
UC Davis
IDAV Publications

Title
Mio: Fast Multipass Partitioning via Priority-Based Instruction Scheduling

Permalink
https://escholarship.org/uc/item/7ff751pf

Authors
Riffel, Andrew
Lefohn, Aaron
Vidimce, Kiril
et al.

Publication Date
2004

DOI
10.1145/1058129.1058135
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7ff751pf
https://escholarship.org/uc/item/7ff751pf#author
https://escholarship.org
http://www.cdlib.org/


Graphics Hardware (2004)
T. Akenine-Möller, M. McCool (Editors)

Mio: Fast Multipass Partitioning via Priority-Based
Instruction Scheduling

Andrew Riffel�, Aaron E. Lefohn�†, Kiril Vidimce†, Mark Leone†, and John D. Owens�

�University of California, Davis †Pixar Animation Studios

Abstract

Real-time graphics hardware continues to offer improved resources for programmable vertex and fragment
shaders. However, shader programmers continue to write shaders that require more resources than are avail-
able in the hardware. One way to virtualize the resources necessary to run complex shaders is to partition the
shaders into multiple rendering passes. This problem, called the “Multi-Pass Partitioning Problem” (MPP), and
a solution for the problem, Recursive Dominator Split (RDS), have been presented by Eric Chan et al. The O(n3)
RDS algorithm and its heuristic-based O(n2) cousin, RDSh, are robust in that they can efficiently partition shaders
for many architectures with varying resources. However, RDS’s high runtime cost and inability to handle multiple
outputs per pass make it less desirable for real-time use on today’s latest graphics hardware. This paper redefines
the MPP as a scheduling problem and uses scheduling algorithms that allow incremental resource estimation
and pass computation in O(n logn) time. Our scheduling algorithm, Mio, is experimentally compared to RDS and
shown to have better run-time scaling and produce comparable partitions for emerging hardware architectures.

Categories and Subject Descriptors (according to ACM CCS): I.3.2 [Computer Graphics]: Graphics Systems; D.3.4
[Programming Languages]: Processors—Compilers

1. Introduction

Recent advances in architecture and programming inter-
faces have added substantial programmability to the graph-
ics pipeline. These new features allow graphics program-
mers to write user-specified programs that run on each vertex
and each fragment that passes through the graphics pipeline.
Based on these vertex programs and fragment programs,
several groups have developed shading languages that are
used to create real-time programmable shading systems that
run on modern graphics hardware.

The ideal interface for these shading languages is one that
allows its users to write arbitrary programs for each vertex
and each fragment. Unfortunately, the underlying graphics
hardware has significant restrictions that make such a task
difficult. For example, the fragment and vertex shaders in
modern graphics processors have restrictions on the length
of programs, on the number of constants and registers that
may be accessed in such programs, and the control flow con-
structs that may be used.

Each new generation of graphics hardware has raised
these limits. As an example, Microsoft’s DirectX graphics
standard specifies the maximum size in instructions of vertex
and fragment (pixel) shader programs, and graphics hard-
ware has closely tracked these limits. For instance, the vertex
shader 1.0 specification allowed 128 instructions, and the 2.0
and 3.0 specifications increased this limit to 256 and 512 in-
structions, respectively. Fragment programs have increased
in instruction size even more quickly: while version 1.3 pixel
shaders could only run 12 instructions, version 2.0 increased
this limit to 96 instructions, and version 3.0 supports a min-
imum of 512 instructions (with looping allowing a dynamic
instruction count of up to 65,536).

This rapid increase in possible program sizes, coupled
with parallel advances in the capability and flexibility of ver-
tex and fragment instruction sets, has led to corresponding
advances in the complexity and quality of programmable
shaders. For many users, the limits specified by the latest
standards already exceed their needs. However, at least two
major classes of users require substantially more resources

c© The Eurographics Association 2004.



To Appear at Siggraph/Eurographics Graphics Hardware 2004

for their applications of interest, and it is these users whom
we target with this work.

The first class of users we target are those who require
shaders with more complexity than current hardware can
support. Many shaders in use in the fields of photorealis-
tic rendering or film production, for instance, exceed the
capabilities of current graphics hardware by at least an or-
der of magnitude. The popular RenderMan shading lan-
guage [Ups90] is often used to specify these shaders, and
RenderMan shaders of tens or even hundreds of thousands
of instructions are not uncommon. Implementing these com-
plex RenderMan shaders is not possible in a single vertex or
fragment program.

The second class of users we target use graphics hard-
ware to implement general-purpose (often scientific) pro-
grams. This “GPGPU” (general-purpose on graphics pro-
cessing units) community targets the programmable features
of the graphics hardware in their applications, using the in-
herent parallelism of the graphics processor to achieve su-
perior performance to microprocessor-based solutions. Like
complex RenderMan shaders, GPGPU programs often have
substantially larger programs than can be implemented in a
single vertex or fragment program. They also may have more
complex outputs; instead of a single color, they may need to
output a compound data type.

To implement larger shaders than the hardware allows,
programmers have turned to multipass methods in which
the shader is divided into multiple smaller shaders, each of
which respects the hardware’s resource constraints. These
smaller shaders are then mapped to multiple passes through
the graphics pipeline; each pass produces results that are
saved for use in future passes.

The key step in this process is the efficient partition-
ing of the shader into several smaller shaders. Chan et
al. call this the “multipass partitioning problem”. In their
2002 paper, they propose a solution to this problem with
a polynomial-time algorithm entitled “Recursive Domina-
tor Split” (RDS) [CNS∗02]. Currently, RDS is the state of
the art in solving the multipass partitioning problem. ATI’s
prototype Ashli compiler [BP03], for example, uses RDS to
partition its input RenderMan and GL Shading Language
shader programs into multiple passes for use on graphics
hardware. The OpenGL Shading Language is an example
of a language that requires solutions to the multipass parti-
tioning problem such as RDS: it calls for shading language
implementations to “virtualiz[e] resources that are not easy
to count”, including the “number of machine instructions in
the final executable” [KBR03].

