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Microbial life is all around us and inside us in an unseen vast and varied ecosystem. For 

the past several decades, the microbiome field has attempted to characterize this microscopic 

web of life using next generation sequencing technology. It turns out that the number of host 

organism cells is generally outnumbered by the number of microbial cells that live on and within 

them. Moreover, these microbes collectively have two orders of magnitude more genes than their 



 

  

xvii 

host organism. While the host organism’s genome stays constant during its life, the microbial 

community and its associated genes change much more frequently. Since microbial lifespans are 

sometimes measured in minutes, selective pressures in the host micro-environments can rapidly 

affect the evolution and gene content of the microorganisms present. Over the course of a lifetime, 

the host winds up with a unique set of microbes selected to fit their unique individual environment, 

from immune system quirks to specialized diets to biological rhythms. However, despite biological 

rhythms having always played a role in host behavior and survival, the impact of time on health 

has been a widely neglected realm until recently. The basic argument of this thesis is that time is 

an underappreciated but critical variable that impacts both experimental study design as well as 

host health. 

Altogether, these chapters and analyses comprehensively characterize the impact of time 

and biological rhythms on the microbiome and host health, experimental study design, as well as 

microbial evolution.  
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Chapter 1. Microbiome 101: Studying, Analyzing, and 

Interpreting Gut Microbiome Data for Clinicians 

 

Abstract 

Advances in technical capabilities for reading out complex human microbiomes are 

leading to an explosion of microbiome research, leading in turn to intense interest among 

clinicians in applying these techniques to their patients. In this review, we discuss the content of 

the human microbiome, including inter- and intra-subject variability, considerations of study 

design including important confounding factors, and different methods in the laboratory and on 

the computer to read out the microbiome and its resulting gene products and metabolites. We 

highlight several common pitfalls for clinicians, including the expectation that an individual’s 

microbiome will be stable, that diet can induce rapid changes that are large compared to the 

differences among subjects, that everyone has essentially the same core stool microbiome, and 

that different laboratory and computational methods will yield essentially the same results. We 

also highlight the current limitations and future promise of these techniques, with the expectation 

that an understanding of these considerations will help accelerate the path towards routine clinical 

application of these techniques developed in research settings. 

 

1.1 Introduction 

In the first part of this thesis, we comprehensively outline the literature landscape of 

microbiome data as is relevant to diagnostic and clinical applications. Despite the interest and 

prevalence in products claiming to improve the microbiome, there are still many limitations in 

study design, analysis, and interpretation of microbiome data that prevent immediate clinical 

implementation. We highlight several common misconceptions, including that there is a “normal” 
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or single ideal “core” microbiome, that microbiomes are stable over an individual’s life, and that 

diet induces large rapid changes to microbial communities. We describe several different methods 

used in research to characterize microbiome samples as well as computational and analytic 

pipelines. We also provide an example of a report provided to individuals that participate in the 

citizen science project, Microsetta (formerly the American Gut Project). Finally, we discuss the 

future promise of microbiome data as we move toward routine clinical applications of research 

methods.  

Interest in the microbiome is at an all-time high, with the microbiome connected to an 

increasing range of diseases of interest to gastroenterologists and hepatologists. For example, 

obesity 1,2,3,4, inflammatory bowel disease5,6,7, alcoholic and nonalcoholic fatty liver 

disease8,9,10, and hepatocellular carcinoma11,12,13,14 have all been linked to the microbiome 

in humans, and changes in the microbiome have been shown to induce or modify these diseases 

in animal models. However, moving this linkage to a clinical relevant diagnostic is still in the 

research phase. 

We have seen enormous progress in the last decade in using genomic sequencing 

coupled with computational pipelines to decipher the human gut microbiome15. These tools are 

necessary because of the incredible information density of the microbiome. Each teaspoon of 

stool contains in its bacterial DNA alone the amount of data that it would take 100,000 of today’s 

highest-capacity thumb drives to store. (This number was reached using the following 

calculations: 1 gram of stool contains 100 billion microbes16. We then assume 5 million bases 

per microbe (~1 million bytes), which then yields 10E11x10E6=10E17 or 100,000 Terabytes (Tb). 

The current highest capacity thumb drive size is 1 Tb, so at approx. 12g each is 1200kg (1.3 tons), 

about the weight of a young giraffe.) This information is also dynamic, as the microbiome profile 

changes with diet and medical interventions. These problems create challenges for clinicians in 

deciding whether it will be medically informative to ask a patient to collect stool or colonoscopy 
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biopsies and send it off for sequencing. Interpreting and discussing the results with patients can 

be challenging, especially with a lack of standard parameters and reference data for comparison. 

In this review, we cover what the microbiome is, how it can be collected, what molecular 

methods can be used to analyze it, how the data can be interpreted, and what are some of the 

limitations in combining conclusions from different studies. Our goal is to highlight which areas 

are solid, which areas are emerging, and where the greatest potential is for future work to provide 

actionable information that benefits patients. 

 

1.2 What is the microbiome? 

The human gut is home to a variety of microbes, including bacteria, archaea (single-celled 

organisms without nuclei that are more closely related to eukaryotes than to bacteria), fungi 

(mostly yeasts), microbial eukaryotes (usually Blastocystis in the US, but a variety of pathogenic 

and non-pathogenic taxa in developing countries), and viruses/phages.  This collection of 

microbes is called the microbiota; their genes are called the microbiome17. However, the term 

“microbiome” has come in popular usage to refer to the microbes themselves. Whether the 

microbiome includes the virome (the repertoire of viral genes) is open to debate. Because of the 

technical ease and widespread utility of approaches that just read out the bacteria (see below), 

many have concluded that the microbiome refers only to the bacteria, but this is not correct. 

Rather, if a difference is demonstrated in the bacterial compartment of the microbiome between 

cases and controls, it is necessarily true that the microbiome is different; however, if no difference 

in the bacteria is found, there might still be a difference in other kinds of microbes, e.g. the yeast 

or viruses. 

Until recently, a frequently repeated slogan was that the human microbiome contained ten 

times as many cells as the human body. This figure was based on a back-of-the-envelope 

calculation 40 years ago18, and the correct claim was that the true figure was somewhere between 
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1:10 and 10:1, but could be as much as 10:1. Since then, the errors on the estimates of the 

number of human cells and microbial cells have narrowed considerably, with the true figure being 

much closer to 1:1, with the balance slightly in favor of the microbes16. Therefore, it is fascinating 

to consider that one can tip the balance in an individual’s body from having more microbial cells 

to having more human cells by simply administering the bowel prep for a colonoscopy. In this 

article, we will focus on the gut microbiome, although microbiomes in other parts of the body (e.g. 

the skin, mouth, and vagina) are also important for health and in numerous diseases. 

 In most healthy humans, the gut microbiome is dominated in cellular relative abundance 

by bacteria, specifically members of the phyla Bacteroidetes and Firmicutes, with only small 

amounts of non-bacterial microbes. It is important to recognize that among healthy people, their 

percentage of each of these two dominant phyla can vary from 10 to 90%, even though the 

combined percentage tends to be around 95%19. However, some individuals, particularly in the 

disease state, can have large percentages of other bacterial phyla, such as Proteobacteria (which 

E. coli belongs to), Verrucomicrobia, Actinobacteria, or Fusobacteria. 

The earliest culture-independent projects revealed that different people can differ greatly 

from one another in terms of their microbiomes20,1,21,19, and the diversity spanned by human stool 

is comparable to the diversity spanned by completely different kinds of environments in the Earth 

Microbiome Project (Figure. 1A). In fact, some bacterial species that were as abundant as 5% of 

the total in one individual, turned out to be no more abundant than 0.01% in another individual, 

even in a small cohort21. We see the same in the American Gut Project data (Fig. 1.1B). Therefore, 

there is no “standard” microbiome ecology that all healthy people share. However, because of 

this high variability among individuals, extreme caution must be taken in interpreting results from 

fewer than hundreds of people, and the reference range approach that has worked for blood tests 

will not work for the microbiome22,23. 
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Figure 1.1. Intersubject variability of the gut microbiome. (A) A principal coordinates plot of 
unweighted UniFrac distances computed using the Earth Microbiome Project dataset24 and the 
fecal samples from the American Gut Project dataset25. Even though the EMP data include 
samples from many of the environments on the planet, including hydrothermal vents, soils, marine 
sediment, and many others, the extent of diversity associated with just the large intestine of a 
single mammal is one of the dominating clusters of microbial diversity. (B) Dynamic ranges of the 
50 most abundant genera in the human fecal microbiome from 9316 individuals. These data are 
based off of a single sample per person, and only considering organisms observed in at least 100 
people.  Even though Bacteroides are ranked the highest, there are individuals with up to three 
orders of magnitude lower relative abundance of those genera, and that genera was not detected 
in approximately 1% of the individuals. 
 



 

  

6 

 



 

  

7 

1.3 What is the best way to collect a sample for microbiome analysis? 

The first topic a clinician faces is: what is the optimal protocol for collecting a microbiome 

sample for analysis?  There is still an ongoing debate on the best way to collect and store a 

sample for analysis of the microbiome. In short, there is no perfect method because the choice 

will depend on feasibility, cost, patient acceptance, and which methods will be used to read out 

the microbiome downstream. 

The first important question is what to sample. Stool is by far the most accessible material, 

and can be collected as often as your subjects produce stool, enabling longitudinal studies (e.g. 

of daily samples) that would not be feasible with biopsy specimens. For studying gastrointestinal 

and liver diseases, assessing the gut microbiome using stool provides a unique opportunity to 

study pathophysiology and disease states in both cross-sectional and longitudinal study designs. 

However, stool does not capture all the microbes in the gut20,26, and in particular mucosally-

adherent microbes and microbes in the small intestine, particularly the ileum, can be missed. In 

addition, stool is often quite distant from the GI region of the pathology being investigated, and 

has been stored in the rectum, where there is active dehydration and where fermentation selects 

for bacteria that are not commonly found in other parts of the lumen. This implies that it is difficult 

to use the stool microbiome to understand the pathophysiology of a disease, because it likely fails 

to reflect the microbiome of the region of pathology, and it is imperative to choose a sample 

collection method that is inherently consistent with the scientific or clinical question being asked. 

“Culturomics” approaches27, in which large numbers of cells are isolated and cultured, 

show that metagenomics approaches miss many rare bacteria that are not well represented in 

the reference databases or that are below the filtering thresholds used to eliminate noise (see 

below). They also suggest that even the most aggressive homogenizing procedure to break 

bacterial cells walls may still miss important organisms. On the other hand, some 85% of microbes 

in the human gut are anaerobic and therefore do not culture in an open petri dish, although they 
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can be grown in research laboratory anaerobic chambers. However, despite advances in culturing 

methods28,29, what can be cultured is still biased, especially because any given culture condition 

will allow some bacteria to grow much faster than others. 

In spite of these limitations, the gold standard protocol for stool sampling is to collect the 

whole stool, homogenize it immediately (e.g. with a blender or a tissue homogenizer), then flash 

freeze the homogenate in liquid nitrogen or in dry ice/ethanol slurry, with an aliquot preserved in 

20% glycerol in LB for culturing. Nucleic acid protectors such as RNAlater, although popular, have 

had mixed success in different laboratories, and render the sample unsuitable for metabolomics, 

so should be used on a separate aliquot. However, this protocol is expensive and often 

impractical, especially given the limitations inherent in subjects’ ability to produce stool on 

demand. Although stool is not homogeneous, in general the differences between whole stool and 

a small sample of stool are small compared to the differences between individuals. While stool 

consistency is correlated with microbiome changes30, stool consistency does not interfere with 

DNA extraction in people with chronic GI conditions such as IBS, IBD, and constipation. 

For DNA analyses, several studies have shown that Flinders Technology Associate (FTA) 

and fecal occult blood test (FOBT) cards are stable at room temperature for at least days31,32,33, 

and although they induce small, systematic shifts in the resulting taxon profiles compared to flash-

frozen samples, the practical ease of use of these methods is a considerable attraction. Another 

widely used method is dry swabs of fecal material left behind on bathroom tissue, such as those 

used in the American Gut Project25, can be used for amplicon analysis (e.g. for 16S rRNA gene 

profiling by PCR, see below) with appropriate filtering for overgrowth, but are problematic for 

shotgun metagenomics, and only cotton-based swabs, not polyester-based, can be used for 

metabolomics because of issues with polymers. An important practical consideration for using 

swabs in the mail is that polycarbonate housings are not nearly as robust to the vagaries of mail 
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handling as polyethylene, and require padded envelopes to arrive intact. However, despite these 

limitations, dry swabs from bathroom tissue have yielded useful results in many studies34,35,25. 

Going beyond the stool, many studies have demonstrated that the mucosa and lumen 

differ in their microbiomes from each other at a given site in the gut36,37, and that the microbiome 

varies dramatically along the length of the gut, with the stomach and small intestine being 

essentially entirely distinct from the large intestine. More subtle inter-sample variations are then 

found within the small intestine and within the large intestine. This raises the question of where 

one should look for microbiome associations. However, practically speaking, getting biopsy 

samples from the small intestine is quite challenging clinically, and obtaining them from the large 

intestine during colonoscopy requires skill and protocols for extracting microbial contents from the 

biopsies. 

Some studies (e.g. Gevers 20146) have shown that better classifiers for inflammatory 

bowel disease can be developed using samples of luminal content collected directly from the gut 

rather than stool, but this is contradicted by other studies that show high classifier accuracy for 

stool (see below for explanation of these terms). In an ideal world, sampling design would be 

driven by a hypothesis about mechanism. Most microbial biomass and therefore metabolism 

occurs in the luminal contents of the large intestine, so microbes that produce and release small-

molecule metabolites that enter the bloodstream would be expected to be most important there. 

In contrast, microbes that interact directly with epithelial cells or dendritic cells would be expected 

to be concentrated in mucosal biopsy. Microbes that produce metabolites from dietary 

components that are absorbed in the ileum, duodenum or jejunum should be sought there. 

However, we still lack the general understanding about the distribution of microbes and 

metabolism along the length of the gut to draw general conclusions about where to take samples. 

The advent of very low biomass protocols, such as KatharoSeq (which uses a series of positive 



 

  

10 

control spike-ins to define what is real and what is contamination at different stages), allows even 

tiny specimens to be processed38. 

An important question is how often to sample stool, because the microbiome ecology is 

intrinsically dynamic. This largely comes down to what question you are trying to answer. 

Remarkable changes have been observed between one day and the next, especially in the times 

surrounding colonoscopy and surgery39,25 as well as during clinical situations such as IBD flares. 

These changes would be missed entirely with a less frequent study design. For episodic diseases, 

such as IBD, it is known that patients can have large changes in the microbiome composition on 

time scales of weeks to months40. On the other hand, changes induced by diet, e.g. those 

associated with weight loss, take place on a timescale closer to months than days in humans41,42,43 

(Fig. 1.2). Having several serial samples provides considerable insight into microbiome 

dynamics40,44, with samples up to half a dozen providing substantially better classifiers from stool 

regardless of sampling interval. However, answering this question conclusively will require 

detailed study of many patients, prohibitively expensive at present and impossible to perform with 

anything beyond a stool sample. However, although it is difficult to obtain serial mucosal/biopsy 

or luminal samples from individuals due to cost and invasiveness of the procedures, this may be 

the best strategy for patients who are receiving multiple, often scheduled, endoscopies as part of 

their routine care or in event of exacerbations (e.g. variceal screening EGDs for patients with 

cirrhosis; colonoscopy for patients with IBD). 
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Figure 1.2. Interindividual variability is a stronger discriminatory factor than diet, even under 
extreme dietary changes. (A) Principal coordinates (PCoA) plot of unweighted UniFrac distances 
of the subjects (color) and their diets (shape). (B) PCoA plot with traces to show the individual 
variation over time, each edge s connected in order according to the collection timepoint. 43 
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On the other hand, adequately collected and optimally stored fecal samples from chronic 

liver disease patients, such as nonalcoholic fatty liver disease, can provide unique insights into 

differentiation between those with milder form of fibrosis versus advanced fibrosis in cross-

sectional setting45. Furthermore, integrating the gut microbiome with the metabolome may offer 

deeper insights into the metabolic perturbations linking the gut microbiome with disease states46. 

Recent studies have also suggested that certain bacterially derived metabolites may be 

associated with shared gene effects with disease states of interest. Longitudinal studies are 

needed to assess causality, and will be discussed later in this review. 

 

1.4 What sort of microbiome data should I collect? 

There is a bewildering diversity of microbiome-relevant molecular analyses that can be 

performed on biological specimens today, each with strengths and weaknesses (Fig. 1.3). The 

correct type of analyses for an experiment is completely dependent on the scientific question and 

hypothesis. Some of the more traditional methods focus on species identification or toxin 

presence for pathogens47, while newer methods seek to describe and detect whole communities 

rather than individual organisms. 
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Figure 1.3. Clinical microbiome studies need to be planned with a critical eye towards many 
details.A) Groups of interest will need to be evaluated for confounders - age, gender, diet, lifestyle 
factors, medications, etc.  Accounting for such variables can help resolve differences in microbiota 
between cohorts that might otherwise be masked.48 (B) Confounding factors can be further 
reduced by performing longitudinal studies that allow for the assessment of community stability.40 
(C) Standardization of all stages of sample processing is essential to control for variation 
introduced by every step of the process: kit reagents, primers, sample storage, and other factors. 
Recording and maintaining detailed metadata notes about all aspects of each sample, from 
clinical variables to sample processing, are crucial for data interpretation; without metadata, it is 
difficult to draw meaningful conclusions from sequencing data. 
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For known organisms with well-characterized selective culture conditions, culturing is still 

the most sensitive detection method, and comparisons of colony-forming units per milliliter is the 

best way to obtain the absolute abundance of viable organisms. This method can be used on a 

variety of sample types including stool, blood, and skin. Various organisms found in the stool are 

susceptible for antibiotic resistance including Clostridium difficile and Enterococcus spp. which 

are also highly infectious pathogens49. Culturing enables a phenotypic classification of an isolate 

including pathogenicity, antibiotic resistance mechanisms, and antibiotic susceptibility47. 

However, this method is best suited to reading out a small number of well-known organisms that 

can survive in the presence of oxygen, not to characterizing the entire, complex and largely 

anaerobic gut microbiome. 

A broader view can be obtained by assay panels that target a set of known bacteria, 

viruses, parasites, or functional genes such as toxins or antibiotic resistance. Stool samples are 

generally processed through nucleic acid extraction followed by cDNA synthesis and subsequent 

amplification using mixtures of primers specific for a given range of organisms. Either gDNA or 

PCR product is then qualified and quantified across the organism panel either through a 

hybridization array using a fluorescence based measure or a melt curve analysis50,51. Both qPCR 

and RT-qPCR are also examples of these methods which are used to detect and quantify specific 

organisms52. Various companies (Verigene, Biofire, Luminex) have developed FDA-approved 

platforms to detect microbial pathogens from bulk stool samples53. The platforms can be 

microfluidic chips that perform multiple processes including DNA extraction, PCR, and readout54. 

Throughput ranges from 1 to 24 samples, while time is 1-5 hours53. The mentioned technologies 

targets between 14 - 22 analytes including 7 - 14 bacteria, 2 toxins, 2 - 5 viruses, and 0 - 4 

parasites. The advantage to these assays is that they provide absolute abundance of each taxon 

per gram or mL of input material, and have high dynamic range. The disadvantage is that there 

are many undiscovered taxa in the gut that may be important, and these will be missed in a 



 

  

17 

targeted panel. However, as we understand more about the specific microbes that make the 

difference between clinical indications, these targeted panels will be increasingly valuable. 

However, one important concern is whether panels developed in one population will apply to 

another (see below). 

Amplicon analyses, in which a specific piece of DNA is amplified by orders of magnitude 

using various methods including the polymerase chain reaction (PCR), have been the workhorse 

of the microbiome for the past 15 years55. In these analyses, PCR primers that match a specific 

gene, usually the 16S rRNA for bacteria and archaea and the ITS for fungi, are used to amplify 

all the variants that occur between the highly conserved regions used to construct the primers. 

For example, bacterial 16S ribosomal RNA (rRNA) genes contain 9 “hypervariable regions” (V1 

– V9) that exhibit sequence diversity and therefore are often used as a “barcode” to differentiate 

many bacterial taxa, sometimes but not always at the species level. Then next-generation 

sequencing, typically on the Illumina platform56, is used to read all the sequences, which can then 

be placed into a phylogenetic tree or matched to a database. There are many considerations in 

choosing which primers to use, and the difference between the microbiome profiles obtained with 

different PCR primers is much greater than the difference between the stool of different healthy 

individuals19. Consequently, the best option is to use the same PCR primers as other studies that 

you would like to compare your results to, or if there is no specific study in mind then using widely 

used primers such as the V1-3 or V3-5 primers from the Human Microbiome Project or the V4 

primers from the Earth Microbiome Project (which have the advantage that they pick up archaea 

such as Methanobrevibacter and Methanosphaera, both important in the gut) is the best plan. 

Critically, many primers can target the same variable region, so it is important to know not just 

which region is being sequenced but the specific primers themselves. In general, the specific 

region is much more important than the length of the fragment57,58, and a long sequence with 

biased primers can give a spectacularly incorrect result. Therefore, it is important to beware of 
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claims about the value of long-read sequencing that are not backed by extensive validation in the 

form of peer-reviewed papers. Many species of bacteria are identical along the full length of the 

16S rRNA gene, and it is therefore in principle impossible to distinguish all bacterial species using 

that gene - despite claims of some vendors. In general, genus-level resolution is possible for most 

bacterial taxa, but species resolution is difficult59. Amplicon analyses in general are challenging 

to apply to viruses, which is mostly due to the fact that there is no gene common to all viruses like 

there is in bacteria. 

Although 16S rRNA sequencing has enabled a great deal of scientific research on 

microbiomes, simply knowing the genera of bacteria and its relative abundance is not as useful 

for clinical analysis. This is because each genus can have a wide range of strains which are 

genomically distinct. This is true even within a species: E. coli, for instance, has a genome that 

can vary from 4-6 million DNA bases60, which group into several thousand distinct genes, some 

of which can be quite virulent. As a result, there are thousands of known strains of E. coli that 

have been sequenced (only about 1/3 of the E. coli genome is core to all its strains) and found to 

be genomically-distinct, with at least one strain considered a probiotic and another that can cause 

debilitating illness.  . 

In contrast to the use of one gene, such as 16S rRNA, shotgun metagenomics is a method 

that fragments all the DNA from a sample into small pieces, sequences these fragments, then 

tries to puzzle these fragments together into a view of the microbiome61. The advantage to 

shotgun metagenomics is that it is very easy to explain what it does: you are trying to infer the 

complete list of microbial strains present in a microbiome, including the fungi and viruses that are 

missed by 16S rRNA amplicon analysis, and how abundant each of those strains is. However, 

the technical challenges are considerable: for example, analyses rely on genomes of the 

organisms in the gut, many of which are unknown (especially outside the bacteria). Shotgun 

metagenomics was traditionally orders of magnitude more expensive than amplicon analyses, but 
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with rapid declines in the cost of DNA sequencing and library preparation this technique is 

becoming much more accessible on a large scale. Additionally, the amount of DNA required for 

shotgun metagenomics has recently dropped from micrograms to less than a nanogram, allowing 

it to be used on biopsy specimens. An important limitation to shotgun metagenomics is that all 

the DNA will be sequenced, including human DNA, which is a problem if your subjects are not 

consented for human DNA analysis or if your biopsy specimen is dominated by host tissue 

(resulting in very expensively re-sequencing the human genome, with only a small trace of 

microbial reads; this is common in biopsy specimens, which is which 16S rRNA amplicon analysis 

is typically used for such specimens; “host DNA depletion” techniques, although successful in 

saliva62 have not yet worked for biopsies although this is an active area of methods development). 

Shotgun metagenomics is rapidly displacing 16S rRNA amplicon analysis because of its 

expanded taxonomic range and strain-level resolution, but is subject to many of the same 

reproducibility issues that have not yet been as well characterized because of the increased 

expense of the assays. 

Metatranscriptomics, in which the transcribed RNA is sequenced, and metaproteomics, 

which using mass spectrometry to sort out the wide range of proteins in a sample, have 

tremendous promise because they read out gene expression, but are still very challenging. Most 

bacterial transcripts only last a few minutes63, so the interpretation of RNA left in a stool sample 

is challenging. Moreover, in the few comparisons that have been done, the correlation between 

gene expression in the RNA and proteins at the whole-community level has been close to zero, 

complicating interpretation of the expression profiles. These should be considered emerging 

technologies rather than ready for routine use, although techniques are rapidly improving. Studies 

of expression require metagenomic data from the same sample to back them so that changes in 

the relative expression of particular genes can be distinguished from changes in the 

representation of these genes in the community64. 
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Metabolomics, the study of the non-protein smaller molecules including products of 

metabolism, is a very exciting emerging area because it gets directly at the function of the 

community. The most common approaches separate metabolites by GC (gas chromatography) 

or LC (liquid chromatography) before analysis by mass spectrometry as charged ions. There are 

two main approaches of metabolomics analysis: targeted metabolomics, where we have a 

predetermined list of molecules, typically where the reference standards are available. It is usually 

the most sensitive approach for detecting molecules of interest and has better quantification 

compared to untargeted mass spectrometry but does not allow for discovery65,66. Most molecules 

that are made by the microbiome are not commercially available or still remain to be discovered 

and therefore cannot be analyzed via targeted methods. On the other hand, untargeted 

metabolomics aims to detect as many ions as possible. The main challenge for untargeted 

metabolomics is the annotation. For untargeted metabolomics tandem mass spectrometry (which 

weighs the ions, then breaks them into fragments, then weighs the fragments) is often used to 

provide annotations by matching against a reference library of known molecules. However this 

fails to annotate molecules that are modified by the microbiome or host metabolism. However 

fragmentation data from related spectra can be found by linking their mass spectra through a 

technique called molecular networking67,68 (see below), allowing identification of new molecules 

that are related to known ones. An important consideration when choosing a metabolomics 

platform is whether the target molecules will be captured – for example, many standard 

untargeted LC/MS/MS approaches do not pick up short-chain fatty acids (SCFAs) such as 

butyrate and acetate which are known to play important physiological roles in the gut, on the other 

hand GC-MS does not pick up molecules from the host that are modified by microbes. Examples 

of such molecules include lithocholic acid, the oral bacteria produced fungal biofilm inhibitor 

mutanobactin A69, and the microbial molecule 4-phenyl-ethyl sulfate that results in autism-like 

symptoms in rodent models70.  The current preferred methods for stool are a combination of 

shotgun metagenomics and metabolomics. It is likely that metabolomics will not only be able to 
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report on microbially modified or microbially biosynthesized molecules, but also provide a direct 

read out of the medications as well as diet that affect the gut microbiome. 

 

1.5 How should I analyze my data? 

The main question clinicians usually have is either “how do my cases and controls differ?” 

or “is this sample from this patient indicative of a particular disease?” These questions can be 

difficult to answer with the current state of the science, especially given the many options for 

conducting the molecular analysis. 

The wrong approach is to decide to do a microbiome study, pick a type of sample to collect, 

decide what molecular assay to run, and then decide to “analyze the data” yourself or hand it off 

to a bioinformatics or biostatistics collaborator, core facility or company. The greatest expense in 

many studies is data analysis, and if the study was not designed in a way that allows the data to 

be analyzed easily, this can take years and cost hundreds of thousands of dollars (if accurately 

accounted). We cover issues of study design extensively elsewhere in other recent 

reviews71,72,73,74. Briefly, it is important to consider confounding factors like age, drugs, diet, and 

co-housing, issues of causality. Your patients might be sick because their microbiomes are 

different or their microbiomes may be different as a consequence of their medical condition or 

treatment. Appreciating that study designs with equal numbers of samples per group, consistent 

timepoints, etc. are dramatically easier to analyze is also important. Furthermore, a common tactic 

is to use the microbiome “differences” to infer that they underlie a pathophysiological process that 

was not even part of the initial intent of the study. Not only does this assume a causative 

relationship between the microbiome and the pathology being investigated, but also our 

knowledge of the relationship of the gut microbiome on host processes is often not yet sufficient 

to support such conclusions. Lastly, for all NGS based methods of microbiome analysis, it is 
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paramount to include positive and negative controls to help distinguish between signal and 

noise38. 

The most important consideration with data analysis is that different methods will give 

different results, even using the same raw data from the DNA sequencing instrument. This issue 

stems from several distinct sources. First, algorithms for assigning DNA sequences to particular 

genomes or classes of organisms are approximate. For example the popular RDP classifier59 has 

an accuracy of about 80% at the genus level using short 16S rRNA fragments. This means that 

about 20% of the assignments are wrong, which is not ideal. In shotgun metagenomics, 

approaches, such as Kraken75 or Centrifuge76, based on k-mers (short fragments of sequences, 

often only a few bases long) are much more sensitive (likely to find an organism if it is present, 

especially at low abundance) but less specific (likely to report an organism even if it is not present) 

than those based on profile matches to marker genes, such as PhyloPhlAn77. Whether it’s more 

dangerous to miss an organism that is present or accidentally report an organism that’s absent 

depends on the clinical application. In any case, none of these techniques is currently suitable for 

clinical use. Diagnosis of pathogens should still be performed by FDA-approved culture-based, 

PCR-based, or antibody-based assays. 

In addition, most approaches rely on reference databases that are highly incomplete. 

Consequently, matches to a given sequence will vary depending on what sequences are actually 

in the reference database and the name given to the closest sequence, which results in different 

bacterial names given to the same DNA sequence depending on the database used. Because of 

this, you can get wildly different results. In the past this was an enormous problem, although 

cooperation among the rRNA-based taxonomy databases such as SILVA78, RDP79 and 

Greengenes80 have reduced this problem and resulted in more consistency between results in 

recent years. However, taxonomy based on whole genomes rather than on single marker genes 
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is likely to prompt large-scale revision of taxonomy as we discover more about the relationships 

among major groups of organisms. 

The major considerations in data analysis are as follows (Fig. 1.4): 

1.  How do I go from my raw DNA sequence data to a table of how many of each 

species (or gene/strain, for metagenomics) is observed in each sample? 

2.  How do I link this table up to relevant clinical variables for analysis? 

3.  How do I perform appropriate analyses either at the level of the whole microbiome 

(typically, “alpha diversity “ and “beta diversity” analyses) or at the level of individual taxa or 

genes? 
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Figure 1.4. In order to turn samples into data, you will first have to extract DNA and decide what 
type of sequencing you want to perform.Two common types of protocols are amplicon sequencing 
and shotgun sequencing. In amplicon sequencing, polymerase chain reaction primers are used 
to target a specific region of a specific gene, focusing sequencing effort on just those fragments. 
One of the most widely used protocols targets the V4 region of the 16S rRNA gene24. In shotgun 
sequencing, the DNA in the sample is randomly sheared and sequenced, generating data from 
many different parts of the genome. The specifics of the molecular protocol used prior to shotgun 
sequencing are important for what type of data are being examined, and this type of sequencing 
can be used for example for metagenomics and metatranscriptomics. The initial processing 
performed on the data after sequencing depends on the type of sequencing performed. For 
amplicon studies, one common strategy is to upload the data into Qiita81 and to use Deblur82 to 
resolve sequence data into single-sequence variants called sub-operational taxonomic units 
(sOTUs). Taxonomic assignments are generally performed using naive Bayes classifiers such as 
the RDP Classifier59 as implemented in q2-feature-classifier against reference databases such 
as Greengenes83, SILVA78, RDP79 or UNITE84 (fungal ITS) depending on the amplicon target. 
Shotgun sequencing of host-associated samples first requires preprocessing to remove host DNA 
prior to analysis. Typically, the shotgun data are then summarized using tools such as Kraken75, 
MEGAN85, or HUMAnN286 to generate taxonomic or functional profiles, or are assembled with 
tools such as metaSPAdes87 and MEGAHIT88. For both sequencing methods, higher-level 
analyses (for example, alpha and beta diversity, taxonomic profiling and machine learning) are 
subsequently used to assay patterns of microbiome variation in the context of the study design. 
Metagenomic assemblies can also be analyzed through platforms such as Anvi’o89.  
SourceTracker90 is a Bayesian estimator of the sources that make up each unknown community, 
is useful for classifying microbial samples according to environment of origin91. ITS, internal 
transcribed spacer. Citizen Science platforms, such as the American Gut Project25, standardize 
the molecular work and bioinformatic processing in order to generate a basic summary report of 
the content of an individuals sample. In the case of the American Gut, the samples are also placed 
into the context of a few other popular microbiome studies though data integration. 
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Figure. 1.4. In order to turn samples into data, you will first have to extract DNA and decide what 
type of sequencing you want to perform. Continued 
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There are several features of microbiome data from a statistical standpoint such as 

sparsity, compositionality, and zero-inflation that make standard statistical tools inappropriate for 

most microbiome analyses. It is therefore critical to use tools designed for these analyses, such 

as QIIME/Qiita81, the BioBakery92, or PhyloSeq93 that take these considerations into account. 

Providing details of how to analyze microbiome data is beyond the scope of this piece, but we 

have covered this topic recently in several other reviews that will be of interest to readers who 

want more details74. 

  

1.6 What are the limits to combining data from different studies? 

One frequently encountered issue is reading an exciting research paper that links a 

particular microbe, pathway, or gene to a condition or treatment, then wanting to see if the same 

relationship holds true in a new cohort or a new individual patient. This apparently simple question 

turns out to be surprisingly difficult. 

As noted above, a very large number of factors can affect the readout of the microbiome, 

especially at finer taxonomic levels, but they are by no means limited to these levels. Especially 

with PCR-based methods, including primers that target different hypervariable regions (e.g. V1-3 

vs V4) or different primers that target the same region but pick up different taxa with different 

efficiency, the same samples can yield completely different assessments of which phyla are 

abundant in a given specimen, let alone assessments at the species level (to which current 

sequencing techniques are poorly suited). Consequently, if you are designing a new study and 

want to compare to an existing study, the safest approach to use exactly the same methods in 

every detail, including sample collection, sample storage, DNA extraction, PCR or library 

construction, sequencing, and bioinformatics analysis. Standardized reporting such as the 

Genomic Standards Consortium MIxS standards94 help immensely with this task by capturing the 
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information in a structured way and, in the context of databases such as Qiita95, allow automatic 

retrieval of studies that used comparable methods. 

The Human Microbiome Project19 demonstrated that even when everything else is kept 

exactly the same, the choice of PCR primers (V1-V3 vs V3-V5) and the choice of whether to 

perform shotgun metagenomics or 16S rRNA sequencing on the same samples can produce 

completely different results. Similarly, the Microbiome Quality Control (MBQC) project 

demonstrated that differences in computational pipeline, even on the same data, could lead to 

large differences in the inferred outcomes at levels from the species to the phylum96. However, 

one valuable outcome of MBQC was that many different labs could independently reproduce 

similar results on the same samples by following a consistent, written protocol96. Similarly, in the 

American Gut Project, we find that dozens of sequencing runs over many years yield consistent 

results when consistent protocols are used, and this is highlighted in the supplementary video file 

of that paper [https://figshare.com/articles/movie_s2_mp4/]97,25. 

In general, whether and how studies can be combined depends on the subtlety of the 

effect and the type of analysis being performed. Different parts of the human body differ radically 

in their microbiomes, and neonatal microbiomes are completely different from adults. Therefore, 

even studies using different DNA extraction methods and sequencing techniques will often yield 

the same pattern in combined analysis, e.g. through principal coordinates analysis98. In contrast, 

subtle differences such as those yielded by day-to-day variation within a healthy individual are 

much smaller, and will be obscured by even minor technical variation such as lot numbers of 

sequencing reagents. A general guideline is that the more technical factors differ between two 

studies, the more obvious the difference will need to be in order to be visible. Although the 

American Gut Project and other recent projects have started to construct an effect size scale for 

factors that affect the microbiome in large or small ways, incorporating technical variation at these 

scales would be an arduous and expensive undertaking. One approach that is often useful is 
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asking whether particular taxa or gene functions are reliably increased or decreased with a given 

clinical state (e.g. ulcerative colitis, NAFLD) across many studies, although different methods can 

in principle lead to different conclusions even with data analysis at this level. 

Of particular concern to clinicians is whether data from companies offering testing, or from 

citizen-science projects such as the American Gut Project25, is comparable to studies performed 

in the scientific literature. The American Gut Project is part of the Earth Microbiome Project (EMP), 

and uses the EMP protocols24 that have been applied in literally thousands of microbiome studies, 

including those that are clinically relevant. Unsurprisingly, testing services that use proprietary 

protocols produce different results even on the same biological specimens. In general, to 

understand these differences, it is necessary to have detailed information about all the protocols 

being used. 

Another important issue is that although many associations between the microbiome and 

disease or between the microbiome and treatment have been found within the context of 

individual research studies, there are many reasons why these might not generalize to new 

individuals or populations. It is well-known in the field of human genetics that environmental 

factors have a major impact on which genes are important for a given trait, and the same is likely 

true for the microbiome, so validation cohorts are essential in order to prove generality of 

microbiome findings just as they are for human genetic findings. Some conditions, such as IBD, 

have very robust signatures across populations99,6,100, with diagnostic models trained in humans 

working even on dogs101; in contrast, for obesity, although there are typically signatures that 

separate lean from obese within one population, these signatures do not apply across other 

cohorts99,102,103,23. This result is surprising given that obesity can be transmitted from humans into 

germ-free mice by transmitting the microbiome from obese people, demonstrating the direct 

effects of the microbiome2,104. Understanding which findings will generalize to new subjects, and 

which will not, remains an important outstanding challenge in the field. It is possible that new 
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ecosystem-level or pathway-level concepts and methods need to be developed in order to 

develop such an understanding. 

 

1.7 Conclusions 

Although there is great interest in the microbiome, there is still a long way to go before 

microbiome-based diagnostics become a routine part of clinical care.  Microbiome studies have 

been enormously valuable both in understanding mechanisms of disease in animal models and 

finding associations with disease in humans. A good analogy is machine translation of natural 

languages: there has been interest since the 1950s, and poorly-functioning systems have been 

available since the 1980s, but only in the last couple of years has it been possible to have a 

conversation with someone who speaks no common language using an app on a smartphone, or 

to translate signs or menus from Chinese into English in real time using that smartphone’s 

camera. In the same way, microbiome testing right now is primarily of interest as a science project.  

However, there will be rapid progress in the near term to develop better technical capability, 

including better user interfaces with readouts at the level of bacterial strains, and integration of 

ecological dynamics concepts to better understand the transitions from health to illness. 
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Chapter 2. Intermittent Hypoxia and Hypercapnia Alter Diurnal 

Rhythms of Luminal Gut Microbiome and Metabolome  

Abstract 

Rationale 

Obstructive sleep apnea (OSA), characterized by intermittent hypoxia and hypercapnia 

(IHC), affects the composition of the gut microbiome and metabolome. The gut microbiome has 

circadian oscillations that play a crucial role in regulating circadian and overall metabolic 

homeostasis. Thus, we hypothesized that IHC adversely alters gut luminal dynamics of key 

microbial families and metabolites.  

Objective  

To determine the diurnal dynamics of the fecal microbiome and metabolome of Apoe-/- 

mice after a week of IHC exposure.  

 
Methods and Results  

Individually-housed, 10-week-old Apoe-/- mice on an atherogenic diet were split into two 

groups. One group was exposed to daily IHC conditions for 10 hours (ZT2 to ZT12) while the 

other was maintained in room air. Six days after initiation of the IHC condition, fecal samples were 

collected every 4 hours for 24 hours (6 timepoints). We performed 16S rRNA gene amplicon 

sequencing and untargeted LC/MS to assess changes in the microbiome and metabolome. IHC 

induced global changes in the cyclical dynamics of the gut microbiome and metabolome. 

