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Abstract

Active cellular mechanics and its consequences for animal development

by

Nicholas B. Noll

A central goal of developmental biology is to understand how an organism shapes

itself, a process referred to as morphogenesis. While the molecular components critical

to determining the initial body plan have been well characterized, the control of the sub-

sequent dynamics of cellular rearrangements which ultimately shape the organism are

far less understood. A major roadblock to a more complete picture of morphogenesis is

the inability to measure tissue-scale mechanics throughout development and thus answer

fundamental questions: How is the mechanical state of the cell regulated by local pro-

tein expression and global pattering? In what way does stress feedback onto the larger

developmental program?

In this dissertation, we begin to approach these questions through the introduction

and analysis of a multi-scale model of epithelial mechanics which explicitly connects cy-

toskeletal protein activity to tissue-level stress. In Chapter 2, we introduce the discrete

Active Tension Network (ATN) model of cellular mechanics. ATNs are tissues that satisfy

two primary assumptions: that the mechanical balance of cells is dominated by cortical

tension and that myosin actively remodels the actin cytoskeleton in a stress-dependent
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manner. Remarkably, the interplay of these features allows for angle-preserving, i.e.

‘isogonal’, dilations or contractions of local cell geometry that do not generate stress.

Asymptotically this model is stabilized provided there is mechanical feedback on expres-

sion of myosin within the cell; we take this to be a strong prediction to be tested.

The ATN model exposes a fundamental connection between equilibrium cell geometry

and its underlying force network. In Chapter 3, we relax the tension-net approximation

and demonstrate that at equilibrium, epithelial tissues with non-uniform pressure have

non-trivial geometric constraints that imply the network is described by a weighted ‘dual’

triangulation. We show that the dual triangulation encodes all information about the

mechanical state of an epithelial tissue. Utilizing the stress-geometry duality, we formu-

late a local “Mechanical Inference” of cellular-level stress using solely cell geometry that

dramatically improves over past image-based inference techniques.

In Chapter 4, we generalize the ATN model to explore the controlled re-arrangement

of cells within epithelial tissues. This requires us to explicitly consider the effects of

cadherin mediated adhesion, and its regulation, on tissue morphogenesis. We find that

positive feedback between myosin and cortical tension, along with traction-dependent de-

pletion of cytoskeletal cadherin is sufficient to recapitulate the morphogenetic movement

of cells observed during convergent extension of the lateral ectoderm during Drosophila

embryogenesis. Statistical analyses of live-imaging data supports the fundamentals of

the model.

Chapter 5 focuses on morphogenesis at a mesoscopic scale by coarse-graining the
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cellular ATN model. Under this limit, we expect an epithelial tissue should behave as

an effective viscous, compressible fluid driven by myosin gradients on intermediate time-

scales. Theoretical predictions are empirically tested against in-toto microscopy data

obtained during early Drosophila embryogenesis.
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Chapter 1

A physicist’s introduction to

developmental biology

The embryo exists between the fertilization of a single-celled egg, which bears no morpho-

logical resemblance to the final animal, and the eventual birth of the assembled organism.

As such, the embryo bridges heredity and physical form, translating discrete genetic in-

formation into the development of shape in both space and time, a process known as

morphogenesis. Development of the embryo into a complex organism requires precise

spatio-temporal patterns of gene expression, cell growth, differentiation and cellular re-

arrangements. Developmental biology thus synthesizes many of the relevant scales of life;

a complete understanding of the developmental program must connect gene regulation

to the cellular-level processes that ultimately control the collective shaping of tissues.

From the physicist’s perspective, classical mechanics provides the natural language
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for the causal driver of the dynamics of morphogenesis. Cells move and reorganize only

when subject to an applied net force. For this reason, the precise orchestration of cellular

rearrangements, growth and divisions must be regulated by a precise stress field. This

sentiment is, of course, not new – it dates back to D’Arcy Thompson’s seminal work in

1917, entitled On Growth and Form [167]. Despite its purely descriptive nature, Thomp-

son’s book provides a compelling and exhaustive case for the central thesis: biological

form is a direct consequence of physical processes and mechanical forces. As succinctly

summarized by Thompson himself, “the form of a [biological] object is a diagram of

forces ... [such] that from it we can deduce the forces that are acting or have acted upon

it.” [167] Refinement of Thompson’s ideas into predictive models was largely impeded

by the complete lack of experimental data and empirical knowledge of underlying cell

biology, however the book served as an influential narrative for the successive generations

of scientists on the interface of Physics and Biology [19].

Despite steady advances in knowledge of fundamental biology since Thompson’s pub-

lication, developmental biologists have had limited success in fulfilling his vision of quan-

titatively modeling organisimal development as a physical process. We pause to raise an

enlightening question: Why has it taken so long?

Developmental biology has certainly not been idle. Following the dominating revo-

lution of molecular biology through the 20th century, much of the field has focused on

the biochemical aspects of development. Contrary to Thompson’s ‘diagrams of forces’,

embryos were described in the opposite limit, as passive substrates of chemical reactions
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between genes and gene products. The molecular worldview coalesced into a distinct

thesis of ‘chemical embryology’ [121]: emergent genetic patterns dictate the fate of cells

and ultimately cell morphology.

The mathematical framework of ‘chemical embryology’, was best formulated within

Alan Turing’s pioneering work The Chemical Basis of Morphogenesis, published in 1952

[169]. The paper outlined a simple core idea - the patterns observed within biological

tissues can emerge spontaneously from underlying simple chemical reactions of diffusing

molecules. Specifically, Turing showed that a kinetic equation which involves a fast-

diffusing inhibitory molecule interacting with a slow-diffusing self-activator will generi-

cally generate a tunable, spatially periodic pattern from a homogeneous initial state [169].

He coined such molecules morphogens. Turing’s work turned out to be prescient; it is

now well-established that multicellular organisms use a myriad of morphogens to spa-

tially pattern cell identity and differentiation within developing tissues [149, 66]. Beyond

Turing’s original proposed mechanism, morphogen gradients have further been shown to

provide critical positional information - i.e. allowing cells to quantitatively know their

location relative to the source by measuring concentration [183]. In short, Turing defined

the questions that would prove central to developmental biology in the age of molecu-

lar genetics: what are the morphogens controlling each tissue’s shape and how are they

spatially patterned?

Just a year after the publication of The Chemical Basis of Morphogenesis, Watson

and Crick discovered the structure of DNA, establishing the framework of modern molec-
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ular biology [178]. In the following decade, the relationship between DNA, RNA, and

proteins would be cemented into the central dogma of biology and thus fueled the re-

ductionist’s vision that genes are the blueprints to life. Furthermore, the discovery of

the lac operon in E. coli made clear that such genes can be controlled spatio-temporally

by the cell [84]. Taken together, it was evident that the theoretical morphogens thought

to orchestrate the pattern and sequence of embryonic development through induction

of cell fate corresponded to regulated genes and their associated proteins. The task at

hand for developmental biologists was conceptually clear yet experimentally daunting;

one must enumerate the complete list of genes responsible for each developmental pro-

cess through phenotypic assays of genetic knockout mutants (embryos whose genotype

have a defunct individual gene relative to normal, commonly referred to as wildtype)

[180]. In 1979, Christiane Nüsslein-Volhard and Eric Wieschaus launched a monumental

mutagenesis screen, commonly referred to as the Heidelberg screens due to the location

of the experiment, in Drosophila melangastor embryos which culminated in a list of 140

genes responsible for distinct developmental phenotypes visibly manifest on the level of

the larval cuticle. [129]. For example, Nüsslein-Volhard and Wieschaus elucidated the

hierarchy of genes responsible for anterior-posterior (head-tail) patterning and segmen-

tation. Through subsequent maternal screens, the diffusible transcription factor bicoid,

was found to be maternally deposited at the anterior pole in order provide quantita-

tive positional information for cells regarding their location along the anterior-posterior

axis [128]. This was the first example of a morphogen found in-vivo [48]. The gradient
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provided by bicoid defines the ‘head’ region of the embryo and is sequentially processed

through the hierarchy of genes found in the original screens; broad expression of the

‘gap genes’ is refined into the fine expression of 14 segment forming ‘pair-rule’ genes that

further subdivide into ‘segment-polarity’ genes. Mutation of any gene in this hierarchy

will lead to loss of the corresponding segment in the larvae. For example, deletion of the

pair-rule gene even-skipped will lead to loss of every other larval denticle [129].

The success of the Heidelberg screens influenced embryologists to produce intricate,

detailed lists of molecules and their corresponding regulation of particular embryonic

phenotypes [60, 87]. The description was largely binary, constrained to the realm of

morphology with and without the presence of each gene. While sufficient for describing

dramatic phenotypes, such as complete loss of certain segments associated to loss of the

homeotic genes, many more subtle phenotypes proved hard to assess [180]. As a result,

one could only say this particular gene is important for this particular developmental

process at this particular region and time, but the causal influence of the gene in directing

form and shape remained opaque.

Modern developmental biology is undergoing a quantitative revolution spurred by

the development of genetically encoded fluorescence markers such as the green-florescent

protein (GFP) [158, 138] and its derivatives that, upon transgenic implantation into a

targeted gene of interest, allow one to optically measure the expressed concentration of a

protein within live cells with a fluorescent microscope [28]. Coupled with a sophisticated

genetic toolbox developed over the last century which allows complete editing control
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over entire genomes [110], researchers now have unprecedented observational power over

genotypes and the resultant developmental dynamics of embryos. Furthermore, the cur-

rent development of optogenetics holds promise of allowing scientists to ‘paint’ their own

de-novo gene expression patterns [43].

Despite the explosion of live-imaging data capturing the dynamics of in-vivo devel-

opment, there still remains a dearth of mechanistic, predictive models of development

that couple cellular activity and biochemical patterns to the resultant physical forms of

organisms [130, 40]. Central to this limitation is that, despite the fact that we know

mechanics is directly causal in shaping collections of cells into functional units and we

have exhaustive lists of putative molecular determinants of phenotypes, there remains no

quantitative model for the distribution of forces, its regulation by morphogen signaling,

and potential feedbacks onto gene expression within biological matter that is directly sup-

ported by experimental evidence [115, 184]. Basic questions regarding tissue mechanics,

the constitutive relationship between stress and strain in living cells, and how connected

tissues undergoing different morphological transitions mechanically interact with each

other still remain unanswered.

It is time to revisit D’Arcy Thompson’s vision of biological form as manifestly equiv-

alent to a ‘diagram of forces’ [167], however grounded within the research of molecular

embryology of the past century. Can we begin to tease apart general principles of the

interplay between the biochemical signaling within the cell, its emergent mechanical prop-

erties, and the resulting force field of the tissue? We are currently entering an important
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era of synthesis within developmental biology which must merge the complementary mod-

els of biochemical and biophysical embryology into a predictive and quantitative science.

In this dissertation, we aim to model the simultaneous control of mechanics, shape, and

cell fate by biochemical expression. Starting from a simplified picture of cell biology, we

deduce a phenomenological model of cellular mechanics that allows us to bridge the gap

between molecules and tissues. While we are not the first to approach morphogenesis

from this angle, as will be discussed in detail below, we are the first to explicitly model

the relationship between cytoskeletal protein activity and cellular-level stress. This al-

lows us to not only literally derive the ‘diagram of forces’ and cell morphology from just

patterns of expressed proteins but we also obtain quantitative predictions that are im-

mediately falsifiable against live-imaging data. We firmly believe that refinement of such

phenomenological models against empirical data is the best way to uncover the general

principles of development.

We must confront the major epistemological issue raised above. Is it reasonable to

suspect that the embryonic development of evolutionarily diverged organisms across the

tree of life can be described by a simple set of general principles? With the apparent com-

plexity of living systems, it may seem that theoretical physicists entering developmental

biology are constrained to formulate patchwork phenomenological models of individual

developmental processes, an elaborate form of ‘stamp collecting’ [35]. One hopes that,

since embryos act as the map between genotype and phenotype, development must have

simple principles that evolution can easily access and tune. The myriad of cases exhibit-
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ing convergent evolution of organismal form, despite massively divergent evolutionary

paths, tenuously corroborates this belief [160]. Furthermore, developmental processes

seem to be strongly conserved across organisms [150].

Experience from many-body physics instructs us that universality can emerge from

the complex interactions of many particles, cells in our present case. This sentiment was

marvelously espoused by Phil Anderson in More is Different [5], in which he states, “the

behavior of large and complex aggregates of elementary particles, it turns out, is not to

be understood in terms of a simple extrapolation of the properties of a few particles.

Instead, at each level of complexity entirely new properties emerge... entirely new laws,

concepts, and generalizations are necessary.” The patterns that emerge from extensive

‘stamp collecting’ can lead to universal laws. Tycho Brahe was unaware of the classical

law of gravitation despite his meticulous documentation of stellar and planetary orbits

[166]. Sadi Carnot was oblivious to the profound connections between the 2nd Law

of Thermodynamics and his derived constraint on the efficiency of heat engines [25].

In many additional cases throughout history, phenomena were humbly modeled long

before the underlying general principles were clarified. We take this as inspiration for

the work to follow. The purpose of this dissertation is not to outline the “Grand Unified

Theory of Development”, but rather take a critical first step towards discovering it via

the formulation of predictive toy models validated by empirical data.

In the next section, we present the microscopic architecture of cellular organizations.

As alluded to above, we can’t simply understand the mechanics of biological matter by
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understanding the mechanics within a single cell: we must consider how cells mechanically

interact with their immediate environment and thus each other. After introducing the cell

biology relevant to the model proposed within the thesis, we review previous models of

cellular mechanics and discuss their successes and limitations. Lastly, we outline various

state-of-the-art stress assays that can be used to probe predictions of the model.

1.1 Epithelial tissues are a building block of life

Mesenchymal Tissue Epithelial Tissue

Extracellular Matrix  Nucleus

Apical Cytoskeleton

Basal Lamina

Figure 1.1: Cartoon representations of both mesenchymal and epithelial tissues. Mes-
enchymal cells, shown on the left, exhibit strong adhesion to the extracellular matrix
(ECM), a rigid network of secreted proteins shown in black, but weak intercellular con-
nectivity. As a result, mesenchymal cells crawl along the substrate, exhibiting fluid-like
behavior. Conversely, epithelial cells form confluent sheets due to strong intercellular
adhesion mediated by transmembrane proteins. Epithelial cells adhere weakly to the
ECM, strictly at their basal (interior) side. Taken together, epithelial cells exhibit strong
apico-basal polarity.

Cells organize into two principal tissue types within developing embryos, the mes-

enchyme and the epithelia [86, 168, 9], delineated primarily by the adhesive interactions

between the cell, it’s neighbors, and the extracellular matrix (ECM), a rigid structure of

secreted proteins that provide supports and structure to the embedded cells [58]. In par-
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ticular, mesenchymal cells exhibit little adhesion to neighboring cells and consequently

form a loose aggregate of cells that migrate rapidly along the dense ECM [134]. Cell

motility can be directed by either chemical or mechanical gradients. Mesenchymal cells

exhibit rapid turnover of proteins allowing for rapid cell shape changes. As such, mes-

enchymal cells are often found in the adult connective tissue [3].

Conversely, epithelia are sheets of strongly connected cells, with a well defined apical

and basal side facing away from and towards the body respectively [177, 100]. In a sense,

epithelial tissues act much closer to physical solids relative to the mesenchyme and must

actively reorganize cellular contacts to remodel its collective shape [99]. Epithelial cells

are strongly apico-basal polarized; cells transmit forces to neighboring cells apically and

attach to the sparse ECM basally [68]. Epithelia protectively line all surfaces and cavities

within the adult body, acting as an effective barrier due to strong cell cohesion, and thus

ubiquitously undergo dramatic shape transformations during morphogenesis [3]. For the

remainder of this dissertation, we focus exclusively on the mechanics of epithelial tissues

and thus turn our attention to a simplified introduction of the biochemical components

critical to the mechanical integrity of an epithelium. It is important to note, the under-

lying system is vastly more complicated than the presentation below suggests, with an

entire zoo of supporting proteins that aid in the structural network of the epithelial cell.

In lieu of complexity, we seek to describe what we believe to be the minimal components

that adequately capture the underlying cell biology.

The majority of epithelial tissue stress is generated and carried within the cell’s actin
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cytoskeleton, an organized scaffolding of filamentous proteins localized to the apical cor-

tex implicated as the primary driver of cell shape transformations, migration, and mitotic

cleavage [100]. Actin is among the most prevalent, highly conserved, intracellular pro-

teins within eukaryotic cells [47]. It exists in two primary forms: as a globular monomer

known as G-actin and a filamentous polymer, called F-actin, that is constructed from

a linear, helical chain of G-actin units. F-actin is polar, owing to the fact that each

actin monomer orients along the anisotropic direction [76]. The end with an exposed

ATP (Adenine triphosphate, commonly referred to as the unit of energy currency used

ubiquitously by the cell [3]) binding side is referred to as the (-) end. The other is conve-

niently called the (+) end. Actin filaments are incredibly stiff with a measured Young’s

modulus of approximately 2.6 GPa, roughly a factor of 10 higher than that of the average

eukaryotic cell [61]! In other words, the rigidity of actin is entirely sufficient to explain

the mechanical integrity of the cell but is too stiff to explain the cellular deformations

observed during morphogenesis relative to the known scale of active forces generated [55].

The compliance of cells thus comes from the higher level of organization seen in the cell’s

cytoskeleton.

The actin cytoskeleton is constructed from parallel, closely packed bundles of F-actin

filaments found at the apical periphery of the cell; the observed deformation of cells

is due to relative reorganization of these compliant bundles [59]. In other words, the

overall deformation of cells is due to the sliding of actin filaments relative to each other,

rather than deformation of an individual filament itself. This is dramatically seen in
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the dynamic organization of the actin cytoskeleton which drives cell migration [135].

As such, the relevant mechanical component to the cell is the entire network of F-actin

bundles [55]. Internally, F-actin bundles are cross-linked by many proteins, each of

which intricately regulates the dimensions, architecture and mechanical properties of the

resultant composite structure [33]. For example, Fimbrin is a small actin crosslinker that

forms tightly connected, stiff bundles in contrast to the much larger protein α-actinin

that results in loose bundles found concentrated in stress fibers as it allows for contractile

elements [3]. While we will not concern ourselves with intimate molecular details in this

dissertation, it is important to note this is an example of the effect of microscopic cellular

activity affecting tissue-scale mechanics; cells can dynamically regulate their stiffness!

The cytoskeleton is connected to the plasma membrane, allowing for autonomous control

over cell shape.

One of the most important actin binding proteins is a molecular motor known as

myosin, which utilizes the energy obtained from repeated cycles of ATP hydrolysis to

unidirectionally walk along F-actin [101]. While myosins constitute a superfamily of

proteins implicated in many cellular functions ranging from vesicle transport to pho-

totransduction [71], we will limit our discussion to the actin-crosslinking protein class

ubiquitous in generating cellular contractility, myosin II. The structure of myosin II con-

sists of what is known as two heavy chains that each contain the head and tail molecular

domains. The head domain binds to F-actin while the tail domains wrap around each

other in a coiled-coil morphology. As such, myosin II has two head domains allowing it
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to cross-link F-actin within a cytoskeletal bundle [171]. Each head domain contains an

ATP binding site that is allosterically activated once bound to actin [3]. The resultant

chemical energy obtained from the bound ATP is converted into forward movement to-

wards the (+) end of F-actin [170]. Provided each head is bound to filaments of opposite

orientations, the net result of both heads’ activity will work to slide each filament past

each other. The relative displacement of fibers within a bundle pulls on the compliant

actin cross-linking proteins such as α-actinin, resulting in a self-tensed network [147].

Myosin II thus generates active contraction of the actin bundle through the generation of

internal strain. This is most dramatically seen in in-vitro experiments where actin and

myosin gels contract to a point under free boundary conditions [13]. Hereafter, we refer

to the entire ‘active’ complex as an actomyosin bundle.

Importantly, myosin II exhibits a load-dependent walking rate, beautifully observed in

single molecule experiments [92, 127]. Via an optical trap, the walking kinetics of a single

myosin II motor was measured as a function of the applied force to the molecule using

an attached dielectric bead embedded within an inhomogeneous light beam. Generically,

the motor protein occasionally takes a backwards step towards the (-) end. As the

applied force approaches the stall force, measured to be 2.2 pN for a single myosin

II, the probability to walk towards the (+) and (-) end of the filament is equal [92].

Hence, the motor has ‘stalled’. As you increase the load past the stall force, the motor

probabilitically ‘slips’ and allows the actin bundle to elongate [127]. The ability for the

molecular motor to physically stall while actively undergoing ATP hydrolysis is critical

13



for the cell to maintain constant cortical tension of the cytoskeleton at constant shape

[120].

Actin Filament

Extracellular Space

Myosin II Motor
Catenin Complex

E-Cadherin
Dimer

Actin Binding 
Protein

Figure 1.2: Cartoon representation of the simplified actin cytoskeleton found at the apical
periphery of an epithelial cell outlined in this section. Globular actin (shown as orange
circles) polymerizes into stiff filaments, known as F-actin. The dense network of filaments
is subsequently cross-linked by various actin binding proteins (shown in dark blue) as well
as the molecular motor myosin II (green), forming a higher level of organization known
as the acto-myosin bundle. Myosin II utilizes ATP to actively contract the network by
sliding filaments relative to one another. Tensile load is shared by neighboring cells by
cadherin (shown in red) mediated adhesion. Cadherins are anchored to the actomyosin
bundles through catenin complexes.

How do epithelial cells form a confluent layer that transmits cell-autonomous con-

tractile stresses across the entire tissue? In other words, what plays the role of particle

adhesion in biological matter? As is often the case in biology, a full description of the

myriad of proteins implicated in cell-cell adhesion could fill an entire textbook. We will

restrict our attention to the predominant adhesive molecular complex known as the ad-

herens junction (AJ), a group of proteins expressed continuously along the apical surface

of epithelial cells [70]. Cadherins are the core transmembrane protein within adherens

junctions [126, 69]. As with myosin motors, cadherins consitute a large family of pro-
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teins. Our present discussion will focus on the sub-class of epithelial associated cadherin

molecules, or E-cad in abbreviation. The extracellular domain of the E-cad molecules

initiate cell-cell adhesion through Ca2+ dependent homophilic bonds to the extracellular

domain of E-cads expressed on apposing cells to form a dimer pair [69]. Each homodimer

can support roughly 30 pN of tension before dissociation and subsequent detachment of

both molecules [7]. Interestingly, this sets a soft constraint on the amount of tolerable

stress before the tissue loses mechanical integrity. The cytoplasmic domain, highly con-

served across all cadherin subtypes, binds to the actin cytoskeleton via anchor proteins

such as the catenins and vinculin [122, 72]. Thus the actomyosin bundles of apposing

cells are mechanically linked together, allowing each cell to share and transmit tissue-wide

stress via traction forces exerted on neighboring cell surfaces.

In addition to acting as the predominant adhesive protein responsible for maintaining

a confluent layer, E-cadherin is actively regulated by the cell during morphogenesis,

similar to myosin II [98]. AJs appear to be in a state of continuous turnover in a manner

that depends on cortical tension [42]. Specifically, myosin contractility destabilizes AJs

and ultimately reduces E-cad levels on high-tension interfaces [181, 11]. The opposite

effect of the stabilization of AJs and of Cadherin adhesion is associated with membrane

localization of Bazooka/Par3 protein [186]. A quantitative understanding of the feedback

networks between mechanics, cadherin-mediated adhesion, and myosin driven cortical

tension will be crucial towards a predictive model of development.

In addition to the junctional actin network, a dense actin web permeates the apical
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surface of each epithelial cell. This is commonly referred to as the medial actin cy-

toskeleton, and is implicated as the primary driver of cell shape changes during apical

constriction preceding invagination at the ventral furrow [109], posterior midgut [124],

and formation of tracheal pits [125] during Drosophila morphogenesis. In all three ex-

amples, the contractile dynamics were putatively caused by observed pulsatile myosin

dynamics. Structurally, the medial actomyosin network is anchored to the cortical cy-

toskeleton by stable connections formed by Diaphanous [111] and has been determined

to isotropically pull on the cell’s apical perimeter, acting as a controllable, effective bulk

pressure [108].

All taken together, an epithelial tissue can be thought of as a two-dimensional elastic

network of active cytoskeletal elements in which cortical tension, cell-cell adhesion, and

uniaxial cellular pressure determine the geometric properties of cells and thus the global

shape of the tissue. However, the precise connection and potential feedback mechanisms

between expression levels of the aforementioned cytoskeletal proteins and the resultant

tissue-level stresses that drive morphogenetic movements remain unclear. Despite critical

advances in live-image technology that allow us to observe protein expression patterns

in real-time with sub-cellular resolution, we still have no such quantitative in-vivo assay

for global stress within the tissue during morphogenesis. Progress requires quantitative

modeling of the interactions between these components. Towards this goal, this disser-

tation will present a model that explicitly connects the activity of myosin and active

recruitment of cytoskeletal proteins to tissue-scale mechanics.