Despite its success, RDS has two major deficiencies that
have made it less than ideal for use in modern graphics sys-
tems.

• First, shader compilation in modern graphics systems is
performed dynamically at the time the shader is run. Con-

sequently, graphics vendors require algorithms that run as
quickly as possible. Given n instructions, the runtime of
RDS scales as O(n3). Even the heuristic version of RDS,
RDSh, scales as O(n2). This high runtime cost makes
RDS and RDSh undesirable for implementation in run-
time compilers.

• Second, RDS assumes a hardware target that can output
at most one value per shader per pass. While the hardware
targeted by RDS at the time conformed to this restriction,
more modern hardware allows multiple outputs per pass,
and the RDS algorithm does not handle this capability.
Because allowing more outputs in each pass implies more
operations that generate those outputs, supporting multi-
ple render targets per pass increases the effective number
of operations that can be scheduled in a single pass.

In this work we present Mio, an instruction scheduling ap-
proach to the multipass partitioning problem that addresses
these two deficiencies. Our algorithms have better complex-
ity than RDS (O(n logn) in the average case and Ω(n2) in
the worst case) and efficiently utilize multiple outputs per
pass. In addition, though we do not explore this point in this
work, our solutions will continue to be applicable as shader
programs use control flow.

The remainder of this paper is organized as follows. In the
next section we describe the previous work in this field, and
in Section 3 the RDS algorithm in detail. In Section 4, we de-
scribe our algorithms and techniques that we have developed
to solve the multipass partitioning problem. We explain our
experimental setup in Section 5 and our results and discus-
sion in Section 6. Our future work is enumerated in Section 7
and we conclude in Section 8.

2. Previous Work

Shading languages were introduced by Rob Cook in his sem-
inal paper on shade trees [Coo84], which generalized the
wide variety of shading and texturing models at the time
into an abstract model. He provided a set of basic operations
which could be combined into shaders of arbitrary complex-
ity. His work was the basis of today’s shading languages, in-
cluding Hanrahan and Lawson’s 1990 paper [HL90], which
in turn contributed ideas to the widely-used RenderMan
shading language [Ups90].

While these shading languages were not meant for inter-
active use, several recent languages target real-time shad-
ing applications. Olano and Lastra developed a shading lan-
guage for the PixelFlow graphics system in 1998; three
years later, Proudfoot et al. targeted the programmable
stages of NVIDIA and ATI hardware with their Real-Time
Shading Language (RTSL) [PMTH01]. Many of RTSL’s
ideas were incorporated into NVIDIA’s Cg shading lan-
guage [MGAK03], also aimed at modern graphics hardware.
Other notable shading languages for today’s graphics pro-
cessors include SMASH [McC01] and the OpenGL Shading
Language [KBR03].



To Appear at Siggraph/Eurographics Graphics Hardware 2004

Peercy et al. implemented a shading compiler on top of
OpenGL hardware [POAU00]; they characterized OpenGL
as a general SIMD computer and mapped RenderMan
shaders to this SIMD framework. To map complex shaders
to the multiple OpenGL passes required to implement these
shaders, they used compile-time dynamic tree-matching
techniques. SGI offers a product based on this technology
(featuring both compile-time and runtime compiler phases)
called OpenGL Shader [SGI04].

3. Recursive Dominator Split (RDS)

The work of Chan et al. presented runtime techniques to map
complex fragment shaders to multiple passes of modern pro-
grammable graphics hardware [CNS∗02]. Their Recursive
Dominator Split (RDS) algorithm generates a solution to the
multipass partitioning problem. RDS is successful at find-
ing near-optimal partitions for a variety of shaders on a di-
versity of cost models. Their system, implemented on top
of the Stanford Real-Time Programmable Shading System,
used a cost function incorporating the number of passes, the
number of texture lookups, and the number of instructions,
and then optimized the resulting multipass mapping to min-
imize this cost function. They described two particular algo-
rithms: RDS, which uses search to make its save/recompute
decisions, and RDSh, which uses a heuristic instead. They
conclude that RDSh runs faster than RDS at the expense of
partition quality; also, they find that optimal partitions gen-
erated through exhaustive search are only 0–15% better than
those generated by RDS (which, in turn, are 10.5% better
than those generated by RDSh).

We first describe the assumptions made by RDS that mo-
tivate its design, then describe the algorithm itself.

3.1. Assumptions

Minimization Criteria RDS’s primary goal in dividing a
shader into multiple passes is to minimize the number
of passes. This decision is motivated by the overhead in-
curred on each pass, which includes the cost of setting up
and running the input through all stages of the graphics
pipeline as well as the runtime and memory cost of tex-
ture storage of intermediate results. Consequently, Chan
et al. indicate that “RDS was designed under the assump-
tion that per-pass overhead dominates the overall cost.”

Save vs. Recompute One core decision that RDS considers
is how to handle multiply-referenced nodes in the shade
tree. If a node is multiply referenced, RDS must make a
decision whether to compute and save the value at that
node for use by its multiple references, or instead whether
to recompute the value of that node at each of its multiple
references. Saving reduces the number of overall instruc-
tions; recomputing reduces the number of passes at the
cost of an increase in the number of instructions.

Structure of Shader Input RDS assumes its input shader
is expressible as a directed acyclic graph (DAG).

Outputs per Pass RDS assumes a single output per pass,
and that output can only come from a single node (though
the shader hardware targeted by RDS actually outputs a
4-component vector per pass, RDS would not be able to
combine a 3-component result from one operation with a
1-component result from a different operation in a single
pass’s output).