Ruminococcaceae, Lachnospiraceae, S24-7, and Verrucomicrobiaceae had the greatest shifts in 

their diurnal oscillations. In the metabolome, bile acids, glycerolipids (phosphocholines, 

phosphoethanolamines), and acylcarnitines were greatly affected. Multi-omic analysis of these 

results demonstrated that Ruminococcaceae and T𝝱MCA co-occur and are associated with IHC 
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conditions, and Coriobacteriaceae and CDCA co-occur and are associated with control 

conditions.  

 
Conclusions 

IHC significantly changes the diurnal dynamics of the fecal microbiome and metabolome, 

increasing members and metabolites that are pro-inflammatory and pro-atherogenic, while 

decreasing protective ones.  

 
Importance Statement 

People with obstructive sleep apnea, identified by loud snoring and breathing irregularly 

while sleeping, are at a higher risk of high blood pressure, type 2 diabetes, cardiac arrhythmias, 

stroke, and sudden cardiac death. We wanted to understand whether the gut microbiome changes 

induced by obstructive sleep apnea could potentially explain some of these medical problems. By 

collecting stool from a mouse model of this disease at multiple time points during the day, we 

studied how obstructive sleep apnea changed the day-night patterns of microbes and metabolites 

of the gut. Since the oscillations of the gut microbiome play a crucial role in regulating metabolism, 

changes in these oscillations can explain why these patients can develop so many metabolic 

problems. We found changes in microbial families and metabolites that regulate many metabolic 

pathways contributing to the increased risk for heart disease seen in patients with obstructive 

sleep apnea. 

 
Indexing Terms (3-5 words): Microbiome, Metabolome, Atherosclerosis, Circadian 

Rhythms 
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Table 2.1 Non-standard Abbreviations and Acronyms.  
The full names of microbes, metabolites, receptors, and other scientific terms are listed in the first 
column with its corresponding abbreviation used in Chapter 2 in the second column. 
 

NAME ABBREVIATION 

sub-Operational Taxonomic Unit sOTU 

Obstructive Sleep Apnea OSA 

Cardiovascular Disease CVD 

Intermittent Hypoxia and Hypercapnia IHC 

Principal Coordinates Analysis PCoA 

Zeitgeber time ZT 

Cholic acid CA 

Chenodeoxycholic acid CDCA 

Deoxycholic acid DCA 

Hyodeoxycholic acid HDCA 

Tauro-beta-muricholic acid T𝝱MCA 

Ursodeoxycholic acid UDCA 

1-(9Z-Octadecenoyl)-sn-glycero-3-
phosphoethanolamine 

LysoPE (18:1(9Z)/0:0) 

1-Stearoyl-2-myristoyl-sn-glycero-3-
phosphocholine 

PC(18:0/14:0) 

Farnesoid X receptor FXR 
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2.1 Introduction 

In the second part of this thesis, we demonstrate how an atherogenic mouse model of 

obstructive sleep apnea (OSA) results in altered diurnal microbiome and metabolome patterns. 

Mice under OSA conditions have increased stress and disrupted behavioral patterns that lead to 

widespread effects on host physiology. We examined altered diurnal oscillations of the gut 

microbiome and metabolome in mice under OSA conditions compared to controls. For the 

microbiome, Ruminococcaceae, Lachnospiraceae, Muribaculaceae (formerly S24-7), and 

Verrucomicrobiaceae were most affected. Bile acids, glycerolipids, and acylcarnitines had the 

greatest shifts in diurnal oscillations in the metabolome. Both the microbiome and metabolome 

had shift that were more proinflammatory and proatherogenic in nature. Multi-omic analysis 

showed that Ruminococcaceae and tauro-β-muricholic acid (TβMCA) tend to co-occur and 

elevated levels of both are associated with OSA conditions. In this study, we demonstrated how 

a timed external environmental host stimulus results in an altered diurnal pattern in the gut 

microenvironment in a detrimental way.  

Obstructive sleep apnea (OSA) is a major risk factor for cardiovascular disease (CVD), 

including metabolic syndrome, insulin resistance, cardiac arrhythmias, and atherosclerosis.1 The 

mechanism(s) of how OSA, or its characteristic components, intermittent hypoxia and 

hypercapnia (IHC), increases CVD risks is poorly understood, but disruption of circadian rhythms 

has long been suspected.2–4 The dyssynchrony between central and peripheral clock machinery 

could explain why IHC is able to disrupt so many different physiological systems simultaneously.5–

7 OSA can affect the central circadian clock through sleep fragmentation and increased 

sympathetic tone. However, how OSA affects the agents that entrain peripheral circadian clocks 

is poorly understood.  

Hepatic and intestinal circadian rhythms are entrained by feeding/fasting cycles and the 

gut microbiome.7,8 The gut microbiome is necessary for the maintenance of ileal and hepatic 
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circadian clocks and their synchrony with central circadian rhythms.9,10 Moreover, the gut 

microbiome itself has cyclical fluctuations that are necessary for metabolic homeostasis.9–15 

Microbially-produced compounds, such as short-chain fatty acids (SCFAs)16 as well as 

deconjugated and secondary bile acids17, link the luminal environment with host hepatic and ileal 

circadian rhythms8. Given that peripheral circadian rhythms regulate circulating lipids18, 

hematopoietic stem cells19, vascular smooth muscle function, sympathetic tone, and blood 

pressure20,21, OSA-induced changes to the gut microbiome could aggravate multiple physiological 

systems that promote atherosclerosis through their disruption. Moreover, disrupted circadian 

luminal dynamics can affect gut micro-niches and promote the growth of bacteria that are pro-

inflammatory (e.g. Ruminococcaceae22) and hinder those that may be protective against CVD 

(e.g., Akkermansia23). Disruption in microbiome rhythms can also increase systemic inflammation 

through disruption of the gut barrier function.24 Thus, the effect of IHC on luminal circadian 

dynamics can improve our understanding of how OSA increases CVD risks.  

Prolonged IHC exposure in atherosclerotic mouse models results in faster and increased 

extent of atherosclerotic lesions, making them the preferred animal models of OSA. Interestingly, 

IHC exposure also alters the composition of the gut microbiome and fecal metabolome in both 

apolipoprotein E (Apoe-/-) and LDL-receptor (Ldlr-/-) knockout mice on atherogenic diets25,26, 

findings that go beyond what is observed in these mice alone.27,28 Moreover, the fecal 

metabolomic changes observed in these mice included metabolites known to affect 

atherosclerosis, including trimethylamine (TMA), deconjugated and secondary bile acids, fatty 

acids, and phytoestrogens.25,26,29 However, some of these luminal metabolites have diurnal 

fluctuations and are differentially absorbed based on the enterocyte circadian clock.30,31 

Characterizing the time resolution of these changes would further our understanding of how 

luminal content could contribute to dysmetabolism and atherosclerosis.  
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To focus solely on the effects of IHC condition on the diurnal dynamics of the gut 

microbiome and metabolome, we maintained consistent genotype (Apoe-/-) and dietary 

conditions (atherogenic diet) between groups. We wanted to evaluate whether atherogenic gut 

luminal changes persist through a 24-hour period or only during certain windows of time. Overall, 

this study tests the hypothesis that IHC disrupts the diurnal rhythms of the gut microbiome and 

metabolome which may promote a pro-inflammatory luminal environment.  

 

2.2 Methods and Materials 

Animal Model and Description of IHC Induction 

Individually-housed, 10-week-old Apoe-/- mice (littermates from Jackson Labs) were fed 

an Irradiated regular chow diet (Envigo Teklad LB-485 diet #7912) prior to experiment start. Upon 

starting the experiment, the mice were fed an atherogenic diet consisting of 1.25% cholesterol 

and 21% milk fat (4.5 Kcal/g; TD.96121; Envigo-Teklad Madison, WI) ad libitum. There were 8 

mice total with 4 mice pseudo-randomly assigned to each of 2 groups (based on weight and 

acclimation cage). Vivarium was maintained in a 12:12 light-dark cycle room at 68-72ºF and below 

40% humidity during the study. IHC exposure occurred as previously described.25 In brief, mice 

were exposed to 10 hours of IHC conditions during the light period (ZT2-12). IHC exposure 

consisted of 4 minutes of synchronized reduction of O2 from 21% to 8% with synchronized 

elevation of CO2 from 0.5% to 8%, followed by alternating periods of 4 minutes of normoxia and 

normocapnia with one to two minute ramp intervals. Control mice were kept at room air (21% O2 

and 0.5% CO2) for the duration of the experiment. Introduction of atherogenic diet and IHC 

conditions both commenced on Day 0. One week was chosen so that the mice would have several 

days adjustment to the IHC chamber. We wanted to focus on early environmental-induced 

changes, which drives the phenotype, rather than later in phenotype development where the 

effects of the dysmetabolic state could affect gut microbiome composition. All animal experiments 
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were conducted in accordance with the guidelines of the IACUC of the University of California, 

San Diego. 

After one week of maintaining the mice in their relative environmental conditions, fecal 

samples were collected every 4 hours (ZT 2, 6, 10, 14, 18 and 22) over a 24-hour period. After 

collection, fecal samples were immediately stored at -80ºC until the end of the study. The 

microbiome was characterized by 16S rRNA amplicon sequencing and the metabolome was 

characterized by untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) in a 

manner consistent with previous studies.25,26  
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Characterization of Microbiome 

DNA extraction and 16S rRNA amplicon sequencing were done using the standard 

protocol for the Earth Microbiome Project (http://www.earthmicrobiome.org/protocols-and-

standards/16s).32 In brief, DNA was extracted using the Qiagen PowerSoil DNA extraction kit 

(Qiagen, Carlsbad, CA). The resulting DNA library was prepared for 16S rRNA amplicon 

sequencing as described previously.32 These pooled samples were purified using Qiagen 

UltraClean PCR cleanup kit (Qiagen, Carlsbad, CA) and then sequenced on the Illumina HiSeq 

2500 sequencing platform. The V4 region of 16S rRNA gene was sequenced using the primer 

pair 515F-806R with Golay error-correcting barcodes on the reverse primer.33  

Raw sequence data were uploaded to Qiita34 (https://qiita.ucsd.edu/) and processed using 

the Deblur35 workflow with default parameters. There were 2,490,504 reads for 94 samples with 

an average of 28,519 reads per sample. This process generated a BIOM36 format table that was 

rarefied to a depth of 12,000 sequences/sample to control for sequencing effort. This process 

removed two samples from analysis, one from Air (ZT2) and one from IHC (ZT14) that had read 

counts similar to blanks. A rooted phylogenetic tree was inferred using SATé-enabled 

phylogenetic placement plug-in37 using QIIME 238 version 2019.10, which was used to insert 16S 

Deblur sub-Operational Taxonomic Units (sOTUs) into Greengenes39 13_8 at 99%. Because it 

takes into account both phylogeny and abundance, Weighted UniFrac40 distances were used for 

microbiome principal coordinates analysis (PCoA) plots. Overall group differences were tested 

using PERMANOVA.41 All sOTUs were collapsed to the phylum and family level for analysis and 

comparison because critical sOTUs that distinguish IHC and Air from each other did not identify 

past family level. MetaCycle using JTK method and correction for multiple hypotheses with 

Fisher’s method was applied to determine circadian oscillatory patterns.42 Rhythmicity was tested 

using LimoRhyde.43 Mann-Whitney-Wilcoxon test was used to compare groups presented in the 
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boxplots. Data visualized using custom python scripts - GitHub link for Python code 

[https://github.com/knightlab-analyses/circadian-ihc/].  

Characterization of Metabolome 

Untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) was 

performed on the stool for metabolomics as previously described.25 In brief, samples were 

prepared by adding 500 µl of 50:50 methanol-H2O to all fecal samples (30 to 50 mg approximately) 

followed by homogenization and centrifugation. Then, 450µL of the resulting supernatant was 

transferred to a 96-well deep-well plate and dried using centrifugal evaporation (CentriVap 

centrifugal vacuum concentrator; Labconco, Kansas City, MO). Next, samples were resuspended 

and samples were analyzed on a Vanquish ultrahigh-performance liquid chromatography (UPLC) 

system coupled to a Q Exactive orbital ion trap (Thermo Fisher Scientific, Bremen, Germany). For 

chromatographic separation, a C18 core shell column (Kinetex column, 50 by 2 mm, 1.7-µm 

particle size, 100-Å pore size; Phenomenex, Torrance, CA) with a flow rate of 0.5 ml/min (solvent 

A, H2O-0.1% formic acid [FA]; solvent B, acetonitrile-0.1% FA) was used. Flow-through 

parameters were set, run, and data were detected as previously described.25  

 The raw data resulting from the method described above were converted to m/z 

extensible markup language (mzXML) in centroid mode using MSConvert (part of 

ProteoWizard).44 The mzXML files were cropped using an m/z range of 75.00 to 1,000.00 Da for 

further sample processing. Using a signal threshold of 2.0e5 and a 0.3-s minimum peak width to 

remove low quality spectra, MZmine245 (http://mzmine.sourceforge.net/) was used for feature 

extraction. The local minimum search algorithm was used with a minimum relative peak height of 

1% for chromatographic deconvolution. Minimum retention time range was set to 0.6 seconds. 

Maximum peak width was set to 1 min. After that, alignment of the peak lists of all samples was 

performed with retention time deviation of 10s and mass tolerance of 10ppm was set for features. 

Next, MZmine245 (version 2.37) was used to create a feature matrix file that could then be linked 
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to metadata. The signal intensities of the features were normalized for subsequent analysis. 

Identification of molecular features was performed using MS1-based feature detection and MS2-

based molecular networking using the GNPS46 workflow 

(https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp). The actual GNPS jobs can be found 

at the following URL: 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=9d8ee19ec2654d46a065080a0ff2290a. 

Using a decoy database approach in GNPS, we determined that the false-discovery rate (FDR) 

was less than 1% above a 0.6 cosine similarity score.47 Thus, we used a cosine score of 0.65 to 

determine annotations. The MS/MS spectral annotations were determined by using MS/MS-

based spectral library matches for GNPS level 2 or 3 annotation for all molecules.48 Bile acid 

standards were purchased from Cayman Chemical (Ann Arbor, MI) and analyzed using the same 

LC-MS/MS method described above to attain level 1 identification as defined by the 2007 

metabolomics standards initiative.49 The annotated frequency table was analyzed using QIIME 

238 version 2019.10. Canberra distances50, which are more sensitive to rare features than Bray-

Curtis, were used for metabolomic PCoA plots and significance was tested using PERMANOVA41. 

MetaCycle42 utilizing the JTK method was used to determine circadian rhythmicity. Mann-

Whitney-Wilcoxon test was used to compare groups presented in the boxplots. Data was 

visualized using custom python scripts - GitHub link for Python code [https://github.com/knightlab-

analyses/circadian-ihc/].  

 

Differential Abundance and Multi-Omic Analysis 

Differential abundance analysis was performed with Songbird which accounts for the 

compositional nature of microbial data and uses a multinomial regression model to estimate 

differential ranks.51 Optimized model parameters for the covariate of exposure treatment and the 

interaction of time in hours were determined for the microbiome and metabolomics data 
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(differential prior = 1.5 and learning rate = 0.001) and compared to a baseline model of 1 on the 

same parameters. Model fit was compared by the Q-squared (1 − model CV/baseline CV) where 

a Q-squared greater than zero ensures a good model fit. A Q-squared of 0.14 and 0.22 was 

obtained for the microbiome and metabolite data respectively. The resulting differentials were 

explored and verified through log-ratios through Qurro.52 Multi-omic analysis of microbiome and 

metabolomics data was performed through mmvec (microbe–metabolite vectors), a neural 

network method for producing log conditional probabilities of co-occurrence between microbial 

and metabolite features visualized as heatmaps and paired latent representation in few 

dimensions which can be visualized in scatter or biplot ordinations.53 A high conditional probability 

of close spatial similarity in the ordination indicates high co-occurrence between a microbe and 

metabolite pair while a negative conditional probability or high spatial distance in the ordination 

indicates low co-occurrence. The mmvec model parameters were optimized (batch-size = 5, 

learning-rate = 1e−3) to minimize the low cross-validation error and model likelihood. Differential 

co-occurrence patterns (mmvec microbe-metabolite interactions) in relation to the exposure 

treatment was evaluated by correlating MMVEC PC1 loadings with respect to  the songbird log 

fold change differential with respect to the exposure treatment, which was significantly correlated 

(Metabolites; Spearman rho=0.26, P=1.23e-07; see results).  

 

Data availability 

EBI accession for microbiome: ERP110592; MassIVE ID for metabolome is 

MSV000084847, link: 

https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=0434de6d06f5424d8bd567808d069d4e

; GitHub link for Python code [https://github.com/knightlab-analyses/circadian-ihc/].  
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2.3 Results 

IHC Changes the Composition of the Gut Microbiome 

To determine the early effects of OSA on the gut microbiome, we used the atherosclerosis-

prone Apoe-/- murine model and exposed half of the cohort to IHC conditions, while control mice 

were exposed to room air. Since mice were individually housed for the experiment, cage effects 

were not a confounding variable. Our analysis revealed a large overlap in the sub-operational 

taxonomic units (sOTUs) (Fig. 2.1A), with 183 sOTUs in common between the two groups. These 

shared sOTUs comprised 56% of the total Air sOTUs and 69% of the total IHC sOTUs. The Air 

control group tended to have more sOTUs than the IHC group (Fig. 2.S1A, Mann-Whitney U test, 

p=0.053). In addition, mice in the Air condition had overall higher Faith’s phylogenetic 𝝰-diversity 

compared to mice under the IHC condition (Fig. 2.S1B, Kruskal-Wallis, p=0.040). This finding is 

especially true for ZT-18, where 𝝰-diversity values diverged the most between the two groups 

(Mann-Whitney U, p=0.015). Gut microbiome biodiversity, such as measured by Faith’s 

phylogenetic diversity, has previously been used as a surrogate measure of microbial community 

health.54  
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Figure 2.1. IHC Affects the Cyclical Dynamics of the Gut Microbiome. A) Venn diagram of unique 
non-zero detected sOTU in each cohort overall. Purple indicates sOTUs in common. B) Weighted 
UniFrac (beta diversity) PCoA of samples. Shading represents different time points as indicated. 
C) Weighted UniFrac PCoA of only Axis 1 over time. Significance tested with paired Wilcoxon 
test. Solid line indicates average for group, dotted line indicates individual mice. D) Proportional 
abundance representation of the top 5 microbial families. Notation: Control samples only 
exposure to normal Air conditions is red (n=4, 5-6 time points per mouse); Experimental samples 
exposed to IHC conditions are blue (n=4, 5-6 time points per mouse). 
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 Weighted UniFrac distances, a measure of 𝛃-diversity, were significantly different 

between the two groups across all time points (Fig. 2.1B, S1C) (pseudo-F 6.776, p=0.002 by 

PERMANOVA41). Analysis of these 𝛃-diversity distances demonstrates that the microbiome 

composition of the IHC in the dark period became more similar to that of the Air controls during 

the light period (Fig 2.1B, 1C). Compositional analysis showed Verrucomicrobiaceae, 

Lachnospiraceae, and S24-7 were the top three most prevalent taxa of the microbiome in both 

conditions across all time points (Fig 2.1D). Family S24-7 (“Homeothermaceae” is one of the 

current proposed names) is a relatively new family in the phylum Bacteroidetes, thought to be 

involved in carbohydrate metabolism, among other functions.55 To determine whether IHC 

disrupted the diurnal dynamics of the luminal environment, we determined the proportion of 

bacterial families that had circadian oscillation in their abundance (p<0.05).42 Compared to control 

mice, the mice under the IHC condition had about two-thirds as many bacterial families (Air 13%, 

IHC 8%) that had circadian oscillations (Fig. S1D), and these families accounted for fewer reads 

(Fig. S1E). A full breakdown of changes in oscillation at the sOTU level is found in Supplementary 

Table 2.3. Thus, IHC caused a significant change in luminal dynamics over the course of 24-

hours. This shift in luminal dynamics is characterized by a decrease in overall cycling, wherein 

the dark period microbial composition in IHC is more similar to that of the light period in control 

mice. We did not see significant changes in rhythmicity.43 

 
IHC Exposure Results in Circadian Disruption of the Gut Microbiome 

 To examine the effects of IHC on the diurnal dynamics of the microbiome in more detail, 

we examined individual taxa over time. IHC induced dynamic changes in the composition of the 

microbiome that was easily detectable at the phylum level (Fig 2.S2A-C). There was no detectable 

circadian fluctuation in the Bacteroidetes phylum (Fig. 2.S2A). In the control condition, Firmicutes 

had circadian fluctuations with a peak in the late light period (Fig. 2.S2B), and Verrucomicrobia 

had circadian fluctuations with a peak in the late dark period (Fig. 2.S2C). Phylum 
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Verrucomicrobia contains only the sOTU for Akkermansia muciniphila. However, under IHC 

conditions, Firmicutes lost, and Bacteroidetes gained, circadian oscillation (Fig. 2.S2A-B). 

Circadian oscillation was maintained in Verrucomicrobia under the IHC condition (Fig. 2.S2C). 

However, relative abundances of this phylum were significantly higher in the Air controls during 

both light and dark periods (Fig. 2.S2C). 

Then, we analyzed the cyclical dynamics of Ruminococcaceae and Lachnospiraceae, two 

bacterial families in the Firmicutes phylum that have been associated with atherosclerosis 

formation.22 Both Ruminococcaceae (Fig. 2.S2D) and Lachnospiraceae (Fig. 2.S2E) have 

circadian oscillations in the control mice that are perturbed under the IHC condition. S24-7, a 

bacterial family in the Bacteroidetes phylum, was the only one that had more robust cycling under 

the IHC condition than it did under the control conditions (Fig. 2.S2F). In particular, S24-7 

abundances increased significantly during the time of IHC exposure, where they were 2- to 3-fold 

higher than what was measured under the control condition. In contrast, peak differences in the 

relative abundance of Lachnospiraceae occurred during the dark period, where abundances were 

approximately 2-fold higher under the IHC condition. Overall, IHC perturbed the cyclical dynamics 

of the bacterial families that can affect the atherosclerosis phenotype. 

 
IHC Changes Composition of the Fecal Metabolome 

 An overview of the fecal metabolome, analyzed using untargeted LC-MS/MS, shows 

significant separation between groups [pseudo-F 5.410, p<0.001 by PERMANOVA41] (Fig. 2.2A, 

2.S3A. Axis 2 (10.9%) which represents a nearly similar amount of the variability in the data as 

Axis 1 (12.2%), shows a clearer separation between groups over time Fig. 2.2B. Overall, the IHC 

condition led to an increase in the relative amount of fecal bile acids (~35%) as well as 

glycerolipids, such as phosphoethanolamines (~57%) and phosphocholines (~26%) (Fig 2.2C). 

The cyclical dynamics of these individual metabolites, which have been implicated in 
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atherosclerosis, were significantly affected by IHC exposure (Fig. 2.2D-E, 2.S3B. A list of all 

annotated metabolites can be found in Supplemental Table 2.2.  
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Figure 2.2. IHC Affects the Cyclical Dynamics of the Fecal Metabolome. Please see Supplemental 
Table A.A.2.S1 for a list of the full annotation and abbreviation of metabolites displayed. A) 
Canberra PCoA of metabolomics samples, shading represents different time points. Significance 
determined by PERMANOVA. B) Canberra PCoA of Axis 2 over time. Solid line indicates mean 
for group, dotted line indicates individual mice. Yellow box indicates time under IHC exposure for 
the treatment group. C) Pie charts of key groups of metabolites, separated by condition. D) 
Heatmap of level 1 bile acids, organized using hierarchical clustering based on controls. Yellow 
indicates time under IHC exposure for the treatment group. For other level 3 bile acids, see Figure 
S3C. E) Heatmap of selected phosphocholines, organized using hierarchical clustering based on 
controls. The value of each square of the heatmap represents the mean relative abundance value 
for all mice in that condition for that time point. The heatmaps are also row normalized across 
both conditions and placed on a standard scale referenced in the center to allow easier 
comparison. Notation: # indicates a metabolite that is also shown in Figure 4 or Figure 2.S4. Air 
is red (n=4, 5-6 time points per mouse); IHC is blue (n=4, 5-6 time points per mouse).   
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Sub-class analysis of the fecal metabolites demonstrated that time was an important factor 

in metabolomic differences. For example, the biggest differences in bile acids between IHC-

conditioned mice and Air controls occurred in the dark period (Fig. 2.2D), except for UDCA which 

demonstrated the greatest changes during the light period. Phosphocholines, 

phosphoethanolamines, and acylcarnitines, metabolites that play an important role in 

atherosclerosis, are also altered under the IHC condition.56–61 IHC resulted in comparatively 

higher levels of phosphocholines (Fig. 2.2C, E) and phosphoethanolamines (Fig. 2.2C, 2.S3B) 

during IHC exposure (i.e., light period) (Fig. 2.2E, 2.S3B). In addition, IHC mice also had higher 

levels of heme breakdown derivatives - stercobilin and urobilin - during the dark period (Fig. 

2.S3B), which may be an indication of altered liver metabolism.62 Overall, fecal IHC induced global 

changes in fecal metabolomics, particularly in secondary metabolites that are known to contribute 

to inflammation and atherosclerosis.  

 
Diurnal Dynamics of the Fecal Metabolome is Altered Under IHC Conditions 

We performed a more detailed analysis of the effects of IHC on the diurnal dynamics of 

the luminal metabolites that are presumed to either exacerbate or protect against atherosclerosis, 

affect circadian rhythms, or influence metabolic homeostasis. Bile acids are one of the key 

metabolites that can influence peripheral circadian rhythms, host metabolism, and 

atherosclerosis.63 Deoxycholic acid (DCA), a pro-inflammatory secondary bile acid64, had 

circadian oscillations under the IHC condition but not under the control condition (Air p = 1.000, 

IHC p = 0.002) (Fig. 2.S4A). The relative abundance of DCA was higher under IHC condition 

compared to control conditions at all time points, but especially so during the dark period (p = 

0.001) (Fig. 2.S4A). Tauro-𝝱-muricholic acid (T𝝱MCA), known to contribute to the development 

of atherosclerosis through farnesoid X receptor (FXR) antagonism65–67, had overall higher relative 

abundance levels in mice under IHC conditions (Fig.2.S4B). Significantly high levels of T𝝱MCA 

were observed in IHC-conditioned mice during the light period (p = 0.019), with dark period 
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differences only approaching statistical significance (p = 0.063). T𝝱MCA appears to have 12hr 

oscillations rather than 24hr oscillations. While pro-atherosclerotic T𝝱MCA did not have a 

circadian oscillation under Air nor IHC conditions (Air p = 0.270, IHC p = 1.000) (Fig. 2.S4B), anti-

atherosclerotic hyodeoxycholic acid (HDCA)68,69 displayed circadian oscillations under IHC but 

not under control conditions (Air p = 1.000, IHC p = 0.002) (Fig. 2.S4C). Levels of anti-

inflammatory ursodeoxycholic acid (UDCA)68,70,71 trended toward being lower in mice under IHC 

condition, however this did not approach significance (Fig. 2.S4D). Overall, bile acid differences 

between IHC and Air conditions were far more pronounced during the dark period (Fig. 2.2D). 

Furthermore, with increased levels of pro-inflammatory and pro-atherosclerotic bile acids and a 

reduction in anti-inflammatory bile acids, IHC conditions appear to shift the metabolome in a 

detrimental direction for the host. 

IHC had a significant effect on the cyclical dynamics of other metabolites that are important 

for atherosclerosis, such as acylcarnitines and glycerolipids, including phosphoethanolamines 

and phosphocholines (Fig. 2.S5). High serum levels of long-chain acylcarnitines, such as 

palmitoylcarnitine (Fig. 2.S5A) and oleoyl L-carnitine (Fig. 2.S5B) can promote inflammation and 

atherosclerosis.72,73 However, fecal palmitoylcarnitine levels are significantly lower in IHC-

conditioned mice during both periods of the circadian cycles (light period p = 0.013, dark period p 

= 0.017) (Fig. 2.S5A). Overall levels of oleoyl L-carnitine, another acylcarnitine, are also reduced 

in IHC-conditioned mice, particularly during the light period of the circadian rhythms (light period 

p=0.053, dark period p=0.761) (Fig. 2.S5B). Phosphoethanolamines and phosphocholines are 

the main pro-inflammatory glycerolipid derivatives that are absorbed into the bloodstream.74 Fecal 

levels of phosphoethanolamines were generally increased in IHC-conditioned mice, especially 

during the light period (Fig. 2.2). Levels of one such phosphoethanolamine, LysoPE (18:1(9Z)/0:0) 

(1-(9Z-Octadecenoyl)-sn-glycero-3-phosphoethanolamine), had robust circadian oscillations (p < 

0.001) under IHC conditions with significantly higher levels during the light period (p < 0.001) (Fig. 
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2.S5C). In addition, overall levels of phosphocholines were also increased in IHC-conditioned 

mice, especially during the light period (Fig. 2.2). Levels of one phosphocholine in our study, 

PC(18:0/14:0) (1-Stearoyl-2-myristoyl-sn-glycero-3-phosphocholine), had robust cycling under 

the IHC condition, but not under the air condition (Air p = 1.000, IHC p = 0.002), and was especially 

elevated during the light period (p = 0.013) (Fig 2.S5D). Similar trends are seen in other 

phosphocholines (Fig. 2.S5E, 2.S5F). Taken together, our results demonstrate that IHC induces 

a rapid shift in the gut luminal metabolite profile.  

 
Trans-omic analysis of the microbiome and metabolome reveals key relationship between 

Ruminococcaceae and TbMCA 

Next, we assessed whether there are specific relationships between microbial families 

and metabolites that are individually implicated in worsening CVD. One particular challenge in 

performing multi-omic analysis with microbiome data is that 16S amplicon sequencing yields sum 

constraint normalized data (i.e., relative abundances). Thus, this increases the probability of type 

I errors in the analysis and makes measurements of false discovery rates difficult.51 Relative 

abundance values can fluctuate significantly from study to study due to artifactual differences in 

total number of microbial reads (i.e. total feature load). For example, when the relative abundance 

of a specific bacterial family is increased, we cannot determine if this is due to an increase in the 

number of bacteria within that family, or if it is due to a decrease in the number of other bacteria 

in other families. By using log-ratios for these analyses, we remove the biases created by total 

feature load and can calculate false discovery rates using already established methods.51,75 Thus, 

these log ratio-based methods are more likely to result in repeatable trends in independently 

performed studies.  

We used a machine learning neural network to predict the probability of microbe-

metabolite interactions (mmvec53) as well as a multinomial logarithmic regression differential 

ranking analysis (songbird51). This analysis created ranked log-based conditional probabilities of 



 

  

65 

microbe and metabolite co-occurrence and identified relationships between the microbiome and 

metabolome data, which were then validated using the individual log-ratios. This analysis not only 

revealed which microbes and metabolites co-occur, but also whether they are correlated with 

differences between the IHC and control conditions.  

 Based on this multi-omic analysis, CDCA and T𝝱MCA are the two bile acids most 

differentially abundant between the IHC and control conditions (Fig. 2.3A). CDCA, which is 

associated with the Air condition, co-occurred with Coriobacteriaceae (Fig. 2. S2G), and T𝝱MCA, 

which is associated with the IHC condition, co-occurred with Ruminococcaceae (Fig 2.A, B). 

Plotting the microbes and metabolites identified by mmvec validated its co-occurrence status (Fig. 

2.A, 2.3B). The log-ratios of the top differentially co-occurring microbes and metabolites result in 

separation of the two conditions. However, further studies are necessary to determine whether 

these relationships are causal. We found a significant correlation (Pearson’s correlation 

coefficient, r = -0.539, R2 = 0.29, p < 0.001) between the log-ratio of the mmvec identified 

metabolites (CDCA in the control condition and T𝝱MCA in the IHC condition) and the mmvec 

identified microbes (Coriobacteriaceae in the control condition and Ruminococcaceae in the IHC 

condition) (Fig. 2.3C, D). Hence, after one week of IHC exposure, the cyclical dynamics of the 

luminal environment show significant shifts in the fecal microbiome and metabolome. The shift 

towards FXR antagonism via T𝝱MCA and correlated to Ruminococcaceae is correlated to the 

pathophysiology of OSA-related CVD. 
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Figure 2.3. Microbes and metabolites with linked expression levels as determined by mmvec 
analysis. A) Mmvec53 co-occurrence analysis (y-axis) based on songbird51 multinomial 
regression differential ranking analysis (x-axis). Bile acids are generally level 1 identification, 
except for one of the CA, CDCA, and MDCA (level 2 annotation). B) Log conditional probability 
heatmap, organized using hierarchical clustering, with the top 4 differentially abundant microbial 
families and the top differentially abundant bile acids. Pink and green boxes highlight the top 2 
points with highest correlation values. C) log-ratios of the top correlated microbes (x-axis) and 
metabolites (y-axis) identified in B. Microbial logratio of all reads from sOTU that belong to family 
Ruminococcaceae divided by all reads from sOTU that belong to family Coriobacteriaceae. 
Metabolite logratio of raw values from CDCA divided by raw values of T𝝱MCA. D) Linear 
regression plot using the same log-ratios as in C with best fit line and shaded areas representing 
95% confidence interval. Log ratios based on natural log (ln). Control samples only exposure to 
normal Air conditions are red (n=4, 5-6 time points per mouse); Experimental samples exposed 
to IHC conditions are blue (n=4, 5-6 time points per mouse). Complete metadata can be found in 
Supplemental Table A.A.2.S4.
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However, relative abundance analyses did not show a significant difference between IHC 

and control conditions in these bacterial families (Fig. 2.S2D, G). To determine whether total 

feature load differences could have biased these results, we repeated our assessment of these 

two bacterial families using log-ratios. For the denominator of these log-ratios, we used 

Verrucomicrobiaceae due to its ubiquity and high abundance. As predicted by the differential 

rankings analysis (Fig. 2.3B), mice under the IHC condition had higher log-ratios of 

Ruminococcaceae to Verrucomicrobiaceae especially during the light period (Fig. 2.4A). 

Conversely, mice under the Air condition had higher log-ratios of Coriobacteriaceae to 

Verrucomicrobiaceae during the light/inactive period (Fig. 2.4B). Log-ratios of Ruminococcaceae 

to Coriobacteriaceae shows persistently higher levels of Ruminococcaceae in mice under IHC 

conditions, whereas mice under control conditions have higher relative levels of 

Coriobacteriaceae (Fig. 2.4C).  
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Figure 2.4. Cyclical Dynamics of log-ratios of Key Microbes and Metabolites. Additional selected 
log ratios (natural log, ln) and their cyclical dynamics over time (double line plot, upper) and their 
relative abundances grouped by cycle phase (box plots, lower). A) Log ratio of all reads from 
sOTU’s that belong to family Ruminococcaceae divided by all reads from sOTU’s that belong to 
family Verrucomicrobiaceae. B) log-ratio of all reads from sOTU’s that belong to family 
Coriobacteriaceae divided by all reads from sOTU’s that belong to family Verrucomicrobiaceae. 
C) log-ratio of all reads from sOTU’s that belong to family Ruminococcaceae divided by all reads 
from sOTU’s that belong to family Coriobacteriaceae. D) log-ratio of raw values from CDCA 
divided by raw values of T𝝱MCA, the two most differentially abundant bile acids identified in Figure 
2.5B. E) log-ratio of raw values of UDCA divided by the raw values of T𝝱MCA. Solid line 
represents the mean, error bars indicate standard error of the mean. Individual mice indicated by 
dashed line. Shading indicates when room lights are off (i.e. active/feeding time for the mice). 
Yellow square indicates the 10 hours of the day where mice under the IHC condition would be 
exposed to experimental conditions [ZT2 (after collection), until ZT12]. MetaCycle with JTK 
method was used to determine cyclicity. Notation: * = p<0.05; ** = p<0.01, *** = p<0.001, 
****=p<0.0001 by Mann-Whitney-Wilcoxon test. @ indicates circadian oscillations as determined 
by MetaCycle (JTK) = p<0.05. Control samples only exposure to normal Air conditions are red 
(N=4, 5-6 time points per mouse); Experimental samples exposed to IHC conditions are blue 
(N=4, 5-6 time points per mouse). Error bars were not placed for time points where there were 
fewer than 3 log-ratios available.  
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Log-ratio analysis of two most different bile acids (i.e., CDCA and T𝝱MCA) also showed 

clear differences between IHC and control mice. As predicted by the differential rankings analysis 

(Fig. 2.3A, B), mice under the IHC condition have far more fecal T𝝱MCA relative to CDCA 

compared to mice under the control condition (Fig. 2.4D). Interestingly, CDCA is a FXR agonist, 

while T𝝱MCA is an FXR antagonist. FXR is a bile sensor that regulates bile acid uptake, 

metabolism, and excretion that can affect atherosclerosis.66 Though the mmvec analysis did not 

identify UDCA, a secondary bile acid with anti-inflammatory properties 68,70,71, as being associated 

with any specific bacterial family or with any condition, we repeated the log-ratio analysis with this 

secondary bile acid. In this case, mice under the IHC condition have far more of the pro-

atherosclerotic bile acid T𝝱MCA relative to UDCA compared to mice under the control condition 

(Fig. 2.4E). 

 

2.4 Discussion 

In this study, we demonstrate that the compositional and diurnal dynamics of the 

microbiome and metabolome of atherogenic Apoe-/- mice are significantly impacted by IHC 

conditions. Despite the low number of mice used in this study (n=4), we have found significant 

differences in both microbial families and metabolites at different time points. IHC exposure leads 

to significant changes in diurnal oscillations of secondary metabolites that are key contributors to 

the pathogenesis of atherosclerosis. It is currently unclear if gain or loss of oscillations is more 

important for disease outcomes based on the literature. Taken together, IHC results in circadian 

dyssynchrony of the gut microbiome and metabolome, which promotes a pro-inflammatory 

luminal environment through which atherosclerosis is exacerbated. Moreover, it suggests that bile 

acid signaling and disturbed peripheral circadian rhythms likely contribute to IHC-induced 

increase in cardiovascular risk.  
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Several studies, both in mice and humans, demonstrate the metabolic implications of 

disruptions to the circadian homeostasis of the microbiome.7,8 In humans, jet lag-induced 

disruption of microbiome diurnal dynamics leads to increased adiposity in gnotobiotic mice.10 

More recently, a large-scale epidemiological study demonstrated that circadian dyssynchrony of 

microbial oscillations was associated with type 2 diabetes. Moreover, these arrhythmic microbial 

risk signatures were highly predictive of metabolic disease.76 Disruption of the circadian dynamics 

of the microbiome is a hallmark of animal models of obesity and dysmetabolism.9–11 In this study, 

we show that circadian disruption of the gut microbiome is also a hallmark of preclinical models 

of OSA. Since the gut microbiome is necessary to entrain peripheral circadian rhythms, OSA 

could contribute to dysmetabolism by inducing circadian dyssynchrony. This finding could explain 

why OSA can increase CVD risk across so many different physiological systems (e.g. 

hypertension, insulin resistance). 

