operation staff to test if the optimized
start, early shutdown signal, or new control setpoint signal could be delivered to the BAS
and successfully override the existing settings, which took a total of one month.

The onboarding and provisioning processes were very smooth. The total 4.5-month
installation and commissioning time was a marked improvement over the six to twelve
months reported in the field evaluation of an HVAC optimization system evaluated in prior
work [35].
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The primary point of contact at the test site estimated that about 50 h of staff time was
dedicated to the platform implementation. The following activities were the most common
ones required of the site’s facility team during the installation and configuration phases:

• Scheduled, performed site walkthroughs for occupancy counters and IoT sensor
installation, and met with in-house electricians for hardware installation.

• Provided full access to JACE controllers and BAS for data integration.
• Provided sequences of operation programmed into the BAS, utility bills, meter infor-

mation, and historical energy data.
• Involved with IT for network switches and IP configuration for occupancy counters,

IoT sensors, and the platform.
• Helped install occupancy counters and verify their accuracy, turned or tilted occupancy

counters to get a better field of view.
• Helped test software connectivity and configurations.
• Provided feedback on graphical user interface design.

4.2. Capability to Enable Energy Efficiency
4.2.1. Optimal Start and Early Shutdown Validation

The technology successfully implemented the optimal start and early shutdown strate-
gies. With the platform in place, AHU’s optimized start and early shutdown times were
based on multiple factors, as described in Section 2. Figure 2a shows an example one-day
(16 December 2021) pandemic-era operation of an AHU serving the sixth-floor west wing
with an optimal start and early shutdown implemented by the platform. The building’s
interior temperature and the weather forecast for the next day allowed for a later start-up
time, saving energy and costs compared with a fixed and unchanging start-up schedule.
For example, on this selected day, the changes in AHU_2W fan status indicate that the
AHU started at 7:45 and stopped at 14:20, following the optimized schedule. The platform
reduced the AHU_2W run time by 5 h 20 min on this day. Similarly, the start and shutdown
times of all AHUs from the second floor to the eleventh floor are shown in Figure 2b. These
AHUs were turned on at 6:55 to 7:55 and turned off at 14:15 to 18:00. On average, the
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run time decreased by three hours per AHU on that day compared with the 12 h baseline
operation time. Figure 3 shows the daily reduced running time per AHU through each
weekday of 2021. The reduced running time is the sum of the delayed start time and the
advanced end time. During the 2021 pandemic time frame, the technology decreased the
AHUs’ operation time by 2 h 35 min per AHU per day.
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4.2.2. Midday Ramp-Down, Ramp Up, and End of Day Ramp-Down Validation

It was observed that the occupancy would begin to decrease near lunchtime and rise
again in the early afternoon. This occupancy pattern offered an opportunity to reduce
energy consumption by adjusting the AHU static pressure setpoints (and associated fan
speeds) to match the building profile. When occupancy dropped near lunchtime, the
platform executed a predetermined ramp-down sequence to the BAS to reduce the energy
use, then also to automatically command the BAS to ramp the AHUs back up as occupancy
returned after lunch. Table 2 summarizes the normal static pressure setpoints and the
minimum static pressure setpoint when midday ramp-down was deployed for all the
AHUs. The AHU static pressure setpoints were dropped by 5 to 50 pascals (Pa) when
the ramp-down sequence was executed. Later in the study, the platform enabled an early
ramp-down, in which the static pressure setpoints were reduced to the minimum setpoint
once a drop in occupancy was detected later in the afternoon. Three AHUs (AHU_2W,
AHU_3W, and AHU_8W) did not implement the pressure setpoint ramp strategies due to
various reasons, including no discernible change in occupancy during the middle of the
day or that the zone had opted out per facility request, and therefore the minimum setpoint
was not written to the AHU.

