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a) Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003 USA 
 
b) Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 
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Abstract 
 
Reaction of gold atoms with acetylene and ethylene in a laser ablation source produces a number 

of gold-containing species. Their photoionization efficiency (PIE) curves are measured using 

tunable vacuum ultraviolet (VUV) radiation at the Advanced Light Source. Their structures are 

assigned by comparing the experimental ionization energies and PIE curves to those of potential 

isomers calculated at the CAM-B3LYP/aug-cc-pVTZ level. For smaller molecules, the 

contribution of ionization to excited electronic states of the cation is also included using 

photoionization cross sections calculated using ePolyScat. Reaction with acetylene produces 

adducts Au(C2H2) and Au(C2H2)2, as well as HAu(C4H2). Reaction with ethylene leads to 

adducts Au(C2H4), Au(C2H4)2, an adduct with gold dimer, Au2(C2H4), as well as the gold 

hydrides AuH, HAu(C2H4) and HAu(C4H4). [Au,C4,H7] is also observed and it likely 

corresponds to a gold alkyl,  H2C=C(H)–Au(C2H4). Reactions leading to production of odd-

hydrogen species are endothermic and are likely due to translationally or electronically excited 

gold atoms. These measurements provide the first directly measured ionization energy for gold 

hydride, IE(AuH) = 10.25 ± 0.05 eV. Combining this value with the dissociation energy of AuH+ 

gives a dissociation energy D0(AuH) = 3.15 ± 0.12 eV. Several other ionization energies are 

measured: IE(Au2(C2H4)) = 8.42 ± 0.05 eV, IE(HAu(C2H4)) = 9.35 ± 0.05 eV, IE(HAu(C4H2)) = 

8.8 ± 0.1 eV  and IE(HAu(C4H4)) = 8.8 ± 0.1 eV. 

 
 
* Corresponding author. E-mail address: rbmetz@chem.umass.edu  
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1. Introduction 

 Although it had long been considered relatively inert, over the last two decades there has 

been a huge increase in the use of gold in homogeneous and heterogeneous catalysis, frequently 

involving alkenes and alkynes as substrates.1-6 A key aspect to many of these reactions is the 

ability of gold to activate π bonds for subsequent nucleophilic addition.5, 7-9 Gas-phase studies 

can elucidate the intrinsic interactions of gold-containing species, and there have been extensive 

investigations of the reactivity and bonding of bare and ligated gold complexes, particularly 

cationic species.10-14 Complexes of Au and Au+ with acetylene and ethylene have been studied 

extensively, both experimentally and computationally. There is much less known about the 

interactions of gold hydrides with alkenes and alkynes, although these species have been 

proposed as reaction intermediates in homogeneous catalysis.2, 15-16 

Most reaction studies of neutral metal atoms monitor the loss of the atom, so the products 

aren’t known.14 Studies of reactions of metal cations typically also measure product masses, but 

isomeric products aren’t identified. In the present study gold-containing compounds are 

produced by reacting laser-ablated gold atoms with ethylene and acetylene. The masses of 

reaction products are determined by photoionization and mass spectrometry. In addition, the use 

of tunable VUV from a synchrotron for ionization allows us to measure the photoionization 

efficiency (PIE) as a function of photon energy. This often permits differentiation between 

possible isomers based on differences in their ionization energy and calculated PIEs. This feature 

has been demonstrated in numerous studies of reactions of main-group atoms and transition 

metals carried out at the Chemical Dynamics Beamline with tunable VUV radiation.17-24 

The development of efficient computational methods to accurately treat relativistic 

effects is an active area of theory. Relativistic effects are extremely important in the chemistry of 

gold,25-26 so gold-containing compounds are often used to benchmark new computational 

approaches.26-28 Thus, an added motivation for these experiments is to provide accurate 

ionization energies that can be used to evaluate electronic structure methods. 

  

2. Experimental and Computational Methods 

The photoionization experiments were carried out at the Chemical Dynamics Beamline at 

the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory.17-20 As in our 

study of the intermediates and products of reactions of platinum with methane23 the neutral 
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molecules of interest are produced via pulsed laser ablation and subsequent reactions and are 

characterized by measuring their mass-analyzed photoionization efficiency curves (PIE).  