Our previous work in preclinical models of OSA demonstrates that IHC induces 

reproducible microbiome and metabolome changes across two different mouse models of 

atherosclerosis, Apoe-/- and Ldlr-/- mice.29 These luminal changes were predictive of IHC 

exposure, and could be used potentially to highlight atherosclerotic risk.26 Despite measuring the 

microbiome and metabolome composition only one week after the initiation of daily IHC 

intervention, we found similar changes in this study. Moreover, since the study was solely focused 

on OSA and the impact of IHC, we used the most well-defined model (Apoe-/- mice on atherogenic 

diet) and determined the impact of a single factor (environmental changes in gases) that 

exacerbates atherosclerosis and whether it impacts the dynamics of the gut microbiome. Since 

genetics and diet were adequately controlled for in our experimental and control condition, there 

is no need to disentangle their effects from the observed effects of IHC. Though the circadian 

impact of genetics and diet have not yet been investigated in context of atherosclerosis, several 

studies have shown that they do impact circadian dynamics of the gut microbiome.25–28 
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Experiments were performed using best practice guidelines to minimize maternal, founder, and 

cage effects.77–79 In addition, all mice were from the same source vivarium, room, and maternal 

line (to minimize maternal effect), were acclimated in shared holding cages in the vivarium (to 

control for founder effects), and then were pseudo-randomized into individually-housed cages (to 

control for cage effect).  

IHC imposed microbiome compositional changes that are often observed in dysmetabolic 

states, including changes in diversity and in abundances of specific bacterial families. IHC-

induced reduction of microbial diversity and richness occurred within one week of exposure. This 

observation suggests that IHC makes the lumen uninhabitable for many commensal microbes, 

likely by changing environmental micro-niches. Moreover, these changes are not restricted to only 

the time of exposure to IHC (i.e., light period); there are global shifts in the gut microbiome even 

during the times of the day when the animal is not being exposed to IHC. Interestingly, the dark 

period microbiome of the IHC is more similar to the light period microbiome composition of the 

control mice. Importantly, changes to the microbiome oscillations occur almost immediately, within 

one week of IHC exposure, confirming that this change results from IHC, rather than the 

atherosclerotic phenotype, which can take 10 weeks to develop.25,26,29 Importantly, these changes 

can create a lasting and profound impact on metabolic health of the host. 

Previous studies investigating diurnal cycling of the gut microbiome have used samples 

collected under 24h9,11,13 and 48h conditions10,12,80. Though in general, it is preferable to use 48h 

data for circadian studies since it reduces Type I errors, recent advances in bioinformatic tools, 

such as Metacycle42, allow for rigorous analysis of 24hr circadian data.  This allows investigators 

to determine circadian cycling from more limited data while still reducing Type I error.  Though 

these tools were created for transcriptional data, as opposed to microbiome data, since our work 

ultimately replicates and expands upon the results of previous microbiome IHC studies81 and are 

consistent with circadian microbiome studies, these potential issues do not significantly impact 
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interpretation. Nevertheless, a more thorough study of comparing 24h and 48h diurnal 

microbiome data is warranted to determine if MetaCycle is as robust for this type of data as it is 

for transcriptional data.  

IHC significantly affected the circadian dynamics of the gut microbiome. Verrucomicrobia, 

Firmicutes and Bacteroidetes - phyla that composed more than 90% of the gut microbiome - were 

all affected by the IHC condition. The relative abundances of families implicated in 

atherosclerosis, Ruminococcaceae and Lachnospiraceae22,82, had circadian oscillations in control 

mice but lost these oscillations in mice exposed to IHC conditions. In particular, Lachnospiraceae, 

a bacterial family that has been associated with increase in pro-atherosclerotic TMAO and an 

increase in a thrombotic phenotype, was significantly elevated in IHC mice during the dark 

period.83 IHC also led to the relative reduction of Akkermansia muciniphila, the only microbe in 

phylum Verrucomicrobia found in the gut luminal environment of mammals. A. muciniphila is 

crucial for gut barrier integrity, which helps prevent a pro-inflammatory state by impeding 

translocation of lumial compounds into the portal system.84 Replenishing these species in the 

microbiome of Western diet-fed Apoe-/- mice resulted in a decrease in atherosclerotic lesions.85 

Further, IHC induced a gain of oscillation in S24-7, a family in the Bacteroidetes phylum. This 

family had significantly increased relative abundance levels during the light period. Some 

members of S24-7 contain a SpeB homolog, a cysteine protease55, which helps these bacteria 

avoid detection from the immune system55,86 and can potentially degrade the protective biofilm 

present on the surface of the mucosal layer87. Together the increase in S24-7 and decrease in A. 

muciniphila suggest a disruption of host mucosal layer and a breakdown of the gut barrier function. 

Whether these microbiome changes are the sole cause of IHC-induced increase in CVD risks or 

exacerbators of the dysmetabolic phenotype warrant further investigation.  

Along with changes to the gut microbiome, IHC-conditioned metabolome was also altered 

with increased levels of pro-inflammatory metabolites particularly in bile acids. A comparative 
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analysis of dark period versus light period fecal samples revealed higher levels of pro-

inflammatory and pro-atherosclerotic bile acids, such as DCA and TβMCA, in IHC mice regardless 

of time of collection. Moreover, atherosclerosis studies that collect fecal pellets during the light 

period for metabolomics analysis may underestimate their potential role in CVD risk associated 

with IHC. DCA gains circadian oscillation in IHC mice with the most significant changes from 

controls occurring during the dark period. Elevated fecal DCA boosts overall systemic 

inflammation88–90, which in IHC may be especially problematic in context of a potentially disrupted 

intestinal barrier. TβMCA, a naturally occurring FXR antagonist65, was also significantly elevated 

in IHC, especially during IHC exposure. There is conflicting evidence on the role of FXR in 

atherosclerosis development and progression, and thus it is possible that these pro-inflammatory 

changes are protective as opposed to pathogenic. However, deletion of FXR in Apoe-/- mice 

results in lesion exacerbation67, suggesting that FXR antagonism with excessive TβMCA 

contributes to worse CVD under the IHC condition in our preclinical model of OSA. In addition, 

anti-inflammatory and anti-atherosclerotic bile acids (e.g., UDCA) were decreased under IHC 

conditions.  

Overall differences in bile acid levels between IHC and control groups were more 

pronounced during the dark period. Moreover, our trans-omic analysis (mmvec plus ranked 

multinomial regression), which divulges relationships between luminal microbial composition and 

luminal metabolites that are related to our experimental condition, resulted in conditional 

probabilities with two key findings. First, the abundance of Ruminococcaceae co-occurs with 

TβMCA. Many members of Ruminococcaceae have 7𝛼-dehydroxylation and 7β-dehydrogenation 

genes that help it perform bile acid biotransformations.91, 92 In fact, Ruminococcaceae is positively 

correlated with fecal DCA levels93, which it likely helps create with 7𝛼-dehydroxylation. Increased 

levels of both Ruminococcaceae and TβMCA were associated with IHC-exposure, further 

highlighting the presence of a pro-inflammatory, pro-atherosclerotic environment under these 
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conditions. Second, our trans-omic analysis found that the abundance of Coriobacteriaceae co-

occurred with CDCA. Increased levels of both Coriobacteriaceae and CDCA were associated with 

mice under the control condition. FXR agonism with CDCA protects against dyslipidemia and 

atherosclerosis in Apoe-/- mice.94 Further investigation is required to understand how CDCA and 

Coriobacteriaceae may be linked. Coriobacteriaceae has been thought to have beneficial 

metabolic effects95, including resistance to obesity and liver pathologies96. 

Bile acids are not the only atherosclerosis-related metabolites that were affected by IHC. 

There were also significant increases in pro-atherolscerotic glycerolipids, including 

phosphocholines and phosphoethanolamines, under the IHC condition. Phosphocholines are 

known to be components of LDL (“bad”) cholesterol and interact with C-reactive protein in a pro-

inflammatory and pro-atherosclerotic manner.97–99 Increased excretion bilirubin breakdown 

products, stercobilin and urobilin, under IHC conditions may be an early biomarker of liver 

dysmetabolism.62 Interestingly, IHC mice had significantly decreased levels of acylcarnitines 

during both phases of the day compared to control mice. This is the only pro-atherosclerotic 

metabolite we measured that was decreased under the IHC condition. Since changes in the 

microbiome suggest increased gut permeability, decreased levels of acylcarnitines in stool may 

indicate increased absorption into the serum, where they promote inflammation and are 

associated with increased risk of myocardial infarction.100 Or this may indicate that IHC-induced 

atherosclerosis is not driven by acylcarnitines. Future studies will need to determine the 

relationship between fecal and serum acycarinities to help determine if this is the case. 

One of the limitations of this study is that, due to methodological constraints, we were not 

able to assess the levels and diurnal oscillations of known pro-atherosclerotic and anti-

inflammatory small molecules, such as TMA (which is then converted to TMA N-Oxide [TMAO] in 

the liver) and SCFAs, respectively. Cyclical fluctuations in SCFAs have been documented in 

control mice, as well as those with dysmetabolic phenotypes, and SCFAs can affect hepatic 
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peripheral circadian rhythms.8 Given the extent of the IHC-induced circadian changes in luminal 

environment, there is little doubt that these metabolites likely fluctuate with OSA as well. Taken 

together, changes in the gut microbiome oscillations and the different types of metabolites have 

complex pathological implications that require further investigation. 

Since IHC had a remarkable influence on the oscillations of the microbiome and 

metabolome in the luminal gut, and since IHC is composed of the synchronous changes in O2 

and CO2 in opposite directions, our results in this work would indicate that each specific gas 

change may have an influence on the cyclicity of the gut microbiome. On the other hand, 

perturbed luminal dynamics suggests altered nutrient availability. IHC may disrupt normal feeding 

patterns, likely due to increased stress or lack of sleep in these mice. Normal feeding patterns are 

essential for the maintenance of the peripheral circadian clock. Time-restricted feeding (TRF), 

where a normal feeding pattern is maintained by consolidating access food only to the active time 

period, enforces central and peripheral circadian clock synchrony and prevents dysmetabolic 

phenotypes in a number of nutritional and non-nutritional challenges to metabolic 

homeostasis.7,101–103 Whether TRF can protect against IHC-induced CVD risks is yet to be 

determined. Moreover, understanding how bile acid modifications performed by the gut 

microbiome modulates host metabolic mechanisms will provide valuable insight into the 

pathophysiology of IHC-induced atherosclerosis. Although there is sufficient evidence that bile 

acid signaling plays an important role in atherosclerosis, a better understanding of bacterial bile 

acid biotransformations and their contribution to IHC-induced pathogenesis will yield novel 

therapeutic targets. Since the changes in bile acids found in this study are centered around FXR 

receptor expression, future experiments should further investigate the role of bile acids receptors 

(i.e., FXR, TGR5) in mediating the effects of IHC on host atherosclerosis. Importantly, our study 

clearly demonstrates the importance of considering time of sample collection in the experimental 
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design, as many of the differences observed in our study would have gone unnoticed if samples 

were collected at a single time point or only during the light period.  
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Chapter 3. Intermittent Hypoxia and Hypercapnia Alter Gut 

Microbiome and Metabolome to Promote Atherosclerosis 

 

Abstract 

Obstructive sleep apnea (OSA), a common sleep disorder characterized by intermittent 

hypoxia and hypercapnia (IHC), increases atherosclerosis risk. However, the contribution of 

intermittent hypoxia (IH) or intermittent hypercapnia (IC) in promoting atherosclerosis remains 

unclear. Since gut microbiota and metabolites have been implicated in atherosclerosis, we 

examined whether IH or IC alters the microbiome and metabolome to induce a pro-atherosclerotic 

state. Apolipoprotein E deficient mice (ApoE-/-) mice, treated with IH or IC on a high-fat diet (HFD) 

for 10 weeks, were compared to Air controls. Atherosclerotic lesions were examined, gut 

microbiome was profiled using 16S rRNA gene amplicon sequencing and metabolome was 

assessed by untargeted mass spectrometry. In the aorta, IC-induced atherosclerosis was 

significantly greater than IH and Air controls (aorta, IC 11.1±0.7% vs IH 7.6±0.4%, p<0.05 and vs 

Air 8.1±0.8%, p<0.05). In the pulmonary artery (PA), however, IH, IC and Air were significantly 

different from each other in atherosclerotic formation with the largest lesion observed under IH 

(PA, IH 40.9±2.0% vs IC 20.1±2.6% vs Air 12.2±1.5%, p<0.05). The most differentially abundant 

microbial families (p<0.001) were Peptostreptococcaceae, Ruminococcaceae and 

Erysipelotrichaceae. The most differentially abundant metabolites (p<0.001) were tauro-β-

muricholic acid, ursodeoxycholic acid, and lysophosphoethanolamine(18:0). We conclude that a) 

IH and IC affect atherosclerosis progression differently in distinct vascular sites and b) the 

changes in the microbiome and metabolome promote a pro-inflammatory and pro-atherosclerotic 

luminal gut environment that is more evident in IH than IC. 
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3.1 Introduction 

In the third part of this thesis, we present data from a longitudinal study of OSA in the 

same atherogenic mouse model as part two. We broke OSA conditions into two distinct parts, 

intermittent hypoxia (IH) and intermittent hypercapnia (IC). While holding time of sample collection 

constant, we examined 16S microbiome and untargeted liquid chromatography tandem mass 

spectrometry metabolome trends under both conditions over time until atherosclerotic lesions 

developed in the heart. Histopathological staining revealed that IC appeared to cause more 

lesions in the aorta than IH, but IH caused more lesions in the pulmonary arteries than IC. These 

findings were supported by both the microbiome and metabolome data, where both conditions 

demonstrated several significant differences from controls but in differing patterns. Together, 

these results indicate that the timed environmental exposure to OSA conditions seems to promote 

atherosclerotic luminal gut environment that is more prominent in IH than IC. 

Obstructive sleep apnea (OSA) is a common disorder characterized by repetitive episodes 

of complete or partial upper airway obstruction during sleep. These apneic episodes lead to 

intermittent hypoxia and hypercapnia (IHC), wide intrathoracic pressure swings, as well as sleep 

fragmentation. OSA affects approximately 9-38% of the general adult population with 13-33% in 

men and 6-19% in women (Senaratna et al., 2017). Advanced age, male gender, and higher 

body-mass index increase OSA prevalence (Senaratna et al., 2017). OSA is independently 

associated with elevated risk of myocardial infarction, stroke, and cardiovascular mortality, mainly 

through the promotion of severe atherosclerosis. The pathophysiological mechanisms underlying 

OSA associated atherosclerotic risk are not completely understood.  

Chronic intermittent hypoxia (IH), generated during recurrent apneic episodes, is a major 

factor linking OSA to cardiovascular diseases including atherosclerosis (Drager et al., 2011). 

Intermittent hypercapnia (IC) also occurs in OSA but is usually not evaluated in most OSA-based 

translational studies. IC can potentially affect the formation of atheroma (Xue et al., 2017) as well. 
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In the present investigation, we examined the lesion formation under these different study 

conditions (i.e., IH, IC) to better define the role of each component in atherosclerosis.  

Considerable evidence indicates that human gut microbiota contributes to cardiovascular 

diseases including atherosclerosis as well as metabolic disorders, e.g. obesity and type 2 

diabetes, both of which are atherogenic. Gut microbiota likely affects atherosclerosis through 

several mechanisms: (1) bacterial infection activates the immune system and triggers a harmful 

inflammatory response that aggravates plaque progression and rupture, (2) cholesterol and lipid 

metabolism altered by gut microbiota affect the development of atherosclerosis, and (3) microbial 

metabolites have either beneficial or deleterious effects on atherosclerosis (Jonsson and 

Backhed, 2017; Komaroff, 2018). Our recent studies indicate that the latter of these three likely 

plays an important role in OSA-induced atherosclerosis (Xue et al., 2017; Tripathi et al., 2018). 

Although trimethyalamine-N-oxide is perhaps the most well-known example of an atherogenic 

bacterial metabolite, bile acids and phosphocholines could be intermediates or involved in 

atherogenesis. For example, tauro-β-muricholic acid (TβMCA) is an FXR antagonist (Sayin et al., 

2013) and can contribute to atherosclerosis (Hanniman et al., 2005; Ding et al., 2018). 

Ursodeoxycholic acid (UDCA) has been demonstrated to have anti-inflammatory effects, which 

could alleviate the development of atherosclerosis (Ko et al., 2017). Lysophospholipids have also 

been implicated deleterious roles in atherosclerosis (Matsumoto et al., 2007; Li et al., 2016b). 

Interestingly, gut microbiota composition is altered in different mouse models of OSA (Moreno-

Indias et al., 2015; Xue et al., 2017; Tripathi et al., 2018). In this work, we explored the changes 

in gut microbiota population and metabolites induced by IH and IC separately. The knowledge 

obtained will help us dissect out the individual impact of IH and IC on gut microbiota and 

metabolites as well as on atherosclerosis formation.  

We hypothesized that IH or IC induces specific alterations in the gut microbiome and their 

metabolites which may promote atherosclerosis. The questions we sought to address in the 
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current study were (1) what is the particular role of IH or IC in inducing or promoting 

atherosclerosis, (2) what is the response of the vascular system (i.e., aorta vs pulmonary artery) 

to IH or IC in term of atherogenesis, (3) what is the signature of IH or IC on gut microbiome and 

metabolites, and (4) what is the potential impact of these changes of gut microbiome and 

metabolites on the development of atherosclerosis?  

 

3.2 Materials and Methods 

Animals with High Fat Diet 

Atherosclerosis-prone ten-week old male ApoE-/- mice on C57BL/6J background (002052; 

The Jackson Laboratory, Bar Harbor, ME) were used (Piedrahita et al., 1992) and ApoE 

deficiencies were confirmed by PCR. The mice were given a high fat diet (HFD) containing 1.25% 

cholesterol and 21% milk fat (4.5 Kcal/g; TD.96121; Envigo-Teklad Madison, WI) for 10 weeks 

while being exposed to either IH, IC or room air. All animal protocols were approved by the Animal 

Care Committee of the University of California, San Diego and followed the Guide for the Care 

and Use of Laboratory Animals of the National Institutes of Health. 

 
Intermittent Hypoxia and Hypercapnia Exposure 

Intermittent hypoxia (IH) or intermittent hypercapnia (IC) were administered in a computer-

controlled atmosphere chamber (OxyCycler, Reming Bioinstruments, Redfield, NY) as previously 

described (Xue et al., 2017). Mice were exposed to 8% O2 or 8% CO2 for short periods (∼4 min) 

separated by alternating periods (∼4 min) of normoxia [O2] = 21%) and normocapnia ([CO2] = 

∼0.5%) with 1–2 min ramp intervals, 10 minutes per cycle, 10 hours per day during the light cycle, 

for 10 weeks. Control mice were on the same HFD but in room air (21% O2 and 0.5% CO2). 
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Quantification of Atherosclerotic Lesions 

Atherosclerosis was quantified by computer-assisted image analysis (ImageJ, NIH 

Image)(Schneider et al., 2012) in Sudan Red-stained en face preparations of the aorta and 

pulmonary arteries as previously described (Xue et al., 2017). The extent of lesion was presented 

by the percentage of Sudan IV-stained area to the total area of the tissue examined. Images of 

the aortic arch were cropped from the rest of the aorta by measuring the same distance from the 

bifurcation to the aortic body using photo-editing software (Adobe Photoshop CS6, Adobe 

Systems Inc., San Jose, CA). All the measurements were done by blinded investigators. Data 

were presented as means ± SEM. Mann-Whitney U test was employed and p<0.05 was 

considered statistically significant. 

 

Microbiome  

Fecal samples were collected consistently between 9AM and 11AM (ZT3-ZT5) on 

collection days and stored at -80°C until the end of the study. We chose to collect samples at 

ZT3-ZT5 due to a concomitant circadian study from our group indicating it was the time of greatest 

microbiome composition differences between IHC and Air (Unpublished data). Then, samples 

were prepared for sequencing and analysis in a manner consistent with the Earth Microbiome 

Project standard protocols (http://www.earthmicrobiome.org/protocols-and-standards/16s) 

(Caporaso et al., 2012). The V4 region of 16S rRNA gene was sequenced using the primer pair 

515f to 806r with Golay error-correcting barcodes on the reverse primer. After processing, raw 

sequence data was uploaded to Qiita (Gonzalez et al., 2018) (QIITA #11829) and processed 

using the Deblur (Amir et al., 2017) workflow with default parameters into a BIOM format table. 

The BIOM table was processed through QIIME 2 (version 2019.10) (Bolyen et al., 2019). Dataset 

was rarified to 9,400 reads to control for sequencing effort. Weighted UniFrac (Chang et al., 2011) 

distances were used for microbiome PCoA plots and significance was tested using PERMANOVA 
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(Anderson). The assigned sequence variants (ASVs) were collapsed to the Family taxonomic 

level. Differential abundance screening was performed using a permutation-based test with FDR 

correction in Calour (Xu et al., 2019), http://biocore.github.io/calour/index.html# (Jiang et al., 

2017). The bacterial families were selected based on significance present under IC and IH 

conditions as well as previously known influence on phenotype. Data was visualized using 

EMPeror (Vazquez-Baeza et al., 2013) and custom python scripts (https://github.com/knightlab-

analyses/longitudinal-osa).  

 

Metabolome  

Each fecal sample was examined by untargeted liquid chromatography-tandem mass 

spectrometry (LC-MS/MS) in the same manner as described previously (Tripathi et al., 2018). In 

brief, the samples were homogenized and then transferred to a standard 96-well plate and 

analyzed on a Vanquish ultrahigh-performance liquid chromatography (UPLC) system coupled to 

a Q Exactive orbital ion trap (Thermo Fisher Scientific, Bremen, Germany). A C18 core shell 

column (Kinetex column, 50 by 2 mm, 1.7-µm particle size, 100-Å pore size; Phenomenex, 

Torrance, CA) was used for chromatographic separation. Raw spectra were converted to m/z 

extensible markup language (mzXML) in centroid mode using MSConvert (part of ProteoWizard) 

(Chambers et al., 2012). After isotope peak removal and alignment of peaks, MZmine2 (Pluskal 

et al., 2010) was used to create a feature matrix containing the feature retention times and the 

exact mass and peak areas of the corresponding extracted ion chromatograms. Identification of 

molecular features was performed using MS1-based feature detection and MS2-based molecular 

networking using the GNPS workflow (https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp). 

The actual GNPS jobs can be found at the following URL: https://gnps.ucsd.edu/ProteoSAFe/

status.jsp?task=78acff728c48421497ebf59441e18ea4. We used authentic bile acid standards 

from Cayman Chemical (Ann Arbor, MI) for level 1 identification of metabolites as defined by the 
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2007 metabolomics standards initiative (Sumner et al., 2007). There was an annotation rate of 

41% (556/1359). The unannotated frequency table was analyzed using QIIME2 (version 

2019.10). Canberra distances (Lance and Williams, 1967) were used for metabolomic PCoA plots 

and significance was tested using PERMANOVA (Anderson). Data was visualized using EMPeror 

(Vazquez-Baeza et al., 2013). Differential abundance screening was performed using a 

permutation-based test with FDR correction in Calour (Jiang et al., 2017; Xu et al., 2019). 

Features were selected based on significance present under IC and IH conditions as well as 

previously known influence on phenotype. The MS/MS spectral annotations were determined by 

using MS/MS-based spectral library matches on GNPS for level 3 identification of all non-bile acid 

molecules represented (Sumner et al., 2007). Bile acid standards were run using the same 

method for level 1 identification for all represented bile acids. After initial processing, a single 

sample that clustered with blank controls was dropped from further analyses. Total sum 

normalization was used to calculate the relative abundances. Values were then plotted together 

using custom python scripts (https://github.com/knightlab-analyses/longitudinal-osa). 

Longitudinal Data Statistical Analysis 

For both the microbiome and metabolome, linear mixed effect modeling performed using 

q2-longitudinal (Bokulich et al., 2018) to determine if the highlighted feature was significantly 

different between exposure conditions (Air/IH/IC) with respect to time. The formula used was: 

Feature (microbiome or metabolome) ~ host_age * exposure_type.  

Data Availability  

Microbiome: EBI accession ERP110592 

Metabolome: IH/IC MSV000082973, MassIVE link for IH/IC: 

https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=2ee8ad1a1c764aaf96677d480617c040. 

GitHub link (https://github.com/knightlab-analyses/longitudinal-osa). 
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3.3 Results 

Different Impacts of IH and IC on the Progression of Atherosclerosis in the Aorta, Aortic 

Arch and Pulmonary Artery  

OSA patients suffer from oscillatory gas changes (IH and IC). To find out the effect of 

these gas changes on atherosclerosis, we examined the atherosclerotic lesions in the aorta, aortic 

arch, and pulmonary artery (PA) after 10 weeks of IH or IC exposure in the presence of HFD. Our 

data showed that there were significant increases in lesion formation in the aorta and aortic arch 

in IC exposed mice as compared with Air controls (aorta, Air 8.1±0.8% vs IC 11.1±0.7%, p<0.05; 

aortic arch, Air 16.6±2.0% vs IC 22.6±1.5%, p<0.05)(Fig. 3.1A and 3.1B). However, IH-treated 

mice showed a similar degree of lesions as Air controls without a significant difference (aorta, Air 

8.1±0.8% vs IH 7.6±0.4%, p>0.05; aortic arch, Air 16.6±2.0% vs IH 17.8±1.2%, p>0.05) (Fig. 3.1A 

and 3.1B). In the PA, the larger atherosclerotic formation was detected in the IH group, followed 

by IC, both of them showing significantly greater lesions than air controls (PA, IH 40.9±2.0% vs 

IC 20.1±2.6% vs Air 12.2±1.5%, p<0.05)(Fig. 3.1C). Our data suggest that (1) IH promotes 

atherosclerosis much more in the PA than in the aorta and (2) IC contributes to atherosclerosis in 

the aorta, aortic arch and PA. 
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Figure 3.1.. Atherosclerotic lesions in the (A) aortas, (B) aortic arches and (C) pulmonary arteries 
of ApoE-/- mice after 10-wk treatments. Mice were exposed to either Air, IH or IC for 10 weeks. 
The en-face lesions were quantified as the percentage of lesion area in the total area of the blood 
vessel examined. Side panels: representative Sudan IV-stained images of aortic arch (B) and PA 
(C). Statistical significance (Mann-Whitney U test), * p<0.05. 
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Different Impacts of IH and IC on the Gut Microbiome and Metabolome 

Examination of 16S rRNA gene amplicon sequencing data of IH/IC/Air resulted in the 

selection of the top most differentially abundant microbial families (Table S1). The assigned 

sequence variants (ASVs) were grouped together at the Family level for comparisons. Differential 

abundance testing was calculated by permutation test with discrete FDR correction in Calour (Xu 

et al., 2019). The top six differentially abundant families were Peptostreptococcaceae, 

Ruminococcaceae, Erysipelotrichaceae, Verrucomicrobiaceae, Coriobacteriaceae, and 

Lachnospiraceae. The significance of each selected family with respect to time and experimental 

condition was determined by linear mixed effect modeling. 

Data from untargeted liquid chromatography with tandem mass spectrometry revealed 

116 unique metabolites in common (Table S1). Metabolites were divided into five different 

categories: phosphocholines, acylcarnitines, phosphoethanolamines, bile acids, and other. The 

other category included amino acids, dipeptides, and other small molecules. The following figures 

displayed six representative metabolites from each of the different categories based on differential 

abundance testing calculated by permutation test with discrete FDR correction (Xu et al., 2019), 

the greatest differences noted in at least one condition, and relevance to atherosclerosis. The six 

highlighted metabolites were TβMCA [bile acid], UDCA [bile acid], 1-Stearoyl-2-hydroxy-sn-

glycero-3-phosphoethanolamine [LysoPE(18:0)] [phosphoethanolamines], 1-Hexadecyl-sn-

glycero-3-phosphocholine [Lyso-PAF C-16] [phosphocholines], Oleoyl L-carnitine 

[acylcarnitines], and tryptophan [other].  

 
A) IH versus Air 

Mice under IH conditions diverged significantly from Air controls over time in the beta 

diversity distances of both the microbiome (Fig. 3.2A, 3.S1A, 3.S3A and C) (pseudo-F 39.775; 

p<0.001) and metabolome (Fig. 3.3A, 3.S2A, 3.S3B and D) (pseudo-F 5.963; p=0.002). The 
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microbiome had a lower p-value and higher pseudo-F value than the metabolome, indicating 

greater separation between the two conditions for the microbiome.  

All of the microbial families shown (Fig. 3.2B to 2D and 3.S1C to 3.S1E) had significant 

differences between IH-conditioned mice and Air controls. Fig. 3.S1B was a heatmap of the top 

six differential microbial families under Air, IH, IC conditions and presented a global overview of 

the changes in gut microbiota over the treatment time. Pro-atherosclerotic (Koeth et al., 2013) 

Peptostreptococcaceae (p<0.001) (Fig. 3.2B) initially showed reduced relative abundance 

compared to controls. But at week 14, two weeks before the phenotype was known to appear, 

the relative abundance started to dramatically increase in comparison to controls. The reason for 

the switch was unclear. Interestingly, anti-atherosclerotic (Cani and de Vos, 2017) 

Verrucomicrobiaceae (p<0.001) (Fig. 3.S1D) exhibited the opposite trend change to 

Peptostreptococcaceae, i.e. relative abundance was higher during the first 4 weeks of IH 

exposure then became significantly lower than controls afterwards. IH-conditioned mice had 

increased relative abundances in pro-atherosclerotic (Wang et al., 2015; Liu et al., 2018) 

Ruminococcaceae (p<0.001) (Fig. 3.2C), pro-atherosclerotic (Karlsson et al., 2012) 

Coriobacteriaceae (p<0.001) (Fig. 3.S1C), and pro-atherosclerotic (Wang et al., 2015; Liu et al., 

2018) Lachnospiraceae (p<0.001) (Fig. 3.S1E) compared to Air control mice over the course of 

the experiment. Conversely, IH-conditioned mice had decreased relative abundances of 

Erysipelotrichaceae (p=0.009)( Fig. 3.2D). Erysipelotrichaeceae is known to be associated with 

cholesterol metabolism (PMID: 23124234).  

Three of the six represented metabolites were significantly different between IH-

conditioned mice and controls over the course of the study. Fig. 3.S2B was a heatmap of six 

differential metabolites under Air, IH, IC conditions and presented a global overview of their 

changes over the treatment time. Compared to control mice, IH-conditioned mice had decreased 

relative abundance of LysoPE(18:0) (p=0.031) (Fig. 3.3D) and increased relative abundances of 
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pro-inflammatory Lyso-PAF C-16 (p<0.001) (Fig. 3.S2C) and oleoyl L-carnitine (p=0.002) (Fig. 

3.S2D). Of note, the relative abundance of pro-atherosclerotic bile acid TβMCA was increased as 

well as relative abundances of anti-atherogenic bile acid UDCA and anti-inflammatory tryptophan 

were decreased in IH-conditioned mice via permutation test with discrete FDR correction 

(TβMCA, p<0.001; UDCA, p<0.001; tryptophan, p<0.001) (Fig. 3.3B, 3.3C and 3.S2E). However, 

these differences didn’t meet significant criteria of linear mixed effect modeling 

(relative_abundance~host_age*exposure_type, TβMCA, p=0.053; UDCA, p=0.371; tryptophan, 

p=0.446). Overall, the gut luminal environment appeared to be pro-inflammatory and pro-

atherosclerotic under IH condition.   
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Figure 3.2.. 16S microbiome of ApoE-/- mice on HFD during chronic 10-wk treatment. (A) 
Weighted UniFrac PCoA of the microbiome during 4 key time points, each time point calculated 
in isolation. Longitudinal relative abundance values for: (B) family Peptostreptococcaceae; (C) 
family Ruminococcaceae; (D) family Erysipelotrichaceae. PERMANOVA used for statistical 
comparisons at the population level. Linear Mixed Effect (LME) modeling used for statistical 
comparisons of individual families over time. The shaded areas in parts B-D represent standard 
error of the mean. Air/controls are black (n=6), IH is blue (n=12), IC is red (n=12). Statistical 
significance p<0.05, * IC vs Air, # IH vs Air and $ IH vs IC. 
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B)  IC versus Air 
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Compared to Air-controls, IC-conditioned mice also had significant differences in the beta 

diversity distances of both the microbiome (Fig. 3.2A, 3.S1A, and 3.S3E and G) (pseudo-F 

11.274; p<0.001) and metabolome (Fig. 3.3A, 3.S2A, 3.S3 F and H) (pseudo-F 3.046; p=0.004). 

The magnitude of the pseudo-F value associated with the comparison of the IC microbiome to 

controls was substantially less than seen for IH, suggesting differences compared to the control 

group were not as robust. Also, the separation between IC and control samples was less obvious 

by the end of the study for both the microbiome and metabolome than it was for IH.  

Three of the six microbial families were significantly different by linear mixed effect 

modeling in IC-conditioned mice as compared to controls, i.e. Peptostreptococcaceae (p=0.039) 

(Fig. 3.2B), Ruminococcaceae (p=0.003) (Fig. 3.2C), and Erysipelotrichaceae (p=0.04) (Fig. 

3.2D). In addition, four metabolites demonstrated overall significant differences. The relative 

abundances were increased for pro-atherosclerotic TβMCA (p=0.013) (Fig. 3.3B), LysoPE(18:0) 

(p=0.041) (Fig. 3.3D) and Lyso-PAF C-16 (p=0.002) (Fig. 3.S2C) as well as anti-atherogenic 

UDCA (p=0.022) (Fig. 3.3C) in IC-conditioned mice as compared to controls. While increased 

serum levels of acylcarnitines have been associated with adverse cardiovascular events (Strand 

et al., 2017), the observed changes of oleoyl L-carnitine (p=0.147) (Fig. 3.S2D) under IC were 

less impressive than those seen in IH exposure compared to their respective controls. 

Collectively, IC showed the unique microbiome and metabolomic signatures that distinguish from 

those changes in Air and IH. 
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Figure 3.3.. Untargeted LC-MS/MS metabolomics of ApoE-/- mice on HFD during chronic 10-wk 
treatment. (A) Canberra PCoA of the metabolome during 4 key time points, each time point 
calculated in isolation. Longitudinal relative abundance values for: (B) Tauro-β-muricholic acid 
(TβMCA) [Level 1 identification]; (C) Ursodeoxycholic acid (UDCA) [Level 1 identification]; (D) 
lysophosphoethanolamine 1-Stearoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine 
[LysoPE(18:0)] [Level 3 identification]. PERMANOVA used for statistical comparisons at the 
population level. Linear Mixed Effect (LME) modeling used for statistical comparisons of individual 
metabolites over time. The shaded areas in parts B-D represent standard error of the mean. 
Air/controls are black (n=6), IH is blue (n=12), IC is red (n=12). Statistical significance p<0.05, * 
IC vs Air, # IH vs Air and $ IH vs IC. 
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C) IH versus IC   

Comparison of IC with IH revealed potential factors that may contribute to their different 

atherosclerotic phenotypes. This comparison showed significant differences in beta diversity 

distances of both the microbiome (Fig. 3.2A, 3.S1A, 3.S3I and K) (pseudo-F 50.286; p<0.001) 

and metabolome (Fig. 3.3A, 3.S2A, 3.S3J and L) (pseudo-F 6.411; p=0.002). The microbiome 

and metabolome pseudo-F values indicate that IH was as different from IC as it was from Air 

controls.  

The relative abundances of the top six microbial families were significantly different 

between the IH and IC-conditioned mice. Similar to the differences between IH and Air, IH-

conditioned mice had relatively decreased levels of Peptostreptococcaceae (p<0.001) (Fig. 3.2B), 

Erysipelotrichaceae (p<0.001) (Fig. 3.2D) and Verrucomicrobiaceae (p<0.001) (Fig. 3.S1D) 

compared to IC-conditioned mice. Additionally, Coriobacteriaceae (p<0.001) (Fig. 3.S1C) and 

Lachnospiraceae (p<0.001) (Fig. 3.S1E) were increased in IH-conditioned mice compared to IC-

conditioned mice. However, the relative abundance of Ruminococcaceae was increased under 

IH compared to air controls but was decreased under IH compared to IC (p<0.001) (Fig. 3.2C).  

Furthermore, the difference seen in LysoPE(18:0) (Fig. 3.3D) when comparing IH to IC 

were similar to the difference seen in the comparison between IH and air. However, unlike the 

comparison between IH and Air, there was no significant difference for Lyso-PAF C-16 (p=0.502) 

(Fig. 3.S2C) and oleoyl L-carnitine (p=0.088) (Fig. 3.S2D) between IH and IC.  

Together, these findings demonstrated that though IC-conditioned mice present unique 

differences, IH-conditioned mice differed from controls far more than IC-conditioned mice 

(IH>IC>Air). 
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3.4 Discussion 

Although OSA patients suffer from both episodic hypoxia and hypercapnia, only the impact 

of IH has been extensively studied from a cardiovascular viewpoint. However, IC is also a key 

player in the pathophysiology of human diseases (Wang et al., 2016). In this work, the respective 

roles of IH and IC in the progression of atherosclerosis were defined by examining them 

separately. We have made several important observations.  

First, as compared to Air, both IH and IC accelerated the development of atherosclerosis, 

in an animal model of atherosclerosis. The main difference between each condition was the extent 

of atherosclerosis in the pulmonary artery vs. the aorta/aortic arch. More importantly, this study 

convincingly showed that IC alone can promote atherosclerosis. 

Second, IH exacerbated atherosclerosis in the pulmonary artery far more than it did in the 

aorta. One possible explanation for this is the inherent response of the vascular bed to hypoxia. 

Depending on its extent and duration, hypoxia can cause vasodilation in most tissues of the body. 

By contrast, in the lungs, hypoxia induces vasoconstriction resulting in pulmonary arterial 

hypertension and damage to endothelial cells, both of which are atherogenic. Another possibility 

is the vascular response to the microbiome or the metabolome that results from the interaction 

between the host and gut microbiota. This is a still a major area of investigation and it is difficult 

at present to dissect the effect of the microbiota, inflammatory response and cytokines on the 

blood vessels themselves.  

We have shown that atherosclerosis can be promoted by IHC in the pulmonary artery 

trunk and its proximal branches of both ApoE-/- and Ldlr-/- mice (Douglas et al., 2013; Xue et al., 

2017; Imamura et al., 2019), demonstrating that the effect of IHC on the pulmonary artery is not 

genetic background-dependent. The current IH and IC data corroborate the notion that pulmonary 

artery atherosclerosis is promoted by these blood gas changes as well. Of note, IHC causes 

pulmonary hypertension (PH) and right ventricular strain (Douglas et al., 2013). The causal 
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relationship between pulmonary artery atherosclerosis and PH is not clear. Pulmonary artery 

atherosclerosis has been observed in patients with diseases that cause PH, such as atrial septal 

defect and shunt and chronic obstructive pulmonary disease (Russo et al., 1999; Nascimento et 

al., 2009) and was associated with hypertensive pulmonary vascular disease (Moore et al., 1982). 

As a matter of fact, OSA patients have elevated pulmonary artery pressure (Minai et al., 2009) 

and a higher incidence of acute pulmonary embolism (Alonso-Fernandez et al., 2013). 

In the past, greater attention was given to OSA-related hypoxia. IH alone with HFD 

exacerbated aortic atherosclerosis in ApoE-/- mice (Jun et al., 2010). However, IH did not seem 

to increase aortic lesions compared to Air controls in our study. This discrepancy between 

previous studies and ours is probably related to multiple factors, including the specific 

experimental protocol of IH exposure, exposure duration, and composition of HFD. 