The technology successfully executed both the midday ramp and end-of-day ramp
strategies. Figure 4 shows a one-day example of an AHU. Due to the change in the static
pressure setpoint, the fan speed of AHU_10W was roughly reduced from 80% to 60% at
11:20 a.m. when the occupancy count dropped during the lunch hours and went back to
80% at 12:45 p.m. when the occupancy count rose after lunch. The fan speed dropped
again at about 15:00 following the drop in occupancy count. Figure 5 presents a one-day
example of these midday ramp-down and ramp-up sequences across all AHUs from floors
2 to 12. Upon execution, the ramp sequence reduced the baseline static pressure setpoint to
the minimum static pressure setpoint in Table 2 in order to reduce fan speeds and overall
building electrical demand. At the end of the ramp period, the static pressure setpoint was
returned to the baseline value.
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4.3. Energy and Utility Cost Savings

Reduced occupancy during the pandemic significantly impacts the energy use of the
building. For example, the total electricity use in June 2020 was 272,900 kWh, which is 70%
of the total energy use in June 2019 (391,389 kWh). Therefore, the difference between the
energy use before and after technology installation can’t be taken as the energy savings of
the technology. As discussed in Section 3.3, instead of the IPMVP meter-based Option C or
Option B approach, this study applies the IPMVP Option D calibrated simulation approach
to determine the energy savings.

Figure 6 shows a visualization of the building energy model developed for the test.
The 2019 weather file was obtained from the NASA Power API, given the latitude, longi-
tude, and time interval [36]. Figure 7 shows the hourly dry bulb temperature and global
horizontal radiation. The key simulation model inputs after calibration can be found in
Appendix A. The coefficient of performance of chillers is 5.5. The motor efficiency of
pumps and cooling towers is 0.9. The thermal efficiency of boilers is 0.8. Calibration results
include MBE values of −0.60% and −4.14% for electricity and natural gas consumption,
respectively. CV (RMSE) values were 5.17% for electricity and 12.94% for gas consump-
tion. The indices for both electricity and natural gas are within the acceptable tolerances
(MBE < 5%, CV(RMSE) < 15%) specified by ASHRAE Guideline 14 [34]. The peak cooling
demand of 488.5 kW happened on July 22, and the peak heating demand of 970.2 kW
happened on January 14.
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The annual energy savings were simulated under four ECMs. In the midday ramp-
down and up scenario and the end-of-day ramp-down scenario, the minimum AHU
static pressure setpoints in Table 2 were implemented in the 2019 calibrated model during
the weekday lunchtime (approximately 11:30–12:30) and later afternoon (approximately
15:00–18:00), respectively. The start and end times of the lunch hours, as well as the start
time of the end-of-day ramp-down, were slightly different for each AHU and were deter-
mined from 2020–2021 data. In the early shutdown case, it was conservatively assumed
AHUs could shut down at 16:00.
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Table 3 shows the whole building’s energy and cost savings results. In the table, the
whole building energy use intensity (EUI) of the baseline and four post-installation cases
is presented, followed by the energy and cost savings. The final two columns contain
the absolute savings from electricity and natural gas. The whole building energy savings
were 2.6%, 0.07%, 0.1%, and 2.8% for the optimal start, midday ramp-down and ramp up,
end-of-day ramp-down, and early shutdown cases, respectively. Since only one ECM can
be implemented in the later afternoon, the total annual whole building energy savings of
the three ECMs is 2.8% ($10,829) if the end-of-day ramp-down is implemented and is 6.1%
($23,111) if an early shutdown is implemented. Figure 8 shows the monthly electricity and
natural gas consumption in each case. As the boilers were off from May to September, the
gas consumption from May to September was zero.

Table 3. Whole building energy and utility cost savings.

EUI (Million
Joule/m2)

Whole Building
Savings (%)

Whole Building
Savings ($)

Electricity
Savings (kWh)

Natural Gas
Savings (kWh)

Baseline 0.67 - - – –
ECM1: Optimal Start 0.65 2.6 9775 54,966 81,366

ECM2: Midday
Ramp-down/Up 0.67 0.07 461 3831 21

ECM3: End-of-day
Ramp-down 0.67 0.10 593 4936 21

ECM4: Early
shutdown 0.65 3.4 12,875 74,743 99,942

Total (ECMs 1, 2, 3) - 2.8 10,829 63,733 81,407
Total (ECMs 1, 2, 4) 6.1 23,111 133,540 181,329
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4.4. Cost Effectiveness