3.2. The RDS Algorithm

RDS begins by identifying multiply-referenced nodes in its
input DAG and deciding whether the values generated at
those nodes should be produced in a separate pass and saved
or instead recomputed. It then starts at the leaves of the DAG
and traverses the DAG in postorder, greedily merging nodes
into as few passes as possible.

Chan et al. present two algorithms to make the decision
to save or recompute. The first, RDSh, uses a heuristic to
make this decision: the value at the multiply-referenced node
is recomputed only if the resource consumption in the re-
computation uses less than half the maximum resources al-
lowed (operations, registers, etc.) in a single pass. The sec-
ond, RDS, combines RDSh’s save-recompute heuristic with
a limited search over evaluations of partitions created by
both saving and recomputing multiply-referenced nodes.

3.2.1. Cost of RDS

The runtime cost of both RDS and RDSh depends on the cost
to check if a subregion can be mapped to a single pass; for n
nodes in the input DAG, Chan et al. define this cost as g(n)
and assume this cost is O(n). They then demonstrate that
RDS scales as O(n2) ·g(n) =O(n3) and that RDSh scales as
O(n) ·g(n) = O(n2).

3.2.2. Limitations in RDS

The RDS algorithm has three major limitations. First, its run-
time cost ofO(n3) (orO(n2) for RDSh) makes it undesirable
for use in runtime compilers. Next, because RDS consid-
ers only a single connected region of its input DAG at any
time, it cannot handle more than one output per pass (and is
not easily extended to do so within its O(n3) runtime cost;
in concurrent work, Foley et al. demonstrate a O(n4) algo-
rithm that can spill multiple outputs per pass [FHH04]). Fi-
nally, because RDS assumes its input is structured as a sin-
gle DAG, it cannot support flow control operations such as
conditionals or loops. Recent hardware supports both multi-
ple outputs per pass as well as control flow within a shader,
so while these two limitations were not restrictions in 2002
hardware, they will be in the hardware of today and tomor-
row.

4. Mio: An Instruction Scheduling Algorithm

In this paper we present an alternate algorithm to solve the
multipass partitioning problem. Our solution is motivated by



To Appear at Siggraph/Eurographics Graphics Hardware 2004

two goals. First, the limitations of RDS described above do
not allow RDS-produced shaders to take advantage of impor-
tant features of modern graphics hardware. Second, the run-
time cost of RDS makes it unsuitable for use in the dynamic
compilation environments used by the drivers of modern
GPUs, as well as problematic for partitioning high-quality
rendering or GPGPU shaders with thousands of instructions.
To address these two deficiencies, we present our solution,
called “Mio” (pronounced “mee-oh”). The name Mio is de-
rived from the word “meiosis,” a process of cell division that
produces child cells with half the number of chromosomes
as their parents. In the same way, Mio divides large programs
into smaller partitions.

We begin by contrasting the assumptions made in the de-
sign of RDS (Section 3.1) to the assumptions we have made
in the design of Mio. We next describe the technique of “list
scheduling” that is the core of Mio’s scheduling algorithm,
then describe Mio and its operation.

4.1. Assumptions

Minimization Criteria Each recent generation of graphics
hardware has allowed shader programs with greater re-
source limits than the previous generation. Specifically,
the newest hardware can run more operations, access
more textures, and use more constants and registers than
the generation before.
These increasing resource limits cause a shift in our mini-
mization goal. While RDS attempts to minimize the num-
ber of passes in its solution, often at the expense of addi-
tional operations to recompute an intermediate result, Mio
instead attempts to minimize the number of operations.
RDS’s decision was valid given the characteristics of the
hardware at the time: the hardware targeted by RDS, the
ATI Radeon 8500, allowed only 16 operations on each
pass.
With a larger number of operations allowed per pass, how-
ever, the overhead per pass becomes less significant. As
the number of operations allowed per pass continues to in-
crease, optimizing shader runtime no longer requires min-
imizing the number of passes but instead becomes mini-
mizing the number of operations. We show in Section 6.1
that the performance of shaders on modern graphics hard-
ware is no longer limited by the number of passes but in-
stead by the number of operations.

Save vs. Recompute For a node with a value that is
multiply-referenced, RDS decides whether to save or re-
compute that node’s value for each reference. Because we
have chosen to optimize for the number of operations, we
never recompute the value at a multiply-referenced node.

Structure of Shader Input Like RDS, our current imple-
mentation of Mio requires that its input shaders be ex-
pressible as DAGs. List scheduling can potentially handle
more complex input, however, which we briefly discuss in
Section 7.

Outputs per Pass In contrast to RDS, Mio accounts for
both scalar (1-component) and vector (4-component)
datatypes and coalesces multiple operation results into a
single output when appropriate. For instance, for graph-
ics hardware with 4 4-vector outputs, Mio supports up to
16 scalar outputs. We make two explicit assumptions in
determining the outputs per pass:

1. We prefer to fill all 4 entries in an output vector when
possible.

2. We also prefer to use more available outputs per pass
when possible.

Together, these two assumptions imply that we use the
maximum resources allowed by the hardware to commu-
nicate results between passes. Since the limited amount of
these resources is often the limiting factor in creating effi-
cient partitions, our assumptions allow us to create sched-
ules with lower operation and pass counts than if we do
not use all these resources. However, doing so may incur
the cost of more memory bandwidth when compared to
less aggressive inter-pass data communication. While this
additional bandwidth cost may be a possible bottleneck,
we note that the number of possible outputs per pass is
growing much more slowly than the number of operations
per pass, and thus the relative spill cost is decreasing with
time.
These assumptions also imply that the graphics hardware
can use its memory bandwidth equally efficiently with
scalar, 1-output-per-pass outputs and vector, n-outputs-
per-pass outputs. Though some hardware has a measured
peak bandwidth that declines as the number of render tar-
gets increases, the newest NVIDIA hardware appears to
maintain a constant bandwidth independent of the num-
ber of render targets [Buc04].