Third, current study demonstrated that IC alone facilitates the development of 

atherosclerosis in the aorta and pulmonary artery. Previous studies have shown that hypercapnia 

has both beneficial and deleterious effects (Shigemura et al., 2017). On the one hand, 

hypercapnia has been associated with improved outcome in patients with acute lung injury (Acute 

Respiratory Distress Syndrome Network et al., 2000), which is thought to be mediated by 

inhibition of the NF-κB inflammatory pathway (Contreras et al., 2015). In addition, hypercapnia 

inhibits hypoxia-induced pulmonary vascular remodeling (Ooi et al., 2000) and prevents hypoxia-

induced pulmonary hypertension (Kantores et al., 2006). On the other hand, hypercapnia injures 

alveolar epithelial cells (Lang et al., 2000), impairs lung edema clearance (Vadasz et al., 2008) 

and reduces alveolar epithelial repair (O'Toole et al., 2009). It also modulates innate immunity 

and host defense that increase the susceptibility to and mortality of pulmonary infections (Gates 

et al., 2013).  

Gut microbiota can have either protective or deleterious effects in the host. In terms of 

atherosclerosis, bacterial family Peptostreptococcaceae has been shown to be positively 
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associated with both an omnivorous diet and trimethylamine N-oxide (TMAO) production in 

humans (Koeth et al., 2013), suggesting its potential role in metabolism of dietary L-carnitine into 

trimethylamine (TMA). TMA is further oxidized to TMAO by hepatic flavin monooxygenases. 

TMAO enhances macrophage cholesterol accumulation, foam cell formation and atherosclerosis, 

all correlated with an increased risk of heart attack, stroke and death (Wang et al., 2011; Tang et 

al., 2013). Increased relative abundance of Peptostreptococcaceae was observed after 4-week 

IH and IC exposures, two weeks before the atherosclerosis became evident, indicating that 

Peptostreptococcaceae plays a role in IH- and IC-induced atherosclerosis. 

Akkermansia muciniphila, the only genus of family Verrucomicrobiaceae in mammals, is 

believed to have health benefits in humans. Its abundance is known to be inversely correlated 

with obesity, diabetes, cardiometabolic diseases including atherosclerosis and low-grade 

inflammation (Cani and de Vos, 2017). The relative abundance of A. muciniphila was ultimately 

decreased under IH and presumed to have been more permissive to the development of 

atherosclerotic lesions. Based on recent findings (Li et al., 2016a), reduced A. muciniphila under 

IH may contribute to IH-induced atherosclerosis by causing a leaky gut which allows pro-

inflammatory mediators to be more readily absorbed systemically. However, increased 

abundance of A. muciniphila was found under IC, potentially indicating an attempt to return to 

homeostasis.  

Another interesting example linking atherosclerosis to microbiota is related to the bacterial 

families Ruminococcaceae, Lachnospiraceae and Coriobacteriaceae. Previous studies have 

shown that Ruminococcaceae and Lachnospiraceae were positively correlated with 

atherosclerotic lesion size in ApoE-/- mice (Wang et al., 2015; Liu et al., 2018) and 

Coriobacteriaceae was enriched in patients with symptomatic atherosclerosis (Karlsson et al., 

2012). These findings suggest that these bacteria play an important role in atherogenesis in our 

mice. Although the underlying mechanism is not well understood, it is often attributed to their roles 
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in inflammatory pathways (Martinez-Medina et al., 2006; Andoh et al., 2007), lipid metabolism 

(Martinez et al., 2009; Liu et al., 2015) and trimethylamine N-oxide (TMAO) production (Wang et 

al., 2015; Qiu et al., 2018; Chen et al., 2019). Ruminococcaceae and Lachnospiraceae species 

hydrolyze starch and other sugars to produce butyrate and other short-chain fatty acids (SCFAs). 

SCFAs are ligands for the G protein-coupled receptors 41 and 43 and are hypothesized to reduce 

inflammatory pathways by activating these receptors (Biddle et al., 2013; Ohira et al., 2017). 

Notably, Ruminococcaceae and Lachnospiraceae contain bile acid inducible (bai) genes which 

encode enzymes involved in 7α-dehydroxylation and can convert host primary bile acids to 

secondary bile acids (Vital et al., 2019). The secondary bile acids act through farnesoid X receptor 

(FXR) and G-protein-coupled bile acid receptor (TGR5) and affect host metabolism and health. 

In fact, both FXR and TGR5 have been implicated in atherosclerosis (Hanniman et al., 2005; 

Miyazaki-Anzai et al., 2014; Miyazaki-Anzai et al., 2018). 

One of the top differentially abundant metabolites is tauro-β-muricholic acid (TβMCA) 

which is a primary bile acid synthesized in mice. Evidence has shown that the level of TβMCA 

can be affected by gut microbiota (Sayin et al., 2013) and induced by TMAO, which is an important 

molecule in the development of atherosclerosis (Ding et al., 2018). Since a) TβMCA is a naturally 

occurring FXR antagonist (Sayin et al., 2013) and b) it has been reported that loss of functional 

FXR increases atherosclerotic lesions in ApoE-/- mice along with a more atherogenic plasma lipid 

and lipoprotein profile (Hanniman et al., 2005), it is likely that the elevated TβMCA under IH and 

IC facilitates atherosclerotic formation. 

Increased abundance was detected for Lyso-PAF C-16 under IH and IC conditions. 

Lysophosphatidylcholine is known to promote atherosclerosis by various mechanisms including 

activating endothelial cells to produce reactive oxygen species, enhancing the release of pro-

inflammatory cytokines, attracting immune cells to the vascular endothelial wall and mediating 

atherogenic activity of ox-LDL (Androulakis et al., 2005; Matsumoto et al., 2007; Li et al., 2016b). 
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This suggests that Lyso-PAF C-16 plays an important role in the progression of atherosclerosis 

induced by IH and IC. 

 

3.5 Conclusion 

Taken altogether, we are the first to show that IC, in addition to IH, contributes to OSA-

related atherosclerosis. Moreover, we also demonstrate that intermittent hypoxia and 

hypercapnia, a hallmark of OSA, change the gut microbiota and metabolites. The changes in the 

gut luminal environment likely influence the development of atherosclerosis by modulating host 

gut permeability, inflammatory responses, microbial metabolites TMA/TMAO, as well as bile acid 

and lipid metabolism. The knowledge obtained in the current study paves the way for a better 

understanding of the mechanistic link between IH/IC, gut microbiome, and OSA-induced 

atherosclerosis. 

 
Non-standard Abbreviations and Acronyms:   

OSA    obstructive sleep apnea 
IHC   intermittent hypoxia and hypercapnia 
IH   intermittent hypoxia 
IC   intermittent hypercapnia 
ApoE   apolipoprotein E 
Ldlr   low density lipoprotein receptor 
HFD   high fat diet 
PA   pulmonary artery 
PH   pulmonary hypertension 
ASVs   assigned sequence variants  
LC-MS/MS  liquid chromatography-tandem mass spectrometry 
mzXML  m/z extensible markup language  
PCoA   principal coordinates analysis 
LysoPE(18:0)  1-Stearoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine 
Lyso-PAF C-16 1-Hexadecyl-sn-glycero-3-phosphocholine 
UDCA   ursodeoxycholic acid 
TβMCA  tauro-β-muricholic acid  
TMAO   trimethylamine N-oxide 
FXR   farnesoid X receptor 
TGR5   G-protein-coupled bile acid receptor, Gpbar1 
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Chapter 4. Microbiome Diurnal Dynamics Dominate 

Phenotype Effects, Enabling Replicability When Controlled 

Abstract 

Although many aspects of microbiome studies have been standardized to improve 

experimental replicability, none account for how the daily diurnal fluctuations in the gut lumen 

cause dynamic changes in 16S sequencing and untargeted LC-MS/MS metabolomic results. Here 

we show that sample collection time affects the conclusions drawn from microbiome studies and 

are larger than the effect size of a daily experimental intervention or dietary changes. The timing 

of divergence of the microbiome composition between experimental and control groups are 

unique to each experiment, and are especially pronounced in 16S experiments. Sample collection 

times as short as only four hours apart lead to vastly different conclusions. Lack of consistency in 

the time of sample collection may explain poor cross-study replicability in microbiome research 

leading to incorrect understanding of the role of the gut microbiome in physiological homeostasis 

and pathophysiological studies. 
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4.1 Introduction 

In the fourth part of this thesis, we argue that biological rhythms are an underappreciated 

and under-reported experimental variable that is actually critical to experiment replicability. We 

re-analyzed five diurnal 16S microbiome datasets plus a single additional new dataset to 

determine the impact of time of sample collection on the interpretation of results. Using a filtered 

Weighted UniFrac beta diversity distance matrix for only between condition distances, we 

examined microbiome composition changes between experimental and control groups. We found 

that composition dynamics are unique to each experiment with sample collection times as short 

as only four hours apart could lead to different conclusions. The compositional dynamics of 

untargeted LC-MS/MS metabolomes appeared less dynamic across the day or longitudinally. 

These results indicate that inconsistencies in the time of sample collection may at least partially 

explain the lack of replicability seen in microbiome studies - it is like trying to measure changes in 

sea level without knowing tides or waves exist. In addition, poor experimental timing may lead to 

erroneous understanding of the gut microbiome in disease. We recommend that sample collection 

time be recorded in the methods section of all manuscripts moving forward to increase 

replicability.  

The lack of replicability of microbiome studies has been a barrier to understanding how 

host-microbe interactions contribute to physiological homeostasis and pathophysiological 

processes, including heart disease and cancer. (Schloss, 2018). As the field reaches a critical 

inflection point of moving from descriptive and associative research to mechanistic and 

interventional studies, the ability to rapidly and reproducibly characterize the microbiome is critical 

to the development of novel microbiome-mediated therapeutics and diagnostic biomarkers 

(Gilbert et al., 2018). In early studies, many confounding variables involving model systems, 

sample collection protocols, and pipeline processing were not routinely accounted for in study 

design, often resulting in irreproducible, noisy data (Knight et al., 2018; Schloss, 2018). The 
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investigation of these irreproducible and noisy data led to the discovery of important confounds 

that influence the results, such as the maternal effect (Ley et al., 2005), cage effect (Deloris 

Alexander et al., 2006), facility differences (Friswell et al., 2010), as well as laboratory and sample 

handling protocols (Sinha et al., 2017). However, despite the introduction of standardization of 

experimental protocols and analysis pipelines, unexplained variability and lack of replicability still 

plagues microbiome research. 

One underexplored factor is that the microbiome is dynamic, and exhibits diurnal 

oscillations (Alvarez et al., 2020; Frazier and Chang, 2020). The diurnal fluctuation of gut 

microbiota remains one of the most robustly reproducible characteristics of the luminal 

environment in murine models of disease. Disruption of microbiome diurnal dynamics by changing 

the nutritional quality of the diet (Leone et al., 2015; Thaiss et al., 2014; Zarrinpar et al., 2014) or 

feeding pattern (Zarrinpar et al., 2014), using circadian clock transgenic mice (Liang et al., 2015; 

Thaiss et al., 2016), or crossing time zones to induce jet-lag (Thaiss et al., 2014) are all associated 

with metabolic syndrome spectrum diseases (e.g. insulin resistance, increased adiposity) 

(Alvarez et al., 2020). The gut microbiome is intimately linked to host peripheral circadian rhythms. 

Microbiome-depleted mice (i.e. antibiotic-induced depletion or germ-free mice) have dampened 

epithelial and hepatic circadian rhythms (Leone et al., 2015; Mukherji et al., 2013; Weger et al., 

2019). Analysis of the microbiome from human stool samples collected from a multitude of time 

points (Kaczmarek et al., 2017; Skarke et al., 2017), as well as 24-hour salivary collections 

(Collado et al., 2018; Kohn et al., 2020; Takayasu et al., 2017), suggest that the human 

microbiome also has diurnal fluctuations. In addition, loss of diurnal dynamics of the gut 

microbiome was recognized as a risk factor for developing type 2 diabetes in a longitudinal study 

of a large patient cohort (Reitmeier et al., 2020).  

Many labs that study the microbiome anecdotally report collecting their specimens for 

each experiment at a specific, single time point. However, it is not clear whether the collection 
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time is chosen rationally based on experimental design, convenience to the experimenters, or if 

this window of time is consistent between experimental replicates both within and outside of the 

laboratory. We hypothesize that if this effect is significant enough to affect results, there should 

be evidence in currently existing diurnal microbiome studies that sampling at different times leads 

to different conclusions.  

Studies with samples collected in a circadian fashion are relatively rare. They are also 

only generally performed using mice, which defecate with enough frequency to perform the 

experiment. When searching for the keywords “circadian microbiome” AND “mice” in PubMed 

(https://pubmed.ncbi.nlm.nih.gov/) for articles published over an 8 year period (from 2014-2021), 

we found 79 articles that met our initial criteria. Only 66 of those were research articles, and of 

the remainder we found only 14 articles that contained 16S amplicon sequencing samples 

collected for more than 3 time points within a 24 or 48 hour period. Of these 14 studies, four had 

complete publicly available data on ENA/EBI. Of the remainder, four had incomplete datasets on 

ENA/EBI - (Thaiss et al., 2014) (Thaiss et al., 2016) (Wu et al., 2018) (Ren et al., 2021) - and the 

rest were not publicly available. We then contacted the authors of all studies with missing or 

incomplete data and got the following responses: (1) three were unable to locate the missing data 

(Thaiss et al., 2014) (Thaiss et al., 2016) (Liang et al., 2015), (2) three could not provide data in 

a format suitable for re-analysis (Beli et al., 2019; Ren et al., 2021; Wang et al., 2020), and three 

did not respond to repeated inquiries (Guo et al., 2019; Mistry et al., 2020; Shao et al., 2018). 

After extensive correspondence, we were able to obtain five datasets in a form suitable for re-

analysis (Allaband et al., 2021; Leone et al., 2015; Tuganbaev et al., 2020; Wu et al., 2018; 

Zarrinpar et al., 2014). In addition, we included a recently published dataset from the same mice 

in one of our circadian studies (Zarrinpar et al., 2014; manuscript under review). We also 

generated a single new dataset for analysis in this paper that is unique in that it includes two 

circadian collections over the course of a single experiment. Two of the studies (Allaband et al., 
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2021; Tripathi et al., 2019) containing matching untargeted LC-MS/MS metabolomics are also 

analyzed using the same methods, allowing preliminary comparisons to metabolomics. Overall, 

these studies show the importance of sample collection time in affecting the conclusion of 

microbiome studies. 

 

4.2 Results 

Time of sample collection is critical to microbiome study conclusions 

To determine whether the time of sample collection was included in experimental methods 

of microbiome studies, we reviewed over 550 articles published in 2019 from major journals where 

new 16S or metagenomic datasets were generated (Fig S1A, S1B). Less than 10% of these 

articles reported any timing information about their sample collection and only 0.32% reported a 

specific time of sample collection (Fig S1C). Since microbiome studies do not commonly report 

time of sample collection in their methods, we investigated the effects of microbiome sample 

collection on the potential interpretation of a study. To do so, we used between-condition weighted 

UniFrac β-diversity (Lozupone and Knight, 2005) distances (BCD) to show how similar the 

microbiomes from the two conditions are to each other at any given time point. Thus, increasing 

or decreasing BCD allows us to assess microbiome compositional fluxes between experimental 

conditions over time. First, we wanted to investigate whether sampling time affects the conclusion 

of a study with a discrete daily intervention. We started by reanalyzing a previous dataset from 

our laboratory that had a discrete daily intervention external to the host (Allaband et al., 2021). 

This study used apolipoprotein E knock-out mice (Apoe-/-) mice under intermittent hypoxia 

hypercapnia (IHC) conditions to mimic obstructive sleep apnea conditions (Summary of 

experiment in Fig 1A). In the IHC experiment, we noted that the BCD fluctuated greatly, nearly 

doubling within a 24hr period (Fig 1B), suggesting that compositional assessments from different 

times would yield radically different results. Since an overwhelming majority of microbiome studies 
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neither report the time of sample collection, nor confirm that samples are collected at a specific 

time, and microbiome study guidelines make no explicit recommendation that samples should be 

collected at the same time, we realized that we had no data supporting our assumption that 

samples are collected at the same time in a typical microbiome experiment.  

In this experiment, BCD increased during IHC exposure, with maximal divergence of the 

two groups at ZT-6 (Fig 1B). Maximal convergence (similarity) occurred at ZT-18, a half day after 

the maximal divergence when both groups were experimentally similar. Subsequently, despite 

the lack of the presence of IHC to separate the groups at that time, distances increased during 

ZT-22 which suggests a potential microbiome response to host anticipatory stress. In addition, 

the BCD values themselves were found to conform to a diurnal pattern (MetaCycle, JTK method, 

p<0.001). Next, we used the distance matrix to create a heatmap of the average BCD between 

IHC and control mice for each time point combination to determine all potential outcomes of the 

study (Fig 1C). The highest BCD (greatest divergence) between the two groups was Air ZT-18 

and IHC ZT-6, which are 12 hrs apart. The lowest BCD (greatest convergence) between the two 

groups was Air ZT-22 and IHC ZT-18, both of which occur during the dark phase and are only 4 

hrs apart. The highest BCD is 2.8 times the lowest across all timepoints, while the within-condition 

distances for Air (4.9X) and intermittent-hypoxia-hypercapnia (4.3X) dynamic ranges were 

greater. The two groups had overall significantly different microbiome compositions 

(PERMANOVA, all Air vs all intermittent-hypoxia-hypercapnia, p=0.005), with ZT-6 driving 

differences (PERMANOVA, p=0.035). All other timepoints showed the two groups as being non-

significantly different (PERMANOVA, p>0.05). Thus, the beta-diversity of the two conditions can 

differ 2.8-fold depending on the time of sample collection, potentially affecting the conclusions of 

the study. 

To determine whether these different sampling times affect conclusions of the 

compositional analysis while accounting for bias caused by relative compositional bias and 
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unknown microbial loads for each sample (Morton, et al., 2019), we examined log-ratios of 

biologically relevant phyla and families at the time points corresponding to the highest and lowest 

BCD (Fig 1D). The impact of sample collection time was most obvious at the phylum level, where 

the relative proportion of Bacteroidetes to Verrucomicrobia shifted strikingly towards 

Bacteroidetes in mice under IHC conditions at the highest BCD, but the experimental groups were 

indistinguishable at the lowest BCD. These differences existed at the sub-phylum level as well. 

For example, the log-ratio balance of three metabolically important families (Ruminococcaceae 

and S24-7, in relation to Verrucomicrobiaceae) shifted significantly during maximal BCD, but the 

balance was similar between experimental groups at minimal BCD (Fig 1E). Overall, these results 

demonstrate that time of sample collection has a significant effect on the microbiome composition 

results that can affect the experimental conclusions if collection is only performed at a single time 

point. Additionally, these results let us pick optimal sampling times in order to maximize the effect 

size of the biological conclusions. 

Diet and Feeding Pattern Influence Sample Collection Time Results 

The experiment in the previous section demonstrates that the BCD increased during an 

environmental intervention (i.e. exposure to IHC) and decreased when this intervention was 

removed. We hypothesized that host environmental differences result in changes in stress levels 

and immune function that result in changes to gastrointestinal luminal microniches and cause 

divergence between the two conditions (BCD increase), converging again (BCD decrease) as the 

stress response fades. Since diet and feeding patterns are known to induce large and 

reproducible effects on the gastrointestinal environment and resulting microniches (Bisanz et al., 

2019), we hypothesized that it would be less influenced by diurnal microbiome dynamics.  

We pursued this hypothesis by analyzing the results from one of our previously published 

studies (Zarrinpar et al., 2014) that investigated the effect of diet and feeding patterns on murine 

host physiology and the diurnal dynamics of the cecal microbiome. In mice on the same diet but 
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with different feeding schedules, the BCD should change in response to differences in the feeding 

schedules of the experimental groups. In this experiment (Fig 2A), wild-type male C57Bl/6J mice 

were provided with either a normal chow diet (NCD) or a high-fat diet (HFD). Their access to food 

was either ad libitum or time-restricted (TRF). After 8 weeks on condition and after demonstration 

of a metabolic phenotype difference between HFD-ad libitum and HFD-TRF mice (Zarrinpar et 

al., 2014), we collected cecal content every 4 hours for 24hrs to examine dynamic changes in 

microbiome composition over the course of a day.  

Since HFD mice are known to eat relatively consistently throughout the day and do not 

fast during the light phase, we would expect low BCD between HFD-ad libitum and HFD-TRF 

mice during ZT-17 and ZT-21, when both groups have access to food. We expect high BCD during 

ZT-1 to ZT-13, when one group has access to food and the other group is forced to fast. As 

expected, the HFD-ad libitum to HFD-TRF BCD was the highest at ZT-13 when the two groups 

should be the most divergent (Fig 2B). We also saw that the HFD-ad libitum to HFD-TRF BCD 

was significantly lower at ZT-17. However, BCD was significantly lower at ZT-5 than ZT-13, and 

indistinguishable from ZT-17, suggesting that the intestinal environment is not solely influenced 

by the presence of a consumed diet in the lumen. Furthermore, the heatmap comparing all the 

combinations of different collection times shows a nearly 2.5-fold difference in peak and nadir 

BCD. There is a trend of the highest values being in the lower left corner (Fig 2C), which indicates 

that light phase of HFD-TRF and dark phase HFD-ad libitum have the greatest divergence. Thus, 

while the feeding schedule does impact microbiome composition, there are also composition 

shifts not directly attributable to the experimental design.  

Next, we looked at mice on different diets but with the same access to food, NCD-ad 

libitum to HFD-ad libitum. Since diet macronutrient profile is a large driver of microbiome 

differences between cohorts, we wanted to determine if oscillatory dynamics of the gut 

microbiome could influence microbiome results or even be detectable. We hypothesized that the 
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greatest differences between the two groups would be when they are eating different diets during 

the dark phase. Thus, we would expect the highest BCD to occur during ZT-13 to ZT-21 when 

one group is eating NCD and the other HFD. However, despite having radically different diets, 

the BCD from all of the dark phase time points are relatively low and are not significantly different 

from each other (Fig 2D). The biggest compositional shifts occurred at the transition from the light 

phase to the dark phase. The time point of greatest divergence is at ZT-9 when NCD mice are 

largely fasting, while HFD mice are likely eating at low to moderate levels. The heatmap, which 

shows a 2.7-fold difference in the peak to nadir BCD, also confirms that NCD-ad libitum ZT-9 as 

being different from all other HFD time points (Fig 2E). This same pattern is seen in a separate 

published dataset using a slightly different diet (Leone et al., 2015) comparing NCD-ad libitum 

and an ad libitum milk-fat diet, that also yielded high BCD (groups diverged) during the light phase 

and low BCD (groups were similar) during the dark phase (Fig S2). This indicates that the luminal 

environment differences caused by diet consumption alone do not drive differences between 

experimental groups and that dynamic oscillations of the luminal environment affects the 

interpretation of dietary changes 

Then, we looked at a combination of both diet and feeding pattern differences, using NCD-

ad libitum to HFD-TRF BCD. Knowing that diet has such a huge effect on the microbiome, we 

hypothesized that the greatest differences between NCD-ad libitum and HFD-TRF would be when 

they are both eating different diets during the dark phase since both groups would be fasting 

during the light phase. Thus, we would expect the highest BCD to occur during ZT-17 or ZT-21. 

Opposite to our hypothesis, we found that the highest BCD values were during the light phase, 

especially ZT-9 (Fig 2F). Despite one group fasting at ZT-13 (HFD-TRF) while the other group 

eating robustly (NCD-ad libitum), we still saw a significant decrease in BCD values when we would 

have expected them to diverge. Thus, neither feeding/fasting rhythms nor diet drive these 

temporal fluctuations. In addition, the diurnal pattern of NCD-ad libitum to HFD-TRF BCD 
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fluctuations most closely resembled the comparison between two different diets fed ad libitum 

(Fig 2D). The heatmap confirms a similar pattern of NCD-ad libitum to HFD-TRF value distribution 

across timepoints (Fig 2G) as NCD-ad libitum to HFD-ad libitum BCD (Fig 2E), with a 2.7-fold 

difference in peak to nadir BCD.  

Thus, while the feeding pattern and diet do appear to significantly influence microbiome 

composition, their effects are not predictable on a timepoint-by-timepoint basis. If an experimental 

variable effect as large and reproducible as that imposed by diet is affected by time of day that 

the sample was collected, then experimental variables with smaller effects - such as medications, 

metabolites, and genotype - are likely to be even more variable with respect to time.  

Gastrointestinal Region Influence Sample Collection Time Results 

Though the microbiome of the large and small intestine are quite different (Baker, 1942), 

the diurnal dynamics of the latter has only recently been actively researched (Tuganbaev et al., 

2020). We hypothesized that the dynamic response to changes in diet are not the same between 

gastrointestinal regions. We pursued this hypothesis by analyzing the results from a previously 

published study that investigated the diurnal dynamics between different GI regions (Leone et al., 

2015). Leone, et al. compared a normal chow diet (NCD) to a high milk-fat diet (MFD) and 

examined the differences in the microbiome communities of both the cecum and ileum during a 

24hr period (Fig 3A). The cecum and ileum had significantly different NCD-ad libitum to MFD-ad 

libitum BCD at ZT-6, in the middle of the light phase (Fig 3B). Thus, while microbial composition 

was generally similar between the two dietary conditions, there is at least one time point where 

time of sample collection would have made a difference when comparing dietary responses in the 

two organs. Heatmaps comparing BCD at different collection times for the ileal samples in this 

experiment show opposite trends in the timepoints of highest and lowest similarity compared to 

cecal samples (Fig 3C, 3D). While they had opposite trends in the timepoints that had the peak 

and trough values, the magnitude of change between these values was relatively similar with a 
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3.5-fold dynamic range in the cecum and 3.8-fold dynamic range in the ileum (Fig 3C, 3D). Thus, 

ileal and cecal diurnal dynamics are not always identical and can, at times, be significantly 

different. These differences could not have been predicted by experimental design. 

Moreover, the study used for Fig 2 also had ileal samples from the same mice sequenced 

separately in a recently published study (manuscript under review). Similar to the Leone, et al. 

study, these results generally revealed completely different daily patterns in the ileum (Fig S3) 

than those seen in the cecum (Fig 2). The dynamic range of values present in the heatmaps 

(highest BCD/lowest BCD) is approximately 3.0 in the ileum which is 15% higher than that in the 

cecum (Fig 2C, E, G vs Fig S3C, E, G), which was also similar between the two different studies. 

Thus these reproducible results show that the ileum responds differently over the course of the 

day than the cecum to the same conditions.  

Finally, in a separate study, Wu, et al. investigated the effects of light exposure (i.e. 12h 

light:12h dark [LD] vs. 24hr dark [DD]) on the jejunal and ileal microbiome of Balb/c mice. Though 

the observed large BCD differences were particularly at ZT-22 compared to other time points in 

this experimental condition, the jejunal BCD was fairly consistent across all time points (Fig S4). 

Thus, though sampling time affects the outcomes studies on the ileal microbiome, it does not 

seem to affect the outcomes of studies in the jejunal samples. Thus, this study further confirms 

that different GI systems within the same mice have different microbiome dynamics (or perhaps 

none at all in the jejunum).  

Micro-niche site has a critical time window 

The previous section demonstrates that different gastrointestinal regions do indeed have 

unique temporal microbiome patterns based on multiple studies. In this section, we hypothesize 

that even specific micro-niche sites within a single gastrointestinal region can have unique 

temporal patterns. To test this hypothesis, we re-analyzed data from a previously published study 

investigating temporal differences between luminal and mucosal micro-niches in the small 
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intestine (Fig 4A) (Tuganbaev et al., 2020). Tuganbaev, et al. used 8-week-old C57BL/6 mice fed 

NCD ad libitum and collected small intestinal samples every 4 hours for 24hrs, except for ZT-8. 

The luminal to mucosal BCD was significantly elevated at ZT-20, in the middle of the dark phase. 

At this time point, BCD increased nearly two-fold compared to the other time points on average 

(Fig 4B). Heatmaps of luminal to mucosal BCD at different collection time combinations show 

peak divergence during the dark phase and convergence during the light phase with a 3.4-fold 

difference in BCD (Fig 4C). This difference was in the same  range as what we reported for the 

ileum and cecum in the previous section. Furthermore, a log ratio of two common probiotic genera 

was significantly different from all other other timepoints at ZT20 for both mucosal and luminal 

samples (p < 0.05, paired-Wilcoxon-rank-sum test) (Fig 4D). Thus, micro-niche sites can also 

have unique temporal dynamics present that would not have been predicted based solely on 

experimental design.  

Longitudinal data is also susceptible to the influence of time 

Samples from the IHC experiment (Fig 1) were collected a week after the experiment 

started with the intent to characterize the microbiome induced by the environmental exposure, 

prior to the dysmetabolic phenotype affecting the gut microbiome. However, in the TRF study (Fig 

2), samples were collected after the phenotype was present. Since many microbiome experiments 

do not report the rationale for the timing of their sample collection, we questioned whether the 

length of experimental exposure time affects BCD. We performed a new study to examine where 

BCD changes over the course of a long study. In this study (Fig 5A), the Ldlr knock-out (Ldlr-/-) 

mice received either ad libitum (control group) or TRF (experimental group) access to the 

atherogenic diet. This model develops atherosclerotic lesions after 16 weeks. After 1 week 

(“early”; pre-phenotype development) and 20 weeks (“late”; post-phenotype development), we 

collected stool every 4 hours for 24hrs to examine dynamic changes in time point composition 

over the course of a long term experiment.  
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As shown in other studies, the time of sample collection during the day affects ad libitum 

to TRF BCD distances. During both the early and late phase of the experiment, maximum 

divergence ad libitum to TRF occurred during the dark period (highest mean BCD = ZT-20; Fig 

5B). The BCD patterns conformed to a circadian-like pattern (p < 0.05, MetaCycle, JTK method) 

during both the early and late collection, with nearly identical amplitude and minor shifts in period 

and phase (Fig S5). Furthermore, the ad libitum to TRF BCD was not significantly different 

between the early and late part of the study at any time point (Fig 5B), demonstrating consistency 

within the study over time. The peak to trough ratios were also nearly identical between the early 

(Fig 5C) and late collection (Fig 5D) - 2.1-fold and 2.2-fold dynamic range, respectively. On the 

other hand, the specific time point combinations that resulted in these peak and trough values 

differed slightly, indicating potentially a subtle shift over time that might eventually become 

significant if a long enough study was to be performed. In general, these results demonstrate that 

longitudinal measures of BCD in a non-continuous intervention within a single experiment are 

relatively consistent over time.  

To investigate the effects of longitudinal exposure to a daily discrete external intervention, 

we re-analyzed previously published data from our lab. In a previously published cohort of mice 

in an experiment investigating changes in the microbiome in response to intermittent-hypoxia-

hypercapnia conditions (similar to Fig 1A) over several weeks until phenotype development 

(Tripathi et al., 2019) (Fig 5E). In this cohort, samples were collected once per day, during ZT-3 

to ZT-5 (i.e. the time of greatest divergence), twice weekly over 10 weeks. All samples collected, 

stored, and processed in this study used the exact same analysis pipelines as Fig 1. The aim of 

this re-analysis is to determine whether the dynamic changes in composition during the course of 

a longitudinal experiment with time of sample collection held constant. While the control of IHC 

BCD fluctuated significantly during the course of the experiment, a general step-wise trend 

(increase, then plateauing, repeat) was seen (Fig 5F). The groups did diverge with significantly 
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increased BCD over time (week 10.5 compared to week 19.5, p = 2.56x10–8, paired Wilcoxon 

rank sum, test statistic 1126) as the phenotype developed. By holding the time of collection 

constant, we observed a compositional shift that occurred over time as the phenotype developed 

that might not have been observed at a different time.  

To determine if BCD is also relevant in longitudinal human studies, we re-analyzed a study 

that investigated the effects of a four day longitudinal dietary change (i.e. plant to animal based 

diet) in adult subjects on the speed and extent of shifts in the gut microbiome (David et al., 2014). 

When BCD was similarly calculated using weighted UniFrac, the plant-to-animal diet BCD 

demonstrated that the two groups did diverge the most on day 4 on condition (Fig S6). 

Interestingly, this study clearly demonstrates that BCD captures how time and diet overcame the 

known large effect of inter-individual variability in human subjects. However, humans defecate on 

average once a day, and, thus, with not enough frequency for analysis of changes to investigate 

dynamics shifts as we have done in mice. There have been attempts to reconstruct daily 

microbiome diurnal rhythms using several thousand human samples (Reitmeier et al., 2020), 

which have also shown diurnal pattern disruption in a disease state. Thus, time of sample 

collection is likely relevant in human samples as well.  

The fecal metabolome BCD is not as dynamic as the fecal microbiome BCD 

To determine whether cyclical fluctuations in the composition of the gut metabolome affect 

functional measures, we examined the untargeted liquid chromatography-tandem mass 

spectrometry (LC-MS/MS) from the same samples from the IHC experiment in atherosclerosis-

prone mice discussed in Fig 1A (Piedrahita et al., 1992). We used non-phylogenetic 𝝱-diversity 

metric, canberra, for metabolomics to assess BCD as published in the source paper.  

Unlike the 16S microbiome assessments (Fig 1B, S7A-B), there were minimal shifts in 

BCD between the IHC and control groups over the course of the day (Fig 6A,Fig S7C-D). The 

BCD heatmap matrix demonstrates a peak (Air ZT10, IHC ZT2) and a trough (Air ZT2, IHC ZT22) 
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that is very different (Fig 6B) from what we determined from 16S measures (Fig 1C). We 

examined selected metabolites that are potentially involved in atherosclerosis formation at these 

peak and trough time points (Fig 6C). Time point variation appears to not play as significant a 

role in fecal metabolite composition at the biologically relevant group (left) or subgroup (right) 

level. We also measured longitudinal untargeted LC-MS/MS metabolomics for the experiments 

discussed in Fig 4E-F for four time points. The longitudinal data revealed no significant change 

in BCD from early to late metabolomics measures (Wilcoxon signed-rank test; test statistic 

W=3685, p=0.11) (Fig 6D). Thus, though there may be diurnal oscillation of specific metabolites, 

global assessments of the metabolome appear less dynamic than the microbiome based on BCD, 

both within a day and over the course of an experiment. Moreover, based on this limited sample 

set, the effect of the diurnal rhythm does not appear to supersede experimental variables as seen 

in the 16S microbiome data. However, diurnal metabolomics data only existed for one study, and 

additional studies are needed to assess whether this is universally true across most experimental 

conditions. 

 

4.3 Discussion 

One of the greatest barriers to the development of microbiome-mediated therapeutic 

agents remains the lack of replicability in microbiome research. Though several confounding 

factors that influence 16S microbiome composition results have been described (e.g. cage and 

maternal effects, primers used for amplicon sequencing, sample collection techniques), there is 

still significant inter- and intra-individual variability in microbiome research (Gilbert et al., 2018). 

Many studies address this by increasing the number of subjects to improve the signal-to-noise 

ratio (Goodrich et al., 2014). However, increasing the number of subjects makes the cost of high-

quality microbiome studies outside of the reach of most resource-limited labs, nor would it 

guarantee reproducibility in light of the findings presented in this study. Hence, investigating the 
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factors that affect microbiome variability and improve replicability remains an important area of 

research as the field moves toward a more mechanistic understanding of how the microbiome 

affects host physiology and disease progression. 

Since 2014 there has been unequivocal and reproducible research from multiple labs 

demonstrating diurnal fluctuations in the composition of the gut microbiome (Alvarez et al., 2020; 

Frazier and Chang, 2020; Leone et al., 2015; Liang et al., 2015; Thaiss et al., 2014, 2016; Uhr et 

al., 2019; Voigt et al., 2014; Zarrinpar et al., 2014). Yet neither sample collection time nor the 

rationale for the selection of this time is reported outside of studies that are focused on diurnal 

fluctuations of the microbiome. Here, we show that the conclusions of a microbiome research 

study are greatly dependent on the time of sample collection, and that experimental and control 

groups undergo a cycle of diverging and converging microbiome composition depending on the 

nature and timing of experimental interventions. Although we hypothesized that BCD would 

decrease when the two conditions have the greatest similarity in environmental exposure, we 

found that this was inconsistent between experiments and highly dependent on the experimental 

exposure. Moreover, BCD, a measure of microbiome dissimilarity, was highly dependent on the 

gastrointestinal region sampled (Fig 2) and even luminal micro-niche (Fig 3), demonstrating that 

these factors need to be under consideration as well. Surprisingly, in some studies, samples 

collected just a few hours apart could completely change the conclusions of the study and lead to 

nearly diametrically opposite results (Fig 2). In some experiments, BCD continued to increase 

over weeks of exposure, whereas in others, longitudinal exposure did not affect these distance 

metrics. Interestingly, the BCD of the metabolome appears unaffected by sample time collection 

both within a day and longitudinally during an experiment. These results demonstrate that the 

conclusions of microbiome compositional studies are highly dependent on sample time collection, 

and thus experiments are difficult to replicate without this critical piece of information. More 
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functional information, such as metabolomics, may not be subject to the same change in 

dynamics observed with 16S sequencing. 

Moreover, our findings suggest a fluidity of composition that is sensitive to a variety of host 

factors including environmental exposures, diet, gut region, and luminal micro-niche. Our BCD 

analysis confirms that, in some experiments, peak and trough distances can be as short as four 

hours apart (Fig 2). That is, shifting the collection of one condition by four hours could yield 

dramatically and potentially opposite conclusions on the similarity of the microbiome from 

experimental and control groups. This time scale may still be an overestimate; we did not collect 

stool samples at less than four-hour intervals. Thus, conflicting results from different laboratories 

may be due to differences in phase of the circadian cycle at the time of collection, timing relative 

to the experimental intervention, investigator chronotype (e.g. morning lark vs. night owl), or 

vivarium lighting setup. In studies with discrete daily interventions such as those described in this 

study, these differences can be quite pronounced.  

Based on our literature review analysis, since the vast majority (>90%) of microbiome 

studies do not report when samples are collected, laboratories may unknowingly be collecting at 

suboptimal time points. Furthermore, although it is likely a good assumption, due to convention 

and best utilization of researcher time, the methods section of published papers does not confirm 

that the control and experimental conditions are collected at the same time or within a specific 

window. In addition, while Fig 1C and Fig 1D suggest that optimization of collection time points 

could be accomplished by sampling at the time of highest beta diversity for each group, caution 

should be taken not to artificially influence results. It would also be prudent to establish standard 

collection times for experiments in a field to ensure replication. To improve replicability, 

investigators should provide an explanation for the collection time of samples as it relates to their 

scientific hypothesis with the knowledge that anticipatory changes in the microbiome are quite 

pronounced. 
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The composition of the microbiome appears less tightly constrained and more dynamic 

than the metabolome. Though there is a pervasive assumption that compositional shifts in the 

microbiome imply a functional shift in their activity, our analysis of metabolomics across multiple 

studies did not find a divergence and convergence of BCD that parallels the 16S results. This 

finding is consistent with the conclusions from the Human Microbiome Project (The Human 

Microbiome Project Consortium, 2012) showing great inter- and intra-individual variability in 16S 

rRNA gene amplicon sequencing, but less variation among subjects with the metagenomic 

functional repertoire. Though many secondary metabolites, such as bile acids, have diurnal 

fluctuations (Zhang et al., 2011), these may not be pronounced enough to affect our metabolomics 

beta-diversity measures. Our findings that the metabolome, as a whole, is not as dynamic as the 

microbiome suggests the possibility that circadian clock entrainment might occur through 

microbiota or its components rather than through general changes in metabolites, thereby further 

emphasizing the importance of increased sampling frequency and time of sample collection. 

However, we cannot rule out that specific secondary metabolites, such as bile acids or short-

chain fatty acids, may be responsible for entraining host peripheral rhythms. 