16



1.2 Modeling epithelial morphogenesis

Modeling the role of gene expression, biochemistry, and epithelial tissue mechanics in the

context of morphogenesis has a long history in the mathematical biology and biomechan-

ics communities [132, 119, 131, 88]. Historically, researchers have taken two complemen-

tary and orthogonal approaches to capture the active mechanics of an epithelial tissue:

viewing the epithelium either as a continuum material by postulating a set of hydrody-

namic equations or as granular matter using discrete, cell-based models that in aggregate

form the tissue [184]. The former often proves to be analytically tractable but hard to

parse the direct relationship between the model’s phenomenological parameters and the

physical quantities of the cell, while the latter benefits from explicit modeling of cell and

molecular biology but is often solved only with the help of numerical computation.

The fundamental degrees of freedom of hydrodynamic theories of epithelial morpho-

genesis are cell density ρ(r, t) and the tissue-level stress tensor σ(r, t) [106]. Continuum

models often postulate that the epithelial tissue acts as a visco-elastic material, behav-

ing as a deformable solid during quick experimental manipulations but exhibiting cell

sorting behavior akin to a liquid in long-term organ cultures [106]. Rheological experi-

ments support this hypothesis, [56] and we will later see how such macroscopic behavior

can emerge from simple actomyosin contractility microscopically. The cell’s ability to

actively contract relative to its environment is modeled as internal force dipoles within

a coarse-grained ‘active’ stress tensor σactive. Active stress is thought to both drive tis-

sue flow and balance externally applied forces [85]. When connected to biochemistry,

17



such models exhibit Turing-like symmetry breaking of the uniform ground state [132]. In

recent years, generalizations of these hydrodynamic equations have been explored that

couple an additional ‘shape’ nematic tensor field Q(r, t), thought to capture the local

geometric anisotropy of cells, into the dynamics [136]. A simplified version of this model

has recently been utilized to understand the relevant forces during morphogenesis of the

pupal wing of Drosophila [51]. However, continuum level models have limitations: as-

sumed phenomenological parameters will in reality depend upon cellular activity outside

of the modeled simple additive stress, ultimately limiting their predictive power of mor-

phogenetic dynamics. Elucidation of these dependencies and their direct connection to

gene expression requires multiscale modeling starting from discrete cells [141]. We thus

focus the remainder of our attention on describing past efforts regarding discrete cellular

models. Interested readers are referred to [106] for thorough reviews of the continuum

approaches to epithelial morphogenesis and the burgeoning field of ‘Active Matter.’

qα

Figure 1.3: An illustrative example of the Voronoi construction for 7 generating points qα.
Each Voronoi cell can be obtained by drawing all perpendicular bisections of displacement
vectors between generating points, shown as the gray solid lines. The intersection of all
such lines forms the outline of the corresponding Voronoi cell, the interior here is shown in
orange. This procedure simultaneously defines the ‘dual’ Delaunay triangulation, shown
in the red dashed lines here.

The complementary modeling approach is to focus view tissue morphogenesis at the
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cellular level and thus resultant from patterned cell shape changes and coordinated rear-

rangements. This requires parameterization of the shape of the epithelial cell. Although

D’Arcy Thompson recognized that cells affected one another’s shape through a ‘triangle of

forces’ akin to a soap foam [167], the first systematic study of cellular tessellations formed

at the apical surface of an epithelial tissue was published in 1978 by Hisao Honda which

showed many examples of epithelial cells that were well approximated by a Voronoi tessel-

lation, commonly known as the Wigner-Seitz construction to physicists [78]. A Voronoi

tessellation is constructed from a discrete set of generating points, denoted {qα} ∈ R2,

by taking the intersection of all half-spaces closest to point qα relative to the remaining

generators within the set [173]. As such, each Voronoi cell forms a convex polygon which

contains all points in the plane closest to its corresponding generating point, as shown

in Fig. 1.3. Connecting neighboring generating points forms the ‘dual’ Delaunay trian-

gulation. Under this approximation, an observed cellular flow could be parameterized

simply by the movement of the underlying generating points {qα}. As will be shown in

Chapter 5, Honda’s initial assessment wasn’t too far off from the general description of

cellular aggregates.

The Vertex Model, initially developed to describe the random 2D patterns observed

in dry foams and grain aggregates [64, 179], soon supplanted the Voronoi approxima-

tion as the predominant idealization of epithelial apical geometry [79]. As before, cells

are approximated as a planar polygonal network, however generalized such that vertex

positions ri, loci where three or more cells meet, are the geometric degrees of freedom.
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Cells {α,β,γ} : polygonal faces
Cell interfaces : straight lines

Vertices {i,j,k} : meeting of >= 3 cells

Epithelial Tissue Vertex Model Abstraction

E-cadherin
Myosin

Figure 1.4: (Left) Fluorescence live-imaging data taken from the lateral ectoderm of
Drosophila during the onset of germ-band extension showing the apical surface of the
epithelium. E-cadherin is shown in red and myosin is shown in green. Note the approxi-
mate polygonal behavior of the cell array. (Right) We show the abstraction of the apical
geometry of an epithelial tissue as a Vertex Model. Cells are represented as convex,
polygonal faces. In this dissertation, all cells will be labeled by greek letters. Vertices
are the positions where 3 or more cells meet - they will be labeled by roman letters.

Vertices are connected by straight lined edges representing intercellular junctions. See

Fig. 1.4 for a graphical depiction of the abstraction. In addition to geometric dynamics

parameterized by vertex positions, the overall topology of the planar array is allowed to

evolve through three elementary processes, summarized in Fig. 1.5. The first, called a

T1 process, constitutes a neighbor exchange between cells. It can be thought of as an

edge shrinking to zero, followed by subsequent replacement with an orthogonal one. Cell

death and mitosis are similarly referred to as a T2 and T3 process respectively [179].

Morphogenesis of the cellular network is specified entirely by the vertex dynamics,

ṙi, and an algorithm for the execution of the elementary topological transitions that are

driven by forces acting on vertices [54, 4]. The Vertex Model assumes each vertex is
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Figure 1.5: Graphical illustration of the three elemental topological rearrangements de-
fined for discrete network based models of aggregate materials in 2D. A T1 process is a
local neighbor exchange between cells, a T2 process can be thought of as extrusion from
the confluent layer and thus models cell death and a T3 process is the net result of a
mitosis event.

embedded within a viscous medium and that dynamics are relaxational

ν
d

dt
ri = Fi = −∂E

∂ri
(1.1)

Mechanical equilibrium is reached when the net force is zero and vertices stop moving.

There is no universal convention regarding the choice of the functional form for E or the

number of parameters modeled per cell, although they are often parameterized in terms

of cell area and edge length E[{Aα}, {rij}]. Microscopic details are determined by the

discretion of the individual researcher and the particular morphogenetic event intended

to be modeled, resulting in an abundance of examples in the literature [80, 52, 146, 29].

We focus on a few recent examples that have dramatically influenced the biomechanics

community.
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Farhadifar et. al [52] were interested if cellular mechanics, modeled as a polygonal

vertex model, coupled to cell proliferation, is sufficient to quantitatively describe the

observed geometries of the growing pupal Drosophila wing. The mechanical energy ap-

proximated the tissue by only its apical cross-section similar to the traditional vertex

models used by Honda [79], however with the introduction of an elastic contribution

from the actin cytoskeleton on the perimeter of the cell

E [ri] =
∑
α

[
Kα

2
[Aα − A0,α]2 +

Γα
2
ρ2
α

]
+ T

∑
<i,j>

rij (1.2)

Greek letters are taken to index cells while ρα and Aα denote the perimeter and apical

cell area of cell α respectively. Tissue geometry was assumed to change adiabatically

and thus cells remain in mechanical equilibrium while the underlying model parameters

evolve. Cell divisions were introduced at random with stochastic, uniformally distributed

orientations. This model was utilized to estimate average values for each parameter by

comparison with the distribution of cell neighbor number and apical areas as well as

validated using laser ablation data. As such, Farhadifar et al.[52] not only demonstrated

that these vertex models could recapitulate the geometry of in-vivo cell packings resultant

from growth, but also were the first to estimate vertex model parameters quantitatively.

Rauzi et. al [146] extended Eq. 1.2 to include effects of spatial anisotropy allow by defin-

ing junctional parameters to be explicit functions of orientation - e.g. Tij = T (θij). This

generalization is sufficient to generate the morphogenetic flow observed in the convergent

extension of the germ band of the Drosophila embryo [146].

Vertex models have been also been utilized to address the fundamental question of
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what controls the final size of limbs and organs. It is widely thought that morphogen

gradients must regulate final size by patterning cell proliferation rates, either through its

gradient or morphogen concentration [41]. However, such models have a hard time ex-

plaining the uniform growth and synchrony of arrest upon completion of growth observed

in systems like the developing Drosophila wing. Mechanical feedback on proliferation

rates has been proposed as an alternative [159]. To quantitatively study if this effect

could explain the dynamics of growth in the Drosophila wing, Hufnagel et. al [80] gen-

eralized the traditional planar vertex model to include the 3D effects of cell apico-basal

height. Growth occurs over the course of days while mechanical equilibration of the actin

cytoskeleton appears to occur on the time-scale of seconds. As such, it is reasonable to

assume shape adiabatically evolves along the manifold of mechanical equilibrium states.

Thus, Hufnagel et al. assumed instantaneous epithelial geometry minimized the following

energy

E [ri, hα] =
∑
α

ρα + a [Aαhα − V0]2 +
∑
{β}α

b [hα − hβ]2 + c [hα − 1]2 (1.3)

hα denotes the apico-basal height of cell α. The actin cytoskeleton only appears in this

equation as a uniform surface tension term that is imagined to act on the surface of each

elastic cell. Allowing cells to divide (T3) at random with probability proportional to

the morphogen concentration and dependent on their state of stress, the vertex model

predicts a novel mechanism for final size determination of the wing; once the edge of the

wing falls below a morphogen threshold, it stops growing and effectively arrests the bulk

of the disk through mechanical feedback.
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Vertex models have proven invaluable in deciphering the pattern of cellular mechanics

required to drive different morphogenetic movements observed in a multitude of model

organisms. However, such models have been limited to phenomenological descriptions

of stress with no connection to cytoskeletal proteins and their dynamic regulation. Huf-

nagel et al. [80] demonstrated that vertex models can be used to probe the macroscopic

consequences of mechanical feedback on growth at the cellular-scale. We look to continue

this approach and model both the explicit effects of myosin activity and mechanical feed-

back on the cytoskeleton. Can we begin to connect phenomenological parameters within

the vertex model to the active regulation of cytoskeletal proteins? Explicit multi-scale

modeling tested against empirical data is required to make sense of the interplay between

cellular activity and tissue mechanics.

1.3 Experimental assays of cellular mechanics

Measuring the state of stress of a developing tissue presents a considerable experimental

challenge. This section will provide a brief description of the currently available tech-

niques used to assay cellular mechanics within a confluent layer of cells. We note that

many sophisticated techniques exist to measure forces of in-vitro cell cultures. For ex-

ample, Traction Force Microscopy (TFM) has proven immensely useful to understanding

the distribution of forces at play during cell migration [117]. To perform TCM, cells

are cultured on a synthetic, deformable ECM laced with fluorescent beads that serve as

fiduciary markers for substrate displacement [45]. The substrates used are known linear
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isotropic elastic materials, such as silicone, and thus stress applied on the synthetic ECM

by the confluent cell layer can be easily obtained from the displacement field of the beads

[151]. However, it is known that cells actively change their mechanical state in response

to developmental signals. If one is interested in developmental dynamics, it is not enough

to measure cell stiffness in a plate. We need to measure the effective constitutive rela-

tionships in the presence of relevant biochemical feedbacks and morphogenetic signals.

As such we focus our remaining attention on in-vivo measurements.

The most common method for measuring in-vivo stress is laser micro-ablation. This

method originated as a surgical procedure; a macroscopic incision was made using a

scalpel to measure the retraction/extension velocity of the resultant wound [12]. Retrac-

tion or extension implied the original tissue was respectively under tensile or compressive

loading. The technique has shrunk to sub-cellular length scales, trading the scalpel for

focused UV laser light that ‘cuts’ the cytoskeletal bundle abutting a cell-cell interface

[104]. The resultant retraction velocity is used as a proxy for the cortical tension that

was in the pre-cut actin cytoskeleton. Laser ablation has proved incredibly useful; the

technique was central in the discovery that anisotropic tension in the Drosophila lat-

eral ectoderm drives cell intercalation during germ-band extension [146] and that dorsal

closure is driven by supracellular myosin cables [89]. Unfortunately, it is clearly a de-

structive procedure that greatly perturbs the sample, allowing the experimentalist only

local snapshots of subcellular stress. Furthermore, one needs highly time-resolved movies

to meaningfully measure the retraction velocity.
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Recently, experimentalists have utilized optical tweezers to quantitatively probe stress

at the subcellular scale. These experiments leverage the fact that dielectric beads under

focused light of graded intensity are subject to an effective force pushing it towards the

high intensity region [164]. This method has proven useful for measuring the rheology

of actomyosin bundles of cellular interfaces. In the Drosophila embryo, it was shown

that the average cortical tension along interfaces was on the order of 100 pN and that

tension equilibrates on the time-scale of a few seconds, incredibly fast compared to the

hour/day timescale of morphogenesis [8]. Interestingly, this is entirely consistent with

the estimated 50 motors that participate in actin contraction [142] are at stall (recall

the stall force was measured to be roughly 2 pN/motor). We will return to this idea in

Chapter 2. Unfortunately, this method is difficult to calibrate and execute, and as with

laser ablation, only provides information about stress at the junctional level.

Campas et al. measure stress in-situ [24] by introducing oil microdroplets the size

of single cells into the confluent cell layer to act as a force transducer. Specifically, the

surface of the droplet is coated with adhesive molecules to permit binding between the oil

droplet and neighboring cells. The three dimensional geometry is reconstructed for each

microdroplet and deformations from a spherical shape are utilized to infer the anisotropic

forces applied on the droplet by the surrounding tissue. As mechanical properties of the

oil are explicitly measured, all measurements are made in absolute units. This method has

recently been generalized to include ferrofluidic droplets that can act as micro-mechanical

actuators [154]. This method allows one to probe tissue mechanics at larger length-
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scales then both micro-ablation or optical tweezers by the addition of multiple droplets.

Unfortunately, experimentalists still must sparely sample to ensure the mechanical state

of the tissue is unperturbed [24].

Additionally, there have been recent developments that seek to leverage the prevalence

of florescence microscopy and measure stress purely visually. The most direct of these

methods utilizes FRET (Forster resonance energy transfer) tension sensors embedded

within molecular elements of interest [116]. A FRET sensor consists of two florophores,

aptly termed a donor and acceptor. The donor florophore is chosen so that its excitation

spectrum overlaps with the absorption spectrum of the acceptor. As it is dependent on

dipolar interactions, energy transfer drops off like R−6 where R is the distance between

donor and acceptor [74]. This concept is turned into a force tensor by connecting the

donor and acceptor elements with an elastic polymer of known stiffness [114]. In principle,

measuring the ratio of emitted frequencies of the donor and acceptor florophore can be

used to measure the extension of the elastic polymer and thus the force applied to the

FRET sensor. Such tension sensors have been successively embedded into vinculin [65]

and cadherin molecules [17] (both critical components of AJs) in-vitro, as well as in live

drosophila ovaries [23]. Unfortunately, the method is difficult to calibrate, relying on

in-vitro techniques to estimate the FRET efficiency to force relationship. As such, it is

not quantitative. As a result, the relationship between traction exerted across adhesive

bonds and cortical tension, a critical quantity for morphogenesis, remains unknown.
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1.4 Image-based inference of cellular mechanics

Despite the advances made by the methods presented in the above section, there is still

no satisfactory experimental tool to quantitatively measure the distribution of stress

throughout a tissue over the course of development. This raises an important question:

how are we to investigate the interplay between mechanics and cytoskeletal regulation

within a developing epithelial monolayer if one of the critical fields remains opaque to us?

Short of direct measurement, progress can be made using model-driven inference. Hence,

in recent years researchers have developed many ‘image-based’ tools that allow one to

infer mechanics based solely upon cellular geometry, conditioned on a chosen model of

cell mechanics.

In 2010, Brodland et al. formulated “Video Force Microscopy” which partitions the

forces acting within an epithelial tissue into ‘active’ stresses localized along cell bound-

aries and ‘passive’ stresses that deform the cytoplasm [20]. All tricellular junctions are

dynamically tracked and assumed to move due to viscous forces. Finite element methods

are utilized to calculate the passive forces needed to deform the cytoplasm as was ob-

served in the course of the movie. Both are integrated to estimate the ‘active’ junctional

forces. “Video Force Microscopy” has been applied to Drosophila embryos undergoing

ventral furrow formation to show the movement must be driven by apical constriction

and basal contractions of the ectoderm [20].

A complementary method, originally proposed by Chiou et al. [29] and later extended

[83], models the epithelial cell array as a two-dimensional vertex model in equilibrium.
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Chiou et al. demonstrate that the differential form of any two-dimensional vertex model

can be generically written

dE[{drij}, {dAα}] =
∑
<i,j>

Tijdrij +
∑
α

pαdAα (1.4)

As eq. 1.4 defines tension and pressure as conjugate to edge length and polygonal

area, mechanical equilibrium is equivalent to the constraint of force balance imposed on

vertices

Fi =
∑
{j}i

Tij r̂ji +
Pα − Pβ

2
[ẑ ∧ rji] = 0 (1.5)

r̂ji denotes the unit vector pointing to vertex j from i, and Pα, Pβ denote the cells sepa-

rated by edge i, j. Eq. 1.5 is a linear system of equations for parameters {Tij}, {Pα} and

thus can be inverted using the static geometry of cells. Simple graph-theoretic counting

(using Euler’s formula) proves such an inverse is underdetermined for a planar array due

to the lack of knowledge about the boundary conditions and thus the parameters can

only be partially determined. Furthermore, the inverse is plagued by sensitivity to noise

[29]. Despite its limitations, the “Mechanical Inverse” algorithm has proven useful in

interpreting in-vivo data when compared to micro-ablation data [82]. In Chapter 5 we

will re-formulate this problem to mitigate both of these issues.

Of course, the ‘measured’ stresses are only as valid as the chosen model of cell me-

chanics, of which there is still no consensus. The results from above in-silico methods

must be cross-validated by comparison to one of the methods outlined above or supple-

mented with phenomenological correlations before they can be taken seriously. That said,

image-based techniques currently provide the best path towards realizing the biological
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‘diagram of forces’ as originally conceptualized by D’Arcy Thompson. Furthermore, the

map of stresses within the embryo provides us a quantitative method to test our models.

1.5 Outline of the dissertation

The remainder of this dissertation will formulate a phenomenological model that incor-

porates the effects of actomyosin activity within the cytoskeleton and cadherin mediated

adhesion on the mechanics at the cellular and tissue scale. Critically, we model the

simultaneous dynamics and interplay between mechanics, cytoskeletal activity, and cell

morphology. We obtain explicit relations between all three phenomenological fields. At

every step, quantitative predictions from the model are tested against live-imaging data

to lend strong support to its underlying assumptions. After we show the model is an accu-

rate representation of in-vivo tissue mechanics, we use it to improve upon past attempts

at measuring epithelial stress from just images of cellular morphology. We expect this

method to become immediately useful to researchers hoping to disentangle an organism’s

form, the ‘diagram of forces’, and expression patterns of cytoskeletal proteins.

Chapter 2 formulates the basic components of the Active Tension Network (ATN)

model of epithelial morphogenesis. Generalizing the vertex model, we assume that the

mechanical balance of cells within a tissue is dominated by cortical tension and introduce

tension-dependent active remodeling of the cortex. We find that ATNs exhibit unusual

mechanical properties. Specifically, an ATN behaves as a fluid at short times, but at

long times supports external tension like a solid. Furthermore, an ATN has an exten-
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sively degenerate equilibrium mechanical state associated with a discrete conformal -

“isogonal” - deformation of cells. The equilibrium mechanical state is parameterized by

a rigid ‘tension-triangulation’. The ATN model predicts a constraint on equilibrium cell

geometries, which we demonstrate to approximately hold in certain epithelial tissues. We

further show that isogonal modes are observed in the Drosophila embryo, accounting for

the striking variability of apical areas of ventral cells and helping understand the early

phase of gastrulation.

Chapter 3 relaxes the original assumption that all cells have constant pressure in-

troduced in Chapter 2. In doing so, we generalize the ‘tension triangulation’, giving us

a bijective mapping between equilibrium epithelial cell morphology and the ‘diagram of

forces’ D’Arcy Thompson originally conceptualized. This framework should allow one

to easily measure arbitrary distributions of stress within two-dimensional networks. We

leverage the existence of the generalized dual triangulation to formulate a robust, local

“Mechanical Inverse” algorithm that allows one to infer network level mechanics from an

image of cell morphology. The inference algorithm is verified in-vivo both at the cellular

scale and organismal scale using Drosophila live image data.

Chapter 4 extends the ATN model in Chapter 2 to include positive feedback between

myosin and cortical tension, as well as to include the effects of traction-dependent regu-

lation of E-cadherin within AJs. With these simple additions to the model, we recover

the morphological transition caused by cell intercalation observed during the convergent

extension of the lateral ectoderm in Drosophila melongaster. Predictions from the model
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are checked using data kindly provided by the Lecuit lab [146].

Chapter 5 leaves the world of individual cells and moves towards a mesoscopic (patches

of many cells) description of morphogenesis. To do so, we coarse-grain the linearized dis-

crete model presented in Chapter 2. On this length and time scale, the model predicts

epithelial tissues should behave as a viscious, slightly compressible fluid (akin to honey)

driven internally by the global imbalance of myosin motors. We quantitatively check

this intuition against in-toto imaging of the first few couple hours of embryogenesis in

Drosophila melongaster. Specifically, the coarse-grained ATN model can predict morpho-

logical flow solely from the distribution of myosin. The data analysis pipeline presented

in this section should be general to arbitrary developing systems.

Finally, Chapter 6 serves as a conclusion and presents the future outlook of the

contained work. We believe the next logical step beyond the work presented in this

dissertation is to couple the mechanics driving cellular rearrangements to the concomitant

patterning of cell fate induction. The duality between equilibrium cellular tessellations

and stress triangulations provides a useful parameterization of cellular morphogenesis,

in a cell-specific fashion, that should immediately applicable to models of the interplay

between cellular patterning and mechanics. To close out, we suggest that development

of the chick cochlea provides an excellent entry point into the study of such models.

32



Chapter 2

Active Tension Network model of

epithelial morphogenesis

As we stressed in Chapter 1, mechanical interactions play a crucial role in epithelial

morphogenesis, yet understanding the complex mechanisms through which stress and

deformation affect cell behavior remains an open problem. In this chapter, we formulate

and analyze the Active Tension Network (ATN) model, which assumes that the me-

chanical balance of cells within a tissue is dominated by cortical tension and introduces

tension-dependent active remodeling of the cortex. We find that ATNs exhibit unusual

mechanical properties. Specifically, an ATN behaves as a fluid at short times, but at long

times supports external tension like a solid. We call such materials ‘active solids.’ Fur-

thermore, an ATN has an extensively degenerate equilibrium mechanical state associated

with a discrete conformal - “isogonal” - deformation of cells. The ATN model predicts a
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constraint on equilibrium cell geometries, which we demonstrate to approximately hold

in certain epithelial tissues. We further show that isogonal modes are observed in the

fruit fly embryo, accounting for the striking variability of apical areas of ventral cells and

helping understand the early phase of gastrulation. All experimental data of ventral cells

was taken by collaborator Sebastian J. Streichan (KITP, UCSB).