Table 4 summarizes the upfront and ongoing technology costs associated with labor to
install, integrate, and commission system components, equipment purchases, and licensing
fees. The five-year cost of the technology—that is, the total up-front costs ($48,425) and five
years of licensing ($114,000)—amounted to $162,425. As reported in Table 4, the annual
technology savings were $23,111 (ECMs 1, 2, and 4), or $115,555 over a five-year horizon.
To meet a five-year payback, technology costs would need to decrease by $46,870 (29%)
over those required for the single-site pilot demonstration. Conversely, technology savings
could be increased by the same amount, $46,870 (41%). Using the same analysis approach,
a 2-year or 10-year payback can also be assessed. Each of these scenarios is presented in
Table 5.
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Table 4. Upfront and ongoing costs for the evaluated technology.

Cost Type Subtype Item Value ($)

Upfront

Labor

Technology implementation and integration 9000
Occupancy counter and networking hardware installation 11,875

Occupancy counter integration and commissioning 6336
Occupancy counters and networking hardware 21,214

Equipment Occupancy counters and networking hardware 21,214

Total up-front costs 48,425

Ongoing Software license Annual Subscription fee 22,800

Table 5. Scenario analysis of technology payback.

Payback Horizon Technology Cost
($)

Technology
Savings ($)

Payback Delta
($)

Change in Cost
(%)

Change in
Savings (%)

2 years 94,025 46,222 47,803 51 103
5 years 162,425 115,555 46,870 29 41

10 years 276,425 231,110 45,315 16 20

4.5. User Satisfaction

Responses to 12 assessment questions from three site staff were collected as indicative
of the user experience in this specific field installation. Across all questions, the average
user rating was 4.2 on the 5-point scale, and every aspect of the technology that was
surveyed was rated above 3.0. The technology’s energy and demand tracking, as well
as the dynamic graphs, were the most highly valued features, with an average score of
5.0. Technical support also received a 5.0. The optimal start scheduler and AHU ramp
function themselves were also highly rated, at 4.3. The technology’s value to operations
staff during the pandemic, as well as the portfolio and sensor views, were less consistently
highly rated across staff. The surveys also confirmed that the platform complied with the
organization’s cybersecurity requirements. The 12 questions and the average user ratings
for each technology aspect are presented in Appendix B.

5. Discussion

Proprietary ML algorithms were adopted by the evaluated technology to determine
the optimal start time and enabled and disabled time of static pressure setpoint adjustments
during the noon and late afternoon. The early shut-down time was determined based on
real-time occupancy data and rules. The annual modeled whole-building savings achieved
with the optimal start, midday ramp-down and up, and end-of-day ramp-down were 2.8%;
savings increased to 6.1% if an early shutdown was implemented rather than an end-of-day
ramp-down. These savings results are smaller than the 10–42% savings reported in the
prior simulated and experimental studies of occupancy-based control technologies that are
reported in the literature and summarized in Table 1. There are three likely drivers of this
disparity: the baseline or reference control strategy, the occupancy-based control approach
itself, and the HVAC system configuration.

Baseline/reference strategy: The prior studies used less efficient baseline control
strategies, which led to higher savings potential. For example, the 26% savings reported
by Lee et al. [20] were quantified relative to a baseline in which the HVAC system was
always on. The 30% savings reported by Erickson V. et al. [22] were determined based on a
baseline of a fixed space temperature setpoint and ventilation rate for maximum occupancy
from 6:00–1:00 the following day. In contrast, in this study, the baseline system operated
only from 6:00–18:00, thus limiting the savings percentage. Pachuta et al. [37] provided an
assessment of the same technology (associated with ECMs 1, 2, and 3) studied in this work.
They reported modeled savings of 11% in one building and 5% in another, with a baseline
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start around 3:00. When the results are normalized to align with the baseline 6:00–18:00
schedule in this work, the savings are consistent with the 3% observed in this work.