Though there is good evidence that the human gut microbiome has diurnal fluctuations 

(Brooks and Hooper, 2020; Sailani et al., 2020), the relevance of these compositional changes in 

a subject that, unlike the murine models, usually only defecates once a day is not clear. The 

microbiome compositional shifts that occur within a 24-hour period may be more a reflection of 

the length of fecal storage in the rectal vault rather than a relationship with circadian machinery. 

Nevertheless, our secondary analysis of previously published work demonstrates that even in 

human studies BCD continues to increase over the length of experimental exposure (Fig S6). 

Mathematical modeling of the human microbiome provides preliminary evidence of temporal 

dynamics for most genera (Kenney et al., 2020). Microbiome oscillations, entrained by feeding as 

well as light-dark signals, also impact host metabolism and immunity (Brooks and Hooper, 2020). 
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Changes to the microbiome contribute to metabolic diseases such as obesity, diabetes, and 

NAFLD (Musso et al., 2011). Thus, the time of sample collection may also reveal important 

information about the role of microbiota in different types of diseases in patient cohorts as well.  

Outside of studies focused on circadian rhythms, microbiome studies do not commonly 

report time of sample collection in their methods nor confirm that control and experimental 

samples are collected at the same time of day. While several of the studies suffer from a low 

sample number, the fact that findings are replicated in laboratories from several different 

institutions with related study designs indicates how understudied this phenomenon is. Because 

of the rarity of circadian rhythm studies, it is likely that additional studies will need to be performed 

to determine optimal sampling times to standardize each field that uses a host with a circadian 

rhythm. We also propose that sample collection time be reported in ZT notation in future studies 

going forward. Otherwise, if we are not controlling for host circadian rhythm time, it is like trying 

to measure sea level rise while not knowing that tides or waves exist.  

 

4.4 Methods 

Literature Review: (Fig S1) We used the advanced search option from the four main 

journal groups, including the American Society for Microbiology (ASM) 

(https://msystems.asm.org), Science (https://search.sciencemag.org), Nature 

(https://www.nature.com), and Cell Press (https://www.cell.com). Searching for the  term 

“microbiome” in all search fields (abstract, title, main text) during the year 2019 (Jan 1, 2019, to 

Dec 31, 2019) resulted in 586 articlesfrom 9 journals; mSystems (ASM), Science Translational 

Medicine (Science), Science Signaling (Science), Science Advances (Science), Science 

Immunology (Science), Nature (Nature), Nature Microbiology (Nature), Nature Communications 

(Nature), Cell Host Microbe (Cell), Cell (Cell), Cell Reports (Cell), Cell Metabolism (Cell). Our 

collection sheet includes a total of 16 columns: journal group, journal, year, article title, DOI, PMID, 
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first author, last author, Microbiome (yes/no), vivarium (yes/no), vivarium setting, sample host, 

sample type, collection time, time note, and collection time reason. Notation of collection time was 

recorded as follows: explicitly stated (“yes”; 8AM, ZT4, etc.), implicitly stated (“relative”; “before 

surgery”, “in the morning”, etc.), or unstated (“not provided”; “daily”, “once a week”, etc.). 

Microbiome: All of the data in this paper is a re-analysis of previously published 16S 

studies. Please refer to the respective source papers for detailed methods, including sample 

handling and preliminary processing. Raw data was procured from the respective data 

repositories as stated in the source paper, typically the European Nucleotide Archive (ENA). This 

data was then run through a standard QIIME2 pipeline (version 2021.8) (Bolyen et al., 2019) as 

follows: samples demultiplexed, denoised via deblur (Amir et al., 2017) into the amplicon 

sequence variant (ASV) table, feature table underwent rarefaction (as stated in source paper, see 

individual methods sections), representative sequences underwent fragment insertion on 

Greengenes_13_8 via SATé-enabled phylogenetic placement (Mirarab et al., 2011) to create the 

phylogenetic tree, and weighted UniFrac distances (Lozupone et al., 2011) were calculated. The 

resulting weighted unifrac distance matrix was filtered for only between-condition distances (BCD) 

as relevant to each study. Thus, using BCD values will show how similar the microbiomes from 

the two conditions are to each other at any given time point. Since BCD values are a subset of 

the Weighted UniFrac distance matrix values, both conditions (control and experimental) are 

taken into account with each distance value shown. Changes in BCD will demonstrate 

convergence (decreasing distance, increased similarity) or divergence (increasing distance, 

increased dissimilarity) of the microbiome composition between two groups. Circadian time 

notation is used throughout the paper to denote when samples were collected: Zeitgeber Time 

(ZT) were lights on = ZT-0 . Data was visualized using custom python scripts, which can be found 

at https://github.com/knightlab-analyses/dynamics.  
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Figure 4.1 Briefly, two groups of ten-week-old male Apoe-/- mice on C57BL/6J background 

(002052; The Jackson Laboratory, Bar Harbor, ME) were individually housed in a 12-hour light:12-

hour dark (12:12 L:D) vivarium. All mice were given an atherosclerotic-promoting diet (1.25% 

cholesterol, 21% milk fat; 4.5 Kcal/g; TD.96121; Envigo-Teklad Madison, WI) starting at 10 weeks 

of age until the end of the study. Mice in the experimental group were exposed to intermittent 

hypoxia and hypercapnia (IHC) conditions that consisted of 4 min of synchronized O2 reduction 

from 21% to 8% and synchronized elevation of CO2 from 0.5% to 8%, followed by alternating 

periods of 4 min of normoxia and normocapnia with 1- to 2-min ramp intervals. IHC conditions 

were administered in a computer-controlled atmosphere chamber (OxyCycler, Reming 

Bioinstruments, Redfield, NY) for 10 hours per day during the lights on phase (ZT-2 to ZT-12) 

when mice are sleeping for 10 weeks. Mice in the control group were exposed to normal room air 

(21% O2 and 0.5% CO2) during that same time period. After 6 days, fecal samples were collected 

every 4 hours for 24hrs (n = 4/group). 16S amplicon sequencing was performed on the V4 region 

using standard protocols (http://www. earthmicrobiome.org/emp-standard-protocols/). 

Rarefaction was set at 12,000 reads to control for sequencing effort. Please see the source paper 

for additional details (Allaband et al., 2021; Piedrahita et al., 1992).  
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Figure 4.1. Microbiome Analysis of Apoe-/- Mice Exposed to IHC Show Vastly Different Outcomes 
Depending on Time Point of Sample Collection A) Experimental design. IHC=intermittent-
hypoxia-hypercapnia. B) between-condition distances (BCD) weighted UniFrac β-diversity 
distances. Significance is determined using paired Wilcoxon rank-sum test. The BCD values in 
this experiment were oscillating in a diurnal fashion (MetaCycle, JTK method, p<0.001). C) BCD 
heatmap by time point. Highest highlighted in green, lowest highlighted in orange. At the peak 
and trough time points identified in C, (D) the logarithmic ratios of differentially abundant key phyla 
of interest and (E) the logarithmic ratios of differentially abundant key families of interest. Notation: 
ns = not significant, * = p < 0.05; ** = p < 0.01; *** = p < 0.001 
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Figure 4.2, 4.S3 - In short, wild-type SPF C57Bl/6 group-housed male mice (3 mice per 

cage) were provided either normal chow diet (LabDiet 5001, 13.5% calories from fat, crude fiber 

5.1%) or a high fat diet (61% fat, HFD) and were fed in either an ad libitum manner, with access 

to food at all times, or fed in time-restricted (TRF) manner. TRF mice were allowed unrestricted 

access to HFD from ZT-13 to ZT-21. Mice on an NCD ad libitum diet (controls) typically fast during 

the light phase and consume >80% of their diet during the dark phase (Hatori et al., 2012; 

Kohsaka et al., 2007). However, mice on a HFD ad libitum diet (diet-induced obesity) lose this 

diurnal feeding pattern and spread their caloric intake throughout both the dark and light phase 

(Hatori et al., 2012; Kohsaka et al., 2007). TRF of HFD consolidates feeding to the nocturnal 

period by providing access to food in a narrow time window, from ZT-13 to ZT-21 in this 

experiment, and is known to prevent the dysmetabolic effects of HFD consumption (Chaix et al., 

2014; Hatori et al., 2012; Zarrinpar et al., 2014). After 8 weeks under these dietary conditions, 

mice were euthanized every 4 hours for 24hrs and intestinal contents collected (n=3 

mice/condition/time point from separate cages; 6 time points). At ZT-13, fasted mice were 

euthanized prior to feeding. 16S amplicon sequencing was performed on the V1-V3 region using 

the 454 platform for cecal data. 16S amplicon sequencing was performed on the V4 region using 

Illumina primers for ileal data. For both regions, rarefaction was set to 1,000 reads to control for 

sequencing effort. Please see source paper for additional details (Zarrinpar et al., 2014; 

manuscript under review). 
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Figure 4.2. Diet and Feeding Pattern Influence Sample Collection Time Results in the Cecum. A) 
Experimental design. B) BCD for cecal samples comparing HFD ad libitum vs HFD TRF. The 
dotted line is the average of all shown weighted UniFrac distances. Significance was determined 
using a paired Mann-Whitney-Wilcoxon test two-sided with Bonferroni correction.C) Heatmap of 
mean cecal BCD between HFD ad libitum and HFD TRF mice by time point. Highest highlighted 
in indigo, lowest highlighted in yellow.  D) BCD for cecal samples comparing NCD ad libitum vs 
HFD ad libitum. The dotted line is the average of all shown weighted UniFrac distances. 
Significance was determined using the Mann-Whitney-Wilcoxon test two-sided with Bonferroni 
correction.E) Heatmap of mean cecal BCD between NCD ad libitum controls and HFD TRF mice 
by time point. Highest highlighted in indigo, lowest highlighted in yellow. F) BCD for cecal samples 
comparing NCD ad libitum vs HFD TRF. The dotted line is the average of all shown weighted 
UniFrac distances. Significance was determined using the Mann-Whitney-Wilcoxon test two-
sided with Bonferroni correction.G) Heatmap of mean cecal BCD between NCD ad libitum 
controls and HFD TRF mice by time point. Highest highlighted in indigo, lowest highlighted in 
yellow. Notation: * = p<0.05; ** = p<0.01; *** = p<0.001. 
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Figure 4.3 - The study was performed on 8 to 10 week old male C57BI/6J SPF mice that 

were maintained in a 12:12 L:D cycle vivarium. The mice were fed ad libitum with either a normal 

chow diet (NCD, Harlan Teklad 2018S, 18% calories from fat, 3.5% crude fiber) or a 37.5% 

saturated milk fat diet (MFD, Harlan Teklad TD.97222 customized diet). After 5 weeks of being 

on the NCD or MFD diet, the mice were sacrificed and the cecal and ileal contents harvested 

every 4 hours for 24 hours (n = 3 mice/treatment). The cecal and ileal contents were flash frozen 

and stored at -80ºC. 16S amplicon sequencing was performed on the V4-V5 region using 

standard protocols (https://earthmicrobiome.org/protocols-and-standards/) in a High-Throughput 

Genome Analysis Core (Institute for Genomics & Systems Biology) at Argonne National 

Laboratory. Rarefaction was set at 10,000 reads to control for sequencing effort. Please see the 

source paper for additional details (Leone et al., 2015). 

 
Figure 4.4 - This study was performed on 8 to 12-week old WT C57BL/6 mice that were 

maintained in a 12:12 L:D cycle vivarium. The mice were fed a normal chow diet (NCD, Harlan 

Teklad 2018S, 18% calories from fat, 3.5% crude fiber) ad libitum for 4 weeks prior to sample 

collection. The mice were sacrificed and the luminal and mucosal small intestinal samples were 

collected every 4 hours for 24 hours (except for ZT-8, n = 4-5 mice/time point). The samples were 

frozen and stored at -80ºC. 16S amplicon sequencing was performed on the V4 region of the 

genome. Rarefaction was set to 4,200 reads to control sequencing effort. Please see the source 

paper for additional details (Tuganbaev et al., 2020). 
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Figure 4.3. Gastrointestinal Region Influence Sample Collection Time Results  
A) Experimental design. Mice were fed ad libitum with either NCD or MFD. After 5 weeks, cecal 
and ileal samples were collected every 4 hours for 24 hours (N=3 mice/condition). B) BCD for 
both ileal and cecal samples comparing NCD vs MFD. The dotted line is the average of all shown 
weighted UniFrac distances. Ileal vs Cecal pairwise significance was determined using Mann-
Whitney-Wilcoxon test two-sided with Bonferroni correction.C) Heatmap of mean BCD from cecal 
samples collected from NCD controls and HFD ad libitum mice by time point. Highest highlighted 
in black, lowest highlighted in yellow. D) Heatmap of mean BCD from ileal samples collected from 
NCD controls and HFD TRF mice by time point. Highest highlighted in black, lowest highlighted 
in yellow. Notation: * = p<0.05; ** = p<0.01; *** = p<0.001. 
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Figure 4.4. Localized changes in BCD between luminal and mucosal contents. A) Experimental 
design and sample collection for a local site study. Small intestinal samples were collected every 
4 hours for 24 hours (N=4-5 mice/condition, skipping ZT8). Mice were fed ad libitum on the same 
diet (NCD) for 4 weeks before samples were taken. B) BCD for luminal vs mucosal conditions. 
The dotted line is the average of all shown weighted UniFrac distances. Significance is 
determined using the Mann-Whitney-Wilcoxon test two-sided with Bonferroni correction. C) 
Heatmap of mean BCD distances comparing luminal and mucosal by time point. Highest value 
highlighted in navy, lowest value highlighted in gold. D) Experimentally relevant log ratio, 
highlighting the changes seen at ZT20. 
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Figure 4.5A-D, 4.S5 - This study was performed on 10 week old Ldlr-/- mice (Jackson 

Labs) which were fed a high fat, high cholesterol diet (Research Diets D12109i; Clinton/Cybulsky 

high-fat rodent diet, regular casein, 1.25% added cholesterol, 0.5% sodium cholate). During the 

experiment, mice were maintained in 12:12 L:D reverse light-cycled cabinets (Phenome 

Technologies). Mice were either fed ad libitum or had feeding restricted to a 9-hour window from 

ZT-14 to ZT-23. There were two 24hr fecal sample collections (Q4 hrs, 6 time points), after 1 

week and 20 weeks of treatment (n = 6 mice/treatment). 16S rRNA was performed on the V4-V5 

region using the Earth Microbiome standard protocol (https://earthmicrobiome.org/protocols-and-

standards/). Rarefaction was set at 11,498 reads to control for sequencing effort. 

 
Figure 4.5E-F - In brief, two groups of ten-week-old male Apoe-/- mice on C57BL/6J 

background (002052; The Jackson Laboratory, Bar Harbor, ME) were kept in a 12:12 L:D vivarium 

fed a normal chow diet (Teklad Rodent Diet 8604, 14% calories from fat, 4% crude fiber) before 

they were switched to an atherosclerotic-promoting diet containing 1.25% cholesterol and 21% 

milkfat (4.5 Kcal/g; TD.96121; Envigo-Teklad Madison, WI) starting at 10 weeks of age until the 

end of the study. Mice in the experimental group were exposed to IHC conditions as described in 

Fig 1 and were administered in a computer-controlled atmosphere chamber (OxyCycler, Reming 

Bioinstruments, Redfield, NY) for 10 hours per day during the lights on phase (ZT2-ZT12) for 10 

weeks. Mice in the control group were exposed to normal room air (21% O2 and 0.5% CO2) during 

that same time period. Fecal samples were collected twice a week for the duration of the study 

(Tripathi et al., 2019). 
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Figure 4.5. Longitudinal changes in BCD over the course of a study. A) Experimental design and 
sample collection for TRF study. Fecal samples were collected every 4 hours for 24 hours (n=6 
mice/condition) after 1 week (early; pre-phenotype) and after 20 weeks (late; post-phenotype). 
The two conditions were both on an atherogenic diet (AD), but one group was fed ad libitum and 
the other TRF. In TRF, mice were allowed to eat only for 8 hours per day during the dark/active 
phase of the circadian rhythm between ZT-13 and ZT-21. B) BCD for ad libitum vs TRF conditions 
at the early (Week 1) and late (Week 20) timepoints. Dotted line is the average of all of the 
weighted UniFrac distances. Significance is determined using paired Wilcoxon rank-sum test. C) 
BCD heatmap for early samples, and D) BCD heatmap for late samples. Highest value is 
highlighted in tan and the lowest value is highlighted in yellow.  E) Experimental design and 
sample collection for longitudinal IHC study. During the 10 weeks of exposure to either normal 
room air or IHC conditions, samples were collected between ZT-3 and ZT-5 every 3-4 days for 
the duration of the study (n=12 mice/condition).. F) BCD over the course of the IHC longitudinal 
study. Dotted line is the mean of all data shown. The only comparison shown is between Age 10.5 
weeks and 19.5 weeks; significance was determined using paired Wilcoxon rank-sum tests. 
Notation: * = p<0.05; ** = p<0.01; *** = p<0.001, ***** = p<0.00001. 
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Figure 4.S2 - The study was performed on 8-10 week old male C57BI/6J SPF mice that 

were maintained in a 12:12 L:D cycle vivarium. The mice were fed ad libitum with either a normal 

chow diet (NCD, Harlan Teklad 2018S, 18% calories from fat, 3.5% crude fiber) or a 37.5% 

saturated milk fat diet (MFD, Harlan Teklad TD.97222 customized diet). After 5 weeks of being 

on the NCD or MFD diet, fecal pellets were collected every 4 hours for 24 hours (n=3 

mice/treatment). 16S rRNA was performed on the V4-V5 region using standard protocols 

(https://earthmicrobiome.org/protocols-and-standards/) in a High-Throughput Genome Analysis 

Core (Institute for Genomics & Systems Biology) at Argonne National Laboratory. Rarefaction 

was set at 10,000 reads to control for sequencing effort as stated in the source paper. Please see 

the source paper for additional details (Leone et al., 2015). 

 
Figure 4.S6 - A total of 12 human subjects underwent 5 days of dietary intervention, either 

plant or animal based (n = 10 humans/condition). Patients that underwent both dietary 

interventions did so with a 1 month wash-out period in between interventions (10/12 patients; 9/10 

patients per intervention). Two patients only underwent a single intervention (2/12 patients; one 

plant, one animal; 1/10). Please refer to the source paper for detailed study design and associated 

protocols (David et al., 2014). 

 
Figure 4.S7 - In brief, two groups of five-week-old male Balb/c mice were kept in either a 

12:12 L:D or 0:24 L:D vivarium fed a normal chow diet (unspecified in methods) ad libitum. After 

two weeks on condition, mice were anesthetized and sacrificed every 4 hours for 24hrs (n= 4-5 

mice per group per time point). Samples from intestinal lumen, mucous layer, epithelial layer, and 

cecal contents were collected. The phenol-chloroform method was used for DNA extraction. 16S 

rRNA amplicon sequencing was performed on the V4 region. Rarefaction was set to 1085 reads 

to control sequencing effort, as performed in the source paper. Please refer to the source paper 

for detailed study design and associated protocols (Wu et al., 2018).  
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Metabolome: (Figure 4.6) In brief, each fecal sample was examined by untargeted liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) as described previously (Tripathi et al., 

2019). The samples were analyzed on a Vanquish ultrahigh-performance liquid chromatography 

(UPLC) system coupled to a Q-Exactive orbital ion trap (Thermo Fisher Scientific, Bremen, 

Germany) after homogenization and extraction. Chromatographic separation was performed 

using a C18 core shell column (Kinetex column, 50 by 2 mm, 1.7-µm particle size, 100-Å pore 

size; Phenomenex, Torrance, CA). The raw spectra outputs were converted to m/z extensible 

markup language (mzXML) in centroid mode using MSConvert (part of ProteoWizard). MassIVE 

links to raw files: Circadian - 

https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=0434de6d06f5424d8bd567808d069d4e 

; longitudinal - 

https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=7996239533ea48738b550650e853114

2. MZmine-2.37 was used for isotope peak removal with the alignment of peaks and creation of 

a feature matrix containing the feature retention times and the exact mass and peak areas of the 

corresponding extracted ion chromatograms. Identification of molecular features was performed 

using MS1-based feature detection and MS2-based molecular networking using the GNPS 

workflow (https://gnps.ucsd.edu) The GNPS jobs can be found at the following URLs: Circadian - 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=b0beb04fc3314f1e93cb69606e35ab64,  
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Figure 4.6. Untargeted LC-MS/MS shows no changes between conditions with respect to sample 
collection time. Intermittent hypoxia and hypercapnia = IHC. A) Canberra BCD (Air vs IHC) for 
diurnal data time points (see Fig 1A for experimental design). Significance was determined using 
paired Wilcoxon rank sum test, no significantly different pairs found. No circadian rhythmicity of 
the BCD found (MetaCycle, JTK method, p=1.000). B) Mean between-group weighted Canberra 
β-diversity distances heatmap. Highest highlighted in green, lowest highlighted in orange. Peak 
value is 1.3x trough value. C)The log-ratios of differentially abundant metabolites identified by 
group (phosphocholines vs bile acids) and sub-grouping (primary vs secondary bile acids). D) 
Experimental design is the same as described in Fig 6E, but untargeted liquid chromatography 
tandem mass spectrometry was performed on fewer time points than microbiome. N=12 mice per 
condition. Canberra BCD (Air vs IHC) for longitudinal data. Each horizontal line is a sample value. 
Significance was tested with a paired Wilcoxon rank-sum test. Notation: ns = not significant, * = 
p<0.05; ** = p<0.01; *** = p<0.001.  
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Longitudinal 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=5b937aefecc14ed7b193ebb9a44193da.  

Level 1 identification of bile acid metabolites as defined by the 2007 metabolomics 

standards initiative (Sumner et al., 2007) was performed using authentic bile acid standards from 

Cayman Chemical (Ann Arbor, MI). The annotated feature table was analyzed using QIIME2 

(version 2020.6) (Bolyen et al., 2019). Canberra calculates overabundance on a feature-by-

feature basis. Thus, while canberra is similar to Bray-Curtis, it is more sensitive to rare features. 

Data was visualized using custom python scripts, which can be found at 

https://github.com/knightlab-analyses/dynamics. Please refer to the source papers for detailed 

methods (Allaband et al., 2021; Tripathi et al., 2019). 

 
Data Availability 

Microbiome  

Figure 4.1 - (Allaband/Zarrinpar 2021) - EBI accession ERP110592.  

Figure 4.2 - (Zarrinpar/Panda 2014) - see supplemental excel file attached to source paper 

[PMID: 25470548]. (Leone/Chang 2015) - The figshare accession number for the 16S amplicon 

sequence data: http://dx.doi.org/10.6084/m9.figshare.882928 

Figure 4.3 - (Tuganbaev/Elinav 2021) - ENA PRJEB38869 

Figure 4.4 - (Leone/Chang 2015) - The figshare accession number for the 16S amplicon 

sequence data: http://dx.doi.org/10.6084/m9.figshare.882928 

Figure 4.5 - (longitudinal circadian TRF) EBI: ERP123226 ; (longitudinal IHC) - EBI 

accession ERP110592.  

Supplemental 4.4 (David/Turnbaugh 2012) - MG-RAST project ID 6248.  

Metabolome 
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Figure 4.6 MassIVE link to raw data for circadian data - 

https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=0434de6d06f5424d8bd567808d069d4e

. MassIVE link to raw data for longitudinal data - 

https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=7996239533ea48738b550650e853114

2. 

Python Notebooks: https://github.com/knightlab-analyses/dynamics.  
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Chapter 5. Engineered Native Bacteria are More Efficient at 

Engraftment and Colonization of a Host and Require Fewer 

Mutations for Maintenance Long Term 

5.1 Introduction 

In the fifth part of this thesis, we explore the impact of the host and established intact 

microbial community on the evolution of a single tagged microbe in a mouse host over its life. The 

data indicate that the non-native strain struggles with all aspects of adaptation to its new murine 

host. It has decreased colonization levels (CFU/g feces), increased loss of colonization, increased 

genome variability, increased genetic drift, increased pangenome variation, increased SNP 

mutation rate, increased phage presence, increased number of plasmids, and demonstrates loss 

of at least one of the detected phage defense systems compared to the native strain. The native 

strain is much more consistently present and genomically stable.  

The adaptation and evolution of microbes inside their host is a phenomenon of interest in 

several fields. It is also of particular importance if we are going to try to start using the microbiome 

for therapeutic purposes, including personalized medicine. In his famous ongoing long-term 

evolution experiment (LTEE), Richard Lenski has been studying the adaptation and evolution of 

Esherichia coli (E.coli) in vitro for the past thirty-five years [refs]. Even in that simple system of 

minimal media in flasks, myriad mutations could be found and studied. Previous attempts to look 

into this phenomenon included germ-free [refs] or antibiotic-depleted [refs] models, which have 

provided great preliminary insight into the host-microbe-microbiome interaction. Unfortunately, 

these models do not accurately replicate the complexity of real world settings. These models have 

previously been needed because probiotics and other engineered strains have difficulty with 

engraftment and maintenance in an intact microbiome without daily repeated dosing.  
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5.2 Methods and Results 

While our study does not fully replicate the complexities of a natural environment - such 

as environmental bacteria, daily dietary changes, and more - it does bring our model of in vivo 

adaptation and evolution a significant step closer to real-world applications. We were able to 

overcome many of the previous issues with engraftment by using more wild-type host-native 

strains of E.coli. We used a human-derived Nissle1917 strain (non-native to mouse, AZ20) and a 

locally cultured mouse native strain similar to NGF-1 (native to mouse, AZ51) that were 

engineered to have GFP and an antibiotic resistance marker incorporated into each strain’s 

chromosome [ref]. While the strains do have most genes in common, there are about 700 unique 

genes present in each strain (Fig A.D.1.S1A).  

The strains were gavaged once into 10-week-old SPF wild-type C57Bl/6 mice that were 

bred and raised in our double-barrier vivarium (12:12 L:D) together. Their parents were originally 

purchased from Jackson Labs. While the mice in this study have never received an antibiotic 

during the entirety of the experiment, the antibiotic resistance marker incorporated into the 

genome was used to re-isolate our strain on selective media for quantification and analysis. 

Neither of our strains negatively affected the health of the mice by both subjective observation or 

objective measurement (weight) (Fig 5.1A,B). This indicates that neither strain, once engrafted, 

conferred a clearly positive or negative effect on the host.  

Overall, the non-native strain was worse at long term colonization of a mouse host than 

the native strain (Fig 5.1C). When present, the non-native strain colonized at an average of log10 

4.6 (CFU/g feces) (Fig 5.1D). However, colonization levels were irregular for many mice 

throughout the study and loss of colonization occurred. Loss of colonization was more prominent 

in females (38%) than in males (13%) (Fig A.D.1.S2). Since Nissle1917 was originally isolated 

from a male soldier in World War I, that might have somehow influenced colonization ability. The 

native strain colonized at an average of log10 5.7 (CFU/g feces) (Fig 5.1E). Colonization levels 
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were consistent for all mice with no loss of colonization observed (Fig 5.1F). Unlike the native 

strain, many mice with the non-native strain started to show loss of colonization about 18 weeks 

(Month 4-5) into the study (Fig A.D.1.S2). In addition, this occurs at approximately 27 weeks of 

age (7 months), which is just after growth plate closure in mice and known to be influenced by 

estrogen levels (https://doi.org/10.1152%2Fajpendo.00646.2011), and could potentially also 

explain the sex differences in the non-native strains colonization levels. At the end of the study, 

we wanted to determine where in the gastrointestinal tract the strains were more likely to live. 

Both strains were most likely to be found in the cecum, with the ileum being the second most likely 

site (Fig A.D.1.S3).  
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 In order to more fully understand the genetic factors that underpin successful engraftment 

and colonization of these two strains, we took up to 24 individual colony isolates per mouse per 

time point. There are three major time points (Day 7, Month 3, Month6) where all mice were 

sampled. There are also three minor time points (Day 3, Month 1, Month 10) where only 4 mice, 

2 male and 2 female, were sampled. This resulted in a total of 1319 isolates for the non-native 

strain and 1969 isolates for the native strain (Fig A.D.1.1B, C). Isolate cultures had DNA 

extracted, library prepped, and sequenced. The sequencing data was assembled, quality-

checked, and was further analyzed as follows: pangenome, predicted metabolism, single 

nucleotide polymorphisms (SNPs), plasmids, phage, and phage defense systems.  

 The pangenome analysis took all of the detected genes from all the isolates 

(approximately 60,000) and created a presence/absence table. That table was converted to a 

jaccard distance matrix and then further analyzed by performing principal coordinates analysis 

(PCoA). When both groups of samples were analyzed together, PCoA Axis1 showed that there 

was no overlap between the two groups in gene composition and that explained about 79% of the 

variance.(Fig 5.2A). When the two strains were analyzed separately, both PCoA Axis1 showed 

clustering by genome size, as expected (Fig 5.2B, C). Neither strain appeared to cluster by time 

point (Fig 5.2D, E). There may have been some mild clustering by sex in the non-native strain 

isolates (PERMANOVA, p=0.027, pseudo-F 2.06) that was more prominent in the native strain 

cohort (PERMANOVA. p=0.003, pseudo-F 19.41). We also found that the native strain isolates 

had a much more narrow range (min=4397, max=5639, reference=4649) of genome sizes than 

the non-native strain isolates (Fig 5.2F). The non-native strain isolates had a wider distribution of 

genome size (min=4371, max=5950, reference=4625). The majority of the native strain isolates 

had genomes similar to the main reference genome with few outliers at all time points (Fig 5.2G), 

whereas the non-native strain had a smaller proportion of isolates with genomes similar to the 

reference with a greater proportion of outliers (Fig 5.2H).  
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 Moreover, the completeness of major predicted metabolic pathways did not significantly 

change between early and late time points for either strain (data not shown). However, there was 

a significant difference in metabolic pathways present when comparing all non-native and native 

isolates (Fig A.D.1.S4). The non-native strain had more complete gamma-aminobutyrate (GABA) 

shunt pathways than the native strain. The native strain had more complete beta oxidation 

pathways than the non-native strain.  

When collapsing the jaccard presence/absence table to a mouse and time point, RPCA 

was also calculated. The resulting distances showed that the non-native strain had significantly 

higher variances in pangenome composition compared to the native strain at all time points (Fig 

A.D.1.S5). The variances were particularly significant during the later time points. In addition, 

using that sample collapsed data used for RPCA, we found that both strains conformed to a 

neutral (genetic drift) model of evolution (Fig A.D.1.S6). Interestingly, the migration rate for both 

strains at the first major time point was about 100% and indicated most changes were coming 

from outside the genome. On the other hand, at the last major time point the non-native strain still 

had close to 100% outside migration, whereas the native strain dropped to 80%. Both the RPCA 

variance analysis and the neutral evolution models indicate significant differences in the way the 

two strains are responding to the environmental stressors.  
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 After examination of the pangenome where we looked at the changes in whole genes, we 

wanted to examine the prevalence of individual SNP mutations. We found that the overall 

mutation rate (number of any detected mutations per cell per base per year) was significantly 

higher in the non-native strain compared to the native strain at all major time points (Fig 5.3A). 

This was most prominent at the Day 7 time point. Interestingly, the pangenome’s variation was 

more pronounced in the later time points but the difference in SNP mutations was more 

pronounced in the earlier time points. When looking at the raw number of synonymous mutations, 

which are less likely to confer a phenotype change, the non-native strain had more than the native 

strain at every major timepoint (Fig 5.3B). This was also true when we normalized the number to 

calculate the synonymous mutation rate (synonymous mutations per cell per base per year) (Fig 

5.3C). The rate of synonymous mutations was most different at Day 7 between the native and 

non-native strains. When examining the non-synonymous mutations, which are more likely to 

confer a phenotype change, the raw number of mutations present was not significantly different 

between the two strains at early time points but was significantly higher in the non-native strain at 

the last major time point (Month 6) (Fig 5.3D). The rate of non-synonymous mutations was higher 

in the non-native strain compared to the native strain at all major timepoints (Fig 5.3E). This was 

particularly prominent at the later time points. The synonymous to non-synonymous ratio, thought 

to indicate either adaptive or purifying selection, was significantly higher in the non-native strain 

compared to the native strain at all timepoints (Fig 5.3F). The native strain’s ratio was close to 

zero, potentially indicating purifying selection. There was no significant differences in mutation 

rates between isolates cultured from hosts of different sex (Fig A.D.1.S7). In general, it appears 

that the non-native strain responded to environmental stress by increasing the overall rate of 

mutation.  
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 We wanted to examine more mobile genetic elements, including plasmids. The non-native 

strain reference genome had 2 original plasmids (5,641 bp/7 genes and 3300bp/5 genes). The 

native strain reference genome also had 2 original plasmids (42,613 bp/63 genes and 8633bp/7 

genes). The non-native strain saw a trend towards an increase in the number of plasmids detected 

(Fig 5.4A). The native strain saw a trend towards a decrease in the number in plasmids detected, 

although this was a lot more variable (Fig 5.4B). The non-native strain had a more narrow range 

in the number of plasmid genes detected (Fig 5.4C). The native strain had a much wider range. 

This can at least be partially attributed to the small number of genes at the beginning. When 

looking at some of the top differentially expressed plasmid genes, we see that mbeA, mbeC, and 

mbeD have opposite trends in the two different strains at the major timepoints (Fig 5.4D). MbeA 

(relaxase) and mbeC (accessory protein) are key interacting proteins on mobilizable plasmid 

ColE1 and are linked to horizontal gene transfer (https://doi.org/10.1016/j.febslet.2012.01.060). 

MbeD is a plasmid entry exclusion protein (https://doi.org/10.1128/jb.177.21.6064-6068.1995). 

These trends suggest that the non-native strain is reducing mobile genetic elements later in the 

study, whereas the native strain appears to be increasing them in its population.  

 In addition, the native strain appears to have an increasing plasmid gene population 

prevalence of colicin over time (Fig A.D.1.S8A, B, C). While plasmids are sometimes beneficial 

(mutualistic relationship), they can also sometimes be a burden on the host bacteria (parasitic 

relationship). Colicins are known to help regulate the ecological interactions between plasmids 

and the host bacterial genome and aid in plasmid maintenance (https://doi.org/10.1007/s00438-

022-01884-4). In the non-native strain, there is decreasing population prevalence of insN-1 

transposon insertion site regulator element of cryptic prophage CP4-6 (Fig A.D.1.S8D). 

Decreases in insN may decrease propionate production (https://doi.org/10.1002/bit.27182). Since 

short-chain fatty acids, such as propionate, are known to have host effects, this may be important 

for colonization maintenance. Additionally, insN was seen to have increased expression during 
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anaerobic growth of E.coli (https://doi.org/10.1371/journal.pgen.1006570). Since the non-native 

strain is a Nissle1917 derivative that has been kept in freezers and mostly grown aerobically for 

the last hundred years, this may be critical for host adaptation. Finally, the non-native strain 

maintained a high population prevalence of the the relE/relB toxin/anti-toxin system over time (Fig 

A.D.1.S8E, F).  
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 We wanted to examine changes in detected prophage elements. Both strains were found 

to have 3 viral metagenomic assembled genomes (vMAGs) in their respective reference 

genomes. The non-native strain generally maintained or increased the vMAGs present in the 

genome (Fig 5.5A). The native strain generally maintained or decreased the vMAGs present in 

the genome (Fig 5.5B). The loss of a vMAG was much more prominent in the native strain than 

the gain of a vMAG in the non-native strain. The prophage genes present non-native strain 

reference genome were generally maintained in the non-native genome (Fig 5.5C). The native 

strain saw maintenance or a decrease in the prophage genes present in the native strain 

reference genome (Fig 5.5D). In addition to the core prophage genes present in the reference 

genomes, the non-native strain had a much larger repertoire of detected phage genes than the 

native strain (Fig A.D.1.S9). Indicating the non-native strain was much more vulnerable to phage 

attacks than the native strain. 

 Since the non-native strain appeared more susceptible to phage, we also examined 

changes in detected phage defense systems. The non-native strain started out with 7 different 

detected phage defense systems (Lamassu-Fam, Septu, Mokosh, PsyrTA, RM, Thoeris, and 

Kiwa), which were generally maintained across all time points (Fig 5.6A). However, there was a 

trend towards loss of the Kiwa defense system. It is unknown if that is linked to the trend toward 

increased prophage incorporation seen in Fig 5.5A. The native strain started out with 4 detected 

phage defense systems (Gabija, RM, Thoeris, and CAS), which were generally maintained across 

all time points (Fig 5.6B). There were some non-native isolates that picked up a few CAS genes, 

but they were not maintained over time (Fig 5.6C). There were also some native strain isolates 

that picked up two CBASS defense system genes, which were partially maintained in a small 

subset of the isolates but were trending towards being lost (Fig 5.6D).  
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5.3 Conclusion 

In conclusion, the non-native strain struggled to maintain colonization by every metric 

measured compared to the native strain. The non-native strain had about a log fold decrease in 

colonization levels and increased loss of colonization. The native strain had a narrower 

distribution of genome sizes, decreased genetic drift over time, and decreased RPCA variation. 

The non-native strain had an increased SNP mutation rate, especially at earlier time points. The 

non-native strain also had increased prophage presence in the genome and increased detection 

of various prophage genes in the genome. The native strain maintained its phage defense 

systems, whereas the non-native strain showed a loss of one of its defense system types with no 

clear trend for a replacement system.  