2.1 Formulation of model

As described in Chapter 1, epithelial monolayers are often approximately represented by

two-dimensional polygonal tilings, parameterized by a set of vertex coordinates {ri} and

are often described by Vertex Models [77, 52] which assume that the geometry of cells

minimizes mechanical energy defined in terms of cell edge lengths (rij = |ri−rj|) and cell

areas (Aα). We begin this chapter by introducing a generalized class of vertex models by

adding internal variables to capture the active adaptation of the cytoskeleton. We begin

by defining mechanical energy in its differential form [29]

dE[{ri}] =
∑
<i,j>

Tij drij +
∑
α

pα dAα (2.1)

where tension, Tij, defines the change in mechanical energy in response to a change of

edge length (drij) and the 2D ‘apical pressure’, pα, defines the response to a change in

cortical area (dAα). Tension Nets correspond to the situation where pressure differentials

between neighboring cells are negligible so that mechanical balance is dominated by

cortical tension. In this limit pα ≈ p0 with p0 controlling the total area of cells, and

preventing the collapse of the network under the action of tension.
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Vertex dynamics is relaxational and is given by

ν
d

dt
ri = −∂riE =

∑
{j}i

Tij r̂ji =
∑
{j}i

Tij (2.2)

where {j}i denotes the set of all vertices connected to vertex i, r̂ji is a unit vector in the

direction from ri to rj, and ν represents the effective friction between apical cytoskeleton

and its substrate [106] which determines the timescale of mechanical relaxation. Mechan-

ical equilibrium of a Tension Net is reached when tensions balance, which geometrically

means that for each vertex i, the three corresponding tension vectors Tij,Tik,Til form a

triangle. Since adjacent vertices share an edge, global tension balance implies that the

set of Tij’s defines a triangulation as shown in Fig. 2.1 a,b [113, 75].
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α

γ

β α

γ

β
i i
θiβ π-θiβ

Tij
j Tij

j
k

l

k

l

Figure 2.1: Force balance in a tension net defines a triangulation of the “tension plane”.
(A) 2D array of cells represented by a polygonal tiling. In mechanical equilibrium tensions
balance at each vertex. (B) Equilibrated tensions form a triangulation, with triangle
angles supplementary to the angles at the corresponding vertex.

Microscopically, each edge in this network represents the mechanically coupled acto-

myosin bundles of neighboring cells, connected to each other via adherens junctions along

the cell-cell interface, as shown schematically in Fig. 2.2a. Vertices serve as physical bar-

riers to the lateral movement of cadherin clusters and contracting actomyosin bundles
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Figure 2.2: Role of myosin motors in the ATN model. (A) Schematic of the basic
active element of a tension network: actomyosin cables on apposing interfaces are cross-
linked by cadherin dimers; (B) Dependence of the actomyosin bundle contraction rate on
mechanical load: the “walking kernel” W (x), see Eq. 2.3, changes sign from contraction
to elongation when mechanical load per myosin T/am exceed the stall load Ts.

[30, 27]. The coupled actomyosin bundles along the cell edge form a natural mechanical

unit - an “active edge” in Fig 2.2a - which carries tension. Edge tension, Tij, depends

on the edge length rij as well as on the intrinsic variables representing the local state of

the actomyosin bundle and cadherin-mediated adhesion between cells. Specifically, we

assume a simple elastic form, Tij = K(rij− `ij), parameterizing the internal state of each

interface by an intrinsic “rest length” `ij of the underlying actomyosin filament, itself a

dynamical variable governed by

`−1
ij

d

dt
`ij = τ−1

` W

[
Tij

mijaTs

]
(2.3)

The generic features of the “walking kernel” W [x], illustrated in Fig. 2.2b, are based

on single-molecule experiments [34, 127] previously described: myosin motors can walk,

contracting the actin bundle, unless the load per myosin, Tij/amij, reaches the “stall

force” level Ts, above which the filament elongates as motors slip backwards [90]. Here

mij is the average myosin line-density along the edge and a is the length scale over which
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motors share mechanical load.

Eqs. 2.2, 2.3 define the dynamics of a Tension Net with a specified myosin distribu-

tion on interfaces. The fixed point of these equations is reached when i) tensions balance

at all vertices and ii) all edges are at their stall tension, set by the local myosin (linear)

density (Tij = aTsmij). Global tension balance requires the set of Tij’s to form a tri-

angulation and therefore edge tensions, and hence myosin levels, cannot be prescribed

independently. How can mechanical equilibrium be achieved? At this point we recall

that myosin distribution within tissues is not fixed and is known to respond to mechan-

ical cues, although the exact form of this mechanical feedback is not fully understood

[53, 137]. Here we propose a particular form of mechanical feedback on myosin, that

will ensure convergence to a balanced state. The latter is achieved if myosin recruitment

depends on the internal strain rate of each filament:

m−1
ij

d

dt
mij = α`−1

ij

d`ij
dt

(2.4)

with α parameterizing the rate of myosin recruitment, which we assume to be slow

relative to both mechanical relaxation and actomyosin contractility. This form of me-

chanical feedback recruits myosin to overloaded slipping bundles and reduces myosin on

underloaded contracting bundles until the stall condition is reached, bringing the system

to equilibrium. The “Dynamic Recruitment” hypothesis, defined by Eq 2.4, is dictated

by the requirement of ATN stability and should be regarded as a prediction of the model

to be tested by future experiments.
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2.2 Equilibrium properties of model: Isogonality and

Geometric compatibility

i
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i+1
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Θ i,β i

α

βi
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ie

Θi,α
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β1 β2

β3

β4
β5

β6

i1
i2

i3
i4

i5

i6

A B
Θi1β2

π-Θi1β2

Figure 2.3: (a) Mechanical balance of a tension net implies that at vertex i,
Ti,i−1 sin(θi,βi−1

) = Ti,i+1 sin(θi,βi), as tensions must balance along the direction perpen-
dicular to the edge external to cell α. This construction can be repeated on all vertices of
cell α. The circular product of such ratios around a cell is defined as the ‘compatibility
condition’. (b) A diagram representing both the notation used to define the compat-
ibility constraint and the “dual triangulation” of the tension plane which corresponds
to the tension balanced state. Edges of the αβ1β2 triangle represent tensions that bal-
ance at vertex i1, while angles (of the triangle) are complementary to the angles of the
corresponding vertex of the polygonal cell array (e.g. ∠αβ2β1 = π − θi1β2).

The ‘duality’ between an equilibrium tension net and the corresponding triangulation

of the tension plane (see Fig. 2.1ab) implies the existence of certain constraints on

cell geometry. In this section, we explicitly construct the tension triangulation, as well

as derive the geometric constraint for an arbitrary cell array to be compatible with

tension balance. Consider vertex ‘i’, depicted in Fig. 2.3a, formed by the triplet of cells

(α, βi−1, βi). Force balance at this vertex is written

Ti,ie r̂ie,i + Ti,i+1r̂i+1,i + Ti,i−1r̂i−1,i = 0 (2.5)
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Projecting this equation onto the red-line as shown in Fig 2.3a

Ti,i+1

[
r̂iei ∧ r̂i+i

]
= Ti,i−1

[
r̂i−i ∧ r̂iei

]
=⇒ Ti,i+1

Ti,i−1

=
sin
(
θi,βi−1

)
sin (θi,βi)

(2.6)

This construction can be done for each vertex belonging to a cellular plaquette. Indexing

vertices belonging to cell α using a CCW convention with i ∈ {1, 2, ..., zα}, as shown

in Fig. 2.3b, we take the circular product around the cell and define the “geometric

compatibility” measure χα

χα =
zα∏
i=1

sin (θi,βi)

sin
(
θi,βi−1

) =
zα∏
i=1

Ti,i−1

Ti,i+1

= 1 (2.7)

The circular product over the ratios of tensions is a telescoping product and thus is

equal to one for a static tension net, which we call the compatibility condition. An array

with all χα = 1 is geometrically compatible with tension-balance. Since χα can be readily

measured, the compatibility constraint allows one to quantitatively assess whether a given

cell array is consistent with a balanced tension net.

A corollary to the compatability condition is that tensions form a triangulation ‘dual’

to the cell array. Once again, we consider force-balance at vertex ‘i’, but this time rotated

by π/2

ẑ ∧ [Ti,ie r̂ie,i + Ti,i+1r̂i+1,i + Ti,i−1r̂i−1,i] = qβi−1βi + qβiα + qαβi−1
= 0 (2.8)

where qαβi−1
, qβiα, qβi−1βi are vectors that make up edges of the triangle dual to vertex

i, shared by cells α, βi, βi−1. We have qαβ = Qα −Qβ where Qα denotes the vertex of

the dual triangulation that corresponds to cell α. Summing around vertices belonging to

39



a cellular plaquette will cancel out internal dual vectors and leave us with∑
i

qβi−1βi = 0 (2.9)

Thus, the outside edges of all triangles made from tensions acting at vertices around a

cell must form a closed polygon, ensuring that we can build a closed triangulation out of

tensions. This is equivalent to the constraint that
∑

i θi,α = 2π. One can then see that

the compatibility constraint is simply the law of sines applied to triangles around the

plaquette! Specifically, we note that if θiβ is the angle at vertex i belonging to cell β; its

complement π − θiβ is the corresponding angle of the dual triangle in the tension plane

(Fig. 2.1ab). By applying the law of sines to the triangles surrounding dual vertex α one

rederives the compatibility condition. It is important to note that this construction only

defines the triangulation up to a scale reflecting the fact that at equilibrium, all tensions

are only known up to an overall multiplicative factor.

The compatibility constraint is a necessary condition for mechanical equilibrium un-

der conditions of tension dominance. Its failure would imply either that (i) the tissue is

not in mechanical equilibrium or that (ii) forces other than cortical tension contribute

significantly to the balance. Observed fluctuations make it clear that mechanical equi-

librium can only be approximate. Note, that while being necessary, the compatibility

constraint is not sufficient to conclude tension balance. E.g. it is conceivable that cell

array has “compatible geometry” for a reason other than tension-net equilibrium, how-

ever, we are not aware of any alternative simple physical mechanism that would explain

this geometry.
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The geometry of the dual triangulation also constrains possible sets of balanced ten-

sions. A triangulation is specified by the positions of its c (the number of polygonal cells

in the array) vertices, and hence has 2c independent degrees of freedom. This number

is smaller than the number of edges e = 3c (assuming all vertices in the cell array are

three-fold), which means that Tij’s can’t be prescribed independently: the balanced set

satisfies c constraints.

The above counting argument further implies that the map between cell geometry

and tension triangulation is highly degenerate. The number of degrees of freedom of a

compatible cell array is given by 2v − c = 3c (v being the number of vertices of the cell

array), which is c degrees of freedom larger than that of the dual triangulation. Hence,

a given set of balanced tensions corresponds to a manifold of nets with one degree of

freedom per cell. Specifically, as long as none of the vertex angles are perturbed, we can

freely “inflate” or “deflate” cells, as illustrated in Fig. 2.4a, with no cost of energy and

thus without disturbing mechanical equilibrium and the underlying tension triangulation.

Quite generally such angle preserving - hereafter referred to as “isogonal” deformations

have the form

δri = S−1
αβγ[TijΘβ + TikΘα + TilΘγ] (2.10)

where δri denotes the displacement of vertex i shared by cells α, β, γ and Sαβγ (Fig.

2.1ab) is the area of the vertex’s dual triangle. {Θα} parameterize the c-dimensional

manifold of equilibrim states. Tensions {Tij,Tik,Til} capture the implicit geometric con-

straints within tension nets central to the structure of the isogonal modes: note for
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Figure 2.4: The equilibrium manifold of an ATN. (a) Cartoon of an isogonal ‘breathing
mode’ of a cell in a tension net. (b) Because ATN equilibrium is a manifold rather than
a point, after a transient perturbation the system does not necessarily return to the same
state, resulting in an ‘isogonal’ transformation.

example that δri = 0 for Θα = Θβ = Θγ. The compatibility condition (see Eq. 2.7)

satisfied by equilibrium tension nets is essential for allowing such isogonal modes to exist.

Because they do not invoke a restoring force, isogonal deformations are easily excitable

“soft modes” and are expected to dominate observed fluctuations of tension nets close

to mechanical equilibrium. We note that isogonal modes can be thought of as a discrete

manifestation of the conformal symmetry that appears in 2D continuum elasticity in

the limit of a vanishing bulk modulus. Isogonal modes also generalize the isoperimetric

“breathing modes” of a hexagonal lattice [172].

2.3 Linear Response of a 1D Active Tension Chain

Let us now consider the dynamics of small perturbations around a mechanical equilib-

rium state, which can be described by linearizing Eqs. 2.2-2.4. Before the full detailed
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calculations are carried out in the next section, the key features can be understood from

a vastly simpler analysis of a 1D “Active Tension Chain” model analyzed here.

Starting from Eqs 2.2-2.4 and specializing to a one-dimensional uniform cable of

active-elements, the linearized equations for small perturbations arond a given fixed point

become

d

dt
δrn = ν−1K ¯̀[δun − δun−1]

d

dt
δun = ν−1K [δun+1 + δun−1 − 2un]− l0W

′[1]

τ`u0

(δun − δmn)

d

dt
δmn = ατ−1

` W ′[1] (δun − δmn) (2.11)

We’ve defined 1D strain un ≡ (rn,n+1−`n)/¯̀= Tn/K ¯̀where rn,n+1 = rn+1−rn the length

of the edge between vertices rn+1 and rn and ¯̀ is the mean intrinsic length. We have

rescaled m→ aTs
K ¯̀m to make it dimensionless. In the continuum limit, these transform to

∂t

 δr
δu
δm

 =

0 ν−1K ¯̀2∂x 0
0 ν−1K ¯̀2∂2

x − κ κ
0 ᾱ −ᾱ

 δr
δu
δm

 (2.12)

x denotes the coordinate along the cable. Furthermore we’ve defined κ ≡ ¯̀W ′[1]
τ`u0

and

ᾱ = ατ−1
` W ′[1]. As was expected, all elements of the first column of the matrix are zero,

implying that δr displacements along the cable are zero modes and that their associated

dynamics is slaved to the dynamics of tension and myosin perturbations. Hence, we focus

on the reduced myosin/tension system in Fourier space (define D ≡ ν−1K ¯̀2)

∂t

(
ũ
m̃

)
=

(
−Dk2 − κ κ

ᾱ −ᾱ

)(
ũ
m̃

)
(2.13)
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The exact dispersion relation for both branches is

λ1,2 = −Dk
2 + ᾱ + κ

2

[
1±

√
1− 4ᾱDk2

(Dk2 + ᾱ + κ)2

]
(2.14)

Assuming mechanical feedback occurs on a slower time-scale than actomyosin contrac-

tility ( ᾱ
κ
<< 1) we can expand each dispersion relation to linear order in ᾱ

κ

λ1,2 ≈ −
[
Dk2 + κ+

ᾱκ

Dk2 + κ

]
, − ᾱDk2

Dk2 + κ
(2.15)

We immediately see that first branch is gapped by κ while the second branch is acoustic,

corresponding to fact that a global rescaling of tension and myosin along the cable does

not perturb the underlying force balance or stall condition and thus there are phonons

at long times and length scales effectively behaving as a solid! The eigenvectors are

φ1,2 ≈
(
Dk2 + κ
−ᾱ

)
,

(
κ

Dk2 + κ

)
(2.16)

For ᾱ = 0 the gapped mode corresponds solely to tension perturbations that exponen-

tially localize within a length scale
√
D/κ - at short times isogonal/fluid deformations

will occur within this ‘droplet’. This recapitulates a passive Maxwellian viscoelasticity.

Conversely, for 0 < ᾱ << κ, the gapped mode is an admixture between both tension and

myosin perturbations along the cable. Taken together, Eqns. 2.15,2.16 exhibit exotic

behavior, we call an ‘Active Solid’. At long wavelengths, and thus small k, only the

acoustic branch is non-zero. The spring constant of this mode is the second derivative of

the dispersion relation at k = 0 and thus Keff = ᾱκ−1D as reported.

To gain further insight into the rheology of this material, we now study Eq. 2.13 under

sinusoidal forcing on the boundary. We expand tension along the cable in a Fourier sine
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series

u = u0 + u∆

(x
L

)
+
∞∑
q=1

ũq sin
(qπx
L

)
(2.17)

We are only interested in symmetric longitudinal pulling and thus set u∆ = 0. A similar

decomposition exists for myosin line density m

iω ūq +

(
D
q2π2

L2
+ κ

)
ūq − κm̄q =

(1− (−1)q)

πq
F̄ext(ω) = F̄q (2.18)

iωm̄q + ᾱm̄q − ᾱūq =
(1− (−1)q)

πq
M̄ext(ω) = Ḡq (2.19)

Fext and Mext represent the time-dependent external force acting on the boundary of the

1D chain. The dynamic boundary conditions act as a source as expected (onto only the

odd modes as they respect the left/right symmetry). Eq. 2.13 implies m̄q = Ḡq+αūq
α+iω

.

Substituting this into the Eq. 2.17.

ūq

[
D
q2π2

L2
+ κ

(
1− ᾱ

ᾱ + iω

)
+ iω

]
= iω

[
F̄q +

κ

ᾱ + iω
Ḡq

]
(2.20)

which can be simplified to obtain (we assume the forcing function on myosin is equivalent

to the forcing function on tension)

ūq(ω) = − b2(ω)

(πq)2 + b2(ω)

(1− (−1)q)

πq
F̄ext(ω) (2.21)

where we defined b2(ω) = iωL2D−1
[
1 + κ

ᾱ+iω

]
. The Fourier series over q can be re-

summed to give ū(x, ω) for x ∈ [−L/2, L/2].

ū(x, ω) =
cosh( bx

L
)

cosh( b
2
)
F̄ext(ω) (2.22)

This immediately implies the phase relationship between strain and the external force
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is

r̄(ω) = −
ib2 cosh( bx

L
)

ωL2 cosh( b
2
)
F̄ext(ω) (2.23)

We note this has the an additional regime of behavior relative to passive materials. For

ω << ᾱ, the relationship is r̄ ∼ D−1
[
1 + κ

ᾱ

]
F̄ and thus it behaves as a spring with

stiffness ᾱD
κ+ᾱ

as expected from our dispersion relation derived above. In other words,

for slow perturbations we pull on the myosin feedback law! For ᾱ << ω << κ the

relationship is r̄ ∼ iκ
Dω
F̄ and thus it behaves as a visco-elastic fluid, probing the gap

between acoustic and optical branch. This regime is where isogonal deformations and

localized stress patterns should exist. Lastly, if ω >> κ then r̄ ∼ D−1F̄ - i.e. we are

simply pulling on the elastic cytoskeletal network.

2.4 2D Active Tension Network is an ‘active solid’

The two-dimensional dynamics near equilibrium is most naturally expressed in terms of

edge vectors rij. Equations of motion can be derived directly from Eq. 2.2-2.4 presented

above. Hereafter time is rescaled t → K
ν
t to reduce the appearance of unnecessary

constants.

d

dt
rij = ui1i + ui2i + ujj1 + ujj2 − 2uij (2.24)

where uij ≡ K−1Tij r̂ij = uij r̂ij and neighboring vertices of i are taken to be j, i1, i2.

Parameterization in terms of edge vectors simplifies the resultant algebra at the cost of

introducing 2c additional degrees of freedom associated to the geometric constraint that

46



edge vectors sum to zero around each cellular plaquette∑
<i,j>∈Eα

sαij rij = 0 ∀α (2.25)

Eα denotes the set of all edges associated to cell α while sαij = ±1 if rij points counter-

clockwise or clockwise respectively. It is easy to check that dynamics described by Eq.

2.24 preserves the constraint defined by Eq. 2.25 - each vertex’s equation of motion will

appear in the sum twice with opposing signs. We linearize Eq. 2.24 and decompose each

edge vector into transverse δθij and longitudinal δrij components defined by

δrij = δrij r̂ij + rij δθij (ẑ ∧ r̂ij) (2.26)

leaving us with equations

d

dt
δrij =

∑
<k,l>

[Lij;kl δukl − Aij;kl uklδθkl] (2.27)

rij
d

dt
δθij =

∑
<k,l>

[Aij;kl δukl + Lij;kl uklδθkl] (2.28)

where we have defined

Lij;kl ≡ r̂ij · r̂kl [Akiδli +Aljδkj −Aliδki −Akjδlj] (2.29)

Aij;kl ≡ r̂ij ∧ r̂kl [Akiδli +Aljδkj −Aliδki −Akjδlj] (2.30)

Aij is the adjacency matrix of the cell array, i.e. is one only if vertex i and j are

connected, and δij is the Kronecker delta. Dynamics of small perturbations in intrinsic
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length is found by expanding Eq. 2.3 about the fixed point

d

dt
δ`ij = κij [δuij − δmij] (2.31)

where

κij ≡
ν`ijW

′(1)

τ`Kuij
(2.32)

Tension dynamics is easily obtained via the constitutive relation uij = rij − `ij = Tij/K

d

dt
δuij =

d

dt
δrij − κijδuij + κijδmij (2.33)

Lastly, the myosin dynamics is governed by

d

dt
δmij = ᾱ (δuij − δmij) (2.34)

where myosin has been rescaled to have units of interfacial deformation: δmij →

aTsK
−1δmij and ᾱ ≡ ανK−1τ−1

` W ′(1). Isogonal modes correspond to δθ = δu = 0

which is realized by δ`ij = δrij, provided
∑

<i,j>∈Eα σ
α
ij δrij r̂ij = 0. The latter constraint

is satisfied for

δri = r̂ji
TjiΘγ

Si
+ r̂ki

TkiΘα

Si
+ r̂li

TliΘβ

Si
(2.35)

where δri denotes displacement of vertex at which adjacent cells α, β, γ meet; Θα,Θβ,Θγ

are independent variables associated with isogonal modes of the denoted cells and Si

denotes the area of said vertex’s dual triangular plaquette. Thus, isogonal deformations

have no restoring force. Eqs. 2.31 - 2.34 fully specify the closed form linearized dynamics
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with matrix H that can be expressed

S = U−1HU (2.36)

where U ≡ diag
[
1, 1,
√
uijrij,

√
κij
ᾱ

]
and

S ≡



0 Lij;kl −Aij;kl 0

0 Lij;kl − κijδij;kl −Aij;kl
√

ukl
rkl

√
ᾱκijδij;kl

0
√

uij
rij
Aij;kl

√
uij
rij
Lij;kl

√
ukl
rkl

0

0
√
ᾱκijδij;kl 0 −ᾱδij;kl


Because the first column of the matrix is equal to zero, δrij is slaved to other components

and thus the rank of H is at most 9c as our null space contains c isogonal modes defined

above, along with the 2c geometric constraints (see Eq. 2.25) that are conserved by

the dynamics. The left eigenvectors of isogonal modes were numerically found to be

exponentially localized around the respective cell with a length scale (κ + ᾱ)−1/2: i.e.

they are only forced with the screening length set by contractility as shown in Fig.

2.7(a). This reproduces the result found in 1D.

The reduced matrix S̃ is obtained by eliminating the 1st row and 1st column of S.

It is manifestly symmetric in our chosen basis, following immediately from the fact that

Lij;kl and Aij;kl are symmetric and anti-symmetric respectively. Furthermore, it is easy

to see that Lij;kl satisfies all properties of a normalized weighted graph Laplacian defined

over edges in our triangulation and thus will be negative semi-definite, as shown in Fig.

2.5, ensuring stability of the tension-triangulation of the unperturbed ATN state. ᾱ > 0
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introduced acoustic branches and thus phonons at long times.

D
en

si
ty

 o
f S

ta
te

s

λ
-1-2-3-4-5-6-7-8

.2

.4

.6

.8

1

1.2

1.4

1.6

1.8 Hexagonal Lattice

Voronoi Lattice

Isogonal 
Modes

Gapped
Longitudinal
Modes

Ro
ta

tio
na

l M
od

es

Figure 2.5: “Density of states” plot for the normal modes of H governing the dynamics of
fluctuations about the ATN equilibrium corresponding to i) a hexagonal array (black line)
and ii) a randomly generated Voronoi tesselation (red line). In both cases 3c modes lie
at zero, of which c are the isogonal modes and the remaining 2c correspond to geometric
constrains (on edge vectors). The rest of the eigenvalues are negative as required by
stability. 1/3 of the modes (in the hexagonal lattice case) are separated from zero by a
gap proportional to the activity parameter q.

We conclude that 2D modes will exhibit (albeit in a more complex form) qualitatively

equivalent features as that derived for the 1D cable above - solid-like phonons with weak

spring constants at long time and short-scale liquid like behavior dominated by isogonal

deformations. This was checked by probing the linear rheology of the material as a

function of the frequency ω of the perturbing boundary condition. Specifically, a square

grid of 15x15 cells was initialized with a random tension triangulation and subjected to a

longitudinal force TB cos(ωt). The amplitude and phase of the longitudinal strain along

the pulling axis was measured from the resultant simulation, Fig. 2.6 displays the result

as a function of ω and position along the pulling axis boundary to boundary. The system

can be seen to transition from a floppy elastic material at ω ∼ 0 as there is no phase
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difference between displacements and force. As we crossover to fluid behavior, the phase

difference transitions to π/2 which is expected if the force is being balanced solely by

viscocity. Higher frequency perturbations only pull on the elastic cytoskeletal network.
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Figure 2.6: Mechanical properties of an 2D ATN. (a) Amplitude and (b) phase of the
longitudinal strain (as a function of position) in response to periodic uniaxial forcing
TB cosωt applied at the boundaries (κ = 10−2 and ᾱ = 10−4). As the frequency ω de-
creases below ᾱ the phase shifts from π/2 to 0 indicating crossover from viscous fluid
behavior to an elastic solid. This contrasts with the conventional Maxwellian viscoelas-
ticity crossover towards elasticity with ω increasing above κ .