4.2. List Scheduling

With this work we redefine the MPP as a Precedence Con-
strained Job-Shop Scheduling Problem (PCJSSP), a well-
known problem in the compiler community. Among the
problems analogous to the PCJSSP are instruction schedul-
ing, temporal partitioning, and golf tee time assignment. The
input to the PCJSSP is a list of jobs, the resources they re-
quire (including time), and the dependencies between them.
The goal of the problem is to schedule each job to a shop
(resource), respecting resource limitations while minimiz-
ing the overall time to complete all the jobs. The PCJSSP
is a NP-complete problem, but the technique of list schedul-
ing provides good and often near-optimal solutions to the
PCJSSP in polynomial time.

List scheduling is a greedy algorithm that tries to schedule
jobs based on priority as those jobs become “ready.” A job
is ready when all of its predecessors are scheduled and the
results created by those predecessors are available. The list
scheduling algorithm begins with the first time slot, schedul-
ing jobs into that time slot based on job priority, until the



To Appear at Siggraph/Eurographics Graphics Hardware 2004

resources available during that time slot are exhausted or de-
pendencies prevent the scheduling of any jobs. It then moves
to the next time slot(s) and continues to schedule jobs until
all jobs are scheduled. At all times it maintains a ready list of
jobs. Initially this list consists of all jobs with no dependen-
cies, but as jobs are scheduled, new jobs whose dependencies
are now satisfied are added to the ready list.

The effectiveness of list scheduling hinges upon how pri-
orities are assigned to jobs. A bad priority scheme can cause
the resulting schedule to be far from optimal. One popular
and effective scheme is critical-path priority, which gives
preference to jobs that have the most jobs (or time) between
them and the final job or jobs. Another scheme with good
performance is most-successors priority, which prefers to
schedule jobs with the most dependencies as early as possi-
ble. Jain and Meeran provide a comprehensive review of job-
shop scheduling techniques [JM98]. A representative exam-
ple of an early analysis of list scheduling is from Landskov
et al. [LDSM80]; Cooper et al. evaluate the conditions under
which list scheduling performs well and poorly [CSS98]. In-
agaki et al. have developed the state of the art in runtime list
scheduling techniques that integrate register minimization
into scheduling and feature efficient backtracking [IKN03].

We define the MPP as a job-shop problem in the follow-
ing way. Jobs are defined as shader operations; resources in-
clude shader functional units, registers (varying, constant,
texture, and output), and slots in shader instruction mem-
ory. The MPP differs from traditional instruction scheduling
in two important ways. First, traditional job-shop instruc-
tion scheduling considers functional units as the primary re-
source and does not consider register allocation, whereas in
the MPP we must consider not only functional units as re-
sources but also many other resources (registers, outputs,
textures, etc.). Second, to solve the MPP we must generate
outputs that map to passes in graphics hardware. In the con-
text of traditional instruction scheduling, we must produce
a schedule that can be segmented into multiple passes; this
requires that no more than k registers can be live at the break-
point between passes, where k is the number of allowed out-
puts for each pass of the shader. These k results can then be
saved into textures and used in future passes.

4.3. The Mio Algorithm

Mio is an instruction-scheduling approach to the MPP. Mio’s
goal is to schedule operations into the minimum amount of
total time while respecting the limitations of the underly-
ing hardware. Traditional list scheduling methods for mod-
ern superscalar microprocessors attempt to maximize the
amount of instruction-level parallelism in their programs. To
do so, they attempt to maximize the number of operations
in their ready list, thus allowing a maximal opportunity for
parallel instruction issue. This strategy motivates a “wide”
traversal of their input DAGs, working on many subtrees at
the same time. Modern microprocessors feature large reg-

1 2

5

3 4

6

7

(a) Traditional.

1 2

3

4 5

6

7

(b) Mio.

Figure 1: Traditional list scheduling priority schemes at-
tempt to maximize the parallelism in their instruction stream.
Mio, on the other hand, minimizes register usage. Here we
consider a 7-operation DAG that must be partitioned into
two passes. Note that the traditional method can issue all 4
operations in its first pass in parallel but must pass 4 tem-
poraries between passes. Mio, on the other hand, chooses a
different set of operation priorities to only require 1 tempo-
rary between its passes.

ister files and register-renaming hardware to store the large
number of temporary results that result from this traversal.

Modern GPUs, on the other hand, have a severe limitation
in their ability to store intermediate results across multiple
passes. They are constrained by the number of rendering tar-
gets and the width of storage to each rendering target—ATI’s
X800 and NVIDIA’s GeForce 6800, for instance, support
fragment programs of hundreds of unique operations but can
only store 4 4-vectors at the end of each pass. The “wide”
traversal typical of today’s common list scheduling imple-
mentations is therefore poorly suited to graphics hardware
because of the GPU’s limited ability to store intermediates.

Instead, a list scheduling algorithm for GPUs must per-
form a “deep” traversal of its input DAG (Figure 1). The
deep traversal attempts to wholly traverse a given subtree
before another subtree is begun. This traversal produces an
instruction schedule with less register usage at the cost of
instruction parallelism. We now describe the Mio algorithm
and its priority scheme.

• We begin with two passes through the input to gener-
ate the traversal order T for the DAG. The first pass as-
signs a Sethi-Ullman number to each node of the DAG,
which indicates the number of registers required to exe-
cute the subtree rooted at that node. For tree-structured
inputs, Sethi and Ullman have demonstrated that schedul-
ing higher-numbered nodes first minimizes overall regis-
ter usage [SU70]. (The corresponding problem for DAGs
is NP-complete; Aho gives heuristics for computing good
DAG orderings [AJU77], but we have found simply us-
ing the Sethi-Ullman numbering on input DAGs gives ac-
ceptable results in our tests.) This pass is O(n) with the
number of input nodes.