These findings will allow us to better understand the ecological pressures present in a 

more real-world representative system, so that we can better target and manipulate at least one 

microbe of the microbiome. It is likely that this technique will work with other microbes of the 

microbiome that may be more prevalent or metabolically important. We envision that this system 

may work similarly to a CAR T-cell therapeutic system, where host-native strains could be 

cultured, modified, and returned to their host. It is these authors' hope that engineered native 

bacteria can eventually be used for long-term engraftment, colonization, and treatment of chronic 

disease that does not require the daily dosing of medication.  
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Appendix A. Supplemental Information for Chapter 2 

Intermittent Hypoxia and Hypercapnia Alter Diurnal Rhythms 

of Luminal Gut Microbiome and Metabolome 

A.A.1 Supplementary Figures  
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Figure A.A.1.S1. Overview of 16S Fecal Microbiome of ApoE-/- Mice on atherogenic diet with IHC 
treatment.  
A) Alpha rarefaction curve. Dotted line indicates 12,000 (rarefaction depth). Shaded regions 
indicate 95% confidence interval. Mann-Whitney U used to determine statistical significance 
(statistic=190.5, p-value=0.053). B) Faith’s Phylogenetic alpha diversity over time for each sample 
colored by group. Shaded regions indicate standard error of the mean. Mann-Whitney-Wilcoxon 
test was used to determine statistical significance. C) Weighted UniFrac PCoA with samples 
highlighted by timepoint. D) Pie graphs of cycling and non-cycling microbes classified to at least 
the family level for both conditions. E) Pie graphs of cycling and non-cycling reads attributed to a 
family level identifier for both conditions. 
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Figure A.A.1.S2.  IHC Affects the Cyclical Dynamics of Selected Phyla and Families in an OSA 
Mouse Model. 16S relative abundances. A) Phylum Bacteroidetes B) Phylum Firmicutes C) 
Phylum Verrucomicrobia D) Family Ruminococcaceae E) Family Lachnospiraceae F) Family S24-
7 (“Homeothermaceae”) G) Family Coriobacteriaceae. Solid line represents the mean, error bars 
indicate standard error of the mean. Individual mice indicated by dashed line tracings. Shading 
indicates when room lights are off (i.e., active/feeding time for the mice). Yellow square indicates 
the 10 hours of IHC exposure under the IHC condition. Notation: @ circadian oscillation present 
(p < 0.05 as measured by MetaCycle42, JTK method); * = p<0.05 by Mann-Whitney-Wilcoxon 
test. Control samples with only exposure to normal room air conditions is red (n=4, 5-6 time points 
per mouse); Experimental samples exposed to IHC conditions for 10 hours per day are blue (n=4, 
5-6 time points per mouse). 
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Figure A.A.1.S3. Additional Untargeted LC-MS/MS Metabolomics of Fecal Samples from ApoE-
/- Mice on atherogenic diet after 1 week of IHC treatment.  
A) Heatmap of additional selected metabolites. B) Heatmap of additional selected bile acids, 
including previously unrecognized bile acids. The value of each square of the heatmap represents 
the average relative abundance value (total sum normalized) for all mice in that condition for that 
time point. The heatmaps are also row normalized (row includes both conditions) and placed on 
a standard scale referenced on the left (0/brown=lowest value, 1/purple=highest value). The 
MS/MS spectral annotations were determined by using MS/MS-based spectral library matches 
for GNPS level 2 or 3 identification for all molecules displayed here. C) Canberra PCoA with 
samples highlighted by timepoint. Notation: # indicates a metabolite that is shown in Figure 2 or 
Figure S4. Control samples only exposure to normal Air conditions = red (N=4, 5-6 time points 
per mouse); Experimental samples exposed to IHC conditions = blue (N=4, 5-6 time points per 
mouse).  
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Figure A.A.1.S4. IHC Affects the Cyclical Dynamics of Bile Acid Fecal Metabolites in an OSA 
Mouse Model. Untargeted LC-MS/MS was performed. Selected metabolites and their cyclical 
dynamics over time (longitudinal plot, upper) and their relative abundances grouped by cycle 
phase (box plots, lower). A) Deoxycholic acid (DCA). Level 1 identification. B) Tauro-𝝱-Muricholic 
acid (T𝝱MCA). Level 1 identification. C) Hyodeoxycholic acid (HDCA). Level 1 identification. D) 
Ursodeoxycholic acid (UDCA). E) Allochenodeoxycholic acid (CDCA). Level 3 annotation. Solid 
line represents the mean, error bars indicate standard error of the mean. Individual mice indicated 
by dashed line. Shading indicates when room lights are off (i.e., active/feeding time for the mice). 
Yellow square indicates the 10 hours of the day where mice under the IHC condition would be 
exposed to experimental conditions [ZT2-12]. Notation: @ indicates circadian oscillations as 
determined by MetaCycle42 (JTK) = p < 0.05; * = p < 0.05; ** = p < 0.01, *** = p < 0.001, **** = p 
< 0.0001 by Mann-Whitney-Wilcoxon test. Control samples only exposure to normal Air conditions 
is red (n=4, 5-6 time points per mouse); Experimental samples exposed to IHC conditions is blue 
(n=4, 5-6 time points per mouse). 
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Figure A.A.1.S5. IHC Affects the Cyclical Dynamics of Selected Fecal Metabolites in an OSA 
Mouse Model. Untargeted LC-MS/MS was performed. Selected metabolites and their cyclical 
dynamics over time (longitudinal plot, upper) and their relative abundances grouped by cycle 
phase (box plots, lower). A) Palmitoylcarnitine. Level 3 annotation. B) 1-(9Z-Octadecenoyl)-sn-
glycero-3-phosphoethanolamine (LysoPE (18:1(9Z)/0:0)). Level 3 annotation. C) 1-Stearoyl-2-
myristoyl-sn-glycero-3-phosphocholine (PC (18:0/14:0)). Level 3 annotation. D) Oleoyl L-
carnitine. Level 3 annotation. E) 1-hexadecyl-2-arachidonoylthio-2-deoxy-sn-glycero-3-
phosphocholine (Arachidonoylthio-PC). Level 3 identification. F) Didecanoyl-
glycerophosphocholine (PC (10:0/10:0)). Level 3 annotation. Solid line represents the mean, error 
bars indicate standard error of the mean. Individual mice indicated by dashed line. Shading 
indicates when room lights are off (i.e., active/feeding time for the mice). Yellow square indicates 
the 10 hours of the day where mice under the IHC condition would be exposed to experimental 
conditions [ZT2-12]. Notation: @ indicates circadian oscillations as determined by MetaCycle42 
(JTK) = p < 0.05; * = p < 0.05; ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001 by Mann-Whitney-
Wilcoxon test. Control samples only exposure to normal Air conditions is red (n=4, 5-6 time points 
per mouse); Experimental samples exposed to IHC conditions is blue (n=4, 5-6 time points per 
mouse). 
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A.A.2 Supplementary Tables  

Table A.A.2.S1 Metabolomic Results Abbreviation Table. The MS/MS spectral annotations were 
determined by using MS/MS-based spectral library matches for GNPS level 3 identification for all 
molecules, except for some of the bile acids, as noted - standards were run using the same 
method as samples for level 1 identification. 
 

Molecule Abbreviation Identification 
Level Category 

(R)-4-
((3R,5S,8R,9S,10S,12R,13R,14S,17R)-
3,12-dihydroxy-10,13-
dimethylhexadecahydro-1H-
cyclopenta[a]phenanthren-17-
yl)pentanoic acid 

(3𝝰, 5𝝰, 12𝝱)-
3,12-
Dihydroxycholan-
24-oic acid 

Level 3 Bile acid 

𝝰-Muricholic acid 𝝰MCA Level 1 Bile acid 
𝝱-Muricholic acid  𝝱MCA Level 1 Bile acid 
(4R)-4-
((3R,5R,7R,9S,10S,13R,14S,17R)-3,7-
dihydroxy-10,13-
dimethylhexadecahydro-1H-
cyclopenta[a]phenanthren-17-
yl)pentanoic acid (also called 
allochenodeoxycholic acid or simply 
chenodeoxycholic acid)  

CDCA Level 3 Bile acid 

Cholic acid  CA Level 1 Bile acid 
Deoxycholic acid DCA Level 1 Bile acid 
Hyodeoxycholic acid HDCA Level 1 Bile acid 
Spectral Match to Palmitoylcarnitine 
from NIST14 Palmitoylcarnitine Level 3 Carnitine 

Spectral Match to Oleoyl L-carnitine 
from NIST14 Oleoyl L-carnitine Level 3 Carnitine 

Spectral Match to Arachidonoylthio-PC 
from NIST14 

Arachidonoylthio-
PC 

Level 3 

Phosphocholine (also called 1-hexadecyl-2-
arachidonoylthio-2-deoxy-sn-glycero-3-
phosphocholine, arachidonoyl thio-
phosphocholine) 

Level 3 

PC(20:5/0:0); [M+H]+ C28H49N1O7P1 LPC(20:5) Level 3 Phosphocholine 

PC(O-16:0/18:2); [M+H]+ 
C42H83N1O7P1 LPC(O-16:0) Level 3 Phosphocholine 

Spectral Match to 1-(9Z-Octadecenoyl)-
2-tetradecanoyl-sn-glycero-3-
phosphocholine from NIST14 

PC(16:0/18:1𝝮9) Level 3 Phosphocholine 

Spectral Match to 1-(9Z-Octadecenoyl)-
sn-glycero-3-phosphocholine from 
NIST14 

LPC(18:1) Level 3 Phosphocholine 
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Table A.A.2.S1 Metabolomic Results Abbreviation Table. Continued 
 

Molecule Abbreviation Identification 
Level Category 

Spectral Match to 1-Palmitoyl-2-
hydroxy-sn-glycero-3-
phosphoethanolamine from 
NIST14 

LysoPE(16:0) Level 3 Phosphoethanolamine 

Spectral Match to 1-Stearoyl-2-
hydroxy-sn-glycero-3-
phosphoethanolamine from 
NIST14 

LysoPE(18:0) Level 3 Phosphoethanolamine 

Spectral Match to 1-(9Z-
Octadecenoyl)-sn-glycero-3-
phosphoethanolamine from 
NIST14 

LysoPE 
(18:1(9Z)/0:0) 

Level 3 Phosphoethanolamine 

Spectral Match to 1-
Hexadecanoyl-2-(9Z-
octadecenoyl)-sn-glycero-3-
phosphocholine from NIST14 

PC(16:0/18:1) Level 3 Phosphocholine 

Spectral Match to 1-Hexadecyl-
sn-glycero-3-phosphocholine 
from NIST14 

Lyso-PAF-C16 Level 3 Phosphocholine 

Spectral Match to 1-Myristoyl-sn-
glycero-3-phosphocholine from 
NIST14 

LPC(14:0) Level 3 Phosphocholine 

Spectral Match to 1-
Octadecanoyl-2-octadecenoyl-
sn-glycero-3-phosphocholine 
from NIST14 

GPC(18:0/18:1) Level 3 Phosphocholine 

Spectral Match to 1-Palmitoyl-2-
hydroxy-sn-glycero-3-
phosphoethanolamine from 
NIST14 

16:0 Lyso PE Level 3 Phosphoethanolamine 

Spectral Match to 1-
Pentadecanoyl-sn-glycero-3-
phosphocholine from NIST14 

LPC(15:0) Level 3 Phosphocholine 

Spectral Match to 1-Stearoyl-2-
hydroxy-sn-glycero-3-
phosphocholine from NIST14 

LPC(18:0/0:0) Level 3 Phosphocholine 

DIDECANOYL-
GLYCEROPHOSPHOCHOLINE 

PC(10:0/10:0) Level 3 Phosphocholine 

Spectral Match to 1,2-Dilinoleoyl-
sn-glycero-3-phosphocholine 
from NIST14 

DL-PC Level 3 Phosphocholine 

Spectral Match to 1,2-
Ditetradecanoyl-sn-glycero-3-
phosphocholine from NIST14 

PC(14:0/14:0) Level 3 Phosphocholine 

Spectral Match to 1-Stearoyl-2-
myristoyl-sn-glycero-3-
phosphocholine from NIST14 

PC(18:0/14:0) Level 3 Phosphocholine 

Stercobilin Stercobilin Level 3 Other 
Spectral Match to Urobilin from 
NIST14 

Urobilin Level 3 Other 
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Tauro-b-muricholic acid [level 1] T𝝱MCA Level 3 Bile acid 
Taurocholic acid [level 1] TCA Level 3 Bile acid 
Taurodeoxycholic acid [level 1] TDCA Level 3 Bile acid 
Ursodeoxycholic acid [level 1] UDCA Level 3 Bile acid 
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Table A.A.2.S2 All unique annotated metabolites. 
 

Metabolites 
(4R)-4-((3R,5R,6S,7R,9S,10R,12S,13R,17R)-3,6,7,12-tetrahydroxy-10,13-
dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid 
(4R)-4-((3R,5R,7R,9S,10S,13R,14S,17R)-3,7-dihydroxy-10,13-dimethylhexadecahydro-1H-
cyclopenta[a]phenanthren-17-yl)pentanoic acid 
(4R)-4-((3R,5S,6R,7R,9S,10R,12S,13R,14S,17R)-3,6,7,12-tetrahydroxy-10,13-
dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid 
(4R)-4-((3R,5S,7S,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-
dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid 
(4R)-4-((3S,5R,6S,7R,9S,10R,13R,14S,17R)-3,6,7-trihydroxy-10,13-
dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid 
(4R)-4-((3S,5R,9S,10S,13R,14S,17R)-3-hydroxy-10,13-dimethyl-12-oxohexadecahydro-1H-
cyclopenta[a]phenanthren-17-yl)pentanoic acid 
(R)-4-((3R,5R,6R,7R,8R,9S,10R,12S,13R,14S,17R)-3,6,7,12-tetrahydroxy-10,13-
dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid 
(R)-4-((3R,5R,6R,8S,9S,10R,13R,14S,17R)-3,6-dihydroxy-10,13-dimethylhexadecahydro-
1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid 
(R)-4-((3R,5S,7R,8R,9S,10S,12S,13R,14S,17R)-3,7,12-trihydroxy-10,13-
dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid 
(R)-4-((3R,5S,8R,9S,10S,12R,13R,14S,17R)-3,12-dihydroxy-10,13-
dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanoic acid 
2-((4R)-4-((3R,5R,6S,7S,9S,10R,13R,17R)-3,6,7-trihydroxy-10,13-dimethylhexadecahydro-
1H-cyclopenta[a]phenanthren-17-yl)pentanamido)ethane-1-sulfonic acid 
2-((4R)-4-((3R,5R,7R,8R,9S,10S,12S,13R,17R)-3,7,12-trihydroxy-10,13-
dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-17-yl)pentanamido)ethane-1-sulfonic 
acid 
4-(3,4-dihydroxyphenyl)-7-methoxy-5-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-
[[(2S,3R,4S,5R)-3,4,5-trihydroxyoxan-2-yl]oxymethyl]oxan-2-yl]oxychromen-2-one 
Cer(d18:0/16:0(2OH)); [M+H]+ C34H70N1O4 
Cer(d18:1/26:0(2OH)); [M+H]+ C44H88N1O4 
Ceramide (18:1/16:0) 
Cholic acid 
DIDECANOYL-GLYCEROPHOSPHOCHOLINE 
Deoxycholic acid 
Hyodeoxycholic acid 
LAUROYLCARNITINE 
Massbank:PB000419 Arginine|2-amino-5-(diaminomethylideneamino)pentanoic acid 
MassbankEU:SM850301 Sulfamethazine|4-amino-N-(4,6-dimethylpyrimidin-2-
yl)benzenesulfonamide 
NCGC00385123-01_C22H30O6_7b,9-Dihydroxy-3-(hydroxymethyl)-1,1,6,8-tetramethyl-5-
oxo-1,1a,1b,4,4a,5,7a,7b,8,9-decahydro-9aH-cyclopropa[3,4]benzo[1,2-e]azulen-9a-yl 
acetate 
PC(0:0/16:0); [M+H]+ C24H51N1O7P1 
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Table A.A.2.S2 All unique annotated metabolites. Continued 
 
Metabolites 
PC(0:0/20:4); [M+H]+ C28H51N1O7P1 
PC(16:0/20:5); [M+H]+ C44H79N1O8P1 
PC(18:1/20:4); [M+H]+ C46H83N1O8P1 
PC(18:2/0:0); [M+H]+ C26H51N1O7P1 
PC(18:3/0:0); [M+H]+ C26H49N1O7P1 
PC(19:0/0:0); [M+H]+ C27H57N1O7P1 
PC(20:3/0:0); [M+H]+ C28H53N1O7P1 
PC(O-16:0/18:2); [M+H]+ C42H83N1O7P1 
PC(O-18:1/0:0); [M+H]+ C26H55N1O6P1 
Phytosphingosine 
ReSpect:PS001803 (+-)-alpha-Tocopherol|Vitamin E|DL-all-rac-alpha-
Tocopherol|Phytogermine|Profecundin|Syntopherol|Waynecomycin|Almefrol|Denamone|Emip
herol 
ReSpect:PS001805 (+-)-alpha-Tocopherol|Vitamin E|DL-all-rac-alpha-
Tocopherol|Phytogermine|Profecundin|Syntopherol|Waynecomycin|Almefrol|Denamone|Emip
herol 
SM(d18:1/16:0); [M+H]+ C39H80N2O6P1 
SUCROSE 
Spectral Match to (+)-.alpha.-Tocopherol from NIST14 
Spectral Match to (+)-4-Cholesten-3-one from NIST14 
Spectral Match to 1,2-Dilinoleoyl-sn-glycero-3-phosphocholine from NIST14 
Spectral Match to 1-(1Z-Hexadecenyl)-sn-glycero-3-phosphocholine from NIST14 
Spectral Match to 1-(9Z-Octadecenoyl)-2-tetradecanoyl-sn-glycero-3-phosphocholine from 
NIST14 
Spectral Match to 1-(9Z-Octadecenoyl)-sn-glycero-3-phosphocholine from NIST14 
Spectral Match to 1-(9Z-Octadecenoyl)-sn-glycero-3-phosphoethanolamine from NIST14 
Spectral Match to 1-Heptadecanoyl-sn-glycero-3-phosphocholine from NIST14 
Spectral Match to 1-Hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine from 
NIST14 
Spectral Match to 1-Hexadecanoyl-2-octadecadienoyl-sn-glycero-3-phosphocholine from 
NIST14 
Spectral Match to 1-Hexadecyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphocholine from 
NIST14 
Spectral Match to 1-Hexadecyl-sn-glycero-3-phosphocholine from NIST14 
Spectral Match to 1-Myristoyl-2-palmitoyl-sn-glycero-3-phosphocholine from NIST14 
Spectral Match to 1-Myristoyl-2-stearoyl-sn-glycero-3-phosphocholine from NIST14 
Spectral Match to 1-Myristoyl-sn-glycero-3-phosphocholine from NIST14 
Spectral Match to 1-Octadecanoyl-2-(5Z,8Z,11Z,14Z-eicosatetraenoyl)-sn-glycero-3-
phosphocholine from NIST14 
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Table A.A.2.S2 All unique annotated metabolites. Continued 
 
Metabolites 
Spectral Match to 1-Octadecanoyl-2-octadecenoyl-sn-glycero-3-phosphocholine from NIST14 
Spectral Match to 1-Octadecanoyl-sn-glycero-3-phosphocholine from NIST14 
Spectral Match to 1-Oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine from NIST14 
Spectral Match to 1-Palmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine from NIST14 
Spectral Match to 1-Palmitoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine from NIST14 
Spectral Match to 1-Palmitoyl-2-myristoyl-sn-glycero-3-phosphocholine from NIST14 
Spectral Match to 1-Stearoyl-2-hydroxy-sn-glycero-3-phosphocholine from NIST14 
Spectral Match to 1-Stearoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine from NIST14 
Spectral Match to 1-Stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine from NIST14 
Spectral Match to 1-Stearoyl-2-myristoyl-sn-glycero-3-phosphocholine from NIST14 
Spectral Match to 12-Ketodeoxycholic acid from NIST14 
Spectral Match to 3.alpha.,7.alpha.,12.alpha.-Trihydroxycholestanoic acid from NIST14 
Spectral Match to 3.beta.-Hydroxy-5-cholenoic acid from NIST14 
Spectral Match to 9-Octadecenamide, (Z)- from NIST14 
Spectral Match to Arachidonoylthio-PC from NIST14 
Spectral Match to Benzyldodecyldimethylammonium from NIST14 
Spectral Match to Benzyltetradecyldimethylammonium from NIST14 
Spectral Match to Cholic acid from NIST14 
Spectral Match to D-erythro-Sphinganine from NIST14 
Spectral Match to Elaidic acid from NIST14 
Spectral Match to L-Tyrosine from NIST14 
Spectral Match to Lyso-PC(16:0) from NIST14 
Spectral Match to N-Tetracosenoyl-4-sphingenine from NIST14 
Spectral Match to Oleoyl L-carnitine from NIST14 
Spectral Match to Palatinose from NIST14 
Spectral Match to Palmitoylcarnitine from NIST14 
Spectral Match to Pantothenic acid from NIST14 
Spectral Match to Phytosphingosine from NIST14 
Spectral Match to Urobilin from NIST14 
Spectral Match to Ursodeoxycholic acid from NIST14 
Spectral Match to p-Hydroxyphenyllactic acid from NIST14 
Stercobilin 
THIAMINE 
TOP 8 Psoriasis feature - Unknown FeatureID=4262 
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Table A.A.2.S2 All unique annotated metabolites. Continued 
 
Metabolites 
TOP19 Psoriasis feature - Unknown FeatureID=3668 
Tauro-b-muricholic acid 
Taurocholic acid 
Taurodeoxycholic acid 
Ursodeoxycholic acid 
a-Muricholic acid 
b-Muricholic acid 
sphingosin C16 (Artifact)-emf 
taurocholic acid 
taurodeoxycholic acid 
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Table A.A.2.S3 Break down of circadian oscillators (Metacycle, JTK_CYCLE, p<0.05) 
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Appendix B. Supplemental Files for Chapter 3 Intermittent 

Hypoxia and Hypercapnia Alter Gut Microbiome and 

Metabolome to Promote Atherosclerosis 

A.B.1 Supplemental Figures  
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Figure A.B.1.S1.. Additional 16S microbiome of ApoE-/- mice on HFD during chronic 10-wk 
treatment.(A) Axis 1 of the Weighted UniFrac PCoA of the metabolome for all measured time 
points (B) Relative abundance heatmap (row normalized, set on standard scale) compared by 
exposure types over time.  Longitudinal relative abundance values for: (C)  Family 
Coriobacteriaceae; (D) Family Verrucomicrobiaceae. The only ASV in this family belongs to 
Akkermansia muciniphila; (E) Family Lachnospiraceae. PERMANOVA used for statistical 
comparisons at the population level. LME modeling used for statistical comparisons of individual 
metabolites. The shaded areas in parts C-E represent standard error of the mean. Air/controls 
are black (n=6), IH is blue (n=12), IC is red (n=12). Statistical significance p<0.05, * IC vs Air, # 
IH vs Air and $ IH vs IC. 
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Figure A.B.1.S2. Additional Untargeted LC-MS/MS metabolomics of ApoE-/- mice on HFD during 
chronic 10-wk treatment. (A) Canberra PCoA of the metabolome for all measured time points. (B) 
Relative abundance heatmap (row normalized, set on standard scale) compared by exposure 
types over time. Longitudinal relative abundance values for: (C)  lysophosphocholine,  1-
Hexadecyl-sn-glycero-3-phosphocholine [Lyso-PAF C-16] [Level 3 identification]; (D) 
acylcarnitine, oleoyl L-carnitine [Level 3 identification]; (E) amino acid, tryptophan [Level 3 
identification]. PERMANOVA used for statistical comparisons at the population level. Linear Mixed 
Effect (LME) modeling used for statistical comparisons of individual metabolites. The shaded 
areas in parts C-E represent standard error of the mean. Air/controls are black (n=6), IH is blue 
(n=12), IC is red (n=12). Statistical significance p<0.05, * IC vs Air, # IH vs Air and $ IH vs IC. 
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Figure A.B.1.S3. Additional Microbiome and Metabolome PCoA for Weeks 15 and 20. (A) 
Microbiome Weighted UniFrac PCoA Week 15 Air vs IH only. (B) Metabolome Canberra PCoA 
Week 15 Air vs IH only. (C) Microbiome Weighted UniFrac PCoA Week 20 Air vs IH only. (D) 
Metabolome Canberra PCoA Week 20 Air vs IH only. (E) Microbiome Weighted UniFrac PCoA 
Week 15 Air vs IC only. (F) Metabolome Canberra PCoA Week 15 Air vs IC only. (G) Microbiome 
Weighted UniFrac PCoA Week 20 Air vs IC only. (H) Metabolome Canberra PCoA Week 20 Air 
vs IC only. (I) Microbiome Weighted UniFrac PCoA Week 15 IC vs IH only. (J) Metabolome 
Canberra PCoA Week 15 IC vs IH only. (K) Microbiome Weighted UniFrac PCoA Week 20 IC vs 
IH only. (L) Metabolome Canberra PCoA Week 20 IC vs IH only. Air/controls are black (n=6), IH 
is blue (n=12), IC is red (n=12). Statistical significance * p<0.05 by PERMANOVA. 
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Appendix C. Supplemental Files for Chapter 4 Microbiome 

Diurnal Dynamics Dominate Phenotype Effects, Enabling 

Replicability When Controlled 

A.C.1 Supplemental Figures 
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Figure A.C.1.S1. Literature Review A) Of the 586 articles containing microbiome (16S or 
metagenomic) data, found as described in the methods section, the percentage of microbiome 
articles from each of the publication groups in 2019. B) The percentage of microbiome articles 
belonging to each individual journal in 2019. Because the numerous individual journals from 
Science represented low percentages individually, they were grouped together. The percentage 
articles where collection time was explicitly stated (yes: 8 AM, ZT4, etc.), implicitly stated (relative: 
“before surgery”, “in the morning”, etc.), or unstated (not provided: “daily”, “once a week”, etc.). 
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Figure A.C.1.S2. Temporal changes in BCD between NCD and MFDA) Experiment design. 
C57Bl/6 mice were fed NCD (control) vs MFD ad libitum for 5 weeks before fecal samples were 
collected for analysis. Samples were collected every 4 hours for 24 hours (N=3 mice/condition). 
B) BCD for fecal samples comparing NCD vs MFD over 24hrs. The dotted line is the average of 
all shown weighted UniFrac distances. Significance was determined using the Mann-Whitney-
Wilcoxon test two-sided with Bonferroni correction. C) Heatmap of mean BCD from fecal samples 
collected from NCD vs MFD mice by time point over 24hrs. Highest highlighted in brown, lowest 
highlighted in orange. 
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Figure A.C.1.S3. Diet and Feeding Pattern Influence Sample Collection Time Results in the Ileum 
A) Experimental design. Mice used are the same as the ones in Fig 2 except this is unpublished 
ileal study. Mice were fed either ad libitum or TRF (ZT 13-21) access to HFD and compared to 
NCD ad libitum controls. After 8 weeks, ileal samples were collected every 4 hours for 24 hours 
(N=3 mice/condition). B) BCD for ileum samples comparing HFD ad libitum vs HFD TRF. Dotted 
line is the average of all shown weighted UniFrac distances. Significance was determined using 
a paired Mann-Whitney-Wilcoxon test two-sided with Bonferroni correction.C) Heatmap of mean 
BCD from ileum samples collected from NCD controls and HFD TRF mice by time point. Highest 
highlighted in indigo, lowest highlighted in yellow. D) BCD for ileal samples comparing NCD ad 
libitum vs HFD ad libitum. Dotted line is the average of all shown weighted UniFrac distances. 
Significance was determined using the Mann-Whitney-Wilcoxon test two-sided with Bonferroni 
correction. E) Heatmap of mean BCD from ileal samples collected from NCD controls and HFD 
TRF mice by time point. Highest highlighted in indigo, lowest highlighted in yellow. F) BCD for 
ileal samples comparing NCD ad libitum vs HFD TRF. Dotted line is the average of all shown 
weighted UniFrac distances. Significance was determined using the Mann-Whitney-Wilcoxon test 
two-sided with Bonferroni correction. G) Heatmap of mean BCD from ileal samples collected from 
NCD controls and HFD TRF mice by time point. Highest highlighted in indigo, lowest highlighted 
in yellow. 
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Figure A.C.1.S4. Irregular differences in diurnal rhythm patterns leads to generally minor shifts in 
BCD when comparing LD vs DD mice. A) Experimental design. Balb/c mice were fed NCD ad 
libitum under 0:24 L:D (24hr darkness, DD) experimental conditions and compared to 12:12 L:D 
(LD) control conditions. After 2 weeks, mice from each group were euthanized every 4 hours for 
24 hours (N=4-5 mice/condition) and samples were collected from the proximal small intestine 
(“jejunum”) and distal small intestine (“ileum”) contents. B) BCD for luminal contents of proximal 
small intestine samples comparing LD to DD mice. Dotted line is the average of all shown 
weighted UniFrac distances. Significance was determined using a paired Mann-Whitney-
Wilcoxon test two-sided with Bonferroni correction. C) BCD for luminal contents of distal small 
intestine samples comparing LD to DD mice. Dotted line is the average of all shown weighted 
UniFrac distances. Significance was determined using a paired Mann-Whitney-Wilcoxon test two-
sided with Bonferroni correction.  
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Figure A.C.1.S5. Line plot of the same values presented in Fig 3B. The shaded region represents 
the standard error of the mean. The dotted line is the average of all of the weighted UniFrac 
distances used to calculate this plot. Some of the shifts seen between early and late values may 
be more easily visualized in this format. Early data: MetaCycle, meta2d/LS method, p=0.0017, 
amplitude=0.215, period=22.3, adjphase=18.0; Late Data: MetaCycle, meta2d/LS method, 
p=0.0128, amplitude=0.198, period=25.7, adjphase=16.2. 
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Figure A.C.1.S6. Human data also shows that a non-continuous intervention affects beta diversity 
distances over the course of a study. Experimental design: The patients underwent 5 days of 
dietary intervention, either plant or animal-based (N=10 humans/condition): 9/10 patients 
underwent both dietary interventions after a 1 month wash-out period, 1/10 patients only 
underwent a single intervention. See reference (David et al., 2014). A) Weighted UniFrac β-
diversity violin plot using between-group distances for plant and animal dietary interventions. Each 
line on the violin plot is a sample value. The dotted line is the average of all of the weighted 
UniFrac distances from the time points farthest from the intervention (-4.0 and 10.0). The shaded 
area represents time points that are not significantly different from each other, except as noted. 
Significance was determined using the Mann-Whitney-Wilcoxon test two-sided with Bonferroni 
correction. Notation: light gray line = p<0.05; medium gray line = p<0.01; black line = p<0.0001. 
B) Mean weighted UniFrac β-diversity distance heatmap using values calculated between plant 
and animal dietary interventions by time point. Highest value highlighted in purple, lowest 
highlighted in pink. 
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Figure A.C.1.S7. Diurnal IHC Weighted UniFrac PCoA Plots. A) Weighted UniFrac PCoA lateral 
view. Timepoints as one axis. B)Weighted UniFrac PCoA stacked view. C) Canberra PCoA lateral 
view. Timepoints as one axis. D) Canberra PCoA stacked view. 
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Appendix D. Supplemental Files for Chapter 5 Engineered 

Native Bacteria are More Efficient at Engraftment and 

Colonization of a Host and Require Fewer Mutations for 

Maintenance Long Term 

A.D.1. Supplementary Figures 
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Figure A.D.1.S4: Metabolic Pathway Completeness Comparison. MicrobeAnnotator was used to 
refine prokka annotations to include KEGG pathways. Blue/cool colors indicate that pathway was 
more complete for the non-native strain, gold/warm colors indicate that pathway was more 
complete native strain. The size of the boxes or circular sections indicate the magnitude of the 
differences between the strains. The mean of all isolates from all timepoints was used, since no 
significant differences between timepoints were detected within a strain cohort. 
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Figure A.D.1.S5: RPCA Analysis. RPCA beta diversity distances were calculated using the 
collapsed count table described in the methods section. The bottom section has the within group 
distances between subsequent time points compared between strain cohorts. Top section has 
within group between subsequent time point variances. Pairwise PERMANOVA used for 
statistical significance.   
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A.D.2. Supplemental Tables  

Table A.D.2.S1. Native isolates that did not pass quality control. Contains checkM, quast, and 
sourmash results. 
 
sample-id Marker 

lineage 
# 
genome
s 

# 
marker
s 

# marker 
sets 

Complete
ness 

Contamin
ation 

Strain 
heterogeneity 

23LL_Day3_12_
S89 

Bacteria 5449 104 58 100 107.84 7.83 

23LL_Day3_15_
S18 

Bacteria 5449 104 58 100 100 0 

23LL_Day3_8_S
57 

Bacteria 5449 104 58 100 99.81 2.78 

23LL_Day7_13_
S95 

Bacteria 5449 104 58 69.67 2.82 100 

23LL_Month1_24
_S186 

Bacteria 5449 104 58 100 100 0 

24B_Day7_8_S8 Bacteria 5449 104 58 32.84 0 0 
24N_Day7_23_S
1316 

Bacteria 5449 104 58 0 0 0 

25L_Day7_14_S
108 

Bacteria 5449 104 58 0 0 0 

25L_Day7_22_S
1088 

Bacteria 5449 104 58 0 0 0 

25N_Day3_10_S
75 

Bacteria 5449 104 58 100 58.06 7.14 

25N_Day3_23_S
84 

Bacteria 5449 104 58 100 50 31.46 

25N_Day3_4_S2
7 

Bacteria 5449 104 58 100 101.38 0.95 

25N_Day3_7_S5
1 

Bacteria 5449 104 58 100 99.66 0 

25N_Day3_9_S6
7 

Bacteria 5449 104 58 100 18.97 0 

25N_Month1_21
_S164 

Bacteria 5449 104 58 100 97.93 0 

25N_Month1_2_
S107 

Bacteria 5449 104 58 100 113.79 15.33 

25N_Month3_16
_S257 

Bacteria 5449 104 58 98.28 0 0 

26B_Month3_23_
S295 

Bacteria 5449 104 58 3.51 0 0 

26L_Day7_3_S8
6 

Bacteria 5449 104 58 36.13 0 0 

26N_Day7_14_S
1104 

Bacteria 5449 104 58 0 0 0 
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A.D.2.S1. Non-native isolates that did not pass quality control. Continued 
 
sample-id Marker 

lineage 
# 
genome
s 

# 
marker
s 

# marker 
sets 

Complete
ness 

Contamin
ation 

Strain 
heterogeneity 

26N_Day7_19_S
1109 

Bacteria 5449 104 58 82 3.76 100 

27L_Day7_10_S
1024 

Bacteria 5449 104 58 93.65 19.46 95 

27N_Day7_10_S
99 

Bacteria 5449 104 58 6.35 0 0 

27N_Day7_11_S
99 

Bacteria 5449 104 58 82.29 7.05 100 

27N_Month6_4_
S36 

Bacteria 5449 104 58 0 0 0 

27R_Month3_14
_S328 

Bacteria 5449 104 58 88.64 0.16 0 

28LL_Day7_8_S
1054 

Bacteria 5449 104 58 95.69 6.9 100 

28LL_Month3_14
_S4 

Bacteria 5449 104 58 100 0 0 

28LL_Month3_17
_S406 

Bacteria 5449 104 58 100 0 0 

28LL_Month3_19
_S408 

Bacteria 5449 104 58 100 0 0 

28LL_Month3_21
_S4 

Bacteria 5449 104 58 100 0 0 

28LL_Month3_24
_S41 

Bacteria 5449 104 58 100 0 0 

28N_Month1_4_
S125 

Bacteria 5449 104 58 0 0 0 
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A.D.2.S1. Non-native isolates that did not pass quality control. Continued 
 
sample-id # contigs 

(>= 0 bp) 
# contigs (>= 
1000 bp) 

# contigs (>= 
5000 bp) 

# contigs (>= 
10000 bp) 

# contigs (>= 
25000 bp) 

# contigs (>= 
50000 bp) 

23LL_Day3_1
2_S89 

1592 1576 392 123 16 4 

23LL_Day3_1
5_S18 

325 317 251 176 92 36 

23LL_Day3_8
_S57 

1910 1905 385 55 1 1 

23LL_Day7_1
3_S95 

482 449 244 151 35 1 

23LL_Month1
_24_S186 

105 92 65 58 48 34 

24B_Day7_8
_S8 

356 322 63 13 0 0 

24N_Day7_2
3_S1316 

1 1 1 1 1 0 

25L_Day7_14
_S108 

2 2 1 0 0 0 

25L_Day7_22
_S1088 

3 3 0 0 0 0 

25N_Day3_1
0_S75 

2181 2176 45 18 11 6 

25N_Day3_2
3_S84 

1436 1436 52 15 3 2 

25N_Day3_4
_S27 

124 110 80 68 57 41 

25N_Day3_7
_S51 

165 98 65 53 43 31 

25N_Day3_9
_S67 

78 75 54 35 15 3 

25N_Month1
_21_S164 

466 461 353 248 83 11 

25N_Month1
_2_S107 

1072 1070 480 209 35 7 

25N_Month3
_16_S257 

59 41 30 27 20 13 

26B_Month3
_23_S295 

156 137 10 0 0 0 

  



 

  

241 

A.D.2.S1. Non-native isolates that did not pass quality control. Continued 
 
sample-id # contigs 

(>= 0 bp) 
# contigs (>= 
1000 bp) 

# contigs (>= 
5000 bp) 

# contigs (>= 
10000 bp) 

# contigs (>= 
25000 bp) 

# contigs (>= 
50000 bp) 

26L_Day7_3
_S86 

492 459 151 49 1 0 

26N_Day7_1
4_S1104 

2 2 0 0 0 0 

26N_Day7_1
9_S1109 

403 383 213 136 39 7 

27L_Day7_1
0_S1024 

669 573 264 145 42 1 

27N_Day7_1
0_S99 

192 159 14 1 0 0 

27N_Day7_1
1_S99 

430 401 215 149 47 6 

27N_Month6
_4_S36 

10 9 1 0 0 0 

27R_Month3
_14_S328 

1160 1135 287 57 0 0 

28LL_Day7_
8_S1054 

304 299 184 136 54 15 

28LL_Month3
_14_S4 

104 77 48 42 30 19 

28LL_Month3
_17_S406 

101 75 47 42 30 19 

28LL_Month3
_19_S408 

101 73 46 40 29 19 

28LL_Month3
_21_S4 

101 74 46 41 30 19 

28LL_Month3
_24_S41 

98 73 44 39 29 19 

28N_Month1
_4_S125 

2 2 0 0 0 0 
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A.D.2.S1. Non-native isolates that did not pass quality control. Continued 
 
sample-id Total 

length (>= 
0 bp) 

Total length 
(>= 1000 bp) 

Total length 
(>= 5000 bp) 

Total length 
(>= 10000 
bp) 

Total length 
(>= 25000 
bp) 

Total length 
(>= 50000 
bp) 

23LL_Day3
_12_S89 

11786997 11779612 8885240 7026978 5492139 5056429 

23LL_Day3
_15_S18 

11968802 11965364 11773229 11206429 9868472 7914269 

23LL_Day3
_8_S57 

11622114 11618282 7976349 5721684 5055204 5055204 

23LL_Day7
_13_S95 

4190950 4164326 3655389 3001004 1163938 59049 

23LL_Month
1_24_S186 

12229807 12224047 12164090 12114822 11958139 11413328 

24B_Day7_
8_S8 

1196587 1168271 518769 184358 0 0 

24N_Day7_
23_S1316 

48468 48468 48468 48468 48468 0 

25L_Day7_
14_S108 

8687 8687 5514 0 0 0 

25L_Day7_
22_S1088 

6521 6521 0 0 0 0 

25N_Day3_
10_S75 

9248196 9245094 5540717 5375014 5267542 5105135 

25N_Day3_
23_S84 

7783416 7783416 5497531 5233154 5068628 5043424 

25N_Day3_
4_S27 

12122783 12115518 12046927 11955838 11786274 11252266 

25N_Day3_
7_S51 

11941923 11918721 11853931 11769529 11604252 11134001 

25N_Day3_
9_S67 

6149619 6148041 6091630 5968504 5619205 5186126 
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A.D.2.S1. Non-native isolates that did not pass quality control. Continued 
 
sample-id Total 

length (>= 
0 bp) 

Total length 
(>= 1000 bp) 

Total length 
(>= 5000 bp) 

Total length 
(>= 10000 
bp) 

Total length 
(>= 25000 
bp) 

Total length 
(>= 50000 
bp) 

25N_Month
1_21_S164 

11911665 11908989 11559652 10780073 8097256 5700082 

25N_Month
1_2_S107 

12503200 12501566 10916003 8991259 6330147 5436084 

25N_Month
3_16_S257 

2754507 2748024 2721829 2699176 2585248 2316812 

26B_Month
3_23_S295 

336224 320411 64756 0 0 0 

26L_Day7_
3_S86 

2179436 2151394 1425413 719102 25801 0 

26N_Day7_
14_S1104 

2325 2325 0 0 0 0 

26N_Day7_
19_S1109 

4179571 4161868 3742661 3177465 1574247 450795 

27L_Day7_
10_S1024 

4754752 4675912 3932622 3066925 1416921 55846 

27N_Day7_
10_S99 

424837 397715 98703 11881 0 0 

27N_Day7_
11_S99 

4332687 4308205 3865547 3401663 1751986 376643 

27N_Month
6_4_S36 

21789 21308 5497 0 0 0 

27R_Month
3_14_S328 

4448032 4431649 2346196 774969 0 0 

28LL_Day7
_8_S1054 

4352364 4347738 4087793 3743560 2335620 981462 

28LL_Month
3_14_S4 

5819481 5807311 5736323 5687772 5506945 5123786 

28LL_Month
3_17_S406 

5820464 5808516 5739046 5699962 5519101 5135862 

28LL_Month
3_19_S408 

5822311 5810656 5744807 5698677 5532120 5195274 

28LL_Month
3_21_S4 

5822158 5810338 5740864 5701780 5539418 5135909 

28LL_Month
3_24_S41 

5821459 5810420 5739706 5700622 5552566 5196958 

28N_Month
1_4_S125 

4481 4481 0 0 0 0 
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A.D.2.S1. Non-native isolates that did not pass quality control. Continued 
 
sample-id # 

contigs 
Largest 
contig 

Total 
length 

Reference 
length 

GC 
(%) 

