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Abstract

Language complexity seems to be influenced by population
characteristics such as the proportion of adult learners. One
potential explanation for this link is that native speakers ac-
commodate to non-native speakers, simplifying their language
use during such interactions: learners may then acquire a less
complex language. We model accommodation in interaction in
a Bayesian framework, where in order to accommodate appro-
priately, an agent must first infer their interlocutor’s linguistic
abilities. We find that when the agent consistently accommo-
dates, learners end up with a simplified language, due to a rein-
forcing effect between an initially underinformed learner and
an accommodating native speaker.
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Introduction
Linguistic communication requires a shared language. How-
ever, no two speakers have had exactly the same linguistic ex-
periences and thus no two speakers will have exactly the same
language: they may differ at all linguistic levels, e.g. in their
pronunciation, in the words they know, and in the grammat-
ical constructions they use. Interaction between individuals
therefore involves making inferences about the linguistic sys-
tem of one’s interlocutor, since knowledge of an interlocutor’s
linguistic system is required in order to accurately understand
their intended meaning.

Listeners construct such a speaker model of their interlocu-
tor, for example, to to correctly interpret UK/US ambigu-
ous words (flat, pants) depending on the accent in which the
words are spoken (Cai et al., 2017; Martin, Garcia, Potter,
Melinger, & Costa, 2015); or to interpret entrained/dialogue-
specific words in a speaker-specific way (Brown-Schmidt,
2009). More generally, interaction requires us to make po-
tentially complex inferences based on the nested and inter-
locking linguistic and social groups our interlocutors belong
to (e.g. cognitive scientist, Scot, English speaker, poor French
speaker), because those affiliations determine how our inter-
locutors use and understand language (Clark, 1996, 1998).

We construct a Bayesian model of linguistic interaction be-
tween two individuals capable of making these sorts of infer-
ences about their interlocutors’ likely linguistic knowledge.
We focus on a particularly asymmetric scenario, namely a
conversation between two individuals with vastly different
language experience, as would arise in an interaction between
a native- and a non-native speaker. In this scenario, the na-
tive speaker is aware of having greater experience with the
language than the non-native speaker, and is consequently
aware that their interlocutor may have a different linguistic
system; the native speaker builds a model of the likely lin-
guistic system of their non-native interlocutor, which allows

them to accommodate to the inferred language abilities of the
non-native speaker, adjusting their linguistic output to match
(their beliefs about) their partner’s linguistic system (Giles,
Coupland, & Coupland, 1991).

Asymmetric interactions of this type result in linguis-
tic registers such as Child-Directed Speech and Foreigner
Talk (Snow & Ferguson, 1977; Ferguson, 1975). Rather than
modelling these registers for their own sake, our motivation
for studying this scenario arises from our interest in the ef-
fects of interaction on the complexity of linguistic systems.
Natural languages differ in the amount of complexity they
encode within a domain (e.g. number of case markings, noun
classes; size of phoneme inventories). Various authors have
suggested that this kind of variation in complexity may re-
flect systematic differences in the size or composition of the
populations in which those languages are spoken (e.g. Wray
& Grace, 2007; Lupyan & Dale, 2010; Trudgill, 2011; Bentz
& Winter, 2013). In the example of case, Bentz and Win-
ter (2013) show across a sample of 66 languages that lan-
guages with more non-native speakers tend to have fewer dis-
tinct cases, and all languages with more than 50% non-native
speakers have no case system at all; Lupyan and Dale (2010)
suggest a similar link between the prevalence of non-native
speakers and morphological simplicity more broadly.

Why would languages with more non-native speakers be
simpler? Bentz and Winter (2013) speculate that native
speaker accommodation to non-native interlocutors might act
as a crucial linking mechanism: if non-native speakers tend
to imperfectly acquire the language’s case system (e.g. due to
insufficient exposure), native speaker accommodation to this
feature of non-native speech will result in such simplifications
being more widely used, more frequent in the input available
to language learners, and ultimately leading to a change in the
language’s grammar.

There is some experimental evidence that accommodation
during interaction between individuals with asymmetric lin-
guistic knowledge can lead to this kind of simplification. For
instance, Atkinson, Smith, and Kirby (submitted) show that
when two experimental participants trained on artificial lan-
guages which differ in their complexity (e.g. where one par-
ticipant is trained on the full language, and their partner is
trained on a simpler language which lacks irregulars) then
the pair preferentially align on the simpler language: the first
participant is willing to move away from their own language
to accommodate the other.