Laser ablation (532 nm second harmonic of a Nd:YAG laser operating at 50 Hz repetition 

rate) of a brass rod plated with gold (Fountain Plating, Springfield, MA, 99.97% pure) produces 

gold atoms that then cluster and/or react with the gaseous hydrocarbon of interest (methane, 

ethene or acetylene) introduced via a pulsed piezoelectric valve. The molecules cool in the 

supersonic expansion. The resulting molecular beam is skimmed and the neutral molecules are 

irradiated by VUV light. The beamline provides tunable VUV light with photon energies of 8-16 

eV, pulsed at a repetition rate of 500 MHz.  The VUV line width is determined by the slit width 

on a 3 meter monochromator. Due to the low signal levels, all data was obtained using 1300 µm 

slits, which corresponds to FWHM of ~40 meV at 9 eV and ~50 meV at 10 eV. A pulsed voltage 

extracts the photo-ions into a reflectron time-of-flight mass spectrometer where they are detected 

and tallied by a dual micro channel plate detector and fast counter. Ion masses are determined 

from their flight times. Mass spectra are measured at each VUV photon energy, summing the 

signal over 10000 to 20000 laser shots at each energy. PIEs are measured by integrating the area 

under the peak in the mass spectrum corresponding to each ion of interest, normalized to VUV 

flux measured using a silicon photodiode, at each VUV energy.  Error bars in the PIE are based 

on counting statistics. 

Calculations were carried out to identify possible structures for the neutral molecules 

observed, their energetics, ionization energies and, in most cases, to simulate their PIEs. The 

electronic structure calculations were carried out using Gaussian09,29 employing the CAM-

B3LYP functional with the aug-cc-pVTZ-PP relativistic effective core potential and basis set30 

for gold and aug-cc-pVTZ basis set for carbon and hydrogen. This functional and basis set give 

ionization energies in excellent agreement with experiment for species involved in the Pt + CH4 

reaction23 and agree with benchmark CCSD(T) calculations for energetics of gold atom-

catalyzed oxidation of CO.31 Harmonic frequencies were calculated at each stationary point to 

ensure that it is a minimum and are not scaled. All reported energies include zero-point energy. 

Calculations use the ultrafine integration grid. Calculated and measured ionization energies are 

summarized in Table 1 and dissociation energies are collected in Table 2. Energies and 

calculated structures of all species discussed, including Au(C2H2) and singlet and triplet states of 

Au+(C2H2), are in Table S1. 
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In most cases, PIE curves are calculated by computing the geometries and vibrations of 

the neutral and cation, and calculating Franck-Condon factors (FCFs) for each vibration. The 

products of the Franck-Condon factors are then integrated and convolved with a Gaussian 

function with the VUV linewidth.23, 32 If the neutral and cation have the same symmetry, FCFs 

are calculated in Gaussian09 using harmonic oscillators. If one is of lower symmetry, then the 

potential is scanned along the vibration which breaks the symmetry, and FCFs for that vibration 

are calculated numerically. Similarly, if there is a large geometry change in a coordinate on 

ionization, the potential is scanned and, if it is not harmonic, FCFs are calculated numerically. 

The ionization energy is determined by shifting the energy origin of the simulation until it 

provides the best match to the measured PIE spectrum.  In some cases, the PIE extends to 

sufficiently high energies that photoionization can access excited electronic states of the cation. 

To estimate the relative contributions of the ground and excited states to the PIE as a function of 

photon energy, we calculate the photoionization cross section using ePolyScat (version E),33 

developed by the groups of Lucchese and Gianturco.34-36 Details of the procedure for the 

photoionization cross section calculations are in the SI. 

 
3. Results and Discussion 

A. Reaction Products 

 A small amount of AuH is observed from reaction of laser-ablated gold atoms with 

methane. Reaction with acetylene produces molecules with even numbers of hydrogens, 

[Au,C2,H2], [Au,C4,H4] and [Au2,C2,H2], as well as one with odd numbers of hydrogens: 

[Au,C4,H3], as shown in Figure 1. Similarly, reaction with ethylene yields the even-hydrogen 

complexes [Au,C2,H4], [Au,C4,H8] and [Au2,C2,H4] and odd-hydrogen complexes AuH, 

[Au,C2,H5], [Au,C4,H5] and [Au,C4,H7]. Photoionization efficiency curves (PIEs) are 

measured for each molecule. The structure of the isomer produced by the reaction is determined 

by comparing the measured ionization energy and PIE to those calculated for candidate 

structures. The even- and odd-hydrogen complexes will be discussed separately. 