Lastly, we ask are the measured eigenmodes localized or extended? To address this

question we numerically measured the distribution of participation ratios, defined as

pn′ ≡
N∑
n=1

|φn′n |4 (2.37)

where φn
′
n represents the nth component of the flattened eigenvector ( δrij δuij rij δθij δmij )T

and n, n′ ∈ [1, N ] where N denotes the system size. If φn
′
is extended, then |φn′n | ∼ 1/

√
N

and thus pn′ should scale with inverse system size. Similarly, if φn
′

is localized, it should

saturate to a finite number with increasing N . We tested the localization of our modes

by tracking how the distribution of pn′ scaled with increasing number of cells within

hexagonal and randomly generated voronoi lattices. Isogonal modes were excluded from
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Figure 2.7: (a) Eigenvectors associated to isogonal modes fall off exponentially with
the characteristic length scale of decay ∼ κ−1/2. Points correspond to left eigenvectors
obtained by numerical diagonalization of H; solid lines are decaying exponentials with
characteristic length κ−1/2. (b) Eigenmode structure for regular hexagonal (b) and ran-
dom Voronoi (c) lattices: fraction of eigenmodes (excluding isogonal modes) below a
given participation ratio Npn′ (defined by Eq. 2.37) scaled with the number of cells N .
All modes are extended as indicated by the collapse of curves scale on top of each other.

analysis as it is known a priori that each is localized to a single cell. All non-isogonal

modes are fully extended in the hexagonal case - the system is diagonalizable in a plane-

wave basis - as shown numerically in Fig. 2.7b. Conversely, as shown in Fig. 2.7c, it was

found that all but one band of ‘transverse’ modes localize for disordered Voronoi lattices.

In other words, c modes are still fully extended on a disordered triangulation.

2.5 Empirical test of geometric compatibility in var-

ious Drosophila tissues

As discussed in Chapter 1, while it is not yet possible to measure all internal tensions

in a living tissue, eqn. 2.7 provides us with a quantitative assay of the validity of the

balanced tension net approximation using apical geometry alone. Exact satisfaction

of the constraint logχ = 0 is not anticipated owing to the errors associated with the
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acquisition and analyses of imaging data, as well as due to cell array fluctuations that

result in deviations from tension balance.

The appeal of the geometric compatibility constraint, defined by eqn. 2.7, is that

one can directly measure it from images of an epithelial tissue and thus immediately

test the validity of force balance and tension dominance assumptions. Alas, even if the

assumptions were correct, one would not expect this constraint to be satisfied exactly

by empirical data because of i) the measurement noise (imperfect image segmentation as

well as fundamental digitization of vertex positions) and the ii) dynamical fluctuations of

cells. Hence our analysis focuses on the probability density function (PDF), P (logχ), and

evaluates the tendency towards logχ = 0 (i.e. constraint satisfaction) which manifests

itself as a statistically significant reduction of variance compared to a randomized “con-

trol distribution” that corresponds to mechanically unconstrained cell arrays (or convex

polygonal tessellations of a plane) built from the distributions of observed angles within

the real tissue. Below we discuss the exact construction of the control distribution and

elucidate its discriminatory power using synthetic data. Furthermore, we expand upon

potential tests one can use to analyze potential sources of the measured variation.

It is important to note that the average 〈log(χ)〉 = 1
c

∑
α log(χα) is determined entirely

by χα from the cells on the boundary of the tissue. When computing the mean, each

lattice angle in the bulk will be summed over twice with opposing signs and thus the only

contribution comes from angles along the boundary. This is just a discrete manifestation

of Stokes’ law. Since the number of boundary cells scales as
√
c for c � 1, the average
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goes to zero as 1/
√
c. Hence, empirically P (logχ) is approximately normal with zero

average.

The control distribution is constructed as follows. A random cell is sampled from the

segmented cell array. Each vertex of the sampled cell is given a random external edge

using a vertex angle sampled from the empirical angle distribution. The remaining angle

is simply the supplementary of the interior angle of the cell plus the randomly sampled

angle. To ensure convexity, the configuration is accepted provided no angle greater than

π was generated. This procedure is repeated a sufficient number of times to ensure the

distribution is well sampled (set to 10x the number of cells in the array). Hence, the

control distribution measures the ‘maximum’ variance possible in log(χ) given just the

set of observed lattice angles. We then compare the variances between the measured

PDF and the control: σdata/σnull << 1 signifies statistically significant tendency of the

observed array geometry towards small values of χ and hence approximate compatibility.

To validate the proposed statistical test, we examined synthetic data constructed by

minimizing a vertex-type model energy function which allows for variation of internal

pressure of cells pα = 2Γ(Aα− Āα) while making edges Hookean springs with randomized

intrinsic lengths `ij:

E =
∑
<i,j>

(rij − `ij)2 + Γ
∑
α

(Aα − Āα)2 (2.38)

Intrinsic cell area Āα is to be a quenched random number sampled from a Gaussian

distribution with mean 3
√

3/2 and standard deviation σa. Furthermore, intrinsic edge

length `ij is sampled from a Gaussian distribution with mean 1 and standard deviation
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fixed to be .2. The external space has pressure −1 to balance the internal tension of the

vertex model. Cell arrays are obtained by minimization of E (approximately 300 cells

were relaxed per iteration) under the prescribed boundary conditions. We then construct

P (logχ) distributions for the generated cell arrays for different values of Γ and σa and

compare to corresponding control distributions. This allows us to estimate the ratio

σdata/σnull as a function of pressure’s contribution to mechanical equilibrium.

To quantify the effect of pressure fluctuations (forced in the model by heterogeneity

of Āα), we compute the curvature (normalized to average edge length) R−1 ≡ ∆pr
T

of each

edge as defined by the Young-Laplace Law, which relates the radius of curvature of the

interface R−1 to edge tension T and the pressure difference ∆p across the edge. Average

curvature 〈R−1〉 is a convenient measure of the extent of pressure contribution to the

force balance relative to tension.

The above vertex model allowed us to quantitatively study the effect of pressure

differentials, captured by 〈R−1〉, and measurement error associated to the discretization

of vertex positions on an image on the variance of P (logχ). ‘Pixelation’ noise, denoted

σpix, was introduced by scaling tissues obtained from minimization of Eq. 2.38 to match

the desired edge length and then rounding vertex position to the nearest integer. Both

the resultant standard deviation of the log(χ) distribution as well as the ratio σdata/σnull

are reported in Fig. 2.8e,f. As expected, σχ increases as pressure differences become

non-negligible (〈R−1〉 > .1) and as measurement uncertainty increases. These results

provide a baseline to which to compare data.
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Furthermore, as cell edge curvature can be directly measured from high quality images

of epithelial tissues, we can estimate both 〈R−1〉 and σpix parameters corresponding to

real tissues. In Fig. 2.8e,f we place on the heat maps the points corresponding to the

pupal notum, ventral mesoderm, lateral ectoderm, and larval wing disc epithelia (marked

respectively as the triangle, square, circle and star) for comparison with results below.

Curvatures were estimated by fitting segmented edges to circles.

F
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σdata/σnull0 1
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B D
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Figure 2.8: (a) An image of the ventral mesoderm (Drosophila embryo) before invagi-
nation of the ventral furrow; (b) Pupal notum epithelium; (c) Epithelium of the wing
imaginal disc at the third instar larval stage; (d) Embryonic lateral ectoderm during early
germ band extension; (e) A heatmap of the standard deviation of log(χ) (obtained via
synthetic data created minimizing the energy of Eq. 2.38) as a function of both average
edge curvature R−1, normalized to average edge length, and measurement noise σpix, sim-
ulated by introducing rounding error in vertex position. The triangle, square, circle, and
star markers denote the estimated positions of the pupal notum, ventral furrow, lateral
ectoderm, and wing disc epithelia respectively. (f) The analogous plot to (e) showing the
ratio σdata/σnull. As curvature and measurement noise increase, the ratio tends toward 1
as expected. Again the estimated positions of each tissue is marked.
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Figure 2.9: Characterization of the distribution of the compatibility measures for the
four tissues.

All four analyzed tissues are shown in Fig 2.8: ventral mesoderm prior to invagination,

pupal notum, lateral ectoderm during early germ band extension, and third instar larval

imaginal wing disc (data kindly provided by Ken Irvine [143]). Example images of the

analyzed data are shown in Fig. 2.8a-d. The measured ratios σdata/σcontrol collected

in Fig. 2.9, along with the Kolmogorov Smirnov p-value defined between control and

empirical distributions [112], were found to be consistent with synthetic ratios of their

estimated positions on Fig. 2.8f and thus we conclude both the ventral mesoderm and

pupal notum are well approximated as quasistatic tissues in tension-balance.

2.6 Isogonal modes drive Drosophila ventral furrow

formation

One of the striking predictions of the ATN model is the existence of the isogonal soft

modes that allow easy variability of cell area. Extreme variability of apical cell area has
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Figure 2.10: Ventral view of Drosophila embryo at the beginning of VF formation (a) and
4 minutes later (b). (c) The measured changes in edge length ∆rij, edge orientation angle
∆θij and relative myosin level ∆mij during VF formation: red lines denote the means
(with 95% confidence intervals). Blue boxes denote 1σ. Edge length shrinks by ∼ 75%
while changes in myosin and edge orientation are considerably smaller. (d) Fraction of cell
deformation (∆r) captured by isogonality (∆riso) obtained via least squares minimization
of Eq.2.10. Each color represents an independent measurement with 200 cells. Inset: a
graphical comparison for a sample fit. (e) Spatial profile of the isogonal mode amplitude,
{Θα} describes increasing anisotropic compression of cells towards ventral midline.

been observed at the beginning of the gastrulation process in Drosophila, when cells along

the ventral midline of the embryo constrict their apical surfaces, initiating the formation

of a furrow that subsequently internalizes the future mesoderm [165], as shown in Fig.

2.10ab. This apical constriction was shown to be driven by pulsed contractions of the

medial actomyosin network (located near the apical cell surface) that pull on the cortical

cytoskeleton. The process has been described as a “ratchet”: medial myosin pulses cause

transient constrictions subsequently stabilized by the retracted cytoskeletal cortex [109].
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Motivated by the agreement with the compatibility constraint found in the above

section, we propose an alternative interpretation of the phenomenon in terms of the

ATN model. If we assume that the cortical myosin concentrations are relatively static

over the timescale of medial myosin pulsing, the ATN model predicts that any transient

perturbation of mechanical balance due to medial myosin contractions would leave behind

an isogonal deformation of the cell array, as it returns to mechanical balance dominated

by cortical tensions that remain unchanged. Hence we predict that cell deformation

during the early stages of ventral furrow formation should be well described by motion

along an isogonal manifold.

We quantified the early VF formation process using time-lapse imaging of fluorescently-

labelled myosin and cell membranes. Relative levels of cortical myosin (excluding an

overall magnitude increase [109] that does not affect local tension balance) and edge

orientations do not change significantly over the course of VF formation, despite large

changes in edge lengths (Fig. 2.10c). This finding, together with the approximate “com-

patibility” of embryonic mesoderm presented in the previous section, lend strong support

to the validity of the assumptions underlying the ATN model interpretation of the VF

formation process in terms of isogonal deformations driven by transient medial myosin

pulses.

Analyzing five movies of VF formation (as in Fig 2.10ab) we found that isogonal

deformations ∆riso, found by least squares analysis of Eq. 2.10, consistently account for

∼85% of the measured vertex displacements, Fig. 2.10d. The spatial profile of {Θα},
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integrated over the course of VF dynamics is approximately parabolic (see Fig. 2.10e),

giving rise to isogonal, but anisotropic, constriction of cells with the long axis of cells

oriented along the anterior-posterior direction [165]. Thus, the mesoderm during VF

formation indeed appears to behave as a transiently perturbed ATN, flowing along the

isogonal manifold comprised of the degenerate set of its (mechanical) equilibrium states

(see Fig. 2.4b). The ATN model provides a reduced set of degrees of freedom that

accurately describe the dynamics of VF formation.

In conclusion, we discuss the phenotypes of twist and snail mutants. snail embryos

fail to coalesce medial myosin structures and do not initiate pulsed contraction of cells:

hence snail embryos simply lack the transient perturbations [109] necessary to induce

isogonal “flow” along the equilibrium manifold. Conversely, twist embryos exhibit pulsed

apical contraction of cells but are unable to fully stabilize the constricted state [108].

These mutants also appear to have reduced tension in the cortical cytoskeleton and

exhibit strongly curved cell-cell interfaces. The latter fact suggests relatively large dif-

ferences in pressures between adjacent cells, in which case contribution of pressure to

local force balance cannot be neglected. This agrees with the highly curved cell mor-

phologies observed in twist RNAi mutants [109]. Pressure variation lifts the degeneracy

of the ATN mechanical equilibrium manifold so that isogonal deformations experience a

restoring force, thus limiting the response to transient perturbations. This intuition was

checked via simulation.

Simulation of the WT phenotype was initialized to a rectangular array of hexagonal
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cells with unit edge length. Equations 2.2,2.3 were simulated on each edge under the

assumption of a constant, uniform myosin field. Each cell’s pressure was taken to be

2Γ
[
Aα − Āα

]
with Āα = 3

√
3/2 (the area of a hexagon with a unit edge) for all cells

in the mesoderm. Effects of the medial myosin pulse were simulated via a transient

isotropic perturbation of tensions around cells (with amplitude comparable to the scale

of cortical tension). Inter-arrival times between myosin pulses were Gaussian distributed

and randomly sampled for each cell in the marked furrow (see red box in Fig. 2.11a). No

pulses were simulated outside of the synthetic furrow. To represent the twist phenotype

we carried out a similar simulation, but with the tension scale reduced by a factor of

10 so that T ∼ ∆pr. This moved the system out of the tension-net regime, causing

the area-elasticity term to ‘force’ retraction of the cell after contractions caused by the

myosin pulse. Randomizing Āα magnified the stabilization defects - intended to simulate

potential effects of the lack of a persistent medial actin network. Plots of the final lattice

as well as representative time-traces from synthetic cells are shown in Fig 2.11cd.

2.7 Future tests

The ATN model presented in this chapter describes epithelial tissue dynamics in terms of

three processes: i) fast relaxation towards mechanical equilibrium dominated by cortical

tension, ii) myosin driven rearrangements of the cortex on an intermediate time scale, and

iii) on the slowest timescale, Dynamic Recruitment (or reduction) of myosin that is driven

by the internal rate of strain in the cortex, Eq. 2.4. The first two alone would result in
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a viscoelastic fluid behavior (driven by myosin generated internal forces). The unusual

behavior arises from the assumed Dynamic Recruitment of myosin, which dramatically

changes the asymptotic behavior so that while being able to flow at short times, ATNs,

like solids, can support external stress at long times. While the presented measurements

suggest the validity of tension-balance in describing the mechanical equilibrium of an

epithelial tissue, new experiments will be needed to test the Dynamic Recruitment hy-

pothesis, which was introduced to explain how myosin levels at different interfaces can

be coordinated to attain tension balance across a tissue.
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Figure 2.11: (a) Plot of the simulated active tension net with bulk medial myosin pulses
within the red box. (b) A characteristic time-course of apical area of single cell during
the simulation - denoted in (a) with a green dot. Cell contracts as a result of medial
myosin pulses and subsequently stabilizes at a smaller area (until its neighbor is pulled).
Three such pulses are shown. (c) The analogous plot to (a) but in the model with reduced
tension T ∼ ∆p r. As pressure can no longer be neglected, cells by and large recover
their apical area and do not show net constriction. (d) The time-course of apical area of
cell marked with green dot in (c). The constriction fails to stabilize at a smaller area due
to the influence of pressure. The result is large area fluctuations (due to small cortical
tension) that do not permanently constrict.
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Chapter 3

The dual formulation of epithelial

mechanics

In this chapter, we pursue D’Arcy Thompson’s goal of elucidating the map between

biological form and the corresponding ‘diagram of forces’ [167] in the context of epithelial

tissues. The ATN model presented in Chapter 2 explored the geometric consequences of

uniform pressure across all cells within the epithelium. Static tension networks exhibit

an extensive number geometric constraints, defined as the compatibility condition, which

are a strict consequence of the duality of the network geometry to a tension-triangulation.

Here, we relax the tension-net assumption to discover generalized variants of both the

geometric compatibility condition and the ‘dual’ triangulation for an arbitrary cell array.

Our formalism departs from traditional vertex models [79, 80, 52]; intercellular junc-

tions are no longer assumed to be straight polygonal edges but rather curve in accordance
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with the Young-Laplace law. Given that cellular pressure is isotropic and cortical tension

is constant along interfaces, intercellular edges are circular arcs. As before, mechanical

equilibrium of this network is achieved when tensions balance at each vertex. We show

that in the context of the generalized curved network, force balance is equivalent to the

geometric constraint that all centroids of the circular edges meeting at a vertex must be

collinear. This is recognized as the generalization of the compatibility condition presented

in Chapter 2 and is the starting point for our definition of the dual triangulation. In this

way, our dual construction can be thought of as a generalization of the Cremona-Maxwell

diagram to a network of circularly curved junctions. [113]

The dual triangulation encodes all information about the mechanical state of an ep-

ithelial tissue. As such, our dual triangulation provides an intuitive language to clarify

the relationship between discrete cellular geometry and the ‘diagram of forces’ that pat-

terns it. Remarkably, equilibrium mechanics generates geometric form analogous to the

passage from a Delaunay triangulation to a Voronoi tessellation. [173, 44]

We conclude the chapter by utilizing the discovered duality as the foundation for

a local ‘Mechanical Inference” algorithm which greatly improves upon current image-

based methods. Using synthetic data as a comparative benchmark, we show that our

algorithm correctly infers mechanics under arbitrary pressure differentials and moderate

measurement noise in contrast to existing methods. We show, by comparison to in-vivo

data for the early stages of Drosophila gastrulation, that our “Mechanical Inference”

more accurately predicts the distribution of the major molecular stress generator myosin
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II. Our proposed framework defines convenient degrees of freedom in which to study the

mechanics of epithelial tissues and thus we expect the formulated mechanical inverse

should serve as an indispensable tool to study the laws underlying morphogenesis and

the mechanics of active matter.

3.1 Equilibrium properties of an epithelial tissue with

non-uniform pressure

We introduce a generalization of vertex models that parameterizes apical cell geometry

by not only positions of vertices, ri, defined as the location where three or more cells

meet, but we also allow for edges to be ‘curved’ consistent with discontinuities of stress

across the cellular interface. The latter is the major departure from classical vertex

models [77, 80] based upon the polygonal approximation to cellular geometry. As such,

the mechanical state of the network is parameterized by an effective interfacial tension

Tαβ, where α, β labels the cells partitioned by the given edge, and an effective hydro-

static pressure pα capturing the contribution of uniaxial stress from the cell to the global

mechanical balance.

Given that the cell stress is assumed isotropic, mechanical equilibrium across cell

interfaces requires that edges within the cell array are circular arcs with radii Rαβ given

by the Young-Laplace Law

[pα − pβ]Rαβ = Tαβ (3.1)
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A graphical example of the resultant curved tension network is shown in Fig. 3.1a.

Similarly, force balance at vertex i constrains the three tension vectors Ti,βα, pulling

tangent to each circular arc as depicted in Fig. 3.1ab, to sum to zero

Tβα
Rβα

[ri − ρβα]∗+
Tαγ
Rαγ

[ri − ραγ]∗+
Tγβ
Rγβ

[ri − ργβ]∗ = 0 (3.2)

where ρβα is defined as the centroid of the circular arc associated to edge α, β and

r∗ ≡ ẑ ∧ r. Utilizing the Young-Laplace Law as defined in eq. 3.1, the force balance

condition simplifies to

[pβ − pα]ρβα + [pα − pγ]ραγ + [pγ − pβ]ργβ = 0 (3.3)

Remarkably, at equilibrium, the centroids of all three edges meeting at a vertex are

constrained to be collinear, with distance along the line controlled by relative pressure

differences, depicted graphically in Fig. 3.1b. This is recognized as the generalization

of the geometric compatibility condition obeyed by a static tension net of uniform pres-

sure discussed in Chapter 2. The geometric compatibility of any cellular network with

mechanical balance under arbitrary pressure differentials can be tested from an image of

cell morphology alone! This is an unexpected new result.

The above geometric constraint is a corollary of the fact that there is an underlying

weighted triangulation ‘dual’ to the equilibrium cell array, analogous to the Maxwell-

Cremona diagram dual to a static network of trusses [113]. Specifically, Eq. 3.3 implies

that edge centroids of a compatible network admit an irrotational decomposition

ρβα =
pβqβ − pαqα
pβ − pα

(3.4)

where qα is defined as the position of the vertex ‘dual’ to cell α. Importantly, edge
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Figure 3.1: a) A depiction of a cell array with non-negligible pressure differences at
equilibrium. Curvature of edges are given by the Young-Laplace law. Force balance at
vertex i is imposed by summing the three tension vectors tangent to each edge. b) The
equilibrium condition at a vertex in a force-balanced cell array is equivalent to the three
arc centroids being collinear.

centroids {ραβ} don’t uniquely specify vertex positions of the network - i.e. there are

many balanced cell arrays that share the same set of edge centroids. Specifically, in

order for all three collinear edges (with centroids defined by eq. 3.4) to intersect at a

well-defined vertex rαβγ, their respective radii must obey

(pα − pβ)R2
αβ + (pβ − pγ)R2

βγ + (pγ − pα)R2
γα =

(pα − pβ)ρ2
αβ + (pβ − pγ)ρ2

βγ + (pγ − pα)ρ2
γα (3.5)

Eq. 3.5 represents v constraints on e parameters and thus, assuming vertices are three-

fold, the set of solutions is expected to have a c dimensional nullspace. Given a solution,

we can generate another geometrically compatible cell array by transforming R̄2
αβ =
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R2
αβ +

Θα−Θβ
pα−pβ

, where Θα parameterizes the c dimensional manifold of equilibrium arrays

that share the same set of edge centroids. This is recognized as the generalization of the

isogonal modes previously discovered for a static tension-net in Chapter 2.

3.2 All equilibrium cellular networks are dual to a

triangulation

qα

qβ

√Θα

√Θβ

qγ

√Θγ

pα=1

pβ=1
pγ=2

Lαβ

Lαβ

ri

2LβγLβγ

2Lγα

Lγα

p

High

Low

A B

Figure 3.2: a) An example of the relationship between an equilibrium cellular network
and the dual weighted triangulation. Generating points are represented by circles of
radius

√
Θα at position qα equipped with their own isotropic metric pα. Edges are loci

of points equidistant between two generating points, as shown by the red lines. b) A
graphical example of the weighted dual triangulation and its corresponding equilibrium
cell array.

In this section, we show that as defined in the previous section, ‘dual’ vertices {qα},

along with the introduced weights {Θα, pα} generalize the passage between Voronoi tes-

sellations and Delaunay triangulations. Specifically, we take the distance dα from point
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qα to position r to be

d2
α(r) = pα|r − qα|2 −Θα (3.6)

As depicted in Fig. 3.2a, each generating point qα is now represented by a circle of finite

radius
√

Θα. Distance from this point is measured from the circumference of the circle.