While this experimental evidence is consistent with the hy-
pothesis (investigated in this paper) that accommodation can
result in simplification, which might then spread through a
population, the mechanisms at play are at present unclear:
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inferences about a partner’s linguistic knowledge, but also re-
ciprocal priming between interlocutors and feedback-based
reinforcement learning may all be involved. The model we
present here allows us to explore the role of inferences about
a partner’s linguistic knowledge in a targeted way, in order to
identify whether and when it results in linguistic simplifica-
tion. Consistent with the accounts offered above, we demon-
strate that accommodation by native speakers can lead to sim-
plification during interaction, which in turn results in non-
native speakers learning a language that is more regular than
the original native speaker’s language, and therefore can re-
sult in a net loss in linguistic complexity.

Model Framework

Our model and interactive setup is related to Bayesian mod-
els of pragmatics (Franke & Jäger, 2016), such as the Ratio-
nal Speech Act model (Frank & Goodman, 2012), in which
agents construct (probabilistic) representations of the beliefs
of others about the world based on those agent’s utterances.
Our methodology also follows modelling work on language
evolution, e.g. Reali and Griffiths (2009); Smith et al. (2017)
where a simple language model is used to illustrate the pro-
cess of regularisation, in which variation in a linguistic sys-
tem is reduced, through learning, transmission or interaction,
resulting in a simplification the system. The Bayesian agents
in the above models behave like our basic learner agent, infer-
ring a language in interaction with other agents. We add in-
ternal speaker-modelling of the other agents, i.e. agents pos-
sess a meta-level ‘theory of language’ (analogous to ‘theory
of mind’) of their interlocutors’ linguistic abilities.

In our model, two agents (named A and B) interact using
a common language L. Prior to interaction, A and B have
learned L from different exposures, leading to variation in
their individual languages. As A and B see more data, they
will, in the long run, converge to the common language. In
the shorter term, however, divergence between the agents can
be severe. In the scenario investigated here, A is the ‘native’
speaker, who has seen enough data to learn the language ac-
curately. We designate B as the ‘non-native’ speaker who has
had only limited exposure to L before their interaction with
A; we show how this will lead to B having a language that
is more regular, with a more peaked distribution towards a
single variant. In conversation with B, as a rational interlocu-
tor A should take B’s linguistic abilities into account, despite
not having direct access to B’s internal language. Instead, A
infers a speaker model over B’s presumptive language.

The language that the agents are learning is represented as
a probability distribution over variants, e.g. a set of ways to
refer to an object’s syntactic role, such as case marking or
lexical strategies. Agents learn the language by inferring the
parameters for the distribution (i.e. the probability of each
variant) from the data they’re exposed to, and speak by draw-
ing a variant from their inferred distribution.

The regularity of a language L = [p(x0), p(x1), . . . p(xK)] is

measured by the entropy of the language, H(L):

H(L) =−
K

∑
i=1

P(xi) log2 P(xi) (1)

Languages in which all K variants have the same probability
have the maximum entropy, H = log2 K. Languages with a
highly likely variant have lower entropy, and the entropy of a
single-variant language (where P(xi) = 1 and P(x j 6=i) = 0) is
zero. The process of regularisation in a language can thus be
captured as decreasing entropy.

Learning
Agents are modeled as rational learners who have internal
representations of a language that they update based on what
they hear, corresponding to learning.

Agents learn a distribution over possible languages us-
ing Bayes’ rule to combine a prior, in the form of a dis-
tribution over possible languages indicating their prior be-
liefs P(L), with the likelihood of the observed data P(D|L):
P(L|D) ∝ P(L)P(D|L). The specific prior used in this model
corresponds to the agent’s prior beliefs about the regularity of
the language, i.e. the extent to which a single variant will have
nearly all the probability mass, or whether multiple variants
will have high probability. This takes the form of a symmetric
Dirichlet distribution (hyper-)parameterised by a0; if a0 > 1,
learners expect to hear all variants often (a flat distribution),
whereas with a prior with a0 < 1, they expect a more regular
language with a dominant variant (a peaked distribution). In
all our experiments, we set a0 = 0.01. Note that the prior does
not reveal which variant will be dominant, only that there is
no expectation of multiple frequent variants.

The likelihood function is Categorical (i.e. the probability
distribution over seen variants), for which the Dirichlet prior
is conjugate, leading to a posterior distribution that is also a
Dirichlet distribution, with hyperparameters updated by the
seen counts. At the first update, the counts break the symme-
try of the Dirichlet prior: the parameterisation of the posterior
Dirichlet is now a vector aaa, where ai = a0 + ci, i.e. the pre-
vious prior value for the category i (in this case, a0) plus the
number of i-category items seen. In the interaction setting,
learning is iterative, with agents updating after every utter-
ance they hear. The predictive posterior probability of a word
of category i is the normalised value of the updated hyperpa-
rameter, p(x = i) = ai

∑ j a j
.