Occupancy-based control approach: The occupancy-based control offered by the tech-
nology in this study provided later AHU start times and earlier stop times. Throughout
the day, the static pressure setpoints were reduced by 10–25% in most of the AHUs for a
couple of hours. In other studies [19,21,24–27], the space temperature setpoint and/or ven-
tilation rate were dynamically modulated between occupied and unoccupied values based
on the variation in occupancy (e.g., a temperature deviation of 6 ◦C in Gluck et al. [24]).
These dynamic adjustments not only delayed the start time and advanced the stop time;
they also let the HVAC system operate in unoccupied mode during periods of the normal
operation time.

System configuration: At the test site in this study, space cooling was provided by
both the AHUs and the fan coils. The AHU fan energy use at this site accounts for a smaller
fraction of the whole building energy use than in other studies that do not also use fan
coils for cooling. As a result, the percent energy savings contributed by the reduction in fan
energy that is caused by the midday ramp-down/ramp-up and end-of-day ramp strategies
is also smaller.

The savings and cost-effectiveness observed in this study suggest several ways to
advance the state of the art of this and other similar commercialized occupancy-based
HVAC control products. Returning to the five-year payback scenario and the cost elements
reported in Table 5, beyond-pilot cost reductions (29% for this product) could potentially
be achieved through economies-of-scale-driven reductions in equipment costs as well as
licensing fees. It is also possible that through repeated installations, labor costs could be
reduced as familiarity with the technology integration and commissioning grows.

Technology savings could be increased through expanded functionality that would ex-
pand the optimal control approach and also increase the suite of strategies to include things
like demand limiting and demand response, occupancy-based reset of AHU minimum out-
door air flowrate setpoint and terminal unit minimum airflow setpoint, high-performance
AHU reset sequence documented in ASHRAE guideline 36 [38], proper economizing, and
systems other than AHUs. It is unlikely that the increase in savings required for a five-
year payback (41% in this case) would be attained on a routine basis. As such, full-scale
cost-effectiveness would most practically be attained through a combination of savings
increases and cost reductions. Future occupancy-based control technology development
should also make sure reduced ventilation air is not below acceptable minima and consider
thermal capacitance and heat transfer to adjacent zones when changing the temperature
setpoint in a subset of zones.

The installation and commissioning process for this technology was more streamlined
than in other cases documented in the literature. The third-party off-the-shelf occupancy
counters were conveniently installed on each floor of the building, and the optimization
technology successfully integrated the data to determine optimized schedules and set-
points. Overall, the facility operations and energy management staff were satisfied with
the technology. Taken as a whole, the results of this study indicate that occupancy-based
optimal control is maturing and has progressed well from the domain of research into
commercialized products for real-world adoption.

6. Conclusions

In this study, an occupancy-based commercial HVAC optimization technology was
implemented in an office building as a single-site pilot demonstration for evaluation. The
study was designed to evaluate several aspects of technology performance, including
the ease of the installation and commissioning process, the capability to enable energy
efficiency, energy and cost savings, cost-effectiveness, and user satisfaction. The platform
successfully integrated ~21,000 data points from diverse data streams such as BAS, meters,
occupancy counters, and IoT sensors in a month. Twenty-two off-the-shelf occupancy
counters were installed as part of the platform to track floor-by-floor building occupancy in
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real-time. The platform utilized floor-level occupancy data, together with thermal modeling
and machine learning algorithms, to implement optimal start-up, early shutdown, and
intra-day fan speed adjustments to the AHUs for each floor during the pandemic. The
onboarding and provisioning processes were very smooth. In general, this work illustrates
that occupancy-based optimal control has progressed well from research into commercial
products and that it is being considered for integration into standard facilities and energy
management practices.

The technology reduced weekday AHU run time significantly during the 2020–2021
COVID-19 pandemic time period. The simulation shows that 2.8% annual whole building
energy savings ($10,829 per year) can be achieved if optimal start, midday ramp-down and
up, and end-of-day ramp-down are applied when the building is fully occupied in the post-
COVID-19 time period, and 6.1% annual whole building energy savings ($23,111 per year)
can be obtained when early shutdown is implemented rather than end-of-day ramp-
down. The disparity between the savings seen in this study’s results and the savings of
prior studies in the literature is associated with three potential drivers: the baseline or
reference control strategy, the occupancy-based control approach itself, and the HVAC
system configuration. The expansion of occupancy-based control approaches and targeted
HVAC system and equipment are key to the increase in technology savings. Future work
is needed to continue to publicly document field studies of commercialized optimization
products to provide a deeper understanding of what today’s technology is delivering, how
it evolves over time, and what further advances can be made.
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Appendix A

Table A1. Inputs for the energy model.