 

B. Even-Hydrogen Complexes 

All of the even-hydrogen products are non-covalent complexes formed by clustering of 

gold or gold dimer to ethylene or acetylene. The PIE of [Au,C2,H2], Figure 2, shows a small 
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amount of ionization at the lowest photon energy measured, 8 eV, with the photoionization cross 

section increasing gradually and steadily above ~9.5 eV. Non-covalent complexes of Au with 

alkanes are expected to have ionization energies much lower than those of gold atom (9.226 

eV),37 as the charge leads Au+ to bind more strongly to alkanes than Au0. Also, the PIE typically 

increases only gradually with energy, as the neutral and cation have substantially different 

geometries, as shown in Figure 3. The calculations predict that the ionization energy of 

Au(C2H2) is 7.06 eV. This low ionization energy is due to the large difference between the Au+-

C2H2 and Au-C2H2 bond dissociation energies, 2.35 eV and 0.16 eV, respectively. If there is no 

geometry change upon ionization, the calculations predict that the photoionization cross section 

rises sharply at the ionization energy and then slowly decreases with increasing photon energy. A 

change in geometry upon ionization leads to a more gradual onset. These features are clearly 

observed in the PIEs of Au(C2H2), Figure 2 and Au(C2H4), Figure S2. The observed increase in 

the PIE at higher energy is due to ionization to excited electronic states of Au+(C2H2), with a 

calculated onset of 9.82 eV to formation of the lowest triplet state. Several additional triplet 

states and excited singlet states are predicted to become accessible at photon energies of 10.2 to 

11 eV, as shown in Figure 2. Surprisingly, the vinylindene complex AuCCH2 is calculated to lie 

only 0.09 eV above Au(C2H2). Its ionization energy to AuCCH2
+ is predicted to be quite low, 

7.43 eV. Although the experiment offers no evidence for or against its presence, there is likely to 

be a significant barrier to its formation from Au + C2H2. Matrix isolation studies of gold atoms 

co-deposited with acetylene observe Au(C2H2) π-complexes and structures analogous to vinyl 

radical, with gold substituted for one of the hydrogen atoms at ~4 K, and AuCCH2 at 77 K.38-40 

Our calculated Au+-C2H2 dissociation energy agrees with the value of 2.42 eV obtained by Kang 

et al.9 at the CCSD(T) level, extrapolated to the complete basis set limit. Several DFT 

calculations also predict similar bond dissociation energies.9, 41 The calculations predict that the 

C-C bond lengthens by 0.014 Å when C2H2 binds to Au; this extension is greater for the Au+ 

complex, 0.035 Å. Ward et al.42 measured vibrational spectra of Au+(C2H2)n complexes in the C-

H stretching region, using IR photodissociation of the argon-tagged complexes for the n=1 and 2 

clusters. They find that binding to the metal cation results in a red shift of ~115 cm-1 in the 

acetylene C-H stretches for n=1 and ~100 cm-1 for n=2. This red shift is consistent with the 

classic Dewar-Chatt-Duncanson model of metal coordination.43-44 The PIE of [Au,C4,H4] from 

Au + C2H2 is shown in Figure S1. The ionization energy is below 8 eV, and the photoionization 
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yield increases steadily starting at ~8.5 eV. This is consistent with it being due to Au(C2H2)2. 

There is a small amount of [Au2,C2,H2] formed by reaction of gold with C2H2. It is likely 

Au2(C2H2). However, the signal is too low to measure an accurate PIE curve. 

Interaction of laser-ablated gold atoms with ethylene produces [Au,C2,H4], [Au,C4,H8] 

and [Au2,C2,H4]. The PIE of [Au,C2,H4], Figure S2, shows substantial signal at the lowest 

photon energy, 8 eV, is flat until ~9.25 eV, then increases gradually. This is consistent with 

Au(C2H4) (Fig. 3), which is calculated to have an ionization energy of 6.86 eV. Ionization to the 

lowest excited electronic state, the triplet, is calculated to occur at 9.63 eV. The covalent 

AuCHCH3 isomer is calculated to lie 0.58 eV above Au(C2H4), so it is not likely to be formed. 