Reference GC 
(%) 

23LL_Day3_12_S89 1583 4628035 11784737 5064668 58.91 50.57 

23LL_Day3_15_S18 320 3514664 11967434 5064668 59.53 50.57 

23LL_Day3_8_S57 1910 5055204 11622114 5064668 58.81 50.57 

23LL_Day7_13_S95 482 59049 4190950 5064668 50.73 50.57 
23LL_Month1_24_S1
86 

97 5070988 12227670 5064668 59.38 50.57 

24B_Day7_8_S8 353 22648 1195251 5064668 50.87 50.57 
24N_Day7_23_S131
6 

1 48468 48468 5064668 49.84 50.57 

25L_Day7_14_S108 2 5514 8687 5064668 46.33 50.57 
25L_Day7_22_S108
8 

3 3173 6521 5064668 48.84 50.57 

25N_Day3_10_S75 2180 1517776 9247997 5064668 57.07 50.57 

25N_Day3_23_S84 1436 4246038 7783416 5064668 55.16 50.57 

25N_Day3_4_S27 118 2434193 12121467 5064668 59.44 50.57 

25N_Day3_7_S51 111 5056456 11928468 5064668 59.63 50.57 

25N_Day3_9_S67 77 5056480 6149280 5064668 53.01 50.57 
25N_Month1_21_S1
64 

464 5087923 11911428 5064668 59.5 50.57 

25N_Month1_2_S10
7 

1072 5054894 12503200 5064668 58.88 50.57 

25N_Month3_16_S2
57 

47 312900 2752087 5064668 37.49 50.57 

26B_Month3_23_S2
95 

155 7883 335813 5064668 51.98 50.57 

26L_Day7_3_S86 491 25801 2178995 5064668 52.06 50.57 
26N_Day7_14_S110
4 

2 1311 2325 5064668 48.13 50.57 

26N_Day7_19_S110
9 

403 86488 4179571 5064668 51.13 50.57 
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A.D.2.S1. Non-native isolates that did not pass quality control. Continued 
 
sample-id # 

contigs 
Largest 
contig 

Total 
length 

Reference 
length 

GC 
(%) 

Reference GC 
(%) 

27L_Day7_10_S102
4 

667 55846 4753952 5064668 50.64 50.57 

27N_Day7_10_S99 192 11881 424837 5064668 53.08 50.57 

27N_Day7_11_S99 430 74673 4332687 5064668 50.94 50.57 

27N_Month6_4_S36 9 5497 21308 5064668 49.65 50.57 
27R_Month3_14_S3
28 

1155 23772 4446526 5064668 50.68 50.57 

28LL_Day7_8_S105
4 

304 104729 4352364 5064668 51.03 50.57 

28LL_Month3_14_S4 85 809031 5813639 5064668 59.38 50.57 
28LL_Month3_17_S4
06 

84 809031 5815752 5064668 59.38 50.57 

28LL_Month3_19_S4
08 

81 809031 5817138 5064668 59.37 50.57 

28LL_Month3_21_S4 82 809031 5816685 5064668 59.38 50.57 
28LL_Month3_24_S4
1 

81 809031 5816900 5064668 59.38 50.57 

28N_Month1_4_S12
5 

2 3173 4481 5064668 48.36 50.57 
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A.D.2.S1. Non-native isolates that did not pass quality control. Continued 
 
sample-id N50 # 

misassem
blies 

# 
misassembled 
contigs 

Misassembled 
contigs length 

# unaligned 
contigs 

Unaligned 
length 

23LL_Day3_12
_S89 

17331 9 6 4771952 1530 + 21 
part 

6204433 

23LL_Day3_15
_S18 

10471
4 

2 1 3514664 313 + 3 part 6786174 

23LL_Day3_8_
S57 

9634 50 49 215672 1711 + 87 
part 

6071818 

23LL_Day7_13
_S95 

16654 8 7 40806 0 + 1 part 650 

23LL_Month1_
24_S186 

78257
6 

6 4 5348358 89 + 2 part 6867935 

24B_Day7_8_
S8 

4544 2 2 15051 6 + 0 part 10418 

24N_Day7_23
_S1316 

48468 0 0 0 0 + 1 part 35265 

25L_Day7_14_
S108 

5514 0 0 0 0 + 0 part 0 

25L_Day7_22_
S1088 

2136 0 0 0 0 + 0 part 0 

25N_Day3_10
_S75 

48563
4 

7 5 1325992 2139 + 19 
part 

3811238 

25N_Day3_23
_S84 

42460
38 

27 26 216423 1335 + 32 
part 

2242284 

25N_Day3_4_
S27 

33206
0 

3 3 2413849 96 + 1 part 6851818 

25N_Day3_7_
S51 

57173
9 

2 1 5056456 107 + 1 part 6863159 

25N_Day3_9_
S67 

50564
80 

2 1 5056480 73 + 1 part 1083947 

25N_Month1_2
1_S164 

43570 8 1 5087923 458 + 2 part 6736693 

25N_Month1_2
_S107 

25949 10 10 271523 993 + 12 
part 

6569901 

25N_Month3_1
6_S257 

21135
3 

0 0 0 45 + 2 part 2751923 

26B_Month3_2
3_S295 

2524 7 5 11118 0 + 0 part 0 

26L_Day7_3_
S86 

6939 10 10 30896 0 + 0 part 0 

26N_Day7_14
_S1104 

1311 0 0 0 0 + 0 part 0 
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A.D.2.S1. Non-native isolates that did not pass quality control. Continued 
 
sample-id N50 # 

misassem
blies 

# 
misassembled 
contigs 

Misassembled 
contigs length 

# unaligned 
contigs 

Unaligned 
length 

26N_Day7_19
_S1109 

19776 8 8 51023 0 + 0 part 0 

27L_Day7_10_
S1024 

15661 10 10 49528 0 + 0 part 0 

27N_Day7_10
_S99 

3042 2 2 12781 0 + 0 part 0 

27N_Day7_11
_S99 

21335 9 9 66417 0 + 2 part 1048 

27N_Month6_4
_S36 

3090 0 0 0 0 + 0 part 0 

27R_Month3_1
4_S328 

5263 138 120 867262 0 + 2 part 1784 

28LL_Day7_8_
S1054 

27745 12 12 57780 0 + 1 part 518 

28LL_Month3_
14_S4 

32726
1 

0 0 0 84 + 1 part 5813558 

28LL_Month3_
17_S406 

32726
1 

0 0 0 83 + 1 part 5815671 

28LL_Month3_
19_S408 

33551
7 

0 0 0 80 + 1 part 5817057 

28LL_Month3_
21_S4 

32726
1 

0 0 0 81 + 1 part 5816604 

28LL_Month3_
24_S41 

33551
7 

0 0 0 80 + 1 part 5816819 

28N_Month1_4
_S125 

3173 0 0 0 0 + 0 part 0 
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A.D.2.S1. Non-native isolates that did not pass quality control. Continued 
 
sample-id Genome 

fraction (%) 
Duplicatio

n ratio 
# N's per 
100 kbp 

# mismatches 
per 100 kbp 

# indels per 
100 kbp 

# genomic 
features 

23LL_Day3_1
2_S89 

99.658 1.106 0 20.23 2 4692 + 12 
part 

23LL_Day3_1
5_S18 

99.866 1.024 0 7.06 0.57 4724 + 6 
part 

23LL_Day3_8
_S57 

99.942 1.097 0 29.83 5 4725 + 4 
part 

23LL_Day7_1
3_S95 

78.826 1.05 0 51.47 2.18 3398 + 541 
part 

23LL_Month1_
24_S186 

99.92 1.059 0 6.66 0.67 4721 + 4 
part 

24B_Day7_8_
S8 

23.36 1.001 0 93.23 2.7 825 + 510 
part 

24N_Day7_23
_S1316 

0.261 1 0 3476.48 151.48 14 + 3 part 

25L_Day7_14
_S108 

0.172 1 0 11.51 0 11 + 1 part 

25L_Day7_22
_S1088 

0.129 1 0 76.68 0 7 + 4 part 

25N_Day3_10
_S75 

99.53 1.079 0 17.87 1.98 4687 + 8 
part 

25N_Day3_23
_S84 

99.742 1.097 0 29.89 2.16 4715 + 5 
part 

25N_Day3_4_
S27 

99.702 1.044 0 4.2 0.2 4711 + 8 
part 

25N_Day3_7_
S51 

99.924 1.001 0 5.75 0.32 4731 + 1 
part 

25N_Day3_9_
S67 

99.924 1.001 0 6.36 0.22 4731 + 1 
part 

25N_Month1_
21_S164 

99.569 1.026 0 17.31 0.54 4707 + 7 
part 

25N_Month1_
2_S107 

99.971 1.172 0 17.95 1.86 4728 + 3 
part 

25N_Month3_
16_S257 

0.003 1 0 3658.54 0 0 + 0 part 

26B_Month3_
23_S295 

6.614 1.002 0 156.42 4.48 188 + 236 
part 
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A.D.2.S1. Non-native isolates that did not pass quality control. Continued 
 
sample-id Genome 

fraction (%) 
Duplicatio

n ratio 
# N's per 
100 kbp 

# mismatches 
per 100 kbp 

# indels per 
100 kbp 

# genomic 
features 

26L_Day7_3_
S86 

42.427 1.014 0 61.29 2.51 1524 + 721 
part 

26N_Day7_14
_S1104 

0.045 1.009 0 0 0 3 + 1 part 

26N_Day7_19
_S1109 

79.372 1.04 0 56.44 2.06 3446 + 477 
part 

27L_Day7_10
_S1024 

87.345 1.075 0 86.13 5.06 3740 + 603 
part 

27N_Day7_10
_S99 

8.386 1 0 101.24 3.06 220 + 292 
part 

27N_Day7_11
_S99 

82.357 1.038 0 51.35 2.18 3592 + 473 
part 

27N_Month6_
4_S36 

0.417 1.01 0 94.81 4.74 14 + 10 part 

27R_Month3_
14_S328 

87.537 1.003 0 27.59 1.06 3060 + 
1289 part 

28LL_Day7_8
_S1054 

83.402 1.03 0 53.76 2.37 3729 + 361 
part 

28LL_Month3_
14_S4 

0.002 1 0 0 0 1 + 0 part 

28LL_Month3_
17_S406 

0.002 1 0 0 0 1 + 0 part 

28LL_Month3_
19_S408 

0.002 1 0 0 0 1 + 0 part 

28LL_Month3_
21_S4 

0.002 1 0 0 0 1 + 0 part 

28LL_Month3_
24_S41 

0.002 1 0 0 0 1 + 0 part 

28N_Month1_
4_S125 

0.088 1 0 0 0 6 + 2 part 
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A.D.2.S1. Non-native isolates that did not pass quality control. Continued 
 
sample-id Largest 

alignment 
Total 

aligned 
length 

ID status 

23LL_Day3_12_
S89 

2181346 5572326 AZ20_assemblies/23LL_Day3_12_S89.fast
a 

disagree 

23LL_Day3_15_
S18 

3339857 5180090 AZ20_assemblies/23LL_Day3_15_S18.fast
a 

disagree 

23LL_Day3_8_S
57 

5052641 5546188 AZ20_assemblies/23LL_Day3_8_S57.fasta disagree 

23LL_Day7_13_
S95 

59049 4189820 AZ20_assemblies/23LL_Day7_13_S95.fast
a 

found 

23LL_Month1_24
_S186 

4615116 5352632 AZ20_assemblies/23LL_Month1_24_S186.
fasta 

disagree 

24B_Day7_8_S8 22411 1183542 AZ20_assemblies/24B_Day7_8_S8.fasta found 
24N_Day7_23_S

1316 
9961 13203 AZ20_assemblies/24N_Day7_23_S1316.fa

sta 
nomatch 

25L_Day7_14_S
108 

5514 8687 AZ20_assemblies/25L_Day7_14_S108.fast
a 

nomatch 

25L_Day7_22_S
1088 

3173 6521 AZ20_assemblies/25L_Day7_22_S1088.fa
sta 

nomatch 

25N_Day3_10_S
75 

1511890 5435201 AZ20_assemblies/25N_Day3_10_S75.fast
a 

disagree 

25N_Day3_23_S
84 

4244238 5534184 AZ20_assemblies/25N_Day3_23_S84.fast
a 

disagree 

25N_Day3_4_S2
7 

2434005 5267721 AZ20_assemblies/25N_Day3_4_S27.fasta disagree 

25N_Day3_7_S5
1 

4694525 5064238 AZ20_assemblies/25N_Day3_7_S51.fasta disagree 

25N_Day3_9_S6
7 

4694548 5064262 AZ20_assemblies/25N_Day3_9_S67.fasta disagree 

25N_Month1_21
_S164 

1708180 5166252 AZ20_assemblies/25N_Month1_21_S164.f
asta 

disagree 

25N_Month1_2_
S107 

5053892 5930603 AZ20_assemblies/25N_Month1_2_S107.fa
sta 

disagree 

25N_Month3_16
_S257 

91 164 AZ20_assemblies/25N_Month3_16_S257.f
asta 

found 

26B_Month3_23
_S295 

7883 334968 AZ20_assemblies/26B_Month3_23_S295.f
asta 

found 

26L_Day7_3_S8
6 

25801 2178387 AZ20_assemblies/26L_Day7_3_S86.fasta found 

A.D.2.S1. Non-native isolates that did not pass quality control. Continued 
 
sample-id Largest 

alignment 
Total 

aligned 
length 

ID status 

26N_Day7_14_S
1104 

1290 2304 AZ20_assemblies/26N_Day7_14_S1104.fa
sta 

nomatch 
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26N_Day7_19_S
1109 

86488 4178479 AZ20_assemblies/26N_Day7_19_S1109.fa
sta 

found 

27L_Day7_10_S
1024 

55566 4751591 AZ20_assemblies/27L_Day7_10_S1024.fa
sta 

found 

27N_Day7_10_S
99 

11881 424716 AZ20_assemblies/27N_Day7_10_S99.fast
a 

found 

27N_Day7_11_S
99 

74673 4331023 AZ20_assemblies/27N_Day7_11_S99.fast
a 

found 

27N_Month6_4_
S36 

5378 21096 AZ20_assemblies/27N_Month6_4_S36.fast
a 

nomatch 

27R_Month3_14
_S328 

23715 4437738 AZ20_assemblies/27R_Month3_14_S328.f
asta 

found 

28LL_Day7_8_S
1054 

104729 4350246 AZ20_assemblies/28LL_Day7_8_S1054.fa
sta 

found 

28LL_Month3_14
_S4 

81 81 AZ20_assemblies/28LL_Month3_14_S4.fa
sta 

disagree 

28LL_Month3_17
_S406 

81 81 AZ20_assemblies/28LL_Month3_17_S406.
fasta 

disagree 

28LL_Month3_19
_S408 

81 81 AZ20_assemblies/28LL_Month3_19_S408.
fasta 

disagree 

28LL_Month3_21
_S4 

81 81 AZ20_assemblies/28LL_Month3_21_S4.fa
sta 

disagree 

28LL_Month3_24
_S41 

81 81 AZ20_assemblies/28LL_Month3_24_S41.f
asta 

disagree 

28N_Month1_4_
S125 

3173 4481 AZ20_assemblies/28N_Month1_4_S125.fa
sta 

nomatch 
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A.D.2.S1. Non-native isolates that did not pass quality control. Continued 
 
sample-id superkingdom phylum class 

23LL_Day3_12_S89 Bacteria Proteobacteria 

23LL_Day3_15_S18 Bacteria Proteobacteria 

23LL_Day3_8_S57 Bacteria Proteobacteria 

23LL_Day7_13_S95 Bacteria Proteobacteria Gammaproteobacteria 

23LL_Month1_24_S186 Bacteria Proteobacteria 

24B_Day7_8_S8 Bacteria Proteobacteria Gammaproteobacteria 

24N_Day7_23_S1316 
   

25L_Day7_14_S108 
   

25L_Day7_22_S1088 
   

25N_Day3_10_S75 Bacteria Proteobacteria 

25N_Day3_23_S84 Bacteria Proteobacteria 

25N_Day3_4_S27 Bacteria Proteobacteria 

25N_Day3_7_S51 Bacteria Proteobacteria 

25N_Day3_9_S67 Bacteria Proteobacteria 

25N_Month1_21_S164 Bacteria Proteobacteria 

25N_Month1_2_S107 Bacteria Proteobacteria 

25N_Month3_16_S257 Bacteria Firmicutes Bacilli 

26B_Month3_23_S295 Bacteria Proteobacteria Gammaproteobacteria 

26L_Day7_3_S86 Bacteria Proteobacteria Gammaproteobacteria 

26N_Day7_14_S1104 
   

26N_Day7_19_S1109 Bacteria Proteobacteria Gammaproteobacteria 

27L_Day7_10_S1024 Bacteria Proteobacteria Gammaproteobacteria 

27N_Day7_10_S99 Bacteria Proteobacteria Gammaproteobacteria 

27N_Day7_11_S99 Bacteria Proteobacteria Gammaproteobacteria 

27N_Month6_4_S36 
   

27R_Month3_14_S328 Bacteria Proteobacteria Gammaproteobacteria 

28LL_Day7_8_S1054 Bacteria Proteobacteria Gammaproteobacteria 

28LL_Month3_14_S4 Bacteria Proteobacteria Alphaproteobacteria 

28LL_Month3_17_S406 Bacteria Proteobacteria Alphaproteobacteria 

28LL_Month3_19_S408 Bacteria Proteobacteria Alphaproteobacteria 

28LL_Month3_21_S4 Bacteria Proteobacteria Alphaproteobacteria 

28LL_Month3_24_S41 Bacteria Proteobacteria Alphaproteobacteria 

28N_Month1_4_S125 
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sample-id Order family genus short-id 
23LL_Day3_12_S
89 

   

23LL_Day3_12 
23LL_Day3_15_S
18 

   

23LL_Day3_15 
23LL_Day3_8_S5
7 

   

23LL_Day3_8 
23LL_Day7_13_S
95 

Enterobacterales Enterobacteriaceae Escherichia 
23LL_Day7_13 

23LL_Month1_24
_S186 

   
23LL_Month1_2
4 

24B_Day7_8_S8 Enterobacterales Enterobacteriaceae Escherichia 24B_Day7_8 
24N_Day7_23_S1
316 

   

24N_Day7_23 
25L_Day7_14_S1
08 

   

25L_Day7_14 
25L_Day7_22_S1
088 

   

25L_Day7_22 
25N_Day3_10_S7
5 

   

25N_Day3_10 
25N_Day3_23_S8
4 

   

25N_Day3_23 
25N_Day3_4_S27 

   
25N_Day3_4 

25N_Day3_7_S51 
   

25N_Day3_7 
25N_Day3_9_S67 

   
25N_Day3_9 

25N_Month1_21_
S164 

   

25N_Month1_21 
25N_Month1_2_S
107 

   

25N_Month1_2 
25N_Month3_16_
S257 

   

25N_Month3_16 
26B_Month3_23_
S295 

Enterobacterales Enterobacteriaceae 
 

26B_Month3_23 
26L_Day7_3_S86 Enterobacterales Enterobacteriaceae Escherichia 26L_Day7_3 
26N_Day7_14_S1
104 

   

26N_Day7_14 
26N_Day7_19_S1
109 

Enterobacterales Enterobacteriaceae Escherichia 
26N_Day7_19 

 
27L_Day7_10_S1
024 

Enterobacterales Enterobacteriaceae Escherichia 
27L_Day7_10 

27N_Day7_10_S9
9 

Enterobacterales Enterobacteriaceae 
 

27N_Day7_10 
27N_Day7_11_S9
9 

Enterobacterales Enterobacteriaceae Escherichia 
27N_Day7_11 

27N_Month6_4_S
36 

   

27N_Month6_4 
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sample-id Order family genus short-id 
27R_Month3_14_
S328 

Enterobacterales Enterobacteriaceae Escherichia 
27R_Month3_14 

28LL_Day7_8_S1
054 

Enterobacterales Enterobacteriaceae Escherichia 
28LL_Day7_8 

28LL_Month3_14
_S4 

Rhizobiales 
  

28LL_Month3_1
4 

28LL_Month3_17
_S406 

Rhizobiales 
  

28LL_Month3_1
7 

28LL_Month3_19
_S408 

Rhizobiales 
  

28LL_Month3_1
9 

28LL_Month3_21
_S4 

Rhizobiales 
  

28LL_Month3_2
1 

28LL_Month3_24
_S41 

Rhizobiales 
  

28LL_Month3_2
4 

28N_Month1_4_S
125 

   

28N_Month1_4 
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Table A.D.2.S2. Native isolates that did not pass quality control. Contains checkM, quast, and 
sourmash results. 
 

sample-id Marker lineage # genomes # markers # marker sets 
41LL_Month3_6_S1469 Bacteria 5449 104 58 
41L_Month3_19_S1476 Bacteria 5449 104 58 
41L_Month3_20_S1484 Bacteria 5449 104 58 
42L_Month3_22_S1598 Bacteria 5449 104 58 
42R_Month3_22_S16 Bacteria 5449 104 58 
42R_Month3_6_S1567 Bacteria 5449 104 58 
43B_Month6_15_S984 Bacteria 5449 104 58 
43R_Month6_18_S1006 Bacteria 5449 104 58 
44B_Month6_22_S1792 Bacteria 5449 104 58 
44N_Month1_11_S189 Bacteria 5449 104 58 
44R_Month6_7_S1765 Bacteria 5449 104 58 
45L_Day7_11_S1411 Bacteria 5449 104 58 
45L_Month3_2_S1627 Bacteria 5449 104 58 
45L_Month3_4_S164 Bacteria 5449 104 58 
45L_Month3_6_S1659 Bacteria 5449 104 58 
45N_Month3_13_S1618 Bacteria 5449 104 58 
45N_Month3_14_S1626 Bacteria 5449 104 58 
45N_Month3_16_S1642 Bacteria 5449 104 58 
45N_Month3_17_S165 Bacteria 5449 104 58 
45N_Month3_20_S1674 Bacteria 5449 104 58 
45N_Month3_7_S1665 Bacteria 5449 104 58 
46L_Day7_10_S361_L002 Bacteria 5449 104 58 
46L_Day7_15_S306_L002 Bacteria 5449 104 58 
46L_Day7_18_S330_L002 Bacteria 5449 104 58 
46L_Day7_4_S313_L002 Bacteria 5449 104 58 
46L_Day7_7_S337_L002 Bacteria 5449 104 58 
46L_Month6_15_S1076 Bacteria 5449 104 58 
46L_Month6_16_S1084 Bacteria 5449 104 58 
46L_Month6_21_S1124 Bacteria 5449 104 58 
46L_Month6_2_S1067 Bacteria 5449 104 58 
46L_Month6_6_S1099 Bacteria 5449 104 58 
46N_Month6_14_S1066 Bacteria 5449 104 58 
46N_Month6_15_S1074 Bacteria 5449 104 58 
46N_Month6_19_S1106 Bacteria 5449 104 58 
46R_Day7_10_S363_L002 Bacteria 5449 104 58 
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A.D.2.S2. Native isolates that did not pass quality control. Continued 
 
sample-id Marker lineage # genomes # markers # marker sets 
46R_Day7_15_S308_L002 Bacteria 5449 104 58 
46R_Day7_3_S307_L002 Bacteria 5449 104 58 
46R_Day7_5_S323_L002 Bacteria 5449 104 58 
46R_Day7_6_S331_L002 Bacteria 5449 104 58 
46R_Month6_13_S1062 Bacteria 5449 104 58 
46R_Month6_14_S107 Bacteria 5449 104 58 
46R_Month6_15_S1078 Bacteria 5449 104 58 
46R_Month6_16_S1086 Bacteria 5449 104 58 
46R_Month6_17_S1094 Bacteria 5449 104 58 
46R_Month6_18_S1102 Bacteria 5449 104 58 
46R_Month6_19_S111 Bacteria 5449 104 58 
46R_Month6_20_S1118 Bacteria 5449 104 58 
46R_Month6_21_S1126 Bacteria 5449 104 58 
46R_Month6_22_S1134 Bacteria 5449 104 58 
46R_Month6_23_S1142 Bacteria 5449 104 58 
46R_Month6_24_S115 Bacteria 5449 104 58 
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A.D.2.S2. Native isolates that did not pass quality control. Continued 
 

sample-id Contamination Strain 
heterogeneity 

# contigs (>= 
0 bp) 

# contigs (>= 
1000 bp) 

# contigs (>= 
5000 bp) 

41LL_Month3_6_
S1469 

0 0 4 4 
1 

41L_Month3_19_
S1476 

0 0 57 46 
3 

41L_Month3_20_
S1484 

0.47 66.67 550 496 
204 

42L_Month3_22_
S1598 

0 0 581 531 
203 

42R_Month3_22
_S16 

2.74 0 1281 1281 
258 

42R_Month3_6_
S1567 

0 0 1476 1473 
16 

43B_Month6_15
_S984 

82.76 4.35 113 71 
58 

43R_Month6_18
_S1006 

72.37 1.92 763 630 
373 

44B_Month6_22
_S1792 

0.31 100 1511 1511 
27 

44N_Month1_11
_S189 

0 0 1064 1059 
232 

44R_Month6_7_
S1765 

1.72 0 1295 1295 
232 

45L_Day7_11_S
1411 

0.86 0 856 855 
335 

45L_Month3_2_
S1627 

0 0 1459 1459 
370 

45L_Month3_4_
S164 

0.34 0 216 215 
187 

45L_Month3_6_
S1659 

0 0 678 676 
367 

45N_Month3_13
_S1618 

0 0 64 54 
49 

45N_Month3_14
_S1626 

0 0 369 369 
253 

45N_Month3_16
_S1642 

0 0 154 148 
137 

45N_Month3_17
_S165 

0.86 100 405 402 
272 

45N_Month3_20
_S1674 

2.74 0 1525 1525 
106 

45N_Month3_7_
S1665 

0 0 1400 1400 
25 

46L_Day7_10_S
361_L002 

0.16 0 1264 1253 
462 
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A.D.2.S2. Native isolates that did not pass quality control. Continued 
 
sample-id Contamination Strain 

heterogeneity 
# contigs (>= 

0 bp) 
# contigs (>= 

1000 bp) 
# contigs (>= 

5000 bp) 
46L_Day7_15_S
306_L002 

1.88 0 172 169 
131 

46L_Day7_18_S
330_L002 

0 0 87 46 
40 

46L_Day7_4_S3
13_L002 

0 0 104 53 
42 

46L_Day7_7_S3
37_L002 

0 0 1804 1798 
234 

46L_Month6_15_
S1076 

93.3 3.33 865 865 
387 

46L_Month6_16_
S1084 

52.1 2.33 2700 2391 
547 

46L_Month6_21_
S1124 

5.33 0 446 379 
66 

46L_Month6_2_
S1067 

49.29 0 1026 996 
394 

46L_Month6_6_
S1099 

0 0 127 125 
113 

46N_Month6_14
_S1066 

62.23 7.14 861 848 
372 

46N_Month6_15
_S1074 

92.1 9.78 1122 1076 
381 

46N_Month6_19
_S1106 

0 0 176 176 
73 

46R_Day7_10_S
363_L002 

0 0 108 58 
42 

46R_Day7_15_S
308_L002 

0 0 100 51 
41 

46R_Day7_3_S3
07_L002 

0 0 98 52 
43 

46R_Day7_5_S3
23_L002 

0 0 168 77 
53 

46R_Day7_6_S3
31_L002 

0 0 97 47 
38 

46R_Month6_13
_S1062 

12.07 0 409 402 
194 

46R_Month6_14
_S107 

25.86 0 419 409 
276 

46R_Month6_15
_S1078 

1.72 0 339 330 
140 

46R_Month6_16
_S1086 

3.45 0 112 111 
86 

46R_Month6_17
_S1094 

5.17 66.67 120 117 
71 

46R_Month6_18
_S1102 

93.46 2.27 379 366 
281 
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A.D.2.S2. Native isolates that did not pass quality control. Continued 
 
sample-id Contamination Strain 

heterogeneity 
# contigs (>= 

0 bp) 
# contigs (>= 

1000 bp) 
# contigs (>= 

5000 bp) 
46R_Month6_19
_S111 

104.83 6.42 304 297 
248 

46R_Month6_20
_S1118 

7.37 12.5 267 263 
133 

46R_Month6_21
_S1126 

12.07 0 291 289 
229 

46R_Month6_22
_S1134 

38.4 17.86 1642 1630 
129 

46R_Month6_23
_S1142 

98.31 5.94 317 315 
225 

46R_Month6_24
_S115 

93.68 5.1 426 423 
301 
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A.D.2.S2. Native isolates that did not pass quality control. Continued 
 

sample-id # contigs 
(>= 10000 

bp) 

# contigs 
(>= 25000 

bp) 

# contigs 
(>= 50000 

bp) 

Total length 
(>= 0 bp) 

Total length 
(>= 1000 bp) 

Total length 
(>= 5000 bp) 

41LL_Month3_6_
S1469 0 0 0 13161 13161 7952 
41L_Month3_19_
S1476 0 0 0 118515 108859 23805 
41L_Month3_20_
S1484 98 16 0 3331831 3286301 2546318 
42L_Month3_22_
S1598 87 8 0 3069978 3029056 2195903 
42R_Month3_22_
S16 44 1 0 4505368 4505368 1995102 
42R_Month3_6_S
1567 2 0 0 2696877 2696516 109206 
43B_Month6_15_
S984 53 45 32 8531332 8520589 8481951 
43R_Month6_18_
S1006 250 86 29 11183780 11130505 10439255 
44B_Month6_22_
S1792 2 0 0 3074883 3074883 180651 
44N_Month1_11_
S189 77 15 1 4437760 4436534 2468132 
44R_Month6_7_S
1765 34 2 0 4274947 4274947 1798841 
45L_Day7_11_S1
411 115 10 0 4677381 4677258 3306984 
45L_Month3_2_S
1627 120 12 1 6275118 6275118 3696779 
45L_Month3_4_S
164 154 83 33 6930821 6930528 6826119 
45L_Month3_6_S
1659 205 56 16 6867037 6866725 6062257 
45N_Month3_13_
S1618 45 38 31 7015942 7011829 6998929 
45N_Month3_14_
S1626 173 77 34 6894356 6894356 6564712 
45N_Month3_16_
S1642 111 69 36 6956383 6954399 6920121 
45N_Month3_17_
S165 184 88 24 6879503 6877301 6489892 
45N_Month3_20_
S1674 6 1 0 3795645 3795645 741933 
45N_Month3_7_S
1665 2 0 0 2643641 2643641 167309 
46L_Day7_10_S3
61_L002 156 10 0 6479432 6473247 4383411 
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A.D.2.S2. Native isolates that did not pass quality control. Continued 
 
sample-id # contigs 

(>= 10000 
bp) 

# contigs 
(>= 25000 

bp) 

# contigs 
(>= 50000 

bp) 

Total length 
(>= 0 bp) 

Total length 
(>= 1000 bp) 

Total length 
(>= 5000 bp) 

46L_Day7_15_S3
06_L002 102 72 46 6895058 6894230 6769040 
46L_Day7_18_S3
30_L002 37 32 28 7032516 7015466 7001266 
46L_Day7_4_S31
3_L002 40 34 30 7029811 7012772 6987823 
46L_Day7_7_S33
7_L002 19 0 0 5122998 5121288 1633023 
46L_Month6_15_
S1076 202 48 12 11686056 11686056 10461734 
46L_Month6_16_
S1084 157 3 0 9286190 9156275 4961746 
46L_Month6_21_
S1124 46 37 28 5725238 5703080 5052533 
46L_Month6_2_S
1067 186 55 25 10386487 10370992 8809510 
46L_Month6_6_S
1099 102 76 42 6937977 6937060 6887621 
46N_Month6_14_
S1066 148 33 7 10790135 10784094 9520642 
46N_Month6_15_
S1074 169 37 6 11424652 11410095 9751636 
46N_Month6_19_
S1106 27 5 2 6138821 6138821 5826061 
46R_Day7_10_S3
63_L002 40 36 30 7037076 7020164 6982785 
46R_Day7_15_S3
08_L002 38 31 27 7031582 7014105 6990451 
46R_Day7_3_S30
7_L002 39 33 30 7030948 7015530 6995706 
46R_Day7_5_S32
3_L002 50 43 35 7021450 6992339 6951680 
46R_Day7_6_S33
1_L002 36 31 29 7032397 7014797 6990615 
46R_Month6_13_
S1062 86 8 1 7702251 7699956 7112268 
46R_Month6_14_
S107 160 32 8 9539227 9535374 9100538 
46R_Month6_15_
S1078 55 6 1 7040277 7036917 6516178 
46R_Month6_16_
S1086 62 25 6 6852273 6851853 6768018 
46R_Month6_17_
S1094 32 9 4 6020620 6019779 5883248 
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A.D.2.S2. Native isolates that did not pass quality control. Continued 
 
sample-id # contigs 

(>= 10000 
bp) 

# contigs 
(>= 25000 

bp) 

# contigs 
(>= 50000 

bp) 

Total length 
(>= 0 bp) 

Total length 
(>= 1000 bp) 

Total length 
(>= 5000 bp) 

46R_Month6_18_
S1102 205 100 49 11756832 11751683 11458232 
46R_Month6_19_
S111 181 104 44 12353890 12351413 12184393 
46R_Month6_20_
S1118 78 14 2 7185961 7184848 6812668 
46R_Month6_21_
S1126 136 35 6 8751842 8750437 8551309 
46R_Month6_22_
S1134 23 4 1 9103752 9097422 6093887 
46R_Month6_23_
S1142 166 83 45 11968175 11966797 11708401 
46R_Month6_24_
S115 209 83 28 11902121 11900618 11517547 
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A.D.2.S2. Native isolates that did not pass quality control. Continued 
 

sample-id Total 
length (>= 
10000 bp) 

Total 
length (>= 
25000 bp) 

Total 
length (>= 
50000 bp) 

# contigs Largest 
contig 

Total length 

41LL_Month3_6_S1469 0 0 0 4 7952 13161 

41L_Month3_19_S1476 0 0 0 57 8556 118515 

41L_Month3_20_S1484 1764873 515423 0 550 49146 3331831 

42L_Month3_22_S1598 1354347 214692 0 581 32468 3069978 

42R_Month3_22_S16 559076 28883 0 1281 28883 4505368 

42R_Month3_6_S1567 26721 0 0 1473 15887 2696516 

43B_Month6_15_S984 8446557 8325307 7839021 75 1185431 8523189 
43R_Month6_18_S100
6 

9568889 6976463 4941992 673 495169 11162582 

44B_Month6_22_S179
2 

30905 0 0 1511 17865 3074883 

44N_Month1_11_S189 1393903 482927 50164 1059 50164 4436534 

44R_Month6_7_S1765 469130 72376 0 1295 40405 4274947 

45L_Day7_11_S1411 1749339 332531 0 855 42778 4677258 

45L_Month3_2_S1627 1947724 410234 72636 1459 72636 6275118 

45L_Month3_4_S164 6583339 5429612 3711588 215 314603 6930528 

45L_Month3_6_S1659 4915980 2576700 1295858 676 144749 6866725 
45N_Month3_13_S161
8 

6969163 6857474 6571515 58 685399 7014747 

45N_Month3_14_S162
6 

6005015 4416941 2873345 369 183128 6894356 

45N_Month3_16_S164
2 

6733593 6021059 4732662 150 545347 6955802 

45N_Month3_17_S165 5839625 4305948 2090048 405 362936 6879503 
45N_Month3_20_S167
4 

103333 41811 0 1525 41811 3795645 

45N_Month3_7_S1665 24140 0 0 1400 12168 2643641 
46L_Day7_10_S361_L
002 

2255846 289666 0 1261 35572 6478769 

46L_Day7_15_S306_L
002 

6555240 6059502 5174689 170 283915 6894820 

46L_Day7_18_S330_L
002 

6977760 6878359 6714630 60 708565 7025310 

46L_Day7_4_S313_L0
02 

6977262 6868356 6685131 63 1010288 7019575 

46L_Day7_7_S337_L0
02 

220066 0 0 1799 15345 5121874 

46L_Month6_15_S1076 9184490 6890953 5637527 865 2274783 11686056 

46L_Month6_16_S1084 2226282 87499 0 2495 30468 9232675 
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A.D.2.S2. Native isolates that did not pass quality control. Continued 
 
sample-id Total 

length (>= 
10000 bp) 

Total 
length (>= 
25000 bp) 

Total 
length (>= 
50000 bp) 

# contigs Largest 
contig 

Total length 

46L_Month6_21_S1124 4915519 4763271 4418603 390 399099 5710814 

46L_Month6_2_S1067 7303443 5340925 4330104 1014 526479 10383339 

46L_Month6_6_S1099 6806923 6368429 5105595 126 377614 6937718 
46N_Month6_14_S106
6 

7949115 6306524 5443868 854 5010831 10788440 

46N_Month6_15_S107
4 

8251686 6282240 5259998 1087 2668067 11417390 

46N_Month6_19_S110
6 

5491721 5198996 5092183 176 5011825 6138821 

46R_Day7_10_S363_L
002 

6968960 6900337 6663803 71 686276 7028634 

46R_Day7_15_S308_L
002 

6966945 6838819 6675756 63 686276 7022531 

46R_Day7_3_S307_L0
02 

6966931 6852185 6716746 62 590926 7022510 

46R_Day7_5_S323_L0
02 

6934103 6816805 6540515 93 684396 7005152 

46R_Day7_6_S331_L0
02 

6972426 6873025 6785264 60 590926 7023756 

46R_Month6_13_S106
2 

6344792 5183973 4949035 403 4949035 7700661 

46R_Month6_14_S107 8253358 6301292 5452120 412 5011571 9537784 
46R_Month6_15_S107
8 

5907401 5177806 5010518 334 5010518 7039137 

46R_Month6_16_S108
6 

6599130 6017290 5344461 111 5011503 6851853 

46R_Month6_17_S109
4 

5599034 5219694 5060668 117 4149385 6019779 

46R_Month6_18_S110
2 

10933500 9266725 7513145 370 747197 11754984 

46R_Month6_19_S111 11693432 10461672 8325029 300 3242715 12353230 
46R_Month6_20_S111
8 

6416407 5476814 5067535 264 5011499 7185446 

46R_Month6_21_S112
6 

7879357 6306767 5304428 290 5011504 8751422 

46R_Month6_22_S113
4 

5396586 5119823 5011404 1637 5011404 9102345 

46R_Month6_23_S114
2 

11288607 9948641 8646384 317 4586989 11968175 

46R_Month6_24_S115 10849981 8815570 6868974 425 4410465 11901996 
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A.D.2.S2. Native isolates that did not pass quality control. Continued 
 

sample-id Reference 
length 

GC 
(%) 

Reference 
GC (%) 