In this paper, we denote an agent’s language as LA (in-
dexed to speaker-agent A); this corresponds to their current
posterior distribution over variants in the language, encoded
by their updated hyperparameter aaa vector and based on their
data exposure DA. Agents speak by drawing samples from
their language distribution x∼ P(LA|DA,a0).

All speakers have the same prior; consequently, differences
in speakers’ (distributions over) languages arise solely from
exposure to different data. An agent who has not seen much
data will be influenced more by the prior. Given a prior that
prefers regular languages (a0 < 1), an agent that has only seen

391



0.0 0.8 1.0

Po
st

er
io

r a
1

Data size = 1

0.0 0.8 1.0

Data size = 5

0.0 0.8 1.0

Data size = 20

100 101 102

Learner dataset size (log)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sp
ea

ke
r-m

od
el

 e
nt

ro
py

Figure 1: Speaker model inferences based on assumed learner
dataset sizes. Top: (Hypothetical) learners who have seen lit-
tle data have an extreme posterior, while with more data, the
posteriors converge to the true value (L∗= [0.8,0.2], posterior
probability of the first variant is plotted, equivalent to Beta-
binomial). Below: Speaker-model entropy (calculated as the
average entropy of the set of hypothetical learners) at differ-
ent values of the size of the hypothetical learners’ datasets.
Speaker-modelling agents expect learners with little data ex-
posure to have highly regular, low-entropy languages.

a few datapoints will infer a language that is highly skewed
towards the seen variants. Additionally, the few datapoints
are likely to over-represent the high-probability variants and
under-represent the low-probability variants, a phenomenon
known as minority undersampling (Hertwig, Barron, Weber,
& Erev, 2004; Hahn, 2014). Together, this means that an
agent with little experience (corresponding to the non-native
speaker in our scenario) will initially have an overly-regular
language, compared to the language data they are learning
from. However, as they are exposed to more data, they will
converge to the true (data-generating) language, in essence
becoming a native speaker.

An Agent’s Speaker Model
An agent constructs an internal speaker model of their in-
terlocutor representing their inferences about their interlocu-
tor’s internal language (note that this is separate from their
own language model). In our scenario of native- and non-
native speaker interaction, the native speaker (A) constructs
a speaker model of the non-native speaker (B), in order to
accommodate to their language use.

To construct this speaker model, A assumes B is a learner
of the same Bayesian form and with the same prior param-
eterisation a0. A’s aim is to discover B’s posterior language
LB, which (given a known shared prior a0) is dependent only
on the data that B has seen, DB. However, A does not know
B’s past history or exposure DB, and thus cannot calculate LB

exactly. Instead, in our model, A guesses at B’s possible past
exposure; to limit the risk of guessing wrongly, A computes a
mixture over several guesses Z and their corresponding pos-
teriors:

PA(LB) =
Z

∑
z

ωzP(Lz|Dz,a0) (2)

Each component of this mixture corresponds to a hypotheti-
cal learner who has been exposed to hypothesised dataset Dz.
Figure 1 (top) shows the languages these hypothetical learn-
ers might have: as with the real learners, hypothetical learn-
ers with little exposure (small Dz) are likely to have a skewed
estimate of the language. The size of each guessed dataset
is drawn from a Poisson distribution that has a Gamma(γ,1)
prior; the ensuing datasets will have a mean size of γ and
variance of 2γ. We set γ to different values in our experi-
ments, representing A’s different prior beliefs over B’s likely
data exposure. The hypothetical datasets are then generated
by sampling from A’s language (PA(L)) until they are the de-
sired size. Note that A must trust their own language to be
representative: they do not have access to the true language.
The weights ωz are initialised uniformly.

Updating the Speaker Model during interaction The
agent must update their speaker model of their interlocutor
as they interact with them, since the utterances in the conver-
sation will provide two different kinds of information relevant
to the speaker model:

1. Utterances heard by B (produced by A) will result in up-
dates to B’s language, which in turn need to be reflected in
A’s model of B.

2. Utterances produced by B provide evidence for B’s lan-
guage, which in turn is evidence about B’s prior language
exposure DB.

The first kind of information (A’s utterances) are added
to the data heard by B and incorporated into B’s posterior.
Within A’s internal speaker model, each hypothetical learner
is also updated with the new datapoints.