McIntosh and Ozin measured the vibrational and electronic spectra of Au(C2H4) in an argon 

matrix.45 This study and a subsequent ESR/matrix isolation study by Kasai38 only observe the 

Au(C2H4) π complex. There is about an order of magnitude more Au+(C2H4) signal from Au + 

C2H4 than Au+(C2H2) from Au + C2H2. The calculations predict similar photoionization cross 

sections for the corresponding neutrals, so the increased signal is likely due to the higher 

calculated bond dissociation energy of Au to C2H4, 0.24 eV, than C2H2, 0.16 eV. 

Our calculations predict that the low IE of Au(C2H4) is due to the very high bond 

dissociation energy of Au+-C2H4, 2.62 eV. There are numerous calculations of the Au+(C2H4) 

bond dissociation energy (BDE). Particularly noteworthy are an atoms-in-molecules bonding 

analysis study by Hertwig et al.46 who determined that it should be classified as a 

metallocyclopropane, and an energy decomposition analysis of the bonding by Nechaev et al.47 

These studies calculated BDEs of 2.97 and 3.16 eV at the B3LYP/RECP and BP86/TZP levels, 

respectively. Calculations at the CCSD(T) level with an extrapolation to the complete basis set 

limit by Kang et al.9 predict a BDE of 2.77 eV; this study also calculated BDEs with several 

density functionals. Li et al. carried out a relativistic CCSD(T) calculation with a large basis set, 

obtaining a BDE of 2.70 eV.48 Experimentally, Bowers and coworkers49 used temperature-

dependent equilibrium measurements to determine the bond dissociation energies of Aux
+ (x=1, 

3-9) with C2H4. They obtain a bond dissociation enthalpy 2.60 eV ≤ ∆H(Au+-C2H4) ≤ 3.09±0.11 

eV. Schröder et al. determined a lower limit of BDE ≥ 2.82 eV based on the observed reaction of 

Au+ with iodobenzene to give AuI+ and reaction of ethene with AuI+ to give Au+(C2H4).10, 50 

Stringer et al. observe an onset of 28,800 cm-1 (3.57 eV) for production of Au+ from 

photodissociation of Au+(C2H4), providing an upper limit to the BDE.51-52 Based on the high-
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level CCSD(T) calculations, the BDE is likely to be very close to the experimental lower limit of 

Schröder et al. Both Au(C2H4) and Au+(C2H4) are calculated to have C2v symmetry. The Au-C 

bond lengths are substantially shorter in the cation, and the C-C bond length is significantly 

longer. Binding to Au+ is predicted to lengthen the C-C bond in C2H4 by 0.067 Å, further 

supporting its assignment as a metallocyclopropane. 

Gold atoms and cations interact slightly more strongly with C2H4 than with C2H2. This is 

evident in the calculated bond dissociation energies, which are 0.08 eV and 0.27 eV higher for 

the neutrals and cations, respectively (Table 2). This is consistent with previous DFT and 

CCSD(T) calculations.9, 53 This effect is not unique to gold – it is also calculated to occur in 

complexes of first-row transition metal cations, for which Sodupe et al. attributed the higher 

bond dissociation energy for C2H4 to be due to its higher polarizability, particularly along the 

metal-ligand axis.54 The PIE of [Au,C4,H8], also shown in Figure S2, is similar to that of 

Au(C2H4) and is consistent with formation of Au(C2H4)2. Again, the ionization energy is below 8 

eV, and the cross section increases above 8.8 eV. 

 Unlike the other even-hydrogen species, we do observe the photoionization onset for 

Au2(C2H4), as shown in Figure 4. The ionization energy of Au2(C2H4) is calculated to be 8.16 

eV. We determine its ionization energy by simulating the PIE curve, and shifting it until it 

matches the data. This gives IE(Au2(C2H4)) = 8.42 ± 0.05 eV. Our calculations predict that the 