• On our second pass, we visit each node using a postorder



To Appear at Siggraph/Eurographics Graphics Hardware 2004

depth-first traversal through the input DAG, preferentially
choosing the node with the highest Sethi-Ullman number.
We break ties in an arbitrary manner (in our implementa-
tion, we use a pointer comparison). This pass is also O(n)
with the number of input nodes, and at its end, we have a
traversal order T for all operations in the input DAG.

After the two prepasses, we can now schedule operations.

• We first insert all operations with no predecessors into the
ready list.

• Next, all operations in the ready list are considered for
scheduling. The ready list is implemented as a priority
queue and we choose the operation in the ready list with
the highest priority. The priority is simple: nodes (repre-
senting operations) earlier in the traversal order T are pre-
ferred over nodes later in T .

• We then attempt to schedule the highest priority node
from the ready list. An incremental resource estimator de-
termines if the node can be added to the current pass with-
out violating hardware constraints (such as the number of
temporary registers, textures, etc.). If the resource estima-
tor rejects a node because of the number of operations or
temporary registers (hard limits that affect all operations),
we empty the ready list and end the pass. If that limita-
tion is instead an input constraint that may vary depend-
ing on which operations are scheduled (textures, varyings,
or uniforms), we remove the operation from the ready list
but continue to attempt to schedule other operations with
the hope that they will not violate the constraint. (One
possible optimization that we do not implement is to in-
crease the priority of operations that do not increase a crit-
ical resource when that resource is nearly exhausted.) We
do allow the scheduling of an operation that temporarily
overutilizes the number of outputs per pass with the hope
that future operations will return the schedule to compli-
ance.

• After we successfully schedule an operation, we add its
successor operations that no longer have any unscheduled
predecessors to the ready list and begin scheduling the
next highest priority operation.

• If the ready list is empty, we have completed a pass. We
then check if the number of outputs exceeds the hardware
constraint. If so, we require a rollback to a point where the
constraints of the hardware are met. To facilitate this roll-
back when necessary, after every operation is scheduled,
we check to see if we violate the output constraint. If we
do, we add the current operation to a rollback stack. We
clear the stack if we later add a node that puts the sched-
uled pass back into compliance with the output constraint.
If we reach the end of the pass and do not meet the con-
straints, we must unschedule each node on the stack to roll
back to a schedule that does meet the constraints.

One of the advantages of the list scheduling formulation
is that any priority scheme can be used, not just the Sethi-
Ullman numbering we use here. More sophisticated and ac-

curate priorities could easily be integrated into the frame-
work we have developed.

4.3.1. Analysis of Mio Runtime

The major costs in using Mio to partition an input shader into
multiple passes are the cost of the two prepasses, the cost of
scheduling of each operation, the cost of the maintenance of
the ready list, and the cost of rollback.

Both prepasses are O(n) since each node must be visited
only once. If we assume the cost of maintaining the ready
list is r(n), with no rollback all operations can be sched-
uled in O(n) ·r(n). Most implementations of a ready list take
O(logn) time; we implement the ready list as a O(logn) pri-
ority queue (specifically a heap). Though Gabow and Tar-
jan have demonstrated that the overhead of a priority queue
can be reduced to O(1) [GT83], the constants associated
with their method are large enough that only extremely large
shaders would run more efficiently than with O(logn) meth-
ods. Overall, then, with no rollback the expected runtime of
Mio is O(n logn).

Rollback adds an additional O(n) cost to the cost of
scheduling all operations (assuming a rollback at each oper-
ation), making the worst-case overall cost Ω(n2). (Note that
it is only necessary to calculate the priority queue once per
node rather than once per visit to the node, so the cost is not
Ω(n2 logn).) It is important to note, however, that we do not
continue to schedule in the current pass after rolling back,
so the number of rollbacks can never be more than the num-
ber of passes. As the number of outputs per pass increases,
rollbacks become less frequent and the cost of rollback con-
sequently decreases. Section 6.2 shows our results for com-
piler runtime.

When resource constraints are violated, rollback is not the
only option. We could instead change the priority scheme
and attempt to repair the schedule, but this would likely
impose a higher runtime cost in exchange for a potentially
better schedule (and a greater algorithmic complexity). We
could also consider priority schemes that analyze resource
usage for subsets of the input DAG instead of only one op-
eration at a time, but again, these schemes would impose
additional runtime costs.

5. Experimental Setup

We integrated Mio into ATI’s prototype Ashli com-
piler [BP03]. Ashli implements RDSh and all results in this
paper are compared against Ashli’s RDSh implementation.

To evaluate the effectiveness of Mio, we measured its per-
formance on a variety of RenderMan shader programs. Both
RDSh and Mio share the Ashli front end, which parses the
shader into the DAG used by the RDSh and Mio back ends.
We have attempted to select shaders that represent a variety
of fragment program types, including ones with ample and



To Appear at Siggraph/Eurographics Graphics Hardware 2004

Shader WOOD MATTE POTATO

Uniform 10 2 13
Varying 4 4 6
Textures 1 0 1

Operations 67 9 148

Shader BAT UBER MONDO

Uniform 7 36 128
Varying 0 4 4
Textures 0 3 41

Operations 352 88 559

Table 1: Shader Characteristics. Our shaders of interest are
listed with their relevant resource demands and operation
counts.

little texture usage and ones with many and few multiply-
referenced nodes.