# 
misassemblies 

# 
misassembled 

contigs 

Misassembled 
contigs length 

41LL_Month3_6_
S1469 

5062596 48.7 50.6 0 0 0 

41L_Month3_19_
S1476 

5062596 48.41 50.6 1 1 2080 

41L_Month3_20_
S1484 

5062596 50.69 50.6 6 5 54221 

42L_Month3_22_
S1598 

5062596 50.58 50.6 7 7 38153 

42R_Month3_22
_S16 

5062596 50.5 50.6 67 65 346679 

42R_Month3_6_
S1567 

5062596 50.19 50.6 251 225 494038 

43B_Month6_15
_S984 

5062596 56.76 50.6 0 0 0 

43R_Month6_18
_S1006 

5062596 59.57 50.6 1 1 117826 

44B_Month6_22
_S1792 

5062596 51.25 50.6 151 144 376610 

44N_Month1_11
_S189 

5062596 50.82 50.6 84 80 555537 

44R_Month6_7_
S1765 

5062596 51.1 50.6 32 30 174409 

45L_Day7_11_S
1411 

5062596 50.82 50.6 18 18 195947 

45L_Month3_2_
S1627 

5062596 66.43 50.6 0 0 0 

45L_Month3_4_
S164 

5062596 66.11 50.6 0 0 0 

45L_Month3_6_
S1659 

5062596 66.17 50.6 0 0 0 

45N_Month3_13
_S1618 

5062596 66.09 50.6 0 0 0 

45N_Month3_14
_S1626 

5062596 66.21 50.6 0 0 0 

45N_Month3_16
_S1642 

5062596 66.1 50.6 0 0 0 

45N_Month3_17
_S165 

5062596 66.16 50.6 0 0 0 

45N_Month3_20
_S1674 

5062596 50.46 50.6 176 164 579918 

45N_Month3_7_
S1665 

5062596 50.24 50.6 170 159 337330 

46L_Day7_10_S
361_L002 

5062596 66.38 50.6 0 0 0 
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A.D.2.S2. Native isolates that did not pass quality control. Continued 
 
sample-id Reference 

length 
GC 
(%) 

Reference 
GC (%) 

# 
misassemblies 

# 
misassembled 

contigs 

Misassembled 
contigs length 

46L_Day7_15_S
306_L002 

5062596 66.22 50.6 0 0 0 

46L_Day7_18_S
330_L002 

5062596 66.09 50.6 0 0 0 

46L_Day7_4_S3
13_L002 

5062596 66.1 50.6 0 0 0 

46L_Day7_7_S3
37_L002 

5062596 67.13 50.6 0 0 0 

46L_Month6_15_
S1076 

5062596 59.49 50.6 2 2 421547 

46L_Month6_16_
S1084 

5062596 59.52 50.6 107 101 807002 

46L_Month6_21_
S1124 

5062596 53.09 50.6 1 1 103328 

46L_Month6_2_
S1067 

5062596 59.44 50.6 4 4 334595 

46L_Month6_6_
S1099 

5062596 66.25 50.6 0 0 0 

46N_Month6_14
_S1066 

5062596 59.27 50.6 0 0 0 

46N_Month6_15
_S1074 

5062596 59.16 50.6 4 2 2751705 

46N_Month6_19
_S1106 

5062596 53.66 50.6 0 0 0 

46R_Day7_10_S
363_L002 

5062596 66.07 50.6 0 0 0 

46R_Day7_15_S
308_L002 

5062596 66.09 50.6 0 0 0 

46R_Day7_3_S3
07_L002 

5062596 66.09 50.6 0 0 0 

46R_Day7_5_S3
23_L002 

5062596 66.1 50.6 0 0 0 

46R_Day7_6_S3
31_L002 

5062596 66.09 50.6 0 0 0 

46R_Month6_13
_S1062 

5062596 56.78 50.6 1 1 5185 

46R_Month6_14
_S107 

5062596 58.59 50.6 0 0 0 

46R_Month6_15
_S1078 

5062596 55.69 50.6 1 1 5868 

46R_Month6_16
_S1086 

5062596 55.15 50.6 0 0 0 

46R_Month6_17
_S1094 

5062596 53.16 50.6 1 1 196533 
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A.D.2.S2. Native isolates that did not pass quality control. Continued 
 
sample-id Reference 

length 
GC 
(%) 

Reference 
GC (%) 

# 
misassemblies 

# 
misassembled 

contigs 

Misassembled 
contigs length 

46R_Month6_18
_S1102 

5062596 59.55 50.6 2 2 422527 

46R_Month6_19
_S111 

5062596 59.27 50.6 2 2 38288 

46R_Month6_20
_S1118 

5062596 55.74 50.6 0 0 0 

46R_Month6_21
_S1126 

5062596 57.91 50.6 0 0 0 

46R_Month6_22
_S1134 

5062596 57.67 50.6 21 16 5206987 

46R_Month6_23
_S1142 

5062596 59.53 50.6 2 2 4601040 

46R_Month6_24
_S115 

5062596 59.57 50.6 1 1 377603 
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A.D.2.S2. Native isolates that did not pass quality control. Continued 
 

sample-id 

# local 
misassemblie
s 

# scaffold gap 
ext. mis. 

# scaffold gap 
loc. mis. 

# unaligned mis. 
contigs 

# unaligned 
contigs 

41LL_Month3_6_
S1469 

0 0 0 0 0 + 0 part 

41L_Month3_19_
S1476 

0 0 0 0 0 + 0 part 

41L_Month3_20_
S1484 

4 0 0 0 0 + 0 part 

42L_Month3_22_
S1598 

4 0 0 0 0 + 0 part 

42R_Month3_22
_S16 

5 0 0 0 0 + 0 part 

42R_Month3_6_
S1567 

3 0 0 0 0 + 0 part 

43B_Month6_15_
S984 

0 0 0 0 33 + 2 part 

43R_Month6_18
_S1006 

2 0 0 0 609 + 1 part 

44B_Month6_22_
S1792 

7 0 0 0 0 + 1 part 

44N_Month1_11
_S189 

13 0 0 0 0 + 0 part 

44R_Month6_7_
S1765 

9 0 0 0 0 + 0 part 

45L_Day7_11_S
1411 

5 0 0 0 0 + 0 part 

45L_Month3_2_S
1627 

0 0 0 1 1457 + 2 part 

45L_Month3_4_S
164 

0 0 0 2 212 + 3 part 

45L_Month3_6_S
1659 

0 0 0 2 673 + 3 part 

45N_Month3_13
_S1618 

0 0 0 2 55 + 3 part 

45N_Month3_14
_S1626 

0 0 0 2 366 + 3 part 

45N_Month3_16
_S1642 

0 0 0 2 147 + 3 part 

45N_Month3_17
_S165 

0 0 0 1 403 + 2 part 

45N_Month3_20
_S1674 

6 0 0 0 0 + 0 part 

45N_Month3_7_
S1665 

5 0 0 0 0 + 0 part 

46L_Day7_10_S
361_L002 

0 0 0 1 1259 + 2 part 
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A.D.2.S2. Native isolates that did not pass quality control. Continued 
 
sample-id # local 

misassemblies 
# scaffold 

gap ext. mis. 
# scaffold gap 

loc. mis. 
# unaligned 
mis. contigs 

# unaligned 
contigs 

46L_Day7_15_S3
06_L002 

0 0 0 2 167 + 3 part 

46L_Day7_18_S3
30_L002 

0 0 0 2 57 + 3 part 

46L_Day7_4_S31
3_L002 

0 0 0 2 61 + 2 part 

46L_Day7_7_S33
7_L002 

0 0 0 1 1798 + 1 part 

46L_Month6_15_
S1076 

8 0 0 1 855 + 2 part 

46L_Month6_16_
S1084 

5 0 0 0 1566 + 2 part 

46L_Month6_21_
S1124 

5 0 0 0 313 + 0 part 

46L_Month6_2_S
1067 

17 0 0 0 926 + 1 part 

46L_Month6_6_S
1099 

0 0 0 2 123 + 3 part 

46N_Month6_14_
S1066 

0 0 0 0 845 + 1 part 

46N_Month6_15_
S1074 

0 0 0 0 1065 + 1 part 

46N_Month6_19_
S1106 

1 0 0 0 170 + 1 part 

46R_Day7_10_S3
63_L002 

0 0 0 1 65 + 3 part 

46R_Day7_15_S3
08_L002 

0 0 0 2 60 + 3 part 

46R_Day7_3_S30
7_L002 

0 0 0 2 59 + 3 part 

46R_Day7_5_S32
3_L002 

0 0 0 2 91 + 2 part 

46R_Day7_6_S33
1_L002 

0 0 0 2 56 + 3 part 

46R_Month6_13_
S1062 

1 0 0 0 397 + 1 part 

46R_Month6_14_
S107 

0 0 0 1 406 + 3 part 

46R_Month6_15_
S1078 

1 0 0 0 328 + 0 part 

46R_Month6_16_
S1086 

0 0 0 0 107 + 0 part 

46R_Month6_17_
S1094 

1 0 0 0 100 + 0 part 

46R_Month6_18_
S1102 

1 0 0 1 334 + 2 part 
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A.D.2.S2. Native isolates that did not pass quality control. Continued 
 
sample-id # local 

misassemblies 
# scaffold 

gap ext. mis. 
# scaffold gap 

loc. mis. 
# unaligned 
mis. contigs 

# unaligned 
contigs 

46R_Month6_19_
S111 

7 0 0 1 269 + 3 part 

46R_Month6_20_
S1118 

0 0 0 0 255 + 2 part 

46R_Month6_21_
S1126 

0 0 0 0 284 + 2 part 

46R_Month6_22_
S1134 

19 0 0 0 1581 + 0 part 

46R_Month6_23_
S1142 

6 0 0 1 302 + 3 part 

46R_Month6_24_
S115 

6 0 0 1 415 + 2 part 

 

  



 

  

271 

A.D.2.S2. Native isolates that did not pass quality control. Continued 
 

sample-id Unaligned 
length 

Genome 
fraction 

(%) 

Duplication 
ratio 

# N's 
per 100 

kbp 

# 
mismatches 
per 100 kbp 

# indels 
per 100 

kbp 
41LL_Month3_6_S146
9 

0 0.26 1.001 0 91.24 15.21 

41L_Month3_19_S147
6 

0 2.341 1 0 77.62 5.06 

41L_Month3_20_S148
4 

0 64.154 1.026 0 34.67 2.31 

42L_Month3_22_S159
8 

0 59.252 1.023 0 29.87 3.07 

42R_Month3_22_S16 0 88.843 1.002 0 9.14 0.4 

42R_Month3_6_S1567 0 53.118 1.003 0 18.22 0.59 

43B_Month6_15_S984 3510958 99.005 1 0 0.28 0 
43R_Month6_18_S100
6 

6164750 98.71 1 0 1.22 0.06 

44B_Month6_22_S179
2 

681 60.648 1.001 0 30.45 0.75 

44N_Month1_11_S189 0 87.541 1.001 0 17.1 0.47 

44R_Month6_7_S1765 0 84.357 1.001 0 18.64 0.68 

45L_Day7_11_S1411 0 92.34 1.001 0 10.29 0.62 

45L_Month3_2_S1627 6274662 0.009 1 0 2850.88 0 

45L_Month3_4_S164 6929913 0.011 1.143 0 2788.1 0 

45L_Month3_6_S1659 6866110 0.012 1 0 2439.02 0 
45N_Month3_13_S161
8 

7014132 0.011 1.143 0 2788.1 0 

45N_Month3_14_S162
6 

6893741 0.011 1.143 0 2788.1 0 

45N_Month3_16_S164
2 

6955187 0.011 1.143 0 2788.1 0 

45N_Month3_17_S165 6879047 0.009 1 0 2850.88 0 
45N_Month3_20_S167
4 

0 74.771 1.003 0 13.95 0.32 

45N_Month3_7_S1665 0 52.098 1.002 0 17.63 0.45 
46L_Day7_10_S361_L
002 

6478313 0.009 1 0 2850.88 0 

46L_Day7_15_S306_L
002 

6894205 0.012 1 0 2439.02 0 

46L_Day7_18_S330_L
002 

7024695 0.012 1 0 2439.02 0 

46L_Day7_4_S313_L0
02 

7019037 0.011 1 0 2788.1 0 

46L_Day7_7_S337_L0
02 

5121495 0.007 1 0 3430.08 0 
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A.D.2.S2. Native isolates that did not pass quality control. Continued 
 
sample-id Unaligned 

length 
Genome 
fraction 

(%) 

Duplication 
ratio 

# N's 
per 100 

kbp 

# 
mismatches 
per 100 kbp 

# indels 
per 100 

kbp 
46L_Month6_15_S107
6 

6609747 99.86 1.004 0 3.13 0.32 

46L_Month6_16_S108
4 

4721388 89.06 1.001 0 8.98 0.33 

46L_Month6_21_S112
4 

723794 98.495 1 0 1.64 0.08 

46L_Month6_2_S1067 5396079 98.507 1 0 6.18 0.2 
46L_Month6_6_S1099 6937103 0.012 1 0 2439.02 0 
46N_Month6_14_S106
6 

5603305 99.987 1.024 0 3.65 0.45 

46N_Month6_15_S107
4 

6169865 99.879 1.038 0 5.85 0.95 

46N_Month6_19_S110
6 

992086 100 1.017 0 5.53 0.45 

46R_Day7_10_S363_L
002 

7018553 0.18 1.109 0 142.98 0 

46R_Day7_15_S308_L
002 

7021916 0.011 1.143 0 2788.1 0 

46R_Day7_3_S307_L0
02 

7021895 0.011 1.143 0 2788.1 0 

46R_Day7_5_S323_L0
02 

7004614 0.011 1 0 2788.1 0 

46R_Day7_6_S331_L0
02 

7022722 0.012 1.687 0 2120.72 0 

46R_Month6_13_S106
2 

2649112 99.768 1 0 4.79 0.61 

46R_Month6_14_S107 4474525 100 1 0 4.48 0.4 
46R_Month6_15_S107
8 

1968508 99.98 1.002 0 7.01 0.63 

46R_Month6_16_S108
6 

1790098 99.983 1 0 3.06 0.16 

46R_Month6_17_S109
4 

822230 99.813 1.029 0 2.28 0.91 

46R_Month6_18_S110
2 

6740192 99.054 1 0 0.86 0 

46R_Month6_19_S111 6910184 99.847 1.077 0 3.58 0.97 
46R_Month6_20_S111
8 

2113883 100 1.002 0 6 0.41 

46R_Month6_21_S112
6 

3684857 99.814 1.003 0 3.88 0.26 

46R_Month6_22_S113
4 

3689509 99.818 1.071 0 10.55 3.34 

46R_Month6_23_S114
2 

6780950 99.863 1.026 0 2.75 0.59 
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A.D.2.S2. Native isolates that did not pass quality control. Continued 
 
sample-id Unaligned 

length 
Genome 
fraction 

(%) 

Duplication 
ratio 

# N's 
per 100 

kbp 

# 
mismatches 
per 100 kbp 

# indels 
per 100 

kbp 
46R_Month6_24_S115 6834300 99.796 1.003 0 1.52 0.04 
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A.D.2.S2. Native isolates that did not pass quality control. Continued 
 

sample-id # genomic 
features 

Largest 
alignment 

Total 
aligned 
length 

NA50 NGA50 NA75 NGA75 

41LL_Month3_6_S1
469 0 + 0 part 7952 13161 7952 - 2885 - 
41L_Month3_19_S1
476 0 + 0 part 8556 118515 2369 - 1469 - 
41L_Month3_20_S1
484 0 + 0 part 49146 3329966 10735 5024 5134 - 
42L_Month3_22_S1
598 0 + 0 part 32468 3067739 8901 3507 4603 - 
42R_Month3_22_S1
6 0 + 0 part 28883 4500299 4300 3826 2599 1986 
42R_Month3_6_S15
67 0 + 0 part 15887 2690283 1715 1004 1260 - 
43B_Month6_15_S9
84 0 + 0 part 1185431 5012231 198107 747198 - 358910 
43R_Month6_18_S1
006 0 + 0 part 495169 4997832 - 215324 - 124669 
44B_Month6_22_S1
792 0 + 0 part 17865 3071073 2085 1284 1428 - 
44N_Month1_11_S1
89 0 + 0 part 47492 4432259 5405 4527 2846 2012 
44R_Month6_7_S17
65 0 + 0 part 40199 4271268 3961 3399 2357 1663 
45L_Day7_11_S141
1 0 + 0 part 42778 4675144 7699 7103 4283 3486 
45L_Month3_2_S16
27 0 + 0 part 314 456 - - - - 
45L_Month3_4_S16
4 0 + 0 part 314 615 - - - - 
45L_Month3_6_S16
59 0 + 0 part 314 615 - - - - 
45N_Month3_13_S1
618 0 + 0 part 314 615 - - - - 
45N_Month3_14_S1
626 0 + 0 part 314 615 - - - - 
45N_Month3_16_S1
642 0 + 0 part 314 615 - - - - 
45N_Month3_17_S1
65 0 + 0 part 314 456 - - - - 
45N_Month3_20_S1
674 0 + 0 part 41811 3787648 2661 1982 1686 - 
45N_Month3_7_S16
65 0 + 0 part 12168 2638743 1852 993 1327 - 
46L_Day7_10_S361
_L002 0 + 0 part 314 456 - - - - 
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A.D.2.S2. Native isolates that did not pass quality control. Continued 
 
sample-id # genomic 

features 
Largest 

alignment 
Total 

aligned 
length 

NA50 NGA50 NA75 NGA75 

46L_Day7_15_S306
_L002 0 + 0 part 314 615 - - - - 
46L_Day7_18_S330
_L002 0 + 0 part 314 615 - - - - 
46L_Day7_4_S313_
L002 0 + 0 part 314 538 - - - - 
46L_Day7_7_S337_
L002 0 + 0 part 314 379 - - - - 
46L_Month6_15_S1
076 0 + 0 part 2274307 5074853 - 

212635
4 - 

212635
4 

46L_Month6_16_S1
084 0 + 0 part 30468 4509441 - 5986 - 2771 
46L_Month6_21_S1
124 0 + 0 part 399099 4986841 139153 185443 77050 91937 
46L_Month6_2_S10
67 0 + 0 part 525747 4986060 - 168267 - 96677 
46L_Month6_6_S10
99 0 + 0 part 314 615 - - - - 
46N_Month6_14_S1
066 0 + 0 part 5010831 5185091 - 

501083
1 - 

501083
1 

46N_Month6_15_S1
074 0 + 0 part 2285980 5245388 - 

138665
2 - 

127650
4 

46N_Month6_19_S1
106 0 + 0 part 5011550 5146460 

501155
0 

501155
0 

501155
0 

501155
0 

46R_Day7_10_S363
_L002 0 + 0 part 8556 9169 - - - - 
46R_Day7_15_S308
_L002 0 + 0 part 314 615 - - - - 
46R_Day7_3_S307_
L002 0 + 0 part 314 615 - - - - 
46R_Day7_5_S323_
L002 0 + 0 part 314 538 - - - - 
46R_Day7_6_S331_
L002 0 + 0 part 169 613 - - - - 
46R_Month6_13_S1
062 0 + 0 part 4949035 5051549 

494903
5 

494903
5 - 

494903
5 

46R_Month6_14_S1
07 0 + 0 part 5011571 5063259 

501157
1 

501157
1 - 

501157
1 

46R_Month6_15_S1
078 0 + 0 part 5010486 5070596 

501048
6 

501048
6 - 

501048
6 

46R_Month6_16_S1
086 0 + 0 part 5011503 5061755 

501150
3 

501150
3 - 

501150
3 

46R_Month6_17_S1
094 0 + 0 part 4149070 5196987 

414907
0 

414907
0 662018 

414907
0 
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A.D.2.S2. Native isolates that did not pass quality control. Continued 
 
sample-id # genomic 

features 
Largest 

alignment 
Total 

aligned 
length 

NA50 NGA50 NA75 NGA75 

46R_Month6_18_S1
102 0 + 0 part 747197 5014792 - 386544 - 347638 
46R_Month6_19_S1
11 0 + 0 part 3241595 5440868 - 

324159
5 - 975634 

46R_Month6_20_S1
118 0 + 0 part 5011499 5071549 

501149
9 

501149
9 - 

501149
9 

46R_Month6_21_S1
126 0 + 0 part 5011504 5066512 

501150
4 

501150
4 - 

501150
4 

46R_Month6_22_S1
134 0 + 0 part 4565292 5410343 

456529
2 

456529
2 - 

456529
2 

46R_Month6_23_S1
142 0 + 0 part 4540774 5186124 - 

454077
4 - 

454077
4 

46R_Month6_24_S1
15 0 + 0 part 4409841 5067019 - 

440984
1 - 

440984
1 
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A.D.2.S2. Native isolates that did not pass quality control. Continued 
 

sample-id LA50 LGA50 LA75 LGA75 ID status 

41LL_Month3_6_
S1469 

1 - 2 - scratch2/AZ51_assemblies/
41LL_Month3_6_S1469.fast
a 

nomatch 

41L_Month3_19_
S1476 

15 - 31 - scratch2/AZ51_assemblies/
41L_Month3_19_S1476.fast
a 

nomatch 

41L_Month3_20_
S1484 

89 203 197 - scratch2/AZ51_assemblies/
41L_Month3_20_S1484.fast
a 

found 

42L_Month3_22_
S1598 

107 285 228 - scratch2/AZ51_assemblies/
42L_Month3_22_S1598.fast
a 

found 

42R_Month3_22_
S16 

327 396 661 845 scratch2/AZ51_assemblies/
42R_Month3_22_S16.fasta 

found 

42R_Month3_6_S
1567 

534 1451 996 - scratch2/AZ51_assemblies/
42R_Month3_6_S1567.fast
a 

found 

43B_Month6_15_
S984 

8 3 - 6 scratch2/AZ51_assemblies/
43B_Month6_15_S984.fast
a 

disagree 

43R_Month6_18_
S1006 

- 8 - 15 scratch2/AZ51_assemblies/
43R_Month6_18_S1006.fas
ta 

disagree 

44B_Month6_22_
S1792 

502 1115 948 - scratch2/AZ51_assemblies/
44B_Month6_22_S1792.fas
ta 

found 

44N_Month1_11_
S189 

195 259 483 681 scratch2/AZ51_assemblies/
44N_Month1_11_S189.fast
a 

found 

44R_Month6_7_S
1765 

316 423 663 960 scratch2/AZ51_assemblies/
44R_Month6_7_S1765.fast
a 

found 

45L_Day7_11_S1
411 

185 212 388 462 scratch2/AZ51_assemblies/
45L_Day7_11_S1411.fasta 

found 

45L_Month3_2_S
1627 

- - - - scratch2/AZ51_assemblies/
45L_Month3_2_S1627.fasta 

found 

45L_Month3_4_S
164 

- - - - scratch2/AZ51_assemblies/
45L_Month3_4_S164.fasta 

found 

45L_Month3_6_S
1659 

- - - - scratch2/AZ51_assemblies/
45L_Month3_6_S1659.fasta 

found 

45N_Month3_13_
S1618 

- - - - scratch2/AZ51_assemblies/
45N_Month3_13_S1618.fas
ta 

found 

45N_Month3_14_
S1626 

- - - - scratch2/AZ51_assemblies/
45N_Month3_14_S1626.fas
ta 

found 
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A.D.2.S2. Native isolates that did not pass quality control. Continued 
 
sample-id LA50 LGA50 LA75 LGA75 ID status 

45N_Month3_16_
S1642 

- - - - scratch2/AZ51_assemblies/
45N_Month3_16_S1642.fas
ta 

found 

45N_Month3_17_
S165 

- - - - scratch2/AZ51_assemblies/
45N_Month3_17_S165.fast
a 

found 

45N_Month3_20_
S1674 

452 728 901 - scratch2/AZ51_assemblies/
45N_Month3_20_S1674.fas
ta 

found 

45N_Month3_7_S
1665 

467 1367 889 - scratch2/AZ51_assemblies/
45N_Month3_7_S1665.fast
a 

found 

46L_Day7_10_S3
61_L002 

- - - - scratch2/AZ51_assemblies/
46L_Day7_10_S361_L002.f
asta 

found 

46L_Day7_15_S3
06_L002 

- - - - scratch2/AZ51_assemblies/
46L_Day7_15_S306_L002.f
asta 

found 

46L_Day7_18_S3
30_L002 

- - - - scratch2/AZ51_assemblies/
46L_Day7_18_S330_L002.f
asta 

found 

46L_Day7_4_S31
3_L002 

- - - - scratch2/AZ51_assemblies/
46L_Day7_4_S313_L002.fa
sta 

found 

46L_Day7_7_S33
7_L002 

- - - - scratch2/AZ51_assemblies/
46L_Day7_7_S337_L002.fa
sta 

found 

46L_Month6_15_
S1076 

- 2 - 2 scratch2/AZ51_assemblies/
46L_Month6_15_S1076.fast
a 

disagree 

46L_Month6_16_
S1084 

- 252 - 560 scratch2/AZ51_assemblies/
46L_Month6_16_S1084.fast
a 

disagree 

46L_Month6_21_
S1124 

12 10 26 21 scratch2/AZ51_assemblies/
46L_Month6_21_S1124.fast
a 

disagree 

46L_Month6_2_S
1067 

- 9 - 19 scratch2/AZ51_assemblies/
46L_Month6_2_S1067.fasta 

disagree 

46L_Month6_6_S
1099 

- - - - scratch2/AZ51_assemblies/
46L_Month6_6_S1099.fasta 

found 

46N_Month6_14_
S1066 

- 1 - 1 scratch2/AZ51_assemblies/
46N_Month6_14_S1066.fas
ta 

disagree 

46N_Month6_15_
S1074 

- 2 - 3 scratch2/AZ51_assemblies/
46N_Month6_15_S1074.fas
ta 

disagree 
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A.D.2.S2. Native isolates that did not pass quality control. Continued 
 
sample-id LA50 LGA50 LA75 LGA75 ID status 

46N_Month6_19_
S1106 

1 1 1 1 scratch2/AZ51_assemblies/
46N_Month6_19_S1106.fas
ta 

disagree 

46R_Day7_10_S3
63_L002 

- - - - scratch2/AZ51_assemblies/
46R_Day7_10_S363_L002.
fasta 

found 

46R_Day7_15_S3
08_L002 

- - - - scratch2/AZ51_assemblies/
46R_Day7_15_S308_L002.
fasta 

found 

46R_Day7_3_S30
7_L002 

- - - - scratch2/AZ51_assemblies/
46R_Day7_3_S307_L002.f
asta 

found 

46R_Day7_5_S32
3_L002 

- - - - scratch2/AZ51_assemblies/
46R_Day7_5_S323_L002.f
asta 

found 

46R_Day7_6_S33
1_L002 

- - - - scratch2/AZ51_assemblies/
46R_Day7_6_S331_L002.f
asta 

found 

46R_Month6_13_
S1062 

1 1 - 1 scratch2/AZ51_assemblies/
46R_Month6_13_S1062.fas
ta 

disagree 

46R_Month6_14_
S107 

1 1 - 1 scratch2/AZ51_assemblies/
46R_Month6_14_S107.fast
a 

disagree 

46R_Month6_15_
S1078 

1 1 - 1 scratch2/AZ51_assemblies/
46R_Month6_15_S1078.fas
ta 

disagree 

46R_Month6_16_
S1086 

1 1 - 1 scratch2/AZ51_assemblies/
46R_Month6_16_S1086.fas
ta 

disagree 

46R_Month6_17_
S1094 

1 1 2 1 scratch2/AZ51_assemblies/
46R_Month6_17_S1094.fas
ta 

disagree 

46R_Month6_18_
S1102 

- 5 - 8 scratch2/AZ51_assemblies/
46R_Month6_18_S1102.fas
ta 

disagree 

46R_Month6_19_
S111 

- 1 - 2 scratch2/AZ51_assemblies/
46R_Month6_19_S111.fast
a 

disagree 

46R_Month6_20_
S1118 

1 1 - 1 scratch2/AZ51_assemblies/
46R_Month6_20_S1118.fas
ta 

disagree 

46R_Month6_21_
S1126 

1 1 - 1 scratch2/AZ51_assemblies/
46R_Month6_21_S1126.fas
ta 

disagree 
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A.D.2.S2. Native isolates that did not pass quality control. Continued 
 
sample-id LA50 LGA50 LA75 LGA75 ID status 

46R_Month6_22_
S1134 

1 1 - 1 scratch2/AZ51_assemblies/
46R_Month6_22_S1134.fas
ta 

disagree 

46R_Month6_23_
S1142 

- 1 - 1 scratch2/AZ51_assemblies/
46R_Month6_23_S1142.fas
ta 

disagree 

46R_Month6_24_
S115 

- 1 - 1 scratch2/AZ51_assemblies/
46R_Month6_24_S115.fast
a 

disagree 
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A.D.2.S2. Native isolates that did not pass quality control. Continued 
 
sample-id superkingdom phylum class order 
41LL_Month3_6_
S1469 

    

41L_Month3_19_
S1476 

    

41L_Month3_20_
S1484 

Bacteria Proteobacteria Gammaproteobacteria Enterobacterales 

42L_Month3_22_
S1598 

Bacteria Proteobacteria Gammaproteobacteria Enterobacterales 

42R_Month3_22
_S16 

Bacteria Proteobacteria Gammaproteobacteria Enterobacterales 

42R_Month3_6_
S1567 

Bacteria Proteobacteria Gammaproteobacteria Enterobacterales 

43B_Month6_15
_S984 

Bacteria Proteobacteria Gammaproteobacteria 

43R_Month6_18
_S1006 

Bacteria Proteobacteria Gammaproteobacteria 

44B_Month6_22
_S1792 

Bacteria Proteobacteria Gammaproteobacteria Enterobacterales 

44N_Month1_11
_S189 

Bacteria Proteobacteria Gammaproteobacteria Enterobacterales 

44R_Month6_7_
S1765 

Bacteria Proteobacteria Gammaproteobacteria Enterobacterales 

45L_Day7_11_S
1411 

Bacteria Proteobacteria Gammaproteobacteria Enterobacterales 

45L_Month3_2_
S1627 

Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales 

45L_Month3_4_
S164 

Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales 

45L_Month3_6_
S1659 

Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales 

45N_Month3_13
_S1618 

Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales 

45N_Month3_14
_S1626 

Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales 

45N_Month3_16
_S1642 

Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales 

45N_Month3_17
_S165 

Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales 

45N_Month3_20
_S1674 

Bacteria Proteobacteria Gammaproteobacteria Enterobacterales 

45N_Month3_7_
S1665 

Bacteria Proteobacteria Gammaproteobacteria Enterobacterales 

46L_Day7_10_S
361_L002 

Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales 

46L_Day7_15_S
306_L002 

Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales 
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A.D.2.S2. Native isolates that did not pass quality control. Continued 
 
sample-id superkingdom phylum class order 
46L_Day7_18_S
330_L002 

Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales 

46L_Day7_4_S3
13_L002 

Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales 

46L_Day7_7_S3
37_L002 

Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales 

46L_Month6_15_
S1076 

Bacteria Proteobacteria Gammaproteobacteria 

46L_Month6_16_
S1084 

Bacteria Proteobacteria Gammaproteobacteria 

46L_Month6_21_
S1124 

Bacteria Proteobacteria Gammaproteobacteria 

46L_Month6_2_
S1067 

Bacteria Proteobacteria Gammaproteobacteria 

46L_Month6_6_
S1099 

Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales 

46N_Month6_14
_S1066 

Bacteria Proteobacteria Gammaproteobacteria 

46N_Month6_15
_S1074 

Bacteria Proteobacteria Gammaproteobacteria 

46N_Month6_19
_S1106 

Bacteria Proteobacteria Gammaproteobacteria 

46R_Day7_10_S
363_L002 

Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales 

46R_Day7_15_S
308_L002 

Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales 

46R_Day7_3_S3
07_L002 

Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales 

46R_Day7_5_S3
23_L002 

Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales 

46R_Day7_6_S3
31_L002 

Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales 

46R_Month6_13
_S1062 

Bacteria Proteobacteria Gammaproteobacteria 

46R_Month6_14
_S107 

Bacteria Proteobacteria Gammaproteobacteria 

46R_Month6_15
_S1078 

Bacteria Proteobacteria Gammaproteobacteria 

46R_Month6_16
_S1086 

Bacteria Proteobacteria Gammaproteobacteria 

46R_Month6_17
_S1094 

Bacteria Proteobacteria Gammaproteobacteria 

46R_Month6_18
_S1102 

Bacteria Proteobacteria Gammaproteobacteria 

46R_Month6_19
_S111 

Bacteria Proteobacteria Gammaproteobacteria 
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A.D.2.S2. Native isolates that did not pass quality control. Continued 
 
sample-id superkingdom phylum class order 
46R_Month6_20
_S1118 

Bacteria Proteobacteria Gammaproteobacteria 

46R_Month6_21
_S1126 

Bacteria Proteobacteria Gammaproteobacteria 

46R_Month6_22
_S1134 

Bacteria Proteobacteria Gammaproteobacteria 

46R_Month6_23
_S1142 

Bacteria Proteobacteria Gammaproteobacteria 

46R_Month6_24
_S115 

Bacteria Proteobacteria Gammaproteobacteria 
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A.D.2.S2. Native isolates that did not pass quality control. Continued 
 
sample-id family genus short-id long-sample-id 
41LL_Month3_6_
S1469 

  
41LL_Month3
_6 

41LL_Month3_6_S14
69 

41L_Month3_19_
S1476 

  
41L_Month3_
19 

41L_Month3_19_S14
76 

41L_Month3_20_
S1484 

Enterobacteriaceae Escherichia 41L_Month3_
20 

41L_Month3_20_S14
84 

42L_Month3_22_
S1598 

Enterobacteriaceae Escherichia 42L_Month3_
22 

42L_Month3_22_S15
98 

42R_Month3_22_
S16 

Enterobacteriaceae Escherichia 42R_Month3_
22 

42R_Month3_22_S1
6 

42R_Month3_6_S
1567 

Enterobacteriaceae Escherichia 42R_Month3_
6 

42R_Month3_6_S15
67 

43B_Month6_15_
S984 

  
43B_Month6_
15 

43B_Month6_15_S9
84 

43R_Month6_18_
S1006 

  
43R_Month6_
18 

43R_Month6_18_S1
006 

44B_Month6_22_
S1792 

Enterobacteriaceae Escherichia 44B_Month6_
22 

44B_Month6_22_S1
792 

44N_Month1_11_
S189 

Enterobacteriaceae Escherichia 44N_Month1_
11 

44N_Month1_11_S1
89 

44R_Month6_7_S
1765 

Enterobacteriaceae Escherichia 44R_Month6_
7 

44R_Month6_7_S17
65 

45L_Day7_11_S1
411 

Enterobacteriaceae Escherichia 45L_Day7_11 45L_Day7_11_S141
1 

45L_Month3_2_S
1627 

Pseudomonadaceae Pseudomonas 45L_Month3_
2 

45L_Month3_2_S162
7 

45L_Month3_4_S
164 

Pseudomonadaceae Pseudomonas 45L_Month3_
4 

45L_Month3_4_S164 

45L_Month3_6_S
1659 

Pseudomonadaceae Pseudomonas 45L_Month3_
6 

45L_Month3_6_S165
9 

45N_Month3_13_
S1618 

Pseudomonadaceae Pseudomonas 45N_Month3_
13 

45N_Month3_13_S1
618 

45N_Month3_14_
S1626 

Pseudomonadaceae Pseudomonas 45N_Month3_
14 

45N_Month3_14_S1
626 

45N_Month3_16_
S1642 

Pseudomonadaceae Pseudomonas 45N_Month3_
16 

45N_Month3_16_S1
642 

45N_Month3_17_
S165 

Pseudomonadaceae Pseudomonas 45N_Month3_
17 

45N_Month3_17_S1
65 

45N_Month3_20_
S1674 

Enterobacteriaceae Escherichia 45N_Month3_
20 

45N_Month3_20_S1
674 

45N_Month3_7_S
1665 

Enterobacteriaceae Escherichia 45N_Month3_
7 

45N_Month3_7_S16
65 

46L_Day7_10_S3
61_L002 

Pseudomonadaceae Pseudomonas 46L_Day7_10 46L_Day7_10_S361 

46L_Day7_15_S3
06_L002 

Pseudomonadaceae Pseudomonas 46L_Day7_15 46L_Day7_15_S306 
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A.D.2.S2. Native isolates that did not pass quality control. Continued 
 
sample-id family genus short-id long-sample-id 
46L_Day7_18_S3
30_L002 

Pseudomonadaceae Pseudomonas 46L_Day7_18 46L_Day7_18_S330 

46L_Day7_4_S31
3_L002 

Pseudomonadaceae Pseudomonas 46L_Day7_4 46L_Day7_4_S313 

46L_Day7_7_S33
7_L002 

Pseudomonadaceae Pseudomonas 46L_Day7_7 46L_Day7_7_S337 

46L_Month6_15_
S1076 

  
46L_Month6_
15 

46L_Month6_15_S10
76 

46L_Month6_16_
S1084 

  
46L_Month6_
16 

46L_Month6_16_S10
84 

46L_Month6_21_
S1124 

  
46L_Month6_
21 

46L_Month6_21_S11
24 

46L_Month6_2_S
1067 

  
46L_Month6_
2 

46L_Month6_2_S106
7 

46L_Month6_6_S
1099 

Pseudomonadaceae Pseudomonas 46L_Month6_
6 

46L_Month6_6_S109
9 

46N_Month6_14_
S1066 

  
46N_Month6_
14 

46N_Month6_14_S1
066 

46N_Month6_15_
S1074 

  
46N_Month6_
15 

46N_Month6_15_S1
074 

46N_Month6_19_
S1106 

  
46N_Month6_
19 

46N_Month6_19_S1
106 

46R_Day7_10_S
363_L002 

Pseudomonadaceae Pseudomonas 46R_Day7_10 46R_Day7_10_S363 

46R_Day7_15_S
308_L002 

Pseudomonadaceae Pseudomonas 46R_Day7_15 46R_Day7_15_S308 

46R_Day7_3_S3
07_L002 

Pseudomonadaceae Pseudomonas 46R_Day7_3 46R_Day7_3_S307 

46R_Day7_5_S3
23_L002 

Pseudomonadaceae Pseudomonas 46R_Day7_5 46R_Day7_5_S323 

46R_Day7_6_S3
31_L002 

Pseudomonadaceae Pseudomonas 46R_Day7_6 46R_Day7_6_S331 

46R_Month6_13_
S1062 

  
46R_Month6_
13 

46R_Month6_13_S1
062 

46R_Month6_14_
S107 

  
46R_Month6_
14 

46R_Month6_14_S1
07 

46R_Month6_15_
S1078 

  
46R_Month6_
15 

46R_Month6_15_S1
078 

46R_Month6_16_
S1086 

  
46R_Month6_
16 

46R_Month6_16_S1
086 

46R_Month6_17_
S1094 

  
46R_Month6_
17 

46R_Month6_17_S1
094 

46R_Month6_18_
S1102 

  
46R_Month6_
18 

46R_Month6_18_S1
102 

46R_Month6_19_
S111 

  
46R_Month6_
19 

46R_Month6_19_S1
11 
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A.D.2.S2. Native isolates that did not pass quality control. Continued 
 
sample-id family genus short-id long-sample-id 
46R_Month6_20_
S1118 

  
46R_Month6_
20 

46R_Month6_20_S1
118 

46R_Month6_21_
S1126 

  
46R_Month6_
21 

46R_Month6_21_S1
126 

46R_Month6_22_
S1134 

  
46R_Month6_
22 

46R_Month6_22_S1
134 

46R_Month6_23_
S1142 

  
46R_Month6_
23 

46R_Month6_23_S1
142 

46R_Month6_24_
S115 

  
46R_Month6_
24 

46R_Month6_24_S1
15 

 