C2H4 binds to one Au atom, forming a T-shaped complex. The photoionization onset is due to 

removing an electron from the HOMO, which is primarily a 5s orbital on the Au atom further 

from the C2H4. The increased photoionization yield above 9.5 eV is due to removing an electron 

from 4d orbital(s) on one or both Au. The ionization energy of Au2 is calculated to be 9.09 eV, in 

good agreement with the measured value of 9.20±0.21 eV.55 This is slightly lower than IE(Au), 

but the bond dissociation energy of ethene to Au2 is calculated to be 1.06 eV, significantly larger 

than in Au(C2H4), while the bond dissociation energy of ethene to Au2
+ is 1.99 eV, significantly 

smaller than in Au+(C2H4). There are only small changes in the geometry of Au2(C2H4) upon 

ionization, as shown in Figure 3, leading to a fairly sharp photoionization onset. More broadly, 

the calculations predict that the Au-Au bond lengths of Au2 and Au2
+ increase only 0.005 Å upon 

binding to C2H4. The C-C bonds in the neutral and cation lengthen considerably more, by about 

0.05 Å. This is only slightly smaller than the lengthening observed upon Au+ binding. Lang et al. 

measured the vibrational spectra of Au2
+(C2H4) and larger clusters in the fingerprint region using 
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IRMPD and a free-electron laser.56 The vibrational spectrum is consistent with the π-bonded 

structure shown in Figure 3. Their calculations agree with ours, and both predict that binding to 

Au2
+ induces substantial weakening of the C-C bond in ethylene, as do calculations on neutral 

Au2(C2H4) by Kang et al.57 

 

 

C. Odd-Hydrogen Complexes 

Although other structures are plausible, and in some cases are predicted to be more 

stable, the odd-hydrogen products have an AuH moiety. Reaction of laser-ablated gold atoms 

with ethylene produces AuH, as shown in Figure 1. Reaction with methane and acetylene also 

forms AuH, but to a lesser extent. A small amount of the very large Au+ signal bleeds into the 

adjacent AuH+ mass. This contribution has been removed in the PIE, shown in Figure 5. The PIE 

consists of a sharp onset at 10.3 eV, giving IE(AuH)=10.25±0.05 eV. Our calculations predict 

that AuH has a 1Σ+ ground state with re=1.5393 Å, and AuH+ has a 2Σ+ ground state, with a 

nearly identical bond length of 1.5387 Å, as shown in Figure 6. Thus, the photoionization onset 

should be sharp, as is observed. The calculated ionization energy is 10.12 eV, in good agreement 

with experiment. 

Although AuH emissions were observed58 in the flame spectrum of gold in 1901, it took 

over two decades for the carrier of the bands to be identified.59 Since, there have been numerous 

experimental studies of AuH, including electronic,60-64 vibrational,65-66 and rotational67 spectra, 

as well as photoelectron spectroscopy of the anion.68 There have also been many computational 

studies of AuH, as it is a benchmark system for high-level calculations of relativistic effects.26, 69-

74 Our calculated bond length re=1.5393 Å is slightly longer than the experimental value, 

re=1.5237 Å.65 The experimental dissociation energy, D0=3.22±0.13 eV, is derived from 

extrapolation of vibrational levels of the a, b, c and B excited electronic states, which dissociate 

to Au* (2D3/2).62-63, 75 This value is slightly higher than our calculated D0=2.91 eV. 

Much less is known about AuH+. The bond strength has been measured to be 2.13±0.11 

eV from the endothermic reaction of Au+ with H2 and D2,76 and there have been several 

calculations on the ion.69, 71, 77-80 Our calculated D0=2.03 eV agrees with the experimental value. 

The bond strength of AuH can be determined by combining the experimental bond strength of 

AuH+ and the ionization energies of gold and AuH: 
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D0(Au-H) = D0(Au+-H) + IE(AuH) – IE(Au) 

This gives D0(Au-H) = 3.15±0.12 eV, which confirms the value inferred from AuH 

spectroscopy. This is a very high bond strength for a metal hydride, and much of the bond 

strength is due to relativistic effects.26, 70, 72-73 As a result of its high stability, AuH is produced by 

the reactions of Au+ with linear alkanes from propane to n-hexane.13 

 There is signal observed at 224 amu, the mass of [Au,C2,H3], from reaction of gold with 

ethylene and acetylene. However, its PIE is very inconsistent from scan to scan and is observed 

at very low photon energies, so much of it is likely due to the isobaric AuAl, which is produced 

by the laser striking the aluminum ablation block. This is supported by the observation of small 

amounts of signal at 27 amu (Al), 251 amu (AuAl2) and 421 amu (Au2Al). Reaction of laser-

ablated gold atoms with ethylene produces the odd-hydrogen species [Au,C2,H5], whose PIE  