We use three surface shaders in our tests. The WOOD

shader simulates wood grain; it is the same core shader used
by Chan et al. [CNS∗02]. MATTE is a simple matte sur-
face shader. POTATO is a more complicated surface shader
that approximates a potato skin. We also use three lights.
BAT outlines the silhouette of a bat within a spotlight. The
UBERLIGHT (UBER) shader implements a complex lighting
model representative of those used in computer-generated
film production. The shader we use here is a simplification of
Gritz’s implementation of Barzel’s lighting model [Bar97].
We augment UBER with 10 fake shadows, 15 shadow maps,
and 25 slides to create MONDOLIGHT (MONDO), whose
texture use is large enough to require multiple passes on even
Pixel Shader 3.0 hardware. In each of our tests we combine
one surface shader with N lights (designated as SURFACE-
LIGHTN). Relevant shader characteristics are summarized
in Table 1.

We report results on two hardware configurations, Mio48
and Mio64, that target ATI Radeon 9800 Pro limits. Mio48
allows 48 ALU and 32 texture operations per pass, while
Mio64 allows 64 and 32. It is necessary to use these smaller
limits for the results we present in the next section to create
a more difficult partitioning problem due to smaller parti-
tions, to allow runtime measurements on the ATI card, and to
permit a comparison with Ashli’s implementation of RDSh,
which does not yet handle larger shaders. Because of an in-
efficiency in the Ashli code generator (all results must be ex-
plicitly copied to output registers), Mio48 represents a lower
bound for Mio performance (16 operations are reserved for
copying results to pass outputs per pass, so only 48 opera-
tions are usable) and an upper bound, Mio64 (in which all
64 operations can be used for useful work). We expect that
a more efficient code generator would put optimized results
closer to Mio64. When compared to Mio48 and Mio64, all

10 100 1000

Operations/pass

0

500

1000

1500

R
en

de
ri

ng
 ti

m
e 

(m
s) 4R/4W

4R/3W

4R/2W

4R/1W

Figure 2: Runtime of a 5000-instruction shader for 4 reads/n
writes (n = 1, 2, 3, and 4) as we vary the number of opera-
tions per pass.

RDSh results allow 64 ALU and 32 texture operations per
pass.

Compile-time and runtime results were generated on a
2.8 GHz Pentium IV system running Microsoft Windows
XP with 1 GB of RAM. Compile-time measurements record
only the partitioning part of the compiler. Runtime results
were run on a pre-release NVIDIA GeForce 6800 (NV40)
graphics card with 256 MB of memory and driver version
61.32 and a ATI Radeon 9800 Pro with 128 MB of RAM
and the Catalyst 4.5 driver. All code is written in C++ and
compiled using the Microsoft .NET 2003 compiler.

6. Results and Discussion

To demonstrate the utility of Mio, we must answer four ques-
tions. First, we show that the assumptions we have made
about the limitations of multipass performance are valid in
Section 6.1. Next, in Section 6.2, we compare the compiler
runtime of Mio to that of RDSh. We then analyze Mio’s gen-
erated code statically in Section 6.3 and the runtime of that
code in Section 6.4.

6.1. Limitations of Multipass Performance

Splitting a shader into multiple passes requires storing in-
termediate results at the end of each pass. These intermedi-
ate results can then be used in future passes. Because of the
cost of each pass, RDS attempts to minimize the number of
passes. In Section 4.1, we argue that the greater amount of
resources available in modern GPUs motivates minimizing
the number of operations instead.

To test this hypothesis, we consider the relationship be-
tween shader size and shader runtime. We expect that
shaders with a small operation count will be limited by pass
overhead, while shaders with a large number of operations
will instead be limited by the operations. We measure this
relationship by constructing an artificial shader benchmark



To Appear at Siggraph/Eurographics Graphics Hardware 2004

0 2 4 6 8 10
Number of Uber Instances

0

1

2

C
om

pi
le

 ti
m

e 
(s

)

RDSh

Mio48

Mio64

Figure 3: Compiler runtime of WOODUBERN (N = 1–10)
for RDSh and Mio. The upper and lower bounds for Mio
(Mio64 and Mio48) are nearly identical.

and varying the number of operations allowed per pass. Fig-
ure 2 shows this relationship.

In this experiment, we render a 512×512 quad with a
5000-line fragment shader. The shader uses alternating DOT
and ADD instructions and three total registers. On each pass
we write to n 4-vectors of 32-bit floats (4 tests with n = 1,
2, 3, and 4). We switch between pbuffer surfaces between
passes with no context switch and average the results over
20 consecutive tests.

From this experiment we can see that for small numbers
of operations per pass, the performance is highly dependent
on the number of passes. This agrees with RDS’s assump-
tion that minimizing the number of passes is paramount for
the small operations per pass characteristic of the hardware
targeted by RDS. However, as the number of operations per
pass becomes larger, the pass overhead is no longer a factor.
The breakpoint for this changeover appears to be roughly
100–200 operations, after which Mio’s assumption of mini-
mizing operations rather than passes becomes more relevant.

6.2. Compiler Runtime

In Section 4.3.1 we asserted that the superior theoretical
compile-time performance of Mio would result in faster
compile times for shaders on Mio than on RDSh. Figure 3
shows the comparison for a set of WOOD shaders lit with
N UBER lights for passes limited to 64 operations. We note
that even the lower bound to Mio performance, Mio48, is
superior to RDSh’s runtime, and that RDSh’s runtime grows
more quickly as the problem size increases. For POTATO-
BAT5, the compile time for Mio48, Mio64, and RDSh, re-
spectively, was 0.35, 0.34, and 0.79 seconds; for MATTE-
MONDO2, 3.29, 3.22, and 3.58 seconds.

6.3. Static Analysis of Generated Shaders

We next analyze the generated code from Mio and RDSh.
Comparing the number of passes and the total number of

ALU Tex Total
Shader Ops Ops Ops Passes

WOODUBER1
RDSh 231 12 243 7

Mio48 243 18 261 5
Mio64 219 15 234 4

WOODUBER10
RDSh 1836 106 1942 48

Mio48 1870 200 2070 48
Mio64 1632 166 1798 40

MATTEMONDO2
RDSh 2853 197 3050 56

Mio48 2738 395 3133 88
Mio64 2347 368 2715 79

POTATOBAT5
RDSh 1106 55 1161 25

Mio48 1146 144 1290 37
Mio64 996 130 1126 32

Table 2: Static results of generated code.

generated operations allows us to draw conclusions about
the quality of the code generated by each algorithm.