The second kind of information (B’s utterances) result in
Bayesian updates of the speaker model, which amount to up-
dating the weights over possible languages (posteriors given
hypothesised historical language data). The new weight for
a specific hypothetical learner, ω′z, after hearing B produce
the variant x is the old weight updated by the probability of
the word under the language inferred from the hypothesised
dataset Dz.

ω
′
z = ωz + p(x = i|Lz) (3)

= ωz +
azi

∑ j az j
(4)

Figure 2 shows how A’s speaker model weights are updated
as A hears utterances produced by B.
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Figure 2: Two examples (top and bottom) of how successive
utterances from B lead to updates in the speaker model. B
speaks by uttering either ‘y’ or ‘n’ (shown on the x axes); val-
ues of the speaker model are shown after updating with this
utterance. The speaker model consists of six hypothesised
learners (coloured lines), each having seen a dataset of size 5,
where ‘4y1n’ corresponds to the learner having seen four ‘y’s
and one ‘n’. The hypothetical learners do not alter their pos-
terior probabilities (the first column shows each learner has
the same probability of ‘y’/‘n’ throughout) but their weights
get updated (second column), leading to changes in weighted
probabilities (third column) and a re-estimated mixture pos-
terior (third column, red dotted line). The top graph shows
that as B produces more ‘n’, the components with a history
of more ‘n’ (‘0y5n’, ‘1y4n’) get weighted increasingly heav-
ily, until B produces a ‘y’, at which point the all-‘n’ history
gets completely down-weighted. The bottom graph shows the
same process with a different sequence of B utterances, lead-
ing to different posteriors.

Sampling from the speaker model involves first sampling a
hypothetical learner’s language P(Lz) from a distribution pa-
rameterised by ωz, and then sampling a word from that lan-
guage as in the language learner model.

Similarly, the entropy of the speaker model is measured
as the (weighted) average over the entropies of Lz. Figure 1
(bottom) shows how the speaker model can capture the expec-
tation that with smaller datasets, the (hypothesised) speaker
will produce lower-entropy languages.

Interaction
A native- and non-native speaker interact in a dialogue, where
each agent speaks in turn (drawing a single sample from their
language) and the other listening and updating their posterior
and speaker model as appropriate. As described above, the
difference between the two types of speakers is in the amount
of data they have been exposed to: the native speaker has
seen 2–3 orders of magnitude more data (1–20 instances for

100 75 50 25 0 25 50 75 100
time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

H

Entropy of learners A and B before and during interaction.

L* entropy
A
B

Figure 3: Two learners converge on the original language
L∗ = [0.7,0.2,0.1]. Learner A has seen 100 items from L∗
prior to interaction while learner B has seen only 5. During
interaction (from timestep 0 onwards), both learners update
from each other’s utterances. Despite the distance between
the languages at the start of interaction, B converges to A’s
language, instead of both finding a middle ground, because
of A’s more informed posterior. Shaded regions depict the
95% confidence interval over 10 samples.

the non-native speaker vs. 1000 for the native speaker).

The native speaker also has a speaker model over the non-
native speaker. We set the hyperparameter γ controlling the
size of the speaker model’s hypothesised datasets to be the
size of the non-native speaker’s pre-interaction exposure; this
implies that the native speaker can accurately gauge the non-
native speakers’ prior experience.

It would be theoretically possible to also have the non-
native speaker modelling the native speaker. However, the
non-native speaker does not have a sufficiently accurate lan-
guage model to generate plausible datasets for the native-
speaker; in effect, the non-native’s speaker model of the na-
tive speaker would recapitulate (and possibly exaggerate) the
errors/bias of the non-native speaker’s own language. We as-
sume the non-native speaker is aware of this and thus chooses
to use the native-speaker only as a trusted source for learning.

During interaction, both individuals update their models
based on what they hear from the other. For a non-native
speaker, this constitutes a large percentage of their total ex-
posure to the language. On the other hand, the native speaker
will already have a very sharp posterior as their language dis-
tribution, and a few low-likelihood utterances from the non-
native speaker will not strongly alter this posterior. Figure 3
shows how this interaction, in the absence of accommodation
by the native speaker (modelled below) leads the interacting
pair to converge on the true language, L∗.
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Figure 4: Learner language entropy (y-axis) during interaction (x-axis) with a native speaker accommodating at different levels
(left to right). The learner has seen more (bottom) or less (top) data prior to interaction. The lines show different 25 interaction
runs with the same parameters (100 timesteps, Z=25, a0=0.01). The percentage shows the proportion of runs that resulted
in a non-native speaker language with lower entropy than the initial language (L∗ = [0.7,0.2,0.1], H(L∗) = 1.16). Higher
accommodation levels lead to the learner learning more variable languages and frequently regularising.