(Fig. 7) shows a fairly sharp onset at 9.35 eV. There are two likely structures. The lowest energy 

isomer is predicted to be HAu(C2H4), an adduct of AuH with ethylene (Fig. 6), with a calculated 

ionization energy of 9.21 eV. The AuC2H5 isomer is calculated to lie 0.13 eV higher in energy, 

and to have an ionization energy of only 8.80 eV (to AuC2H5
+). The observed ionization energy 

of 9.35±0.05 eV clearly favors HAu(C2H4). 

Several larger odd-hydrogen species are also observed: [Au,C4,H3] from acetylene and 

[Au,C4,H5] and [Au,C4,H7] from ethylene. Their PIEs are shown in Figure 8 and calculated 

low-lying structures for the neutrals and their corresponding cations are in Figure 9. The only 

odd-hydrogen species clearly observed in the reaction of gold with acetylene is [Au,C4,H3]. The 

PIE spectrum of [Au,C4,H3] (Fig. 8A) has a fairly gentle onset near 9 eV. The lowest-energy 

[Au,C4,H3] isomer is Au–C≡C–C(H)=CH2 (Table S1) but it is calculated to have an ionization 

energy of only 8.36 eV. The gold alkyl complex H–C≡C-Au(C2H2), in which the Au is 

coordinated to the C-C triple bond in acetylene is predicted to be 0.37 eV higher in energy and to 

have an ionization energy of 8.93 eV. The calculations predict only a small geometry change on 

ionization, leading to a much sharper onset in the simulation than is observed experimentally. 

The HAu(C4H2) isomer, in which the gold straddles a triple bond in diacetylene, is calculated to 

lie another 0.25 eV higher in energy. The calculated IE is 9.02 eV, also consistent with the 

experiment. Simulating the spectrum, including Franck-Condon factors, gives the PIE shown in 

Fig. 8A, which provides a good match to experiment. The calculations predict that there is a 

fairly large geometry change upon ionization, particularly in the H-Au-C angle and H-Au-C-H 
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torsion. This results in a gradual onset to the PIE curve, and an observed threshold ~0.2 eV 

above the adiabatic IE. The best fit to the experiment is IE=8.8 ± 0.1 eV, with the uncertainty 

reflecting the potential error in the calculated geometries. One concern is that we may be 

observing HAu(C4H2) due to HAu clustering to a diacetylene impurity in the acetylene. The 

mass spectrum does have signal from C4H2, and the PIE matches that of diacetylene.81 However, 

its intensity is only about a factor of four larger than that of [Au,C4,H3] and the calculated 

photoionization cross sections are similar, so its concentration is extremely low. 

The PIE of [Au,C4,H5] is similar to that of [Au,C4,H3], with a fairly gentle onset near 

9.1 eV (Figure 8B). This suggests that it has a similar structure, with an HAu core. The lowest 

energy [Au,C4,H5] isomer is calculated to be Au–C(H)=C(H)–C(H)=CH2, in which gold 

replaces one of the terminal hydrogens in butadiene (Table S1). However, this isomer has a 

calculated ionization energy of only 8.24 eV and is not observed. A second isomer, HC≡C–

Au(C2H4) in which the gold alkyl AuCCH is coordinated to ethylene (Fig. 9) is calculated to lie 

only 0.13 eV higher in energy and to have an ionization energy of 8.98 eV. However, there is 

little geometry change on ionization, so the simulated PIE has a much sharper onset than is 

observed (Fig. 8B). A further 0.32 eV higher in energy is HAu(C4H4), a complex of AuH with 1-

buten-3-yne, with the Au coordinated to the triple bond (Fig. 9), which has a calculated 

ionization energy of 8.77 eV. As with HAu(C4H2), there is substantial geometry change on 

ionization, especially in the H-Au-C angle and H-Au-C-H torsion. This again leads to a gradual 

onset of the PIE curve, with an observed threshold ~0.3 eV above the adiabatic IE, as shown by 

the simulation in Fig. 8B. A good fit to experiment is obtained with IE=8.8 ± 0.1 eV. The isomer 

with gold attached to the double bond is calculated to be 0.07 eV higher in energy and to have a 

similar IE. Two additional isomers are calculated to lie significantly higher in energy and to have 

low ionization energies: a HAuC4H4 metallocyclopentadiene and HAu(C2H2)2, which are 

predicted to lie 1.10 and 1.63 eV above HAu(C4H4), respectively and have IE’s below 8.3 eV. 