The results for the WOODUBERN, MATTEMONDO2, and
POTATOBAT5 shaders are shown in Table 2. Static Mio op-
eration counts are comparable to RDSh operation counts,
with Mio generally having more texture operations (due to
more spills) and fewer arithmetic operations (due to no re-
computation). Shaders compiled by Mio also generally have
a comparable number of passes to RDSh. The most fragile
part of our implementation is in the rollback decisions, and
we believe rollback represents the largest potential area for
improvement in these results.

6.4. Runtime Analysis of Generated Shaders

The ultimate test for a compiler is the execution time of its
generated code. We use the internal frame counter of the
Ashli viewer to measure frame rate results. Unfortunately,
the Ashli viewer can only display shaders of a limited size,
but we expect the static code results from Section 6.3 to be
indicative of runtime performance.

With small shaders with few partitions, we found equal
performance between shaders partitioned with RDSh and
with Mio48. For example, running MATTEUBER1 (4 passes
using 3 intermediate texture storage buffers with RDSh, 3
passes using 4 buffers with Mio48), we measured 60 frames
per second on the NVIDIA GeForce 6800 and 40 frames per
second on the ATI Radeon 9800 Pro. However, the Mio48
partition’s greater use of intermediate texture storage, due
to spilling to multiple render targets, caused a substantial
hit in performance when its use of buffers was considerably
greater than RDSh’s partition. For example, adding a second



To Appear at Siggraph/Eurographics Graphics Hardware 2004

UBERLIGHT to MATTEUBER1 resulted in Mio’s partition
using 6 passes and 10 buffers while RDSh’s had 7 passes
and 5 buffers. The RDSh partition ran more than twice as
fast on the GeForce 6800 (30 frames per second against 12
for Mio48). We believe that runtime performance is corre-
lated with the number of intermediate buffers but have not
yet fully investigated why this is the case. We believe a sig-
nificant reason for the slowdown we see with a large num-
ber of buffers is a buffer’s large memory footprint: a 512
× 512, 4-surface pbuffer takes 17 MB of texture memory,
and for Mio partitions that use many buffers, we expect the
lower performance is caused by texture memory thrashing.
We note that allowing more operations per pass will reduce
the relative cost of the spill and so we expect Mio’s runtime
results will improve as we schedule to hardware with more
resources; we describe other possible optimizations in the
next section.

7. Future Work

Mio marks only one point on what we hope will be a contin-
uum of partitioning algorithms with tradeoffs between run-
time and partition quality. On one hand, faster runtime al-
gorithms (O(n)) are desirable for graphics systems that per-
form all compilation at runtime. On the other hand, more
expensive algorithms that produce near-optimal partitions
are equally useful in environments that permit a significant
amount of compile-time work. We hope that the develop-
ment of this family of algorithms will allow us to answer the
question of whether it is better to continue to grow resource
limits with each generation of graphics hardware or whether
we should require the graphics system to virtualize the hard-
ware and hide the need for multipass or other methods.

We have begun to explore O(n) partitioning algorithms
by removing the ready list and simply choosing the high-
est node in the Sethi-Ullman order; our initial results are
promising, but a much more thorough analysis is required.
For more complex algorithms, we will incorporate other in-
formation that is not currently used in generating our parti-
tions. First, we need a more sophisticated cost function for
spilling results at the end of a pass. Unlike RDS, Mio as-
sumes all operations have the same cost, and that we should
use all spill resources if possible, but we believe that judi-
ciously reducing the amount of spilling at appropriate times
will result in better runtime results. (For example, slightly
increasing the number of passes and operations while signif-
icantly reducing the number of spilled results at the end of
passes will almost certainly be an overall performance win.)

We would also like to investigate alternate priority
schemes within the list scheduling framework. How can we
augment or replace Sethi-Ullman numbering to achieve bet-
ter compile-time performance and code quality? Another in-
teresting problem is the need to consider a higher level of
scheduling: we should explicitly schedule passes in a mul-
tipass shader in order to maximize cache performance and

minimize the live memory footprint at any time. In addition,
revisiting our recompute vs. save decision would be worth-
while: are there ever circumstances in practice for which re-
computing would produce superior results?

We are also interested in performing a more detailed
study on the impact of multiple render targets. Informally
we note a substantial increase in Mio’s partition quality and
an equally substantial decrease in runtime as the number of
render targets increases. (Simply allowing multiple render
targets consequently makes the MPP a much simpler prob-
lem in practice.) For the small number of render targets we
investigate here, this makes sense, but how does this trend
continue as the number of render targets continues to in-
crease?

One noteworthy feature of list scheduling is its ability to
handle inputs with flow control [BR91]. The newest shader
instruction sets feature loops, branches, and procedure calls,
all features that we do not consider in this work. We hope
to adapt our list scheduling algorithm to efficiently handle
shaders that use these control flow constructs.

8. Conclusion

The major contributions of this work are the characteriza-
tion of the multi-pass partitioning problem as an instruc-
tion scheduling framework and the development of a priority
scheme for list scheduling that enables the generated sched-
ules to best match the abilities of the graphics hardware.

We show that Mio, the partitioning algorithm we develop
in this paper, allows both better compile-time performance
of the shader compiler as well as comparable partitions to
the previous best method, RDS, all while supporting mul-
tiple rendering targets. The list scheduling techniques at the
core of Mio will also be well-suited to more complex shaders
in the future, shaders that require more resources from the
graphics hardware and that use more complex control-flow
structures. We hope this work spurs the development of high-
performance, robust virtualizing shader compilers that will
fully hide the multi-pass partitioning problem from shader
developers and allow even the largest and most complex
shaders to be efficiently mapped to graphics hardware.