Similarly, each generating point measures distance proportional to
√
p
α
, depicted by the

hue of each circle in Fig. 3.2a. Hence, the squared distance from point qα is given by the

expression

Analagous to the voronoi-delaunay construction, edge α, β within the corresponding

cell array is the locus of points equidistant from the generators at qα and qβ and thus

must satisfy the equation

pα |rαβ − qα|2 −Θα = pβ |rαβ − qβ| −Θβ (3.7)

Squaring this out and expanding

r2
αβ [pα − pβ]− 2 rαβ · [pαqα − pβqβ] +

[
pαq

2
α − pβq2

β −Θα + Θβ

]
= 0 (3.8)

We define ραβ ≡ pαqα−pβqβ
pα−pβ

(note it matches with Eq. 3.4) and complete the square to

obtain

[rαβ − ραβ]2 =
pαpβ|qα − qβ|2 + (pα − pβ) [Θα −Θβ]

[pα − pβ]2
= R2

αβ (3.9)

This is the equation for a circle of radius Rαβ centered at position ραβ. Importantly, we

immediately see that the center and radius of the circle obey Laplace’s Law and force

balance, Eq. 3.3! In short, every cell tessellation has a dual description as a weighted

triangulation. Interpreting pα as the ‘apical’ 2D pressure immediately implies that the
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tension of this edge is

Tαβ =
√
pαpβ|qα − qβ|2 + (pα − pβ) [Θα −Θβ] (3.10)

Note that the generalized isogonal modes Θ no longer leave tensions invariant. Each

vertex rαβγ position of the curved cell array occurs at the intersection of three edges

(circles) and thus must simultaneously satisfy the following three equations

|rαβγ − ρβα|2 = R2
βα |rαβγ − ραγ|2 = R2

αγ |rαβγ − ργβ|2 = R2
γβ (3.11)

We subtract the second equation from the first and expand out to obtain

2 rαβγ · [ραγ − ρβα] =
[
R2
βα − ρ2

βα

]
−
[
R2
αγ − ρ2

αγ

]
(3.12)

Substitute in each definition from above and define ηαβγ ≡ pαtγβ + pβtαγ + pγtβα where

tβα ≡ pβqβ − pαqα

2 rαβγ · ηαβγ
[pβ − pα] [pα − pγ]

=

(pγ − pβ) [pαq
2
α −Θα] + (pα − pγ)

[
pβq

2
β −Θβ

]
+ (pβ − pα)

[
pγq

2
γ −Θγ

]
[pβ − pα] [pα − pγ]

(3.13)

This equation is solved by

rαβγ =
1

4Sαβγ

[ [
pαq

2
α −Θα

]
t∗γβ +

[
pβq

2
β −Θβ

]
t∗αγ +

[
pγq

2
γ −Θγ

]
t∗βα

]
+ Γαβγη

∗
αβγ

= r0
αβγ + Γαβγη

∗
αβγ (3.14)

where we’ve defined t∗βα ≡ ẑ ∧ tβα. The value of Γαβγ is obtained by intersecting the
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line with the original circles. Thus, plug this expression back into our first equation for

a circle

Γ2
αβγ η

2
αβγ + 2 Γαβγ

[
r0
αβγ − ρβα

]
· η∗αβγ + (r0

αβγ)
2 − 2 r0

αβγ · ρβα + ρ2
βα −R2

βα = 0 (3.15)

After some arithmetic hoops, the solution to this equation is found to be

Γ±αβγ =
1[

η2αβγ
2Sαβγ

][1−
r0
αβγ · η∗αβγ
2Sαβγ

±

√[
1−

r0
αβγ · η∗αβγ
2Sαβγ

]2

−
[
η2
αβγ

2Sαβγ

] [
(r0
αβγ)

2

2Sαβγ

]]
(3.16)

Therefore, every equilibrium cellular network is dual to a weighted triangulation. An

example of a cell array and its conjugate triangulation is shown in Fig. 3.2b. Crucially,

the geometry of the dual weighted triangulation directly encodes all mechanical param-

eters of the conjugate force-balanced cell array. In the limit that pressure pα = p0 is set

to a uniform constant, we recover the properties of the ATN model presented in Chapter

2 where again Θα plays the role of the zero, isogonal mode. Additionally, setting all

Θα = Θ0 we recover the Delaunay to Voronoi duality as we note that Eq. 3.14 reduces

to the circumcenter of its respective triangle.

Provided there is time-scale separation between cellular rearrangements and mechan-

ical equilibration, it is common to approximate morphogenesis as the adiabatic evolution

of cellular geometry constrained to instantaneously obey mechanical equilibrium. The

above dual weighted triangulation provides us with a simple set of degrees of freedom to

describe such adiabatic cellular flows generically. In fact, any vertex model, independent

of the assumed form of the mechanical energy and proposed feedback mechanisms, will
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reduce to our dual geometric description. Choice of mechanical feedback and cytoskele-

tal regulation is tantamount to an assumption for the forward equation of motion for

{q, p,Θ}. Thus, we will find it useful to measure the dual triangulation directly from the

data.

3.3 Formulation of local Mechanical Inverse using

dual triangulation

The above section formulated the forward problem: given a weighted triangulation,

{qα,Θα, pα}, eqns. 3.10, 3.14 fully specify the geometry of the conjugate equilibrium

cell array. Ultimately we wish to solve the inverse problem. Given a cell array, we

seek to infer an approximate dual weighted triangulation that accurately reproduces the

observed cellular morphology and thus ultimately measures the underlying compatible

mechanical state. This is achieved by minimizing the least-squares difference between

the observed cell geometry and the estimated geometry from the dual triangulation.

Specifically, the dual weighted triangulation is fit by minimizing the energy

E =
1

ne

∑
<α,β>

1

2Nαβ

Nαβ∑
n

[
|rαβ|n − ραβ| −Rαβ

]2
(3.17)

rαβ|n denotes the nth estimated position of edge α, β obtained directly from the seg-

mentation. ρα,β and Rαβ are given by eqns. 3.4 and 3.10 (in conjunction with Laplace’s

Law) respectively. Eq. 3.17 has a simple geometric interpretation - it measures the

distance between the estimated and measured circular arc for each edge in degrees of
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freedom that natively enforce geometric compatibility with force balance as per eq. 3.3.

To obtain an initial guess for minimization of Eq. 3.17, we leverage the fact that {ραβ}

is independent of {Θα} to obtain initial estimates for {qα} and {pα}. As depicted in

Fig. 3.1, the vector pointing from each arc’s centroid to either of the attached vertices,

ri− ραβ, is orthogonal to the associated tension vector Ti,βα as they lay along the radial

and tangential directions of edge αβ respectively. In conjunction with Eq. 3.4, this im-

plies that [(pα − pβ) ri − (pαqα − pβqβ)] · T̂i,βα = 0 which can immediately be leveraged

to fit {qα, pα} to the cell array. Specifically, we minimize the energy functional

E1 [qα, pα] =
1

ne

∑
<α,β>

[
τ̂i,βα ·T̂ obs

i,βα

]2

+
[
τ̂j,βα ·T̂ obs

j,βα

]2

+ Λ
[
|qβα| − ne

]
where τi,βα ≡ (pα − pβ) robsi −(pαqα − pβqβ) has been defined for notational convenience.

robsi is the vertex position measured from the segmentation and T̂ obs
i,βα is obtained by fitting

each edge to a circular arc, described in detail below. Λ is a Lagrange multiplier that

fixes the scale in the q-plane and thus ensures we don’t infer the trivial solution with

uniform q and p. Given q0
α and p0

α, we obtain Θ0
α by linear regression of

p0
αp

0
β|q0

α − q0
β|2 −R2

αβ

p0
α − p0

β

= Θα −Θβ (3.18)

subject to the constraint that
∑
α

Θα = 0.

Importantly, our inverse is over-constrained in contrast to previously proposed meth-

ods [29, 83]. Assuming all vertices are three-fold, the number of geometric degrees of

freedom of a curved cell array, 2nv + ne = 7c, is greater than 4c parameters allowed to

vary in the minimization of Eq. 3.17. This allows us to ‘measure’ boundary stresses

using just information of bulk cellular morphology! As such, our method is local and
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thus immediately applicable to inference of inter-tissue forces.

3.4 Validation of local Mechanical Inverse using syn-

thetic data

In order to verify the validity of our algorithm to infer a possible dual weighted trian-

gulation that corresponds to the observed cell geometry, we checked its ability to invert

known values and compare our algorithm against other state-of-the-art mechanical in-

version techniques. For this, we need a reliable way to generate arbitrary equilibrium

networks. Values for {qα}, {pα}, and {Θα} can be chosen arbitrarily. The only compli-

A B C

Figure 3.3: a) An example plot of the image of closest weighted distance from all gener-
ating points (shown as blue dots). b) An output of edges, defined as the locus of points
equidistant between neighboring generating points, overlayed in green over the original
distance function. c) The segmentation output from the watershed algorithm is used to
infer the triangulation topology. The resultant triangulation using the known values for
the generating points and the measured triangulation topology, is overlayed in blue.

cated step is to compute the resultant graph topology, i.e. which three cells meet at each

vertex. This is computed using MATLAB’s native bwdist and watershed functionality.

Specifically, distance away from each generating point qα is calculated using bwdist and
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then multiplicatively/additively weighted by pα/Θα to obtain d2
α(r) = pα|r−qα|2−Θα es-

timated over the image. This procedure is repeated for each generator and the minimum

across all points is taken - the net result is then a scalar field that measures the minimum

weighted distance away from any triangulation vertex, d(r)2 = minα d
2
α(r). An example

is given in Fig. 3.3a. Recall that edges of the corresponding cell geometry are defined as

the locus of points equidistant away from each generator and thus will be ‘ridges’ of local

maxima within the image d2(r) that are found easily using the watershed algorithm, see

Fig. 3.3b for an example. Vertices of this segmentation are defined as branch points of

the resultant skeletonization and are used to define the generated triangulation topology.

The resultant equilibrium network can then be immediately calculated from the original

parameters for {qα}, {pα}, and {Θα}. An example is plotted over the distance map in

Fig. 3.3c.

The synthetic data utilized to test our inverse algorithm was generated by initializing

a triangular lattice of ∼ 120 generating points qα within a rectangle of size [1,
√

3/2].

Gaussian noise of tunable strength σq was added to each generator position. Pressures pα

were pulled from a uniform distribution of tunable width σp to generate lattices of varying

curvature used in the correlation plots presented below. Values for {Θα} were pulled from

a Gaussian with standard deviation .2. Once exact values were fixed, exact cell geometry

was calculated utilizing the fitting algorithm described above - i.e. minimization of Eq.

3.17. Random white noise, modeling measurement noise, was added to both vertex

position ri as well as position of edge centroids ραβ to test sensitivity of the algorithm.
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Figure 3.4: (a) An example of the synthetic cell array used to benchmark the proposed
inference algorithm. (b) Graphical depiction of the two parameters, measurement noise
η and normalized bond curvature κ, defined to test inverse procedures. σ denotes the
average strength of simulated measurement noise, R is the radius of curvature, and r is
the distance between vertices. Remaining four plots represent heatmaps of correlation
between inferred tensions and pressures as a function of average κ and η for (c) ten-
sion matrix inverse (d) tension dual inverse (all pα = 1) (e) pressure matrix inverse (f)
weighted triangulation inverse. Regions of correlation higher than .8 are delineated by
the gray dashed line. Note dramatic improvement of (f) compared to (e), or (d) compared
to (c).

A graphical example can be seen in Fig. 3.4a.

We benchmarked four mechanical inverse algorithms as a function of measurement

noise, η, as described above, and the contribution of pressure to the mechanical balance,

κ, both are graphically defined in Fig. 3.4b. Specifically, we investigated the relative effi-

cacies of the following inference schemes: (i) the matrix inverse with all pressures rigidly

constrained to 1, (ii) the dual inverse with all pressures rigidly constrained to 1, (iii)
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the full matrix inverse augmented with measured curvatures and (iv) the full weighted

dual inference. The resultant correlation between inferred and the known generated ten-

sions and pressures are shown in Fig. 3.4(c-f). As is clear, both the constant pressure

(ii) and fully generalized dual inverses (iv) are significantly less sensitive to measure-

ment noise than their matrix inverse counterparts (algorithms (i) and (iii) respectively).

Furthermore, we see algorithm (iii) fails for κ ∼ .2 due to the assumptions of small pres-

sure differentials used to linearize the underlying force-balance equations. Inference of

the weighted-dual triangulation is robust to both, showing high correlation in the entire

tested parameter regime.

3.5 In-vivo correlates of local mechanical inference

in Drosophila

As will be discussed in detail in Chapter 4, immediately succeeding the formation of

the ventral furrow (VF), Drosophila embryos undergo germ-band extension (GBE), a

major morphogenetic movement resulting in the convergent extension of the lateral ecto-

derm, a tissue which approximately doubles its length along the embryo’s antero-posterior

(AP) axis through coordinated cell intercalation events [81]. Cell neighbor exchanges are

thought to be oriented by myosin anisotropy within the tissue, which distributes into

supracellular cables that run along the dorso-ventral (DV) axis of the embryo that, in

turn, orient the direction of intercalations via the active contraction of cytoskeletal actin
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Figure 3.5: (a) An overlay of inferred tensions on the curved cellular array produced
from the estimated dual weighted triangulation during germ band extension (GBE) of
the lateral ectoderm during early Drosophila embryogenesis. (b) The analogous plot as
in (a) but overlayed with the average stress tensor for each cell plotted as an ellipse. The
major/minor axis of the ellipse corresponds to the principal/minor axis of stress.

bundles [36]. This has been supported by ablation assays that have determined the

supracellular myosin cables exhibit significantly higher cortical tension than AP oriented

cell junctions [145]

As evinced by Fig. 3.5a, the proposed stress-inference can immediately test this

picture by ‘direct’, non-destructive, measurement of tensions shown overlayed over the

fluorescent-marked membrane. Strikingly, we find the observed cell geometry to be well-

fit by an equilibrium cell network over the first 90 minutes of convergent extension,

exhibiting an average residual of eq. 3.17 of approximately 1 throughout convergent

extension. As shown in Fig. 3.6a, we find a good correlation ρ ∼ .4 between measured

myosin line density and inferred cortical tension during the fast phase of GBE (first 40

minutes), strongly supporting the proposition that myosin is the molecular generator of
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active stress driving cell intercalation. Furthermore, our algorithm greatly outperforms

those based upon simple matrix inferences given fixed geometry.

Another ubiquitous morphogenetic motif found in elongating tissues is the coordi-

nated axis of division of mitotic cells. While intercalations account for the majority of

the observed shape change during GBE, it has been shown that cells within the poste-

rior region of the lateral ectoderm systematically orient their division axes to the AP

axis, contributing to the global elongation [39]. The upstream signal that instructs the

orientation of divisions is largely unknown, although the division axis of such cells is

randomized in embryos lacking AP patterning. Strong evidence has emerged that the

cell’s mechanical environment plays a large role in spindle alignment [102, 123]. Our

stress inference supports this hypothesis.
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Figure 3.6: (a) Comparison of the correlation between myosin and inferred tensions
between the matrix inverse and our proposed dual inference algorithms during the first 40
minutes of GBE. (b) Comparison of the division axis of oriented cell divisions during GBE
and the predicted axis of division using the computed average stress per cell (computed
using the new and old inverses) and the long axis. Stress and long axis were computed
for mitotic cells 2 minutes before the registered time of division.
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The average stress tensor for each cell, plotted in Fig. 3.5b as an ellipse, is given by

σ̄abα =
1

Aα

∫
Aα

d2r σab(r) = pαδ
ab +

∑
{β}α

Tαβ
2Aα

∫
rαβ

dr τ̂aαβ τ̂
b
αβ (3.19)

where {β}α denotes all cells connected to cell α. The second term denotes the line

integral over each edge belonging to cell α. τ̂αβ is taken to be the tangent normal to the

circular arc of edge α, β. This result is derived explictly in the appendix. As shown in Fig.

3.6b, we find the principal stress axis, computed for 70 tracked divisions over roughly 90

minutes of convergent extension, to be a stronger predictor of spindle orientation at the

time of division, misplacing the predicted spindle axis on average by ∼ 250, as opposed to

long axis, a common predictor of future division orientation. Furthermore, the proposed

inverse produced a stronger prediction (based upon 95% confidence intervals using t-

test) than currently available image-based methods and the commonly used geometric

long axis. The improved precision is resultant from our model’s ability to capture large

pressure differentials, in direct contrast to inference methods based on classical vertex

models.

3.6 Mechanical inference reveals patterns of stress

To demonstrate the ubiquitous utility of the local Mechanical Inverse, we ran the proposed

algorithm on various supplementary epithelial cell arrays. Specifically, the algorithm was

utilized to infer stress of the developing chick basilar papilla [62], mouse cochlea [163],

larval Drosophila eye [105], and the pupal Drosophila notum [10]. All fits were found to
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have residual energy E ∼ 1 (defined in eq. 3.17) implying excellent compatibility with a

cell array at force balance. The resultant interfacial tensions are plotted as a heatmap

in Fig. 3.7.

A B

C D

Figure 3.7: Representative images of cellular morphology from the developing (a) chick
basillar papilla at embryonic day 6 (b) mammalian cochlea (c) Drosophila larval com-
pound eye , and (d) Drosophila pupal notum. Color code represents the inferred cortical
tension - the hotter the color implies higher tension. All fits were excellent with E ∼ 1
implying we were on average 1 pixel off the segmented position of edges.

The mechanical “inference” algorithm gives us a quantitative window into the pat-

terns of stress within developing tissues. We highlight two examples from the above data

set. We first focus on the developing Drosophila compound eye, shown in Fig. 3.7c.
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During the larval stage, the eye undergoes a dynamic transition from an unordered ep-

ithelium into a highly regular hexagonal pattern of ommatidial cells destined to become

the adult composite retina cells [26]. The ordering transition is driven by a morpho-

genetic furrow that propagates through the tissue. Cells arrest their proliferation as they

enter the furrow and leave fully differentiated and geometrically patterned [26]. The

inferred pressure field, shown in Fig. 3.8 displays the morphogenetic furrow has a factor

of 2 higher pressure than the surrounding tissue. Thus the furrow is a traveling pressure

wave! Furthermore, we see that ommatidia cells retain their high pressure state as the

furrow passes.

FurrowOmmatidia

3

1

Figure 3.8: Heatmap of pressures measured within the Drosophila compound eye [105].
The furrow is marked by the pink box while a subset of ommatidia are circled in white.
The furrow is progressing to the right of the image. We see high pressure both throughout
the furrow and within the ommatidial cells.

We next examine the Drosophila pupal notum, shown in Fig. 3.7d. The mechanical

‘inference’ algorithm shows three macrosopic stress cables running along the horizontal

axis of the tissue. This is confirmed by coarse-graining the microscopic stress tensor (full

details on the coarse-graining procedure can be found in the appendix) and examining
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the three resultant components. As shown in Fig.3.9, the largest stress is concentrated

at the center of the tissue, with symmetric stress cables flanking the midline.
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Figure 3.9: Heatmap of the xx component of the coarse-grained stress tensor of the
Drosophila pupal notum [105]. The other components showed no pattern at the meso-
scopic scale.
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Chapter 4

Active cell mechanics of coordinated

cellular rearrangements

Convergent extension is a highly conserved developmental process by which tissues extend

along one axis concomitant with contraction along the orthogonal direction [176]. Mech-

anistically, the shape transformation of the overall tissue emerges from the hyperbolic

flow of its constituent cells. At the cellular level, the hyperbolic flow must be generated

by coordinated cellular rearrangements, also known as T1 processes [174, 81]. A graph-

ical representation of both scales can be found in Fig. 4.1. Zooming in even further,

patterned T1 processes within an epithelium place a unique demand on adherens junc-

tions: the tissue must remain a confluent layer while simultaneously remodeling cellular

interfaces [36].

In the context of the Drosophila melanogaster embryo, convergent extension of the
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A Coordinated
Rearrangements

B C

Stress Cable Rosette

Figure 4.1: (a) The developmental movement convergent extension results in the elonga-
tion of one tissue axis at the expense of length in the other as the result of a hyperbolic
cellular flow, shown graphically as orange arrows. The final tissue shape is shown as
the gray dashed line. (b) The hyperbolic cell flow at large scales is generated by highly
regulated local cellular rearrangements, often referred to as T1 processes. (c) Germ band
extension in Drosophila melongaster is an example of the convergent extension morpho-
genetic movement. Cell neighbor exchanges are coordinated with the help of DV oriented
stress cables, depicted above in red, that drive the formation of 4-fold vertices.

lateral ectoderm is referred to as Germ Band Extension (GBE) and has been the subject

of a great deal of experimental work [81, 148, 36, 22]. GBE immediately proceeds after the

ventral furrow invaginates and results in the approximate doubling of anterio-posterior

(AP) length, at the expense of height along the dorso-ventral (DV) axis. Cellular rear-

rangements that compose the global flow [81] are coordinated by the presence of supracel-

lular stress cables that orient along the DV axis of the lateral ectoderm [36], depicted in

Fig. 4.1c. Stress cables are enriched with myosin II motors which are thought to actively

contract intercellular junctions along the cable to either 4-fold vertices [91] or higher order

structures termed rosettes [185]. E-cadherin plays a critical role in initializing oriented

T1 processes exhibited by the simultaneous down-regulation along contracting edges and

up-regulation on AP oriented cell interfaces [186]. The growth of new AP oriented edges

from the de-novo 4-fold vertices is putatively driven by external stress along the AP

axis emanating from the invagination and subsequent dorsal migration of the posterior
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midgut [36, 103].

In order to model the coordinated cellular rearrangements required for convergent

extension flows such as GBE, we generalize the ATN model to explicitly include the effects

of cadherin-mediated adhesion within the context of epithelial mechanics in this chapter.

The extended model posits that myosin and cadherin recruitment to the cytoskeleton

is positively regulated by cortical tension of the cell. Furthermore, we propose that

cadherin activity is negatively regulated by traction forces at cellular interfaces. Traction

is generated by an asymmetric distribution of cortical tension between adherent cells

that must be supported by stress along cadherin dimers; a sufficiently strong traction

force can lead to disassembly of the dimer [140]. Our postulated regulatory architecture

of cytoskeletal mechanics is supported by the analysis of live-image data that allows

simultaneous measurement of cadherin and myosin dynamics in-vivo – kindly provided

by Thomas Lecuit [36].

Since myosin generates cortical tension, a sufficiently strong positive feedback on

myosin recruitment leads to bistability within our model, allowing cytoskeletal edges

to exist in either relatively high or low state of tension. Under this new condition, a

nominally hexagonal lattice of cells can exist either in an isotropic state, with cells having

regular hexagonal shapes, or in an anisotropic state with 2/3rds of cell edges in the high

tension state with rectangular cell shape. Interestingly we will show that nucleation of

an anisotropic state from an isotropic one can proceed through the formation of extended

chains of high-tension edges, suggesting a possible mechanism for the formation of the
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stress fibers thought to be critical to the overall movement in-vivo [36].

Our model exhibits a secondary instability that drives the anisotropic hexagonal lat-

tice towards formation of 4-fold vertices and higher order rosettes, a process known to

occur during GBE and more general convergent extension flows [185]. This instability,

in the context of our model, is driven by the presence of traction stresses [96] along the

spontaneously generated stress fiber. High traction causes reduction of cadherin along

the interface, which simultaneously increases tension and traction, resulting in the con-

traction of alternating interfaces along the fiber to zero length and thus initializing the

T1 neighbor exchange process. We also find that within the model 4-fold vertices are

stable provided they belong to a stress fiber. This means that the T1 process cannot

be completed, unless in the presence of a global stress as experimentally observed [36].

Taken together, our extended ATN model proposes that myosin and cadherin dynam-

ics, when connected to cellular mechanics, are sufficient to explain the morphological

dynamics of early germ band extension.

4.1 Lateral ectoderm behaves as driven tension net-

work during Germ-Band Extension

Before generalizing the ATN model of Chapter 2 to describe the morphological dynamics

observed during GBE, we pause and ask if the tissue is empirically consistent with such

a simplifying assumption. As presented in Section 5 of Chapter 2, the lateral ectoderm
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is geometrically compatible with an equilibrium lattice with averaged edge curvatures

〈R−1
αβrαβ〉 ∼ .08, and thus is consistent with a tension-dominated cell array. Furthermore,

the Local Mechanical Inverse algorithm outlined in detail in Chapter 3 (subject to the

uniform pressure limit) was used to infer the dynamic map of tensions corresponding

to the observed cell morphology, shown in Fig. 4.2b – hotter colors correspond to high

relative tension. The variations in inferred tensions during GBE is up to two-fold, in

agreement with laser ablation experiments [146]. The pattern of tension in Fig. 4.2b

reveals clear anisotropy, with visible stress fibers, and thus is qualitatively consistent

with earlier experimental studies [146]. With the developed tools, this comparison can

easily be made quantitative. To this end, we examine the correlation between the inferred

tension and junction-averaged myosin fluorescence intensity at ≈ 106 junctions over the

approximate 1 hour time lapse of GBE. In Fig. 4.2c we present the histogram of the

myosin-tension correlation coefficient for each time-point.

The correlation coefficient of ∼0.5 may not seem impressive at first glance, but there

are multiple reasons why exact correlation is not to be expected. First, average junctional

myosin level is not the only factor on which junctional tension depends, below we shall

model an explicit dependence on the cadherin level that is empirically observed. We fully

expect this still does not exhaust the list of other contributing factors. Furthermore, one

must remember the noisy nature of measurements of both myosin fluorescence levels and

cell geometry. Given this list of complications, it is quite remarkable that we find this

level of correlation between observed local myosin levels and tension inferred from cell
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Figure 4.2: The balance of forces during Germ Band Extension: A) An apical cross
section of the lateral ectoderm of the early Drosophila embryo (planar polarized distri-
butions of myosin in green, and cadherin in red can be seen). Yellow arrows indicate
the convergent extension flow in the moving reference frame of the tissue. B) Inferred
pattern of relative junctional tensions – hotter colors correspond to larger tensions. Rel-
ative tensions span a factor of 2 in agreement with laser ablation experiments [146].
Supracelluler stress-fibers are visible. C) Histogram of the correlation coefficient between
junctional myosin and inferred tension. Median, (dashed line) ≈ 0.5 based on analysis of
≈ 106 junctions taken from each time-point. D) The distribution of components of the
net myosin vector at a vertex (in blue), relative to a null (in red) constructed randomly
from the data. KS p-value ≈ 10−60, indicating that myosin-dependent forces are closer
to being balanced than expected at random. The unresolved component correlates with
vertex velocity, ~̇r , indicating that unresolved myosin-dependent forces drive motion in
the epithelial tissue.

geometry on the assumption of static force balance.