They are likely not observed. 

The PIE of [Au,C4,H7] (Fig. 8C) is qualitatively different from that of [Au,C4,H5]. Its 

onset occurs at much lower energy (~8.5 eV) and is more gradual. This suggests that the cation is 

substantially more strongly bound than the neutral and there is significant geometry change upon 

ionization. There are many possible isomers, and multiple isomers could contribute to the PIE. 

One low-energy structure is HAu(C4H6) (Fig. S1), with the gold coordinated to a double bond in 
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butadiene. Its ionization energy is calculated to be 8.63 eV. As with HAu(C4H4), there is 

substantial geometry change on ionization. The resulting shift in the ionization onset would 

likely place it above the experimental onset. A more likely contributor to the signal at low 

photon energy is H2C=C(H)–Au(C2H4), in which the gold is coordinated to the double bond in 

ethylene (Fig. S1). It is calculated to lie 0.31 eV above HAu(C4H6) and to have an ionization 

energy of 8.17 eV. There is a large geometry change on ionization, and the vertical IE is 

calculated to be 8.90 eV. This could lead to the observed slow onset, and shift it to higher 

energy. In addition, there are several possible isomers that correspond to butene with gold 

replacing one hydrogen which lie at similar energies and have similar ionization energies. One 

representative gold-alkyl structure, Au-CH2CH2CH=CH2, is shown in Fig. S1. It is 0.37 eV 

above HAu(C4H6). It has IE=8.16 eV and a vertical IE of 8.97 eV, so the PIE would be very 

similar to that of H2C=C(H)–Au(C2H4). Two other structures are at substantially higher energy 

and have lower IEs and large geometry change on ionization. Although metallocycles are formed 

by intracluster reactions in Ni+(C2H2)n
82 and in sequential reactions of La atoms with acetylene 

and ethylene,83-84 analogous gold-containing metallocycles are calculated to be energetically 

unfavorable. The metallocycle HAu-C4H6 in which the gold and carbons form a five-membered 

ring is 1.50 eV above HAu(C4H6), and has an IE of only 7.31 eV. Even less likely is 

HAu(C2H4)(C2H2), which has one ligand in the second shell, so it is quite weakly bound. It is 

1.70 eV above HAu(C4H6), and has an IE of 8.14 eV. Although the PIE is not definitive, the 

most likely structure is the H2C=C(H)–Au(C2H4) gold alkyl. 

The observation of odd-hydrogen species is surprising. At room temperature and low 

pressures, no reaction is observed between gold atoms and ethylene,14 as  

 Au + C2H4 → AuH + C2H3  

is endothermic by 1.5 eV. Production of AuH from acetylene is even more endothermic, by 2.6 

eV. In our experiment, this reaction likely occurs due to production of translationally hot or 

electronically excited gold atoms in the ablation source. The lowest excited states of Au are  
2D5/2 at 1.136 eV and 2D3/2 at 2.658 eV. Transitions from these states, which have a  …5d96s2 

electronic configuration, to the 2S1/2 (…5d106s1) ground state are optically forbidden, so they are 

long lived. Subsequent clustering of gold hydride with acetylene or ethylene, respectively would 

produce HAu(C2H2) and HAu(C2H4). The calculations predict that these molecules are 

coordinatively saturated. Additional ligands form a second solvent shell, with very low bond 
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dissociation energies, so larger adducts are not observed. The gold alkyl H2C=C(H)–Au(C2H4) is 

likely produced by reaction of hot Au atoms: 

  Au + C2H4 → AuC2H3 + H 

followed by clustering with C2H4. 