Accommodation during interaction
In order to be understood, the native speaker may speak in a
way that conforms less to their own language and more to
the language they believe their (non-native) interlocutor to
have: they may accommodate their partner. Accommoda-
tion happens in the model when the native speaker uses their
speaker model of the non-native speaker’s language to speak,
rather than their own language. The non-native speaker up-
dates their language based on what they hear from the native
speaker (accommodated or not), as before; likewise the native
speaker updates both their own language and their speaker
model from the non-native speaker’s utterances.

The degree of accommodation is set by a fixed parameter
that indicates the probability of the native speaker generat-
ing utterances from their speaker model of their interlocu-
tor’s language versus their own language. A speaker with an
accommodation level of 0.75 uses their own native language
25% of the time and their speaker model 75% of the time.

Figures 4 and 5 show how the non-native speaker’s lan-
guage develops in interactions with varying degrees of ac-
commodation. Without accommodation (left-most column of
Fig. 4), the learner ends up with a language close to the orig-
inal language, L∗. With more accommodation, the learner’s
final language is further from the original language and likely
to be regularised, with lower entropy compared to the original
language. This is due to a reinforcing positive feedback loop
between accommodation by the native speaker and regulari-
sation by the non-native speaker: the native speaker’s expec-
tation that the non-native speaker will use a regularised form
of the language leads them to produce more regular data; this
regular data leads the non-native speaker to infer a more reg-
ularsed language, and produce relatively regular utterances

which in turn confirm the native speaker’s belief than the non-
native speaks a regularised version of the language.

Figure 4 also shows the relationship between prior experi-
ence of the learner (size of their initial dataset D) and accom-
modation. In general, more experienced non-native speak-
ers require higher accommodation levels, which is unsurpris-
ing: the accommodating native speaker has to outweigh the
learner’s initial exposure to the language. In a population-
level model, learners who are only ever exposed to accom-
modated language (similar to our small-D learners) may re-
quire lower levels of accommodation in order to produce a
regularised version of the language.

Finally, characteristics of the original language affect
learner regularisation, as shown in Figure 5. Languages with
initial high entropy undergo more consistent regularisation.
The pattern is less clear with less variable, low-entropy lan-
guages, indicating that this model will not capture the extinc-
tion of variants (a general issue with parametric probabilistic
models), or at least not in a single bout of interaction. Lan-
guages with lower complexity, in the form of fewer variants,
are somewhat less susceptible to regularisation. More com-
plex, higher entropy languages are more likely to lead to ex-
treme (regularised) variants early in learning, in which one
or more variants are unseen; when the native speaker accom-
modates to this initial regularisation, the non-native speaker’s
language therefore remains highly regularised.

Conclusion
The goal of the model was to test a mechanism whereby lan-
guage simplification can happen as a result of interaction be-
tween agents with different levels of linguistic ability. Our ac-
count involves agents that not only infer their own language,
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Figure 5: Learner language entropy (y-axis) during interac-
tion (x-axis), varying the initial language L∗ (shown in sub-
plot title). Accommodation levels are set throughout at 0.75;
the non-native’s initial dataset size is 5, other parameters set
as in Fig 4. From left to right, the language includes more
variants (is higher-dimensional), while from top to bottom the
language decreases in initial entropy. Languages with more
variants are more likely to regularise, along with languages
with high initial entropy. The languages are: first column, K = 2:
[.55, .45] (H=0.99), [.75, .25] (H=0.81), [.95, .05] (H=0.29); second
column, K = 3: [.4, .3, .3] (H=1.57), [.5, .3, .2] (H=1.49), [.9, .05,
.05] (H=0.57), third column, K = 5: [.3, .15, .15, .15, .15] (H=2.25),
[.5, .2, .15, .1, .05] (H=1.92), [.8, .05, .05, .05, .05] (H=1.12).

but also make inferences about the language of others. Na-
tive speaker agents who act cooperatively by accommodating
their interlocutor’s language skills lead their non-native in-
terlocutors to learn simplified languages, due to not having
exposure to the true language. The more complex the initial
language is, the stronger the drive towards regularisation.

We plan to extend the current dialogue model to the popu-
lation level. Within a population, native speakers could also
end up with a simplified language, either due to sufficient ex-
posure to regularised non-native speaker languages, or as a re-
sult of generational turnover and initial learning from a mix-
ture of native and non-native languages. This setting will also
allow us to explore the potential differences between accom-
modation in two types of asymmetric interactions, i.e., the
native–non-native interactions explored here as well as adult–
child learner interactions.
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