Lastly, if the cellular array is indeed close to equilibrium, then the dynamics of the

ATN necessitates that myosin motors are at stall on each cytoskeletal bundles. As such,

not only do we expect interfacial tensions to sum vectorially to zero at every vertex but

similarly, myosin line densities should balance. We checked this empirically, as shown

Fig. 4.2d. The probability density function of the magnitude of the normalized myosin
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vector residual, M = |
∑3

i=1 ~mi|/1
3

∑3
i=1 |~mi|, is shown in Fig. 4.2d in blue, where it is

compared to the control in red constructed by combining triads of myosin densities and

angles from distinct vertices in the field of view. Clearly, the ~Mi residual estimated from

observed junctional myosin is much closer to zero than expected by chance, as would be

expected in the case of approximate balance of forces. Remarkably, despite the crude

nature of our myosin level-based estimation of the net force, the correlation coefficient

comes out to be ≈ 0.23± 0.07 with strong statistical significance (correlation coefficient

of shuffled data is ≈ 0.04± 0.06), which strongly confirms our guiding approximation of

the instantaneous mechanical state of the tissue.

4.2 Modeling positive mechanical feedback on cy-

toskeleton

In this section, we generalize the ATN model of epithelial mechanics to move beyond

the phenomenological correlations presented above and describe the morphological dy-

namics of GBE and thus further understand the cell biological processes and mechanical

forces that drive convergent extension. The spontaneous emergence of supracellular stress

cables, the correlated myosin and cadherin dynamics resulting in a complementary ex-

pression pattern, and the observed morphological transition from hexagonal to square

celllar packing can not be explained by the ATN model as it stands, without invoking

fine-tuning of myosin patterning. We instead look for simple mechanisms that could
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explain such phenomena.

As before, we assume vertex dynamics are relaxational and driven by imbalanced

cortical tension

νṙi =
∑
{j}i

Tij r̂ji (4.1)

Similarly, we model each cortical bundle as an active elastic element such that Tij =

K(rij − `ij) where the dynamics of `ij is driven by myosin contractility of the actin

bundle. Here we postulate the adhesive force, mediated by trans-cadherin dimers, loads

the myosin motors that cross-link actin filaments within the cytoskeletal bundles of each

cell.

`−1
ij

˙̀
ij = τ−1

` W

[
Tij + λcij
mijaTs

]
(4.2)

Eq. 4.2 includes the effect of adhesion λcij which appears in the argument of the walking

kernel W [x] initially proposed in the original model. λ is taken to be a phenomenological

parameter that controls the strength of the interaction, although it is presumably regu-

lated by the AJ-actin binding proteins such as the catenin complex [122]. While Eq. 4.2

is an assumption of the model, the effect agrees with biophysical intuition and has been

observed experimentally [21]. At equilibrium, we expect vertices to be stationary and

myosin motors to be at stall, now set by the modified stall tension T ∗ij = aTsmij − λcij.

Cadherin acts as an effective adhesive force and thus negatively contributes to line ten-

sion. It is known that cortical tension positively regulates cytoskeletal myosin expression

within the lateral ectoderm during GBE [53]. As we seek to model myosin dynamics

on an intermediate time-scale, we propose tension-dependent recruitment of junctional
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Figure 4.3: The origin of shear stress at a cell-cell contact and model for mechanical feed-
back. a) Asymmetric configurations of tensions in neighboring junctions are supported
by gradients in cortical myosin in green (inset). The transfer of tension from one cell to
the other generates shear stresses and loads cadherin bonds. b) Three key ingredients
of our model: the mechanics of a tissue, the biophysics of the molecular generation of
stresses, and mechanical feedback (in black).

myosin in place of the slow strain-rate dependent explored in Chapter 2. Specifically,

myosin densities are now assumed to evolve according to the simple kinetic law

ṁij = Γm + km
T nij

T nij + T nm
− τ−1

m mij (4.3)

The exact form chosen for the tension-dependent recruitment of Eq. 4.3 is inconsequen-

tial to the resultant analysis; we simply require it be a generic sigmoidal form.

As with myosin, it has been experimentally suggested that cadherin is recruited to

adherens junctions in response to increases in cortical tension [98, 157, 161]. Furthermore,

single molecule experiments show caderin assembly and disassembly rates intimately

depend upon the force applied across the dimeric bond [140]. The sign of the interaction

depends upon the conformation of bond; catch and slip cadherin bonds will disassemble

slower and faster respectively in the presence of an applied force [98, 46]. We assume
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cadherin bonds in the lateral ectoderm during GBE are predominately slip bonds and thus

disassemble in the presence of force. This assumption is critical to the instability explored

later in this chapter and should be taken as an easy prediction to verify experimentally.

ċij = Γc
T nij

T nij + T nc
−
[
τ−1
c + kc

Σn
ij

Σn
ij + Σn

∗

]
cij (4.4)

Σij denotes the average load applied per cadherin molecule expressed on edge i, j. In

the context of the vertex model, Σij denotes the traction stress, or the load that must be

distributed by cadherin molecules in order to hold the attached cortices of neighboring

cells to a fixed interfacial tension. Following [29], we re-examine a microscopic picture

of a cell junction, shown in Fig. 4.4 Denoting the cortical tension of cell α to be Γα, we

Γα

Γβ
Γγ Γδi j

Figure 4.4: The average shear stress at a cell-cell contact applied across cadherin molcules
in the context of a vertex model. Recall that cadherin mechanically couple neighboring
actin bundles to maintain a constant cortical tension across. Thus, asymmetries of tension
across the interface must be supported entirely by cadherin molecules. We define this to
be junctional traction.

require that the composite junction is held at constant tension Tαβ = Γα(x) + Γβ(x), but

allow each cell’s cortical tension to vary across the edge. The average shear force on each

actin bundle belonging to cell α, β is Σij = [Γα(rαβ)−Γα(0)]/rαβ. Assuming the cortical

tension for each cell’s cytoskeleton is continuous across vertices, it is straightforward
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arithmetic to derive

Σij =
|Tαγ + Tβδ − Tγβ − Tαδ|

rij
(4.5)

Taken together, eqns. 4.1-4.5 fully specify the dynamics of the network.

4.3 Empirical support for mechanical regulation of

myosin and cadherin

In this section, we use a correlation analysis to provide evidence for each term of the above

biochemical equations of motion. Providing empirical support for the posited dynamics,

eqns. 4.3-4.4 is obscured by the interactions implicit in the phenomena; cytoskeletal pro-

tein expression, forces, and cellular geometry are known to mutually effect one another

which confounds our analysis if we would like to study the interaction between myosin

and cadherin expression while controlling for their known tension-dependent recruitment

(which could dominate the correlations). This presents an important problem that war-

rants careful consideration: how can we isolate the direct pairwise correlations between

two stochastic variables, X1 and X2, that is not mediated through any auxiliary field

X3? One can easily check that the canonical Pearson correlator measures the effective

two-point correlator between X1 and X2 and thus contains information of the interac-

tion averaged over all potential paths. We make this concrete by considering a generic

trivariate Gaussian distribution.

ρ(X1, X2, X3) =
1

Z
exp

[
−1

2
XTAX + µ ·X

]
(4.6)
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Z is the normalization constant. Pearson’s correlation coefficient between Xn and Xm

is easily computed to be

ρnm =
A−1
nm√

A−1
nnA

−1
mm

(4.7)

This involves the inverse of the interaction matrix A and thus depends on all interactions

between variables n and m! Statisticians have dealt with this problem by defining partial

correlators [6], which in the present context of a trivariate Gaussian would return the

desired result. Importantly, the partial correlator only controls for bilinear interactions.

To help disentangle generic, non-linear mediated interactions, we define the conditioned

cross-correlator

ρ12|3 = 〈X1, X2|X3〉 =

〈
(X1 − µX1|X3)(X2 − µX2|X3)

σX1|X3 σX1|X3

〉
(4.8)

where µX|X3 , σ
2
X1|X3

are respectively the average and the variance of X1 conditioned on

X3. Angular brackets in Eqn. 4.8 indicate the average of our conditional cross correlator

(CCC) taken over the marginalized distribution of X3. Conditioning X1 and X2 on X3

controls for the contribution of latter variable to the fluctuations of X1 and X2, improving

the ability to detect direct correlation of the latter two, even in the presence of non-linear

interactions between X1/X2 and X3.

Of course, there is no free lunch. Construction of the CCC requires large amounts of

data to adequately sample moments of the conditioned joint distribution. In all empirical

results that follow, we partition the X3 axis into bins of varying widths that each contain

30 data points, compute the correlation coefficient within each bin, and then average

over to estimate the true CCC, leveraging the high-throughput advantage of the utilized
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automated image analyses.

To illustrate the utility of conditioned cross correlation analysis in-vivo, we use it to

isolate the individual contributions of myosin and cadherin to inferred tension. We find

that conditioning on the cadherin level increases the myosin-tension correlation coefficient

from 〈m,T 〉 = 0.49 to 〈m,T |c〉 = 0.58. Conditioning on myosin, we find 〈c, T |m〉 = −0.15

- a negative direct contribution of cadherin to tension, which is otherwise obscured by the

much larger contribution of myosin (〈c, T 〉 = 0.29). This lends strong empirical evidence

to the predicted negative relation between junctional cadherin and tension!

Cytoskeleton-Tension

Tension-dependent Feedback

0.56 [0.5,0.61]
0.29 [0.22,0.39]

-0.15 [-0.18,-0.08]

0.17 [0.13,0.2]
0.11 [0.08,0.15]

Equilibration
-0.21 [-0.16,-0.27]

-0.19 [-0.16,-0.24]

0.49 [0.41,0.53]

Shear-dependent Feedback
-0.24 [-0.19,-0.31]

-0.02 [-0.05,0.02]
Σ

Σ

Figure 4.5: Conditioned Cross Correlation Analysis: Our analysis of myosin and cadherin
average junctional fluorescence, and inferred junctional tissues is present in four parts 1)
The relationship between myosin and cadherin, and tension, 2) The direct positive feed-
back of tension on myosin and cadherin produces the indirect correlation of myosin and
cadherin levels, 3) Evidence of a balance between syntheses and degradation of junctional
cytoskeletal levels, and 4) The shear stress enhancement of cadherin dissociation.

Furthermore, we find support for tension-dependent recruitment of myosin and cad-

herin - 〈ṁ, T |m〉 and 〈ċ, T |c〉 ∼ .15. CCC analysis also indicates the presence of equi-

libration dynamics – 〈ṁ,m|T 〉 and 〈ċ, c|T 〉 ∼ −.2 – supporting our assumption that
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junctional myosin and cadherin constantly degrade in time. Equilibrium levels are thus

produced through a balance of tension-depenent synthesis and degradation. Conditioning

is necessary to detect these direct pair-wise correlations.

CCC also allows us to test whether the average load per cadherin enhances the dis-

sociation rates of cadherins. Our analysis strikingly confirms that junctions with high

shear stress (junctions along stress fibers) display a negative correlation between cad-

herin recruitment and shear-stress dependent load – 〈ċ,Σ+〉 ∼ −.25. Junctions with low

shear-stress dependent load (junctions aligned orthogonal to stress fibers) display little

correlation – 〈ċ,Σ−〉 ≈ 0. Σ± was defined by taking values above and below the median.

Rate of change of myosin levels display zero correlation with junctional shear.

Conditioning, as well taking derivatives of the largely stochastic fluorescence time

traces, ought to be taken under consideration when reviewing the reported correlations.

Furthermore, we note that effects can be obscured by the temporal resolution of the

data (taken every ∼ 30 seconds) – if kinetic equilibration timescales are shorter than the

temporal resolution of the data then no signature of far from steady-state effects can be

meaningfully measured. We note this is the first real example of such correlative tests

of a vertex-based model in the literature and represents a great quantitative first step to

test postulated dynamics of biomechanical feedbacks in-vivo.
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4.4 Effects of positive feedback between myosin and

tension on tissue dynamics

The correlation analysis presented above suggests our model may be a reasonable approx-

imation, but it is the dynamical consequences of the model and their agreement with the

in-vivo dynamics of GBE that will confirm its usefulness. Hence, we shall analyze the

consequences of the two postulated modes of mechanical feedback on cytoskeletal chem-

istry: (i) tension-dependent recruitment of myosin and (ii) the enhanced detachment of

cadherin due to shear stresses at junctions. This section will focus on the former.

To gain intuition on the role of positive feedback between myosin and tension, we

temporarily neglect the role of cadherin (λ = 0). The fixed point of the tissue dynamics

is given by

Tij = [aτTsΓ]mij and mij = 1 + γ
mn
ij

mn
ij +mn

∗
(4.9)

We have rescaled mij → mij/τΓ, γ = km/Γ, and defined m∗ ≡ Tmkm/aTsΓ. The

accessible fixed points for each junction are the roots of the n+ 1 order polynomial

mn+1 − [γ + 1]mn + [mn
∗ ]m−mn

∗ = 0 (4.10)

Provided γmn
∗ � 1 (in the large n limit 1 < m∗ < 1 + γ), dominant balance dictates

that the three real roots behave as

m− ≈ 1 m0 ≈ m∗
n/n+1 m+ ≈ 1 + γ (4.11)

m± are the stable low and high states respectively that are separated by the unstable

myosin level m0. If m∗ < 1 or m∗ > 1 + γ then only the low/high fixed point is stable.
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The generic fixed point structure is illustrated graphically in Figure 4.6.

γ

γ

m*

γ
High

Low

Both

Figure 4.6: Fixed-point analysis of myosin kinetics: Intersection of the blue curve, the
first two terms in Equation 4.3, and the red curve, the third term in Equation 4.3,
constitute the fixed points of the myosin kinetics. The generic phase diagram is shown
on the right. Large region of phase space exhibits bistability.

Provided we are in the region of bistability, the high myosin/tension state can nucleate

and invade the surrounding tissue composed of junctions stabilized at the low level. Such

a situation is expected to occur when an individual junction is driven to high myosin; it

will contract and pull on connected junctional actin bundles. This will induce an elastic

deformation and thus increase the tension of each junction, which provided it is a large

enough perturbation, recruits additional myosin to high levels, and so on. This can be

made exact by utilizing the continuum limit of the 1D ‘Active Chain’ model presented in

Chapter 2 in the limit of instantaneous myosin kinetics and the linearized walking kernel

so that

∂tT (x, t) = ∂2
xT (x, t)− κ [T −m(T )]

m(T ) = τΓ + τKΘ (T − Tm) (4.12)
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For ease of calculation, we approximate the Hill function in the n >> 1 limit as the

Heaviside step function. We restrict our attention to traveling wave solutions T (x, t) =

T (x− vt) = T (ξ)

∂2
ξT + v∂ξT − κ [T − τΓ− τKΘ (T − Tm)] = 0 (4.13)

By construction, the high/low tension state exists to the left/right such that T (−∞) =

Thigh and T (+∞) = Tlow. The global solution can be obtained by solving both resultant

linear equations independently in the left and right half-planes and enforcing continuity

at ξ = 0.

T (ξ) =

τΓ + τK − τK
[
|αR|

|αR|+αL
eαLξ

]
if ξ < 0

τΓ + τK
[

αL
|αR|+αL

e−|αR|ξ
]

if ξ > 0
(4.14)

We have defined αL,R ≡ (−v ±
√
v2 + 4κ)/2 for notational convenience - it directly

relates the localization of the wavefront to its propagation speed. As we’ve defined the

location ξ = 0 as the transition between the high and low state, we must enforce the

amplitude of our solution is self-consistent. As the amplitude is directly related to the

velocity, we recover the speed of the wave to be v =
√

4κ
1−A2A where A ≡ 1 − 2TM−τΓ

τkm
.

We note this a particularly simple example of the general velocity selection problem in

the context of nonlinear diffusion [38].

While this discussion describes the growth phase of a first order phase transition in

one dimension, we find that the initial nucleation event is critical to the nature of the

front propagation in higher dimensions. Simulations of the model in 2D demonstrate that

if the nucleation of a high myosin state occurs isotropically in a single cell, the growth of

a front occurs in two dimensions, shown in Fig. 4.7d-e. Alternatively, if nucleation of a
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high myosin state occurs anisotropically in a single cell, then growth of a cable emerges,

as displayed in Fig. 4.7a-c. Intensity of colors correspond to tension levels.
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Figure 4.7: Myosin bistability can drive the propagation of a high tension/myosin state
into a lattice stabilized at low tension/myosin. The symmetry of the nucleation event
determines the dimensionality of the front: (a-c) anisotropic nucleation drives generation
of a one-dimensional stress fiber while d-e) exhibits the two-dimensional front growth
from an isotropic nucleation drives. f) The angular power spectrum (discrete Fourier
transform of interior polygon angles) averaged over all cells throughout time during GBE
displays a discrete transition from hexagonal to rectangular geometry.

As shown in Fig. 4.7f, the lateral ectoderm undergoes a collective transition from a

predominately hexagonal cellular array into a ‘square’ lattice with super-cellular stress

cables running along the DV axis of the embryo, consistent with observations of previous

studies [187, 16]. While the proposed positive feedback between myosin and tension is suf-

ficient to explain the self-assembly of a single cable, myosin fluctuations must themselves

be patterned to achieve the observed long-range order. This prerequisite is completely

consistent with experimental observation that pulsatile myosin is driven to DV oriented

junctions [107]. Given patterned myosin fluctuations along the DV axis, we observe that

positive mechanotransduction of myosin is sufficient to recapitulate the cellular lattice
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Figure 4.8: Patterned myosin fluctuations recapitulate the collective lattice transition
during GBE: a-b) Given an initial hexagonal cellular array, either with weak initial
enrichment of myosin along the DV axis, or dynamic myosin pulses that preferentially
hit DV oriented junctions, we reconstruct the observed morphological transition to a
square lattice, characterized by DV oriented stress cables, shown in (b) using eqns. 4.1-
4.5 in the bistable regime of myosin kinetics. The cartoon representation of the initial
and final cell morphologies is shown in (c).

transition observed in-silico as shown in Fig. 4.8a-b. Full detail on the simulation can

be found in the appendix. Importantly, these results hold true in the presence of fi-

nite cadherin contribution to cortical tension (λ > 0). This is entirely consistent with

our postulated cadherin kinetics; the hexagonal morphology exhibits negligible tissue

shear. Once geometric anisotropy arises concomitant with the transition to square cell

morphology, shear-dependent detachment of cadherin drives the subsequent dynamics.

4.5 Secondary instability of stress fibers: Cadherin

regulation drives 4-fold formation

Assembly of a high tension supracellular cable will generate large shear stresses Σ along

all composite junctions. This is manifest in Eq. 4.5, which in the case of 1D stress
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fiber as shown in Fig. 4.8 will limit to Σ = 2∆T
r

, where ∆T = Tcable − T0, denotes the

difference between the tension of the stress cable and its supporting junctions (shown as

green edges in Fig. 4.8). Homogeneous cables are expected to be unstable. As the 1D

cable is under a large shear stress Σ, cadherin is expected to dissociate from the actin

cortex. Provided λ > 0, this will increase the cable’s tension resulting in a larger shear

stress! The effective positive feedback loop between cortical tension and shear in 1D can

drive alternating edges to zero length and thus initializes a T1 process.

We check this intuition analytically by specializing to the extreme example that T0 =

0, which exactly corresponds to the case illustrated in Fig. 4.8c. Under this assumption,

each stress fiber is decoupled from its neighbors and can be studied in 1D isolation using

the ‘Active Chain Model’ presented in Chapter 2. Furthermore, the traction force of edge

n along the cable simplifies to Σn = (Tn + Tn−1)/ri. Once linearized around the uniform

fixed point of high myosin rn = r, mn = m ≈ τ [Γ + km], and cn = c, the equations of

motion are (with time re-scaled in units of ν)


δṙn
δṪn
δṁn

δċn

 =


0 ∇nn′ 0 0
0 ∇nn′ − κδnn′ κδnn′ −λκδnn′
0 εmδnn′ −τ−1

m δnn′ 0
εHΣδnn εcδnn′ − εH

r
Dn,n′ 0 −τ̄−1

c δnn′



δrn′
δTn′
δmn′

δcn′

 (4.15)

We have defined κ ≡ `∗

ντ`maTs
, εm ≡ ∂T

Tn

Tn+Tnm

∣∣
T

, εc ≡ ∂T
Tn

Tn+Tnc

∣∣
T

, εH ≡ ∂Σ
Σn

Σn+Σnm

∣∣
Σ

, τ̄−1
c ≡

τ−1
c + kc

Σn

Σn+Σn∗
, and Dnn′ = δn,n′+1 + δn,n′−1 to simplify notation. As we have assumed

the cable is in the high myosin state, εm << 1, myosin dynamics are saturated and can

be ignored from the following analysis. Furthermore, due to translational invariance, the

linearized equations of motion can be diagonalized over space by considering its Fourier
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transform with k ∈ [0, 2π
N
, ..., 2π(N−1)

N
].δṙkδṪk

δċk

 ≈
 0 2(cos k − 1) 0

0 2(cos k − 1)− κ −λκ
εHΣ εc − 2εH

r
cos k −τ̄−1

c

δrkδTk
δck

 (4.16)

For general parameter regimes, the matrix of Eq. 4.16 exhibits at least one positive,

real eigenvalue and thus we conclude stress cables are unstable in the presence of the

posited cadherin dynamics. However as shown in Fig. 4.9, the nature of the instability

exhibits two major phases characterized by the dominant wavenumber of instability,

denoted kmax. In the kmax = 0 phase, the shear-dependent dynamics are dominated

by global positive feedback: reducing cadherin uniformally along the cable will increase

tension uniformally, thus increasing shear-dependent cadherin depletion. As shown in

Fig. 4.9, we expect this to be true in the limit that Tcable >> 2. In the kmax = π phase,

the shear-dependent dynamics are dominated by alternating junction length modulation

along the cable. Cadherin on the contracting/extending junctions is depleted/recruited

such that tension along the cable is kept roughly constant. As experimental observations

place Tcable ∼ 2T0 [146], it is reasonable to expect GBE to operate in this regime.

Fig. 4.10a clearly demonstrates that supracellular stress fibers exhibit inhomogeneous

contractions during GBE - junction lengths along the cable exhibit large variances in

edge length. A characteristic snapshot of simulations of our mathematical model, chosen

in a parameter regime that supports inhomogeneous contraction, is shown in Figure

4.10b, and bears a qualitative resemblance to Fig. 4.10a. This simple minded and

limited comparison of the model to observations lends some evidence to the presence

of a secondary instability along stress fibers that drives inhomogeneous contractions of
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Figure 4.9: a-b) The maximum eigenvalue of dynamics Eq. 4.16, shown in the
(εHΣ, 2εHr

−1) plane (with τ−1
c = .1, εc = .01, λ = .1 and κ = 10). Two qualita-

tively different regimes of instability, delineated by the maximally instable wavenumber,
shown in (b). Perturbing the other four parameters leaves the generic two-phase diagram
invariant but changes both the position and shape of the boundary between them. The
kmax = 0 regime is characterized by global rescaling of cadherin levels, effectively pulling
on the boundary. kmax = π regime denotes an alternating contraction of junctions along
the fiber to zero length.

junctions along it. It certainly would be interesting to investigate scenarios where uniform

contraction of stress fibers is observed and delve into the differential molecular regulation

of cytoskeletal kinetics.

Regardless of the microscopic nature of a T1 process, a short junction along a stress

fiber will necessarily be subject to high shear stresses, driving it to “zero” length. Short

junctions along stress fibers are therefore unstable, imparting stability to a 4-fold vertex.

This is observed in simulations, as well as in the long lifetimes of 4 fold vertices in

a variety of in epithelial tissues, including the lateral ectoderm. Our results do not

preclude resolutions of 4-fold vertices in the absence of stress-fibers, a neighbor exchange

event often seen early on in GBE.
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Figure 4.10: Inhomogeneous contraction of stress-fibers, and rosette dynamics: A) A
characteristic snapshot of the epithelial lattice, observed through a live-reporter of en-
dogenous E-cadherin, during germ band extension, after the formation of stress fibers.
Inhomogeneous junctional lengths are typically observed, along with an over-abundance
of 4-fold vertices. B) Lattice simulations of the model in the parameter regime supporting
inhomogeneous junction contractions along stress-fiber qualitatively resembles observed
lattices, with an over abundance of 4-fold vertices. C-D) Rosette, higher-fold vertex
structures, are generically observed during GBE. E) Within the context of the model,
rosettes are generated through the stability of four-fold vertices, and their resolution is
permitted through the generation of a new junction along a low-shear configuration.