Acknowledgements

Arcot Preetham and Mark Segal from ATI provided access
to the Ashli codebase that we used as the substrate for our
implementation. Arcot and Craig Kolb from NVIDIA both
provided valuable technical assistance. We would also like
to thank Brian Smits, Alex Mohr, Fabio Pellacini and the
rendering research group at Pixar for their support and con-
tributions to this work.

Aaron Lefohn is supported by a National Science Founda-
tion Graduate Fellowship. Funding for this project is through
UC Davis startup funds and through a generous grant from
ChevronTexaco.



To Appear at Siggraph/Eurographics Graphics Hardware 2004

References

[AJU77] AHO A. V., JOHNSON S. C., ULLMAN J. D.:
Code generation for expressions with common
subexpressions. Journal of the ACM 24, 1
(1977), 146–160.

[Bar97] BARZEL R.: Lighting controls for computer
cinematography. Journal of Graphics Tools 2, 1
(1997), 1–20. http://www.renderman.
org/RMR/Shaders/BMRTShaders/
uberlight.sl.

[BP03] BLEIWEISS A., PREETHAM A.: Ashli—
Advanced shading language interface.
ACM Siggraph Course Notes (2003).
http://www.ati.com/developer/
SIGGRAPH03/AshliNotes.pdf.

[BR91] BERNSTEIN D., RODEH M.: Global instruc-
tion scheduling for superscalar machines. In
Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Imple-
mentation (1991), pp. 241–255.

[Buc04] BUCK I.: GPGPU: General-purpose compu-
tation on graphics hardware—GPU computa-
tion strategies & tricks. ACM Siggraph Course
Notes (Aug. 2004).

[CNS∗02] CHAN E., NG R., SEN P., PROUDFOOT K.,
HANRAHAN P.: Efficient partitioning of frag-
ment shaders for multipass rendering on pro-
grammable graphics hardware. In Graphics
Hardware 2002 (Sept. 2002), pp. 69–78.

[Coo84] COOK R. L.: Shade trees. In Computer Graph-
ics (Proceedings of SIGGRAPH 84) (July
1984), vol. 18, pp. 223–231.

[CSS98] COOPER K. D., SCHIELKE P. J., SUBRAMA-
NIAN D.: An Experimental Evaluation of List
Scheduling. Tech. Rep. 98-326, Department
of Computer Science, Rice University, Sept.
1998.

[FHH04] FOLEY T., HOUSTON M., HANRAHAN P.:
Efficient partitioning of fragment shaders for
multiple-output hardware. In Graphics Hard-
ware 2004 (Aug. 2004).

[GT83] GABOW H. N., TARJAN R. E.: A linear-
time algorithm for a special case of disjoint
set union. In Proceedings of the Fifteenth An-
nual ACM Symposium on Theory of Computing
(1983), pp. 246–251.

[HL90] HANRAHAN P., LAWSON J.: A language for
shading and lighting calculations. In Com-
puter Graphics (Proceedings of SIGGRAPH
90) (Aug. 1990), vol. 24, pp. 289–298.

[IKN03] INAGAKI T., KOMATSU H., NAKATANI T.: In-
tegrated prepass scheduling for a Java just-in-
time compiler on the IA-64 architecture. In
Proceedings of the International Symposium
on Code Generation and Optimization (2003),
pp. 159–168.

[JM98] JAIN A. S., MEERAN S.: A State-of-the-
Art Review of Job-Shop Scheduling Techniques.
Tech. rep., Department of Applied Physics,
Electronics and Mechanical Engineering, Uni-
versity of Dundee, Scotland, 1998.

[KBR03] KESSENICH J., BALDWIN D., ROST R.:
The OpenGL Shading Language version
1.051. http://www.opengl.org/
documentation/oglsl.html, Feb.
2003.

[LDSM80] LANDSKOV D., DAVIDSON S., SHRIVER B.,
MALLETT P. W.: Local microcode compaction
techniques. ACM Computing Surveys 12, 3
(1980), 261–294.

[McC01] MCCOOL M.: SMASH: A Next-Generation
API for Programmable Graphics Accelerators.
Tech. Rep. CS-2000-14, Department of Com-
puter Science, University of Waterloo, 20 April
2001. API Version 0.2.

[MGAK03] MARK W. R., GLANVILLE R. S., AKELEY

K., KILGARD M. J.: Cg: A system for pro-
gramming graphics hardware in a C-like lan-
guage. ACM Transactions on Graphics (Pro-
ceedings of ACM SIGGRAPH 2003) 22, 3 (July
2003), 896–907.

[PMTH01] PROUDFOOT K., MARK W. R., TZVETKOV

S., HANRAHAN P.: A real-time procedu-
ral shading system for programmable graphics
hardware. In Proceedings of ACM SIGGRAPH
2001 (Aug. 2001), Computer Graphics Pro-
ceedings, Annual Conference Series, pp. 159–
170.

[POAU00] PEERCY M. S., OLANO M., AIREY J.,
UNGAR P. J.: Interactive multi-pass pro-
grammable shading. In Proceedings of
ACM SIGGRAPH 2000 (July 2000), Computer
Graphics Proceedings, Annual Conference Se-
ries, pp. 425–432.

[SGI04] SGI: OpenGL Shader, 2004. http://www.
sgi.com/software/shader/.

[SU70] SETHI R., ULLMAN J. D.: The generation of
optimal code for arithmetic expressions. Jour-
nal of the ACM 17, 4 (Oct. 1970), 715–728.

[Ups90] UPSTILL S.: The Renderman Companion.
Addison-Wesley, 1990.