Baseline Building Inputs Source

Envelope

Wall: 10.16 cm glazed brick + 10.16 cm pierced concrete block,
U-Factor = 1.647 W/m2-K

Construction
blueprints; [39]

Window: U-Factor = 2.726 W/m2-K, Solar heat gain coefficient (SHGC) = 0.706, Visual
Transmittance (VT) = 0.637

Window-Wall Ratio: 0.58

Roof: U-Factor = 0.250 W/m2-K

Internal Load

Lighting: 7.5~10.8 W/m2, vary between zones
DesignBuilder

default library [39];
Building manager

Equipment: varies between zones

Occupancy: varies between zones
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Table A1. Cont.

Baseline Building Inputs Source

Occupancy
Schedule Monday to Friday, 8:00 to 18:00 Building manager

HVAC—Water
Cooling System

Two electric chillers (1230 kW and 1760 kW): Monday to Friday, 6 am to 6 pm, cut-in
at 12.8 ◦C, cut-out at 10 ◦C, chilled water at 7.2 ◦C, chiller coefficient of performance
(COP) of 5.5

Building manager;
Equipment
nameplates

Chiller continuous supply pump: design pump head at 343.4 Pa, design power at
149.14 kW, motor efficiency 0.9

Variable speed cooling towers: condenser temperature fixed at 26.6 ◦C, Monday to
Friday, 6:00–18:00, design pump head at 20 kPa, design power at 44,742 W, motor
efficiency 0.9

HVAC—Water
Heating System

Four natural gas boilers (880 kW each): Monday to Friday, 6:00–18:00, manually
turned off from May through September, cut-in at 4.4 ◦C, cut-out at 16.7 ◦C, when
outdoor air temperature (OAT) = −12.2 ◦C, hot water temperature (HWT)= 76.7 ◦C,
when OAT = 4.4C, HWT = 71.1 ◦C, thermal efficiency = 0.8

Building manager;
Equipment
nameplates

Boiler continuous supply pump: Design pump head at 20 kPA, design power at
44.7 kW, motor efficiency 0.9

HVAC—Zone

AHU without reheat: fan efficiency 0.8, economizer fixed dry bulb lockout, minimum
temperature −10 ◦C, maximum temperature 20 ◦C

Building manager;
calibration

Fan coil units: constant fan, variable water flow, cooling coil inlet water temperature
at 7.2 ◦C, heating coil inlet water temperature 71.1 ◦C, outlet water temperature 65 ◦C

Zone thermostat setpoints: occupants have manual control, calibrated in models
based on locations (perimeter or core zones) and months; perimeter zones cooling
setpoint—occupied 23.9 ◦C, unoccupied 24 ◦C; heating setpoint—occupied 16.7 ◦C to
22.2 ◦C, unoccupied 16 ◦C to 22 ◦C; core zones cooling setpoint—occupied 23 ◦C to
23.5 ◦C, unoccupied 23.9 ◦C; heating setpoint—occupied 17 ◦C to 23 ◦C, unoccupied
16 ◦C to 22.2 ◦C

Appendix B

Please indicate on a scale of 1 to 5 for the 12 items below, with 5 being most satisfactory,
your thoughts on the technology’s performance, regarding your expectations.

Table A2. Survey questions and answers.

Items Averaged User Satisfaction Scores (1–5) across the
Responses from Three Site Staffs

Energy or demand Benchmarking 5
Optimal startup and shutdown scheduler 4.3
Midday ramp-down and up and end-of-day ramp-down capability 4.3
Portfolio overview and sensor data visualization 3
Occupancy counting and reporting 3.7
Operation abnormality detection 4
COVID building operation assistance 3.3
Custom key performance indicators 4
Report center 4.3
Data export tool 3.7
Dynamic graphs 5
Contacting technical support 5
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