Rosettes, higher-fold vertices, as shown in Fig. 4.10c-d, are observed commonly during

GBE [185] and present a route where a junction can emerge in a low shear configuration

in the presence of a stress fiber. Rosette formation, and its resolution, is recovered by

our simulation with no additional ingredients to the ones already discussed in this study.

Fig. 4.10e illustrates an example of such an event. What permits an intercalation event

through a rosette-like intermediary structure? Unlike a junction resolved from a 4-fold

107



intercalation event, a rosette can generate a new junction that isn’t under high shear,

thereby escaping the secondary, cadherin-drive, instability. As formulated, this is the

only pathway in which a T1 process can complete with a neighbor exchange.

BA

Junction length
0 1 2 3 4 5

Figure 4.11: Geometric anisotropy and directionality during cellular exchange: Our model
suggests that geometric parameter, ψ, as defined in panel A to have distinct dynamics
along contracting and extending junctions. In particular, our model predicts that shrink-
ing junctions ought to display ψ ≈ 1, while extending junctions following T1 events ought
to display ψ ≈ 0. This qualitative difference is observed in the data, as shown in panel
B.

Taking a step back from the details of the physical structures responsible for neigh-

bor exchanges, within our mathematical model, junctional contractions are predicted to

occur along asymmetric/high-shear configurations, while junctional extensions are only

permitted along symmetric/low-shear configurations. Geometry asymmetry along a given

junction is measured by parameter ψ = |θa + θc − θb − θd|. This qualitative prediction

is validated by analysis of live-image time-lapse of GBE, displayed in Fig. 4.11. In par-

ticular, contracting junctions develop geometric asymmetry, while extending junctions

evolve towards the symmetric hexagonal state.
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4.6 Beyond correlation-based validation

In this chapter, we presented statistical analyses that support the existence of mechanical

feedback on biochemical expression, and motivate the proposed functional form for kinetic

models for myosin and cadherins at junctions. We note that the correlation analysis

used can at best be suggestive and thus the final proof of the validity of the proposed

model lies within rigorous experimental validation of the predictions of the model and the

molecular mechanisms they support. This is a feature, not a bug! The model explains

observed tissue phenomena with simple quantitative laws that make generic predictions

insensitive to parameter values that are immediately accessible to experimentalists. The

first is that tension-dependent recruitment of myosin generates bistability in myosin levels

at a junction. In analogy to first order phase transitions known in condensed matter

systems and excitable media, the high tension/myosin state is predicted to invade a

lattice stabilized at the lower fixed point. The dimensionality of the propagating front is

a function of the nature of the nucleation event. In particular, isotropic nucleation events

will drive two-dimensional front propagation, whereas an anisotropic nucleation event will

drive the self-assembly of a stress fiber. Using modern optogenetic tools, or sufficiently

large mechanical perturbations via laser ablation, this prediction should be testable by

directly probing the predicted bistability, and thus hysteresis, of myosin dynamics.

Following the observed transition in collective cellular morphology, what are the dy-

namics of stress fibers themselves? Since localized stress fibers generate large shear

stresses at the corresponding cellular interfaces, we analyzed the consequence that stresses
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enhance cadherin detachment in a load dependent manner. We find two qualitatively

distinct possibilities: i) homogeneous stress fiber contraction that will pull neighboring

tissues producing large overall fiber contraction and large scale deformations, or ii) in-

homogeneous stress fiber contractions, where every other junction contracts to “zero”

length at the expense of its neighbors that extend, producing no overall fiber contrac-

tion, but instead drives cellular intercalation events. Following observations made in a

number of previous studies, we see evidence of the second mode of fiber contraction dur-

ing GBE, suggesting that cellular intercalations rather than overall tissue deformation

is the dominant form of morphogenesis occurring during GBE. Further analysis of this

model may lead to experimental possibilities that could move the lateral ectoderm into

the first regime.

An unavoidable prediction of our model is that 4-fold vertices are stable in the presence

of the high shear forces along a stress fiber. As such, T1 events along stress fibers either

have to a result of stress-fiber dissipation or the formation of higher order vertices, termed

rosettes, that permit the resolution of junctions along stress fibers along a low shear

configuration. This qualitative prediction is confirmed by a geometric order parameter

based analysis of large numbers of contracting and extending junctions.

In summary, clearly genetic patterning produces biases in the structure and kinetics

of epithelial tissues undergoing morphogenesis. The central issue addressed in this chap-

ter is whether mechanical feedback within a tensed epithelial tissue can sustain emergent

features that play an important role in epithelial morphogenesis. We believe that sug-
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gesting specific and falsifiable modes of mechanical feedback, and connecting them to the

cellular and tissue level processes that they might be responsible for is immensely useful

in guiding future experiments.
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Chapter 5

Continuum model of active

mechanics and morphogenetic flow

Drosophila embryogenesis has historically been partitioned into autonomously acting tis-

sues, in which intrinsic cell-specific behavior drives shape transformations of the tissue

[109]. Thanks to in-toto imaging [93], we now have unprecedented experimental access

to morphogenesis at the global scale and can begin to probe the interactions between

these putative autonomous domains. For example, the non-local interactions between the

formation of the ventral furrow (VF), posterior midgut invagination [165], and the con-

vergent extension of the lateral ectoderm during early Drosophila embryogenesis remain

a subject of active study which requires quantitative multi-scale analysis [36, 144, 148].

To address this particular question, we utilize light-sheet microscopy data obtained

and analyzed in collaboration with Sebastian J. Streichan (KITP, UCSB), that provides

112



detailed three-dimensional time-lapse movies of Drosophila gastrulation. For approxi-

mately ninety minutes after formation of the cephalic furrow, the embryonic tissue forms

a 2D epithelial layer with minimal folds into the third dimension [165]. Hence, the global

morphogenetic flow can be adequately captured by cellular dynamics on a static apical

surface [73]. We find that Drosophila gastrulation is characterized by three major flow

geometries, shown in Fig. 5.1. Preceding the formation of the VF, cells move dorsally

with no internalization. At the onset of VF formation, cells rapidly move towards the

ventral midline to form the future mesoderm of the animal, as was described in Chap-

ter 2. After VF formation has completed, the Drosophila embryo begins to elongate its

germ band (GBE), characterized by a hyperbolic flow typical of convergent extension.

Fluorescently labeling myosin shows that each of the three flow field configurations is

accompanied by an idiosyncratic spatial myosin distribution. Can we use quantitative

modeling to connect these two empirical fields?

In preceding chapters, we phenomenologically modeled the activity of cytoskeletal

actomyosin bundles in the context of tissue-scale mechanics by generalizing the classical

vertex model to directly include mechanical feedbacks on cadherin and myosin expression.

The discrete model is informative when probing questions at cellular scales, as was done

in our analysis of Drosophila VF formation and GBE in Chapter 2 and 4 respectively.

However, when considering morphogenesis of large-scale structures such as organs or

entire bodies constituted from thousands of mechanically coupled cells, it is helpful to

have a coarse-grained continuum model.
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To this end, in this Chapter we define a coarse-grained description of the ATN model

with the explicit purpose of relating the first ninety minutes of global cellular flow during

Drosophila gastrulation to the spatial distribution of myosin II. Specifically, we assume

the embryonic epithelial tissue is a pre-strained elastic solid whose intrinsic geometry

adiabatically evolves as a result of internal rearrangements of the actomyosin cytoskele-

ton. At intermediate time-scales, the model predicts the tissue to effectively behave as

a compressible viscous fluid driven by myosin imbalances; this picture is borne out by

the data. As before, its predictions on longer time-scales will require new experiments,

however we fully expect this model to be immediately applicable to many developing

systems.

5.1 Active Tension Network model at the mesoscopic

scale

The ATN model presented in Chapter 2 formulated tissue mechanics as a discrete network

of pre-strained elastic elements that plastically deform in response to active actomyosin

contractility. As such, the instantaneous mechanical energy was given by

E [{ri}] =
1

2

∑
<i,j>

K [rij − `ij]2 (5.1)

where unlike classical passive materials, `ij was allowed to adiabatically flow, regulated

by the local linear myosin density mij, which itself was taken to be a dynamical vari-

able. As seen in Chapter 4, different mechanochemical feedback characteristics can lead
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to macroscopically different tissue morphologies. While the network-level model proved

illuminating whilst probing morphogenesis at the cellular scale, it is unclear if such pre-

cision is required or even exhibited at the level of morphogenesis of organs and entire

bodies. For example, it has been shown that molecular patterns and cellular rearrange-

ments are highly reproducible when averaged on patches of ∼100 cells, hereafter referred

to as the mesoscopic scale, despite considerable variability at the single-cell level during

metamorphosis of both the Drosophila scutellum and pupal wing [18, 51]. We thus focus

our attention to coarse-graining our microscopic model.

Mathematically, the above statements are tantamount to assuming the underlying

microscopic degrees of freedom are well-approximated by continuum fields, representing

the reproducible mesoscopic patterns we aim to describe. We introduce the vector field

r, which denotes the smooth variation of vertex positions

ri ≈ Rij + raij∇ar (5.2)

where Rij ≡ .5 [ri + rj] and a, b ∈ [1, 2] index spatial dimensions. Einstein summation

convention is assumed unless otherwise noted. Eq. 5.2 immediately implies the physical

length of edge i, j is given by

rij ≈ uab(Rij) rij r̂
a
ij r̂

b
ij (5.3)

uab ≡ .5 [∇arb +∇bra] denotes the continuum strain tensor which measures the local

deformation of cells relative to a uniform embedding. Lastly, we introduce the symmetric,

positive-definite tensor field sab that captures the intrinsic cytoskeletal geometry

`ij ≈ sab(Rij) rij r̂
a
ij r̂

b
ij (5.4)
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Substituting all results into the original energy functional, we arrive at

E ≈ K

2

∫
d2x [uab − sab]

(∑
<i,j>

δ2(x−Rij)r
2
ij r̂

a
ij r̂

b
ij r̂

c
ij r̂

d
ij

)
[ucd − scd] (5.5)

The quantity in the parentheses is recognized as the dimensionless elasticity tensor

that is dependent upon the quenched disorder associated with the local morphology

of the cellular lattice. As we are only interested in the typical large-scale behavior of

morphogenesis, we must compute the average of this energy over geometric disorder

within the mesoscopic patch. Motivated by the approximate hexagonal nature of apical

cell areas observed, we assume each patch is statistically homogeneous and isotropic [96],

giving us the effective continuum energy

E =
1

2

∫
d2x [uab − sab]

(
λ(x)δabδcd + µ(x)δacδbd

)
[ucd − scd] (5.6)

The final result is unsurprising - in the continuum limit we recover the picture of epithe-

lial tissue mechanics as a pre-strained elastic medium that we originally started with -

but the above derivation allows us to interpret the mesoscopic parameters in the context

of the original network variables. Specifically, the pre-stress tensor sab originates from

the intrinsic geometry of the underlying cytoskeletal network - any deviation of the ac-

tual cell geometry, summarized by the strain tensor uab, from this signifies that myosin

motors are actively stressing the underlying network. Furthermore, the effective con-

stitutive relationship defined by Kabcd = λ(x)δabδcd + µ(x)δacδbd ultimately arises from

the underlying cellular morphology within each patch. Here, we’ve only considered the

simplified case in which all cellular patches are on average hexagonal. The overall scale

is set by the stiffness of actin bundles.
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Equation 5.6 is recognized as the linearization of the energy describing a non-euclidean

plate, a material with no stress-less configuration in R2, in the limit of zero thickness

[49, 155]. This class of models has had success modeling phenomena ranging from the

shape of growing leaves[152], how a venus flytrap snaps [57], to the periodic wrinkles

found in stretched plastic bags [156]. Non-euclidean plates and shells (thin material with

finite curvature) are modeled using a material reference metric ḡ which defines the stress-

less conformation which arises from the pattern of differential growth [63]. In general,

growth will lead to a metric with finite gauss curvature and thus there exists no planar

embedding with zero stress - i.e. the ground state is frustrated [49].

Importantly, we have shown that in the continuum limit the ATN model recapitulates

the general properties of non-euclidean plates, but generalizes the model insofar that the

intrinsic metric of the material can change not only due to patterned growth, but also

due to the differential flow of cells. In our present context, we imagine unbalanced myosin

acting as a ‘force’ which contracts the intrinsic geometry of the material. For generality,

we generalize Eq. 5.6 to describe epithelial morphogenesis on curved surfaces using the

dictionary between non-euclidean shells and plates in the limit of zero thickness such

that we can ignore bending [50]

E =
1

2

∫ √
|g|d2x [uab − sab]

(
λgabgcd + µgacgbd

)
[ucd − scd] (5.7)

uab and sab are taken to be small perturbations of the conformational and intrinsic

reference metrics relative to the shell’s midsurface metric gab. For a plate (gab = δab) we

recover the derived result Eq. 5.6. For the remainder of this section, we take the material
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to be homogeneous and thus λ, µ are scalars.

In analogy with vertex dynamics taken for the network model of Chapter 2 and 4, the

equation of motion for cellular flow is assumed to be determined by relaxational dynamics

of the above energy.

νu̇b = −δEc
δub

= ∇a

[
λ (∇cuc − scc) gab + µ

(
∇aub +∇bua

2
− sab

)]
= ∇aσ

ab (5.8)

∇a denotes the covariant derivative along the ath tangent vector belonging to the midsur-

face gab. The intrinsic metric sab is rank 2 symmetric tensor and thus can be decomposed

into a ‘flat’ portion generated by the symmetrized gradient of vector field ψa and a

‘curved’ portion associated to a deviation from the intrinsic curvature of the midsurface

manifold.

sab =
1

2
[∇aψb +∇bψa] +∇∗a∇∗bϕ (5.9)

We have defined the rotated gradient (or wedge product) ∇∗a ≡ εba∇b, where εba is

the Levi-Civita symbol, such that ∇∗agab∇b = 0. Cells will stop moving when stress is

balanced, given by

µ
[
∇2 + κ

]
[u− ψ]a + λ∇a∇b [u− ψ]b = λ∇a∇2ϕ (5.10)

κ is defined as the Gaussian curvature of the midsurface manifold. In the limit of no

bulk modulus (λ = 0), stresses are balanced when displacements ua exactly equal the

generating vector field ψa of the flat portion of the intrinsic metric s. The ‘curvature’ term

leftover ∇∗a∇∗bϕ is the residual stress that is unable to be balanced against deformations

within the tangent plane; it is precisely the component which does not satisfy the St.
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Venant compatibility condition [97]

Wabcd ≡ ∇c∇dsab +∇a∇bscd −∇b∇csad −∇a∇dsbc = 0 (5.11)

Eq. 5.11 is recognized as the linearization of the constraint that tensor sab has zero

Riemann curvature and thus is immersible in the embedding space defined by gab [31]. The

intrinsic metric s will evolve due to the active contraction of myosin on actin filaments,

which we assume to take the simple form

τ−1
` ṡab = σab −mab (5.12)

mab is defined as the mesoscopic myosin tensor and asymptotically determines the stress,

the continuum analog of the stall condition explored in the network model in Chapter 2

and 4. Eqs. 5.8, 5.12 can be integrated to obtain a prediction of the flow field from a

given time-course of mesoscopic myosin. Due to the time-scale separation between the

equilibration of mechanics within the actin cytoskeleton and the global morphogenetic

flow, it is reasonable to consider this problem in the adiabatic regime, i.e. the tissue

instantaneously satisfies force balance ∇aσ
ab = 0 throughout the course of the cellular

flow. Further assuming |σaa −ma
a| �

µ
λ
, we arrive at the simple relationship between cell

flow u̇a and unbalanced myosin ∇bm
ab

[
∇2 + κ

]
u̇a +

λ

µ
∇a
[
∇bu̇

b
]
≈ −∇bm

ab (5.13)

Thus in the adiabatic limit and independent of myosin dynamics, we predict that the

continuum active tension network should behave as a viscous, compressible fluid driven

by actomyosin activity, phenomenologically consistent with continuum ‘Active Matter’

models [106]. As done in Chapter 4, one can immediately utilize this formula to analyze
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the mesoscopic effects of particular forms of mechanical feedback on myosin kinetics and

thus closing the dynamical system of equations. However, we first must verify that Eq.

5.13 is an accurate starting point for tissue morphogenesis.

5.2 Measurement of morphogenetic flow and meso-

scopic myosin during early Drosophila embryo-

genesis

In this section, we design a systematic, automated pipeline to detect coarse-grained mor-

phogenetic flow and global myosin distributions to experimentally test eqn. 5.13 in living

systems. Specifically, given a measured mesoscopic myosin tensor mab, eqn. 5.13 can be

solved to obtain a prediction for the cellular flow field that can be tested against the

empirically measured velocity field. This work was done in collaboration with Sebastian

J. Streichan, who carried out light-sheet microscopy measurements of fluorescently la-

beled nuclei and myosin to measure morphogenetic flow and and the mesoscopic myosin

tensor respectively. All data presented below analyzes the first few hours of Drosophila

embryogenesis but we fully expect the pipeline to be applicable generally. Furthermore,

the following discussion will focus on morphogenesis in the apical plane of the embryo.

ImSaNe was used for dimensional reduction of the imaging data [73].

We measure the flow field using the particle image velocimetry (PIV) method, that

identifies local displacements between two time points [1]. Specifically, a grid is defined
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over each image. The displacement that maximizes the correlation between elements

of the grid within two subsequent time points is used as a proxy for the velocity. We

implemented the phase correlation variant that leverages favorable execution times of

fast fourier transforms, to estimate local flow within each region of interest [94]. This

method is greatly preferred over tracking cells - a monumental task that requires accurate

segmentation throughout the entirety of the morphogenetic movement.

We find that tissue remodeling during Drosophila gastrulation is characterized by

three simple flow field configurations (Fig 5.1c-e). The earliest flows start well before

the ventral furrow (VF) forms, and are characterized by a dorsal sink and ventral source

(Fig 5.1c). In contrast to the VF, no cells are internalized during this flow, but rather

cells reduce cross section on the dorsal side to account for the finite divergence. As the

VF forms, source and sink swap sides and a large group of cells internalize on the ventral

side, as mesoderm precursors leave the surface of the blastoderm (Fig 5.1d). During

germband extension (GBE), the flow pattern exhibits two saddles arranged on the dorsal

and ventral sides as well as four vortices, two in the posterior and two in the anterior

end (Fig 5.1e). The hyperbolic flow results in the convergent extension of the lateral

ectoderm.

Anisotropic distribution of myosin is often characterized by homogeneously increased

accumulation to cell edges of particular orientation, while it remains homogeneously low

and comparable to background on other edges [186, 16, 14]. Note that typically the num-

ber of edges at low and high signal accumulation are roughly equal. Available methods

121



Figure 5.1: Drosophila melanogaster embryos during gastrulation, captured by three
simple flow fields. (a) Example of 2D data. Anterior is to the left, dorsal up. Time is
chosen such that 0 min coincides with the occurrence of the cephalic furrow (CF). (b)
Thin sub-apical layer through embryo shown in (a), with prospective head, germband
and amnioserosa color-coded. Dorsal is in the center and ventral is on top and bottom
of image. Inset shows zoom into germband. (c-e) Flow field on 2D projections for
representative time points of the pre-Ventral Furrow (pre-VF) phase (c), Ventral Furrow
(VF) phase (d), and germband phase (GBE) (e). Cyan arrows indicate tissue flow field.
Bold arrows indicate flow field topology.
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to quantify cortical anisotropy mostly operate at the single cell level and construct a

nematic tensor by integrating signal intensities along cell outlines [2]. At the organismal

scale membrane segmentation is costly, and for polarized markers low signal to noise on a

significant number of edges often results in difficulties to close the cell circumference. We

overcome the need for fiduciary markers that increase experiment complexity, by shifting

perspective to cell edges and designing a robust and rapid segmentation free anisotropy

detection algorithm based upon the Radon Transform, an integral transform that takes a

function defined in the plane to a function defined on the space of line [139]. Specifically,

given an image I(x), the radon transform RI(α, s) is defined

RI(α, s) ≡
∫
dzI(z sin(α) + s cos(α),−z cos(α) + s sin(α)) (5.14)

Thus, the radon transform maps an image into a conjugate image containing information

of all possible line integrals. We leverage this to detect enriched acto-myosin cytoskeletal

bundles within an image. Since the radon transform is linear, it follows that for any

image that is the linear superposition of linear signals, the radon transform is the linear

superposition of the radon transform of each linear signal. For example, if an image

consisted of 2 linear signals (for example a four fold vertex), the resulting radon transform

is the sum of the radon transform of each linear signal, with peak levels at orientation and

signed distance of each linear signal. An example is shown in Fig. 5.2a. As such, linear

signals are mapped to peaks in the radon transform that reflect the total intensity along

the length of the line. Knowing the location of peaks in the radon transformed space

allows us to reconstruct the position and orientation of each linear signal in the image.
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This simplifies the task of identifying lines to the detection of peaks which are significantly

easier to detect owing to the fact that they are zero-dimensional! Furthermore, due to

the integral nature of the the radon transform, the resultant signal will be less susceptible

to noise in the original data. An example of the automated segmentation of myosin is

given in Fig 5.2

Figure 5.2: Measuring myosin in an automated manner. (a) A cartoon example of an
image with its radon transform displayed below. Each colored line shown in the image is
mapped to an equivalently colored point in the radon plane. (b) Representative example
of edges identified with our anisotropy detection algorithm, and a magnification in a
region of interest showing result in comparison with underlying raw data, florescently
labeled regulatory chain of myosin motors (sqh-GFP)

The mesoscopic myosin tensor can be immediately estimated using the myosin nemat-

ics measured by the radon transform along the similar spirit as Eq 5.4. Defining mn,r̂n,

and Rn to be the myosin density, orientation, and position of the nth acto-myosin bundle

detected by our automated segmentation respectively, the mesoscopic myosin tensor is
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given by

mab(x) ≡
∫ √

|g|d2x′K(|x− x′|, σ)

[∑
n

mnr̂
a
nr̂

b
nδ

2(x′ −Rn)

]
(5.15)

where K(|x − x′|, σ) denotes the kernel used to coarse-grain (over length-scale σ) the

estimated microscopic myosin configuration obtained from the radon transform. σ was

chosen to be on the scale of∼15 cells.

Using the above pipeline, global reconfigurations of mesoscopic myosin pools were

found to be a hallmark for transitions in flow field configuration during Drosophila gas-

trulation,; each of the three flow field geometries previously discussed was found to be

accompanied by a typical spatial myosin configuration. The pre-VF flow associates with

basal myosin that exhibits a pronounced Dorso Ventral (DV) symmetry breaking, with

high levels of myosin on the dorsal and low levels on the ventral side (Fig 5.3a), while the

apical pool appears homogeneous across the surface (Fig 5.3d). The basal pool remains

asymmetric during VF flow (Fig 5.3b), but the apical pool now also displays broken DV

symmetry in the reversed orientation (Fig 5.3e). The asymmetry on the apical surface

becomes further pronounced in the GBE-phase (Fig 5.3c,f).

5.3 Numerical implementation of model.

To obtain a prediction for the morphogenetic flow given a myosin tensor requires solv-

ing Eq. 5.13 numerically. Implementation of the PDE was done using Finite Element

Methods (FEM) implemented within the FELICITY toolbox for MATLAB [175]. Finite
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Figure 5.3: Tissue deformations of Drosophila melanogaster embryos during gastrulation,
captured by three simple myosin configurations. Normalized myosin distribution on basal
cell surface corresponding to times shown in (a-c). Color code from lowest 0 to highest
1. Similarly, (d-f) displays the pool of myosin on the apical cell surface
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Element methods require defining a static triangular mesh representing the ‘canonical

embryo mid-surface. The apical surface of the embryo was estimated from point cloud

data using ImSaNe [73] and MeshLab [32].

Figure 5.4: The ‘embryo’ mesh representing the apical surface. Eqn. 5.13 was inverted
using FEM defined on the mesh.