Our calculations show that AuH is intermediate between neutral gold atoms and Au+ in 

its bond dissociation energies to ethylene and acetylene and the extent to which it distorts the 

geometry of the ligand, suggesting that it has potential for activation of unsaturated 

hydrocarbons. Although gold hydrides have long been proposed as reaction intermediates in 

homogeneous catalysis,2 it took until 2008 for the first gold hydride to be isolated under 

preparative conditions. It was AuH complexed to the N-Heterocycle Carbene (NHC) 1,3-bis(2,6-

diisopropylphenyl)imidazol-2-ylidene.85 Gold hydride – NHC complexes are promising catalysts 

for olefin polymerization,16 and investigations of their heterogeneous chemistry should advance 

rapidly with the availability of stabilized gold hydrides. It is thus possible that gas-phase AuH, 

which is coordinatively unsaturated, can sequentially react with C2H2 and C2H4 via C-C coupling 

and dehydrogenation to produce HAu(C4H2) and HAu(C4H4), respectively. 

 

4. Summary and Conclusions 

 Laser-ablated gold atoms exhibit a surprisingly rich chemistry with acetylene and 

ethylene. The species produced are identified from their masses and by comparing their PIE 

curves to those calculated for potential isomers. This also determines their ionization energies. In 

addition to adducts such as Au(C2H2) and Au(C2H4), an adduct with gold dimer, Au2(C2H4), is 

observed. The most interesting species formed are a series of odd-hydrogen molecules that are 

identified to be gold hydrides, AuH, HAu(C2H4) and HAu(C4Hx) (x=2, 4) which are likely 

produced by reaction of translationally or electronically excited gold atoms.  
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Figure 1: Mass spectra of reaction products of laser-ablated Au with C2H2 (top) and C2H4 
(bottom) following VUV ionization at 10.3 eV. The Au signal is a factor of 10 larger than that of 
gold-containing molecules. 
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Figure 2: Measured and calculated PIE curve of Au+(C2H2).   
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Figure 3: Structures of gold complexes with even numbers of hydrogens calculated at the CAM-
B3LYP-aug-cc-pVTZ level. Key bond lengths are in Å. Ionization energies are in italics.   
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Figure 4: Measured and simulated PIE curve of Au2(C2H4).  
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Figure 5: Measured and simulated PIE curve of AuH.  
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Figure 6: Structures of smaller gold complexes with odd numbers of hydrogens calculated at the 
CAM-B3LYP-aug-cc-pVTZ level. Bond lengths are in Å. Ionization energies are in italics. 
Relative energies of neutral isomers are given below the structures. 
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Figure 7: Measured and simulated PIE curve of HAu(C2H4).  
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Figure 8: Experimental and simulated PIEs of A) [Au,C4,H3], B) [Au,C4,H5] and C) 
[Au,C4,H7]. 
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Figure 9: Structures of [Au,C4,H3] and [Au,C4,H5] neutrals and cations calculated at the CAM-
B3LYP-aug-cc-pVTZ level, with bond lengths in Å. Ionization energies are in italics. Energies 
of neutral isomers, relative to the lowest-energy isomer, are given below the structures. 
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Species Calculated Experiment 

Au 9.24 9.226 37 

Au(C2H2) 7.06 < 8.0 

Au(C2H4) 6.86 < 8.0 

AuH 10.12 10.25±0.05 

HAu(C2H2) 9.31  

HAu(C2H4) 9.21 9.35±0.05 

AuC2H5 8.80  

HAu(C4H2) 9.02 8.8±0.1 

HAu(C4H4) 8.77 8.8±0.1 

HAu(C4H6) 8.63  

H2C=C(H)-Au(C2H4) 8.17  

Au-CH2CH2CH=CH2 8.16  

Au2 9.09 9.20±0.21 55 

Au2(C2H4) 8.16 8.42±0.05 

 

 

Table 1: Measured and calculated (CAM-B3LYP/aug-cc-pVTZ) adiabatic ionization energies, in 

eV. Measured values are from this work, unless otherwise noted. 
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Species Neutral Cation 

Au–C2H2 0.16 2.35 

Au–C2H4 0.24 2.62 

Au–H 2.91 2.03 

HAu–C2H2 0.90 1.72 

HAu–C2H4 0.95 1.86 

HAu–C4H2 0.80 1.91 

HAu–C4H4 0.91 2.26 

HAu–C4H6 0.91 2.40 

Au–Au 1.92 2.07 

Au2–C2H4 1.06 1.99 

 

 

Table 2: Calculated (CAM-B3LYP/aug-cc-pVTZ)  bond dissociation energies, in eV.  
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