The automated pipeline above measures the myosin tensor by course graining nemat-

ics obtained from the Radon transform done on the cylindrical projection of the embryo’s

apical surface [73]. However FEM methods require all fields to be parameterized within

the 3D embedding space of the mesh. Thus, the 2D myosin tensor was embedded using

the metric between projections and the detected apical surface computed by ImSaNe

[73]. The divergence of the myosin tensor was computed by interpolating the gradient of

each cartesian component of the tensor onto flat triangular faces of the mesh, shown in

Fig. 5.4, resulting in a third order tensor in three dimensions. The divergence is simply

the partial trace of this tensor over directions within the tangent plane of the face. This

operation was repeated independently for the apical and basal pool.
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5.4 Continuum model predicts global flow during em-

bryogenesis of Drosophila

Having formulated the measurement pipeline of both mesoscopic myosin and global mor-

phogenetic flow, we can quantitatively test the presented model on intermediate time-

scales. Our model has only one global parameter to be fit by the data: the ratio of bulk

and shear moduli. Predictions for the flow field obtained via solving eq. 5.13 are subject

to an overall scale factor, related to the unknown coefficient of viscosity, undetermined by

the model. To compare ensemble averaged flow field measurement v(t) to model predic-

tions u̇(t) in a quantitative fashion, we define a global measure for the difference between

both vector fields that is insensitive to such a scale factor. In what follows, 〈v2〉 denotes

the average square norm of the velocity over the entire embryo. Fitting the overall scale

between both fields by minimizing the difference, the residual field is given by

R =
〈u〉2v2 − 2〈u〉〈v〉 (v · u)

2〈u〉2〈v〉2
(5.16)

〈R〉 ∈ [0, 1] with zero and one indicating perfect or anti-correlation respectively. The

spatial field provides a density map of errors in the prediction. The model achieves about

〈R〉 ∼ 90% accurate description of the flow pattern before and after VF invagination (see

Fig 5.5b). The main discrepancy of model predictions for pre-VF flow (see Fig 5.5c) is

a displacement of sink and source positions along the AP axis by less than 30 µm. Pre-

diction of GBE flow essentially agrees with measurements across the entire embryo, with

the exception of a domain close to the vortices on the posterior end, due to a mismatch of
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Figure 5.5: Biophysical model quantitatively predicts tissue flow based on quantitative
measurements of myosin distribution. (a) Proposed mathematical description of the flow
parameterizes complex mechanics of cytoskeleton in terms of two effective viscosities
thatcontrols the circulatory and irrotational component of the flow. (b) Fit residual,
comparing predicted flow field with measured flow field normalized for magnitude as
a function of time. (c-e) From top to bottom spatial distribution of predicted (blue),
measured (red) flow field, and residual (blue best agreement, red worst, on a scale from
0 to 1) for select time points.
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fixed-point location (Fig 5.5d). Remarkably our model is even able to correctly predict

subtle differences between anterior and posterior fixed points along the DV axis (Fig

5.5d). Measured flow is first dominated by sources and sinks that disappear later during

GBE, suggesting that before and during VF invagination cells are less resistant to surface

area compression than during GBE. Indeed, quantitative comparison with an indepen-

dently measured flow field (Fig 5.1c-e) shows that the λ/µ ratio increases dramatically at

the start of GBE phase, resulting in effective incompressibility of apical surface of cells.

Poor agreement during VF formation is due to a significant fraction of cells inter-

nalizing and thus leaving the surface. To account for this effect, we extend the model

to allow a cut in the lattice along ventral midline with an imposed in-plane boundary

force (perpendicular to the cut) representing the pulling effect of the VF. This relatively

simple extension recovers 90% accuracy (Fig 5.5be), illustrating how regional inhomo-

geneity associated with particular morphogenetic events could be quantitatively captured

by suitable generalizations.

To assay the robustness of the fit obtained in WT embryos, we examined morpho-

genetic flows in mutant embryos in which both the overall morphology and the spatial

distribution of myosin is significantly altered. Tissue tectonics has shown that twist (twi)

embryos, which lack the formation of a ventral furrow, exhibit slower strain rates as com-

pared to WT [15]. The cause of this remained a subject of debate. We have quantified

the flow field and myosin activity patterns in twi mutants, and find that our model is

able to accurately predict the flow profiles (Fig 5.6a). During early flow phases corre-
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Figure 5.6: Mutant analysis reveals global modifications of myosin dynamics. (a) Fit
residual as in fig. 3b, for twi, and bcd nos tsl mutants. WT is shown as reference. (b)
Amplitude of basal myosin pool along DV axis for WT and mutants in (a). (c) Polarized
apical myosin in mutants shown in (a) as function of time. (d) Theoretical comparison of
DV constant basal pool (i.e. no gradient in DV direction) (left column), or DV constant
anisotropic apical pool (i.e. no gradient in DV direction) (right column) with predicted
flow based on full myosin tensor (compare to fig 3c,d respectively). Black arrows indicate
flow field topology, and red dots the fixed point from prediction based off of full myosin
tensor
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sponding to times of pre-VF flow in WT DV asymmetry of the basal myosin pool is

strongly reduced in comparison to WT, as is tissue movement towards the dorsal pole

(Fig 5.6b). Moreover, anisotropy of the apical myosin pool increases at a slower rate as

compared to WT. As previously reported for strain rates, this is most pronounced for

the first 20 min (Fig 5.6c).

In mutant embryos lacking all AP patterning (bicoid nanos torsolike or bnt), the early

basal DV asymmetry is similar to WT, with only slightly reduced myosin asymmetries

and dorsal movement (Fig 5.6b). At later stages, however, anisotropy of the apical

myosin pool remains low and comparable to pre-VF WT levels. This result is expected

given the uniform expression of pair-rule genes in a bnt genetic background (Fig 5.6c).

Consistent with these myosin distributions, we see the early dorsal flow associated with

basal myosin asymmetry but a failure to produce the complex later flow patterns with

their characteristic saddles and vortices. On a quantitative level our models predictive

power for AP patterning deficient bnt mutant embryos is comparable to WT and twi

mutants (Fig 5.6a).

5.5 Comparison of global myosin patterns and in-

ferred stress during Drosophila gastrulation

As seen above, the mesoscopic pattern of apical myosin II motors, summarized as a 2D

tensor, is sufficient to explain the coarse-grained morphogenetic flow of cells directly pre-
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ceding and concurrent with GBE over the entire embryo. Fig. 5.7a shows the anisotropic

component of the myosin tensor measured during GBE, exhibiting coarse-grained fea-

tures of the stress cables discussed in Chapter 4. However, can we determine which

regions are the putative drivers of the observed flow? Recall that myosin contractility is

modeled as driving the morphological flow via eq. 5.12 and thus we expect regions where

the myosin tensor diverges from the elastic stress tensor to be generating cell movement.

We can test this hypothesis using the local “Mechanical Inference” algorithm outlined

in detail in Chapter 3. As myosin line density was found to correlate strongly but not

perfectly with inferred tension in the lateral ectoderm, we expect this correspondence to

hold at the mesoscopic scale for the embryo during the same time of development. Alas,

while the formulated stress inference provides a high-throughput assay of sub-cellular

mechanics, it is restricted to inference of mechanics balancing a 2D planar cell array. As

such, we broadly introduce a generalization the stress inference to curved two-dimensional

surfaces. Interested readers are directed to the Appendix for further description.

As previously noted in Chapter 3, the proposed mechanical inference is over-determined

and thus entirely local; we can utilize the local algorithm infer mechanics of disparate

subregions within the embryo despite no knowledge of the regions’ boundary conditions.

Therefore, provided the cell size is smaller than the surface’s curvature, the tissue’s sur-

face (obtained using ImSaNe [73]) can be partitioned into overlapping, approximately flat

patches. Once approximated as a planar array, each cellular region can be subsequently

fit to a weighted dual triangulation. The balanced stress within each patch can only
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Figure 5.7: (a) The mesoscopic anisotropy of myosin (measured along the DV axis) shown
on the embryo, as well as unwrapped in the plane. Anisotropy is largest in the lateral
region, thought to drive GBE. (b) An example of the stress inference, plotted over the
estimated geometry, done on embryo-scale data. An overlapping grid is first defined,
shown in the figure within the green and pink dashed boxes, where the force inference
is ran independently. The overlapping regions are used to ‘stitch’ together the stress
tensor. Note the inferred stress cables shown in the region that is expected to exhibit
high anisotropy. For quantitative comparison see next figure.
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be determined up to an unknown overall scale. As such, the relative scale between all

sub-regions is fit by minimizing the difference of edge tensions within overlapping regions.

Full details of the inversion algorithm can be found in the Appendix. An example of two

stitched overlapping patches, with the resultant stress field exhibiting the expected stress

anisotropy along the DV axis, is shown in Fig. 5.7b.

Given the inferred mechanical parameters {Tij, pα} the mesoscopic stress is obtained

by coarse-graining the microscopic stress tensor

σab(r) =

{
pαg

ab if r ∈ Aα
Tαβ τ̂

a
αβτ̂

b
αβδ(|r − ραβ| −Rαβ) if r ∈ rαβ

(5.17)

τ̂αβ is taken to be the unit tangent vector along circular edge α, β. By construction, the

stress is balanced everywhere - i.e. has no divergence. The explicit construction of the

stress tensor along with the coarse-graining procedure can be found in th appendix.

Patterns of myosin and inferred stress were compared along their trace and traceless

components. The 2x2 symmetric traceless tensors were compared by computing the

magnitude of the difference, defined by

∆ = |m− λσ|/|m| (5.18)

λ fixes the unknown global scale between inferred stress and measured myosin chosen

to minimize the residual ∆. The traces of both tensor fields were compared using the

Pearson correlation coefficient ρ over space. Fig. 5.8b shows the time-course of ∆ and ρ

over ∼50 minutes of Drosophila development during gastrulation. Overall, we find great

global agreement between myosin and stress nematic tensors, preceding and concurrent

with the fast phase of GBE (∆ ∼ .15). Conversely, the trace of both tensors disagree
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Figure 5.8: (a) A graphical comparison between the measured myosin and inferred stress
tensors, each shown as ellipses with major axes pointing along the principal direction
of stress. The scalar difference ∆, defined in eq. 5.18, between both tensors is plotted
as a heatmap below. (b) The average distance between stress and myosin tensors as a
function of time. As we can only infer the balanced stress tensor, we see the distance
increase as germ band extension progresses.

in general, except during the fast phase of GBE, where we good correlation (ρ ∼ .5),

consistent with the local measurements in the lateral ectoderm shown above.

The disagreement is localized to well-defined regions during development. Preceding

GBE, we predict an overall AP gradient in balanced stress that is not seen in the myosin

pattern. Fig. 5.8a displays the comparison between myosin and stress 20 minutes after

VF formation, showing excellent global agreement between the principal axes of myosin

and stress, shown by the major axes of the plotted ellipses, however the amount of myosin

is underestimated within the dorsal regions close to the posterior mid-gut and the lateral

ectoderm, as shown by the respective elliptical areas. This measurement is consistent

with previous studies that concluded both the invagination of the endoderm, which drives

passive cell elongation, and active cell intercalations within the lateral ectoderm, both
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drive the morphological transitions during this time [91]. The result hints at the role that

DV patterning plays in the convergent extension flow and suggests that the unbalanced

myosin along the DV axis drives the observed morphological flow. We believe the ability

to estimate global patterns of stress, on arbitrary surfaces, opens up a novel method in

which one can find regions driving morphological changes.

5.6 Tissue mechanics model as a quantitative frame-

work for the future

In addition to previously described accumulation of isotropic myosin in ventral regions,

we observe a striking gradient of anisotropic apical myosin along the embryo’s DV axis,

reaching highest levels in lateral ectoderm and lowest levels in amnioserosa tissue at the

dorsal pole. As noted, the global modulation of the myosin distribution is critical for

the observed dynamics. This is further supported by comparing the measured myosin

tensor with inferred stress. While local rate of cell intercalation is often interpreted

in terms of local myosin distribution on cellular and sub-cellular scales, the continuum

model shows that the local rate of strain is a result of the tissue-wide distribution of

forces generated by the the divergence of the effective myosin tensor. The importance

of spatial modulation (Fig 5.6d and Fig 5.8) suggests a novel role of the dorsal signaling

pathway in the generation of the GBE flow.

Surprisingly, twi mutants exhibit a significantly reduced rate of increase as well as
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peak myosin anisotropy in the first 20 minutes of GBE flow (Fig 5.6c). The reduced

intercalation and strain rates observed in these mutants has been previously reported, and

interpreted in terms of possible generation of AP forces by the internalized VF (absent in

twi mutants). Our model accounts for the reduced rate of strain in terms of the changes

within the reduced level of myosin anisotropy, consistent with the local model proposed

in Chapter 4. This however brings up the question of how elimination of twi expression in

the ventral mesoderm affects myosin anisotropy in the lateral ectoderm. We suggest that

this effect may be due to mechanical feedback on myosin recruitment proposed earlier,

which relates the later to local rate of strain. Through this “dynamic recruitment effect,

changes in the ventral region can affect myosin distribution and anisotropy in the lateral

region by reducing the tensile stress along the DV axis in this region. In this way, local

modification of the myosin pattern can produce not only a non-local perturbation of the

flow, but also a non-local perturbation of myosin distribution.

Our observations show that morphogenetic flow is a global response to local forcing

within the cytoskeleton, which arises from the spatial modulation of myosin density and

anisotropy. The latter is derived from the spatial patterns of developmental transcription

factors, but we suggest may also involve mechanical feedback affecting recruitment of

myosin. The coarse-grained ATN model, coupled with the quantitative approach outlined

in this Chapter, provides a framework for integrating the effect of local cell behaviors of

disparate tissues within a singular description of the global morphogenetic flow.

Evidence for the model’s validity was presented only for intermediate time-scales and

138



thus we can only conservatively conclude that cells during early Drosophila embryogene-

sis, behave collectively as a viscous, compressible fluid. While circumstantial evidence in

twi mutants point to the existence of the hypothesized dynamic recruitment of myosin in

response to unbalanced strains, this needs to be quantitatively checked in a similar man-

ner as presented in this Chapter. In short, the next logical step to the presented analysis

is to no longer take myosin to be an input to the theory, but rather as a predictable

output along with the morphological flow field. A successful theory in this regard would

be tantamount to discovering the equation of motion governing the global dynamics of

the observed myosin distribution as a function of tissue stress, morphogen patterns, and

current myosin and would be a huge step towards understanding the patterns governing

morphogenesis.

All empirical analyses were done using Eq. 5.13, which we recognized to be a non-

euclidean shell of zero thickness with intrinsic metric driven explicitly by contractile

myosin. An important generalization of the simple model presented in this Chapter

would be to consider an active shell of finite thickness h, which would add a bending

term of order h2 to Eq. 5.7. The tissue would thus interpolate between the mem-

brane limit where planar flow is entirely driven by myosin imbalances explored here and

out-of-plane bending induced by contractility depending on the epithelial layer’s thick-

ness. Importantly, this would connect three dimensional shape to planar distributions of

myosin.
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Chapter 6

Future outlook: Tissue mechanics

and cell fate

Pattern formation is the central feature of developmental biology. The formation of an

organism’s shape synthesizes many patterned cellular processes including cell growth,

proliferation, death, and collective cellular rearrangements. In this dissertation, we out-

lined a minimal model of cell biology that directly connects the expression levels of

cytoskeletal proteins to tissue-scale mechanics. This allowed us to quantitatively explore

mesoscopic consequences of different regulatory architectures. When feasible, we statis-

tically validated predictions from our model against experimental live-imaging data.

In Chapter 2, we observed that by considering known mechanosensitive myosin II

contractility, cells within the resulting tension network exhibit constrained geometries and

floppy geometric modes. Both predictions were strikingly confirmed at the presumptive
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mesoderm of Drosophila melanogaster during formation of the ventral furrow. Chapter

4 extended our original minimal model and demonstrated that both kinetic bistability

between cortical tension and myosin, and traction-dependent degradation of cadherin

molecules were sufficient to describe the morphological dynamics observed during germ

band extension of the lateral ectoderm. Beyond qualitative dynamical agreement with in-

vivo data, correlation-based analyses were used to support the posited kinetic equations.

The model furnished several additional quantitative predictions that should be possible

to test experimentally. Lastly, Chapter 5 coarse-grained the cellular model showing

that global morphogenetic flows should behave as an effective viscous, compressible fluid

driven by the global distribution of myosin II motors. This simple model was able to

explain 90% of the observed cell flow in three distinct genotypes during the first few

hours of embryogenesis of Drosophila melanogaster.

The work presented within this dissertation thus relates the spatial distribution of

cytoskeletal expression to the resultant morphogenetic flow, serving as a predictive dic-

tionary between microscopic phenomenology and tissue-scale behavior. But what controls

the underlying pattern of genetic expression itself? There has been little pattern forma-

tion considered within the presented work; cell fate was treated as an input rather than a

dynamical variable itself. Chapter 2 demonstrated that the observed medial acto-myosin

pulses drove the system along the manifold of zero states. However, it is known that the

existence of pulses and the subsequent stabilization of cell perimeter are dependent upon

expression of genes twist and snail. In our simulation, we simply assumed the pattern of
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pulses was consistent with that observed in-vivo. Similarly, the collective tissue transi-

tion from a hexagonal cell packing to the rectangular geometry induced by stress cables

observed during GBE, and recapitulated by the model introduced in Chapter 4, is de-

pendent upon patterned myosin fluctuations that drive coherent cable formation running

along the DV axis. Again, we had to introduce anisotropy into our model to simulate the

effects of patterned cellular states. Lastly, in Chapter 5 we were able to predict morpho-

genetic flow conditioned on having measured the mesoscopic myosin tensor globally. We

currently have nothing to say about how the pattern of myosin is initialized and how it

evolves throughout the course of morphogenesis. Taken together, the work presented in

this dissertation will amplify an existing pattern and translate it into observable cellular

morphology, but it does not exhibit spontaneous pattern formation.

We believe the next logical step is to understand the interplay between cellular pat-

terning and the mechanics of morphogenesis. Cell-fate specification and rearrangements

within the underlying epithelial tissue are known to occur simultaneously in many de-

veloping systems. Cell intercalation, lateral inhibition (cell-cell signaling that suppresses

induction of your neighbors into a new cell state if the cell in question has already been

induced), and patterned cell death have all been shown to contribute to the highly regular

pattern of mammalian retinal ganglion cells [153], ommatidial cells within the Drosophila

compound eye [182], and the hair cells of the basilar chick papilla [62]. Furthermore, it

has become evident that mechanics plays a central role in the regulation of fundamental

cell biological processes such as growth and cell identity [159, 133, 115]. Investigation
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is further warranted on strictly theoretical grounds; it is reasonable to assume that in-

teresting new physics will emerge when considering reaction-diffusion equations on an

active substrate that moves according to the supported chemical reactions.

The duality between equilibrium cellular networks and a weighted triangulation, for-

mulated in Chapter 3, should immediately be valuable in approaching this topic at the

cellular-scale. We demonstrated that any two-dimensional network of cortical tensions

supported by heterogeneous isotropic cellular stresses is equivalently described by a tri-

angulation equipped with a point-wise metric. Any vertex model in equilibrium is thus

described by our generalized description. Importantly, the duality allows one to forget

postulated constitutive relationships of cellular elements and adopt the universal lan-

guage of geometry. We imagine morphogenesis as the process of evolving a triangulation

and its metric; cell geometry merely comes along for the ride as its dual. Our description

recasts all adiabatic morphological dynamics in cell-specific equations. Provided there

exists a time-scale separation between morphogenetic movements and mechanical relax-

ation, the interplay between the patterning of molecules gα and apical mechanics will

generically be contained in equations of the form

d

dt


qα
Θα

pα
gα

 =Mαβ [q, p,Θ, g]


qβ
Θβ

pβ
gβ

 (6.1)

To conclude, let us make the discussion concrete and consider the developing chick

cochlea. In the adult avian auditory organ, it is known that hair cells, the mechan-

otransductive structures that sense sound waves, form a highly regular mosaic pattern in
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Figure 6.1: Tissue morphology starts as a weakly disordered hexagonal array until em-
bryonic day 6 during development of the chick cochlea. Afterwards, it exhibits a dra-
matic morphological transition towards Kagome-like lattices at the proximal region that
smoothly varies into a truncated tri-hexagonal array at the distal tip.

which each hair cell is contacted by six support cells and each support cell touches three

hair cells [37]. Hair-cell specification arises on a hexagonal array as a direct consequence

of lateral inhibition in which cells that adopt the hair-cell fate suppress the subsequent

adoption of hair-cell state of its neighbors. In analogy to spin systems within physics,

lateral inhibition can be thought of as an antiferromagnetic interaction between two-state

patterning molecules of nearest-neighbor cells, and thus is phenomenologically captured

with

Ȧα = τ
∑
{β}α

[
rαβ

1

1 + Anβ

]
+ λ

εAn
′
α

1 + εAn′α
− Aα (6.2)

τ controls the strength of lateral inhibition and λ regulates the difference in expression

of A between hair and support cells. As highlighted by Goodyear and Richardson [62],

lateral inhibition in the cochlea does not proceed on a static substrate, but rather oc-
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curs concomitant with patterned cellular rearrangements and cell death. Strikingly, the

initial hexagonal array of cells within the basilar papilla undergoes a dramatic geometric

transition to different tissue morphologies that smoothly vary along the proximal-distal

axis of the cochlea, shown in Fig. 6.1.

The apical geometries observed during this developmental process are all weakly dis-

ordered realizations of Archimedean tilings with trivalent vertices [67]. Remarkably, all

such tilings are connected smoothly by an isogonal transformation and thus can be contin-

uously transformed into each other, given a fixed triangulation qα. The ‘phase’ diagram

of morphology is depicted in Fig. 6.2
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Figure 6.2: All Archimedean tilings, the class of tessellations observed during patterning
of the chick cochlea, are related to each other by an isogonal transformation, parame-
terized by Θx and Θy defined on the truncated tri-hexagonal array defined in (a). The
corresponding phase diagram of all Archimedean tilings is shown in (b) in terms of Θx

and Θy.

Is there a generic relationship between the interplay of lateral inhibition given by

Eq. 6.2 and the isogonal modes that move us within the morphospace defined by Fig.

6.2b that recapitulates the observed dynamics of patterning of both cell fate and tissue

geometry within the chick cochlea? If so, are there regimes of behavior where we can
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expect the initial hexagonal lattice to be stable to cell-cell signaling? Can final cell

geometry be ‘tuned’ by modifying cell signaling parameters? While such fundamental

questions lay outside the mechanistic scope explored in this thesis, the tools presented

within should allow for immediate investigation.
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Appendix A

Image segmentation and model

simulation

A.1 Image segmentation assisted by machine learn-

ing

In-vivo data was segmented using a combination of ilastik classification and a custom

pipeline implemented in MATLAB. In this section, we outline the algorithmic details at

a high level. ilastik, a supervised machine learning classifier, was used to classify each

image into a ‘membrane’ and ‘background’ class [162]. Specifically, ilastik is a random

forest classifier that specifies 100 decision trees for each pixel. Parameters of the decision

tree depend upon image parameters such as intensity and shape at multiple length scales

(Gaussian-blur of varying sizes). In this context, the output of ilastik is the fraction
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of trees which decided on ‘membrane’ relative to the 100 initialized per pixel and thus

is an estimate for the pixel probability [162]. This result is then further filtered using

a Laplacian of Gaussian filter and subsequently segmented using MATLAB’s watershed

function.

A B C D

Figure A.1: a) A raw image of the chick cochlea during neurogenesis. b) Probability
map output from ilastik after classification. c) Segmentation produced via watershed
algorithm. d) Curved vertex model fit from the segmentation.

The watershed algorithm partitions a grayscale image (in our case the image of prob-

abilities per pixel) into distinct basins separated by intensity ridges. Specifically, one can

imagine the grayscale image as a topographical map containing regions of low intensity

(basins) that are separated by lines of high intensity (mountain ranges). Starting from

the local minima of each basin, we ‘flood’ each basin; the line of intersection between two

flooding points defines the intersection of the region. Watershed-based algorithms suffer

greatly from over-segmentation. If there are many local minima within a single basin

which originate from noise, each will act as a flooding source resulting in a segmentation

that corresponds to the noise source. We fix this issue by seeding basins, defined as a

black and white mask obtained by suitable thresholding of the background class output
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from ilastik.

The output of MATLAB’s watershed algorithm is a label matrix of the original size

of the image that indexes each cell found, separated by the ‘ridges’ of equal intensity.

Cellular boundaries were skeletonized using MATLAB’s bwmorph ‘skel’ feature, which

uses an iterative thinning procedure that preserves topology of the original graph. The

output of the ‘skel’ algorithm is a black and white mask in which the pixel registers as 1

if it belongs to a cell boundary (thinned to be 1 pixel thick) or 0 otherwise. All data is

stored within a custom data structure.

A.2 Measuring vertex position and edge curvature

Given a skeletonization of the segmented cell boundaries, one can easily estimate each

vertex position within the image, as well as the curvature of every intercellular edge.

Vertex positions were obtained using the MATLAB’s bwmorph ‘branchpoints’ algorithm.

As the skeletonization produced during the segmentation process above is an 8-connected

graph, any pixel that belongs to an edge will have only two neighboring pixels that are

also 1. Conversely, a vertex will have three or more neighbors equal to a cell boundary

- this is defined as a branchpoint of the original skeletonization. Denote the measured

position of vertex i as ri

The shape of each intercellular edge is estimated by removing the branchpoints from

the skeletonization and then analyzing the pixels for each connected component of the

resultant mask. Denote the set of pixels belonging to the edge that partitions cells α, β
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as rαβ|n where n ∈ [1, ..., N ]. Edge curvatures are obtained by fitting each set of pixels

to a circle, ensuring that the two vertices i, j that lie on the border of the edge are on

exactly on the circumference. This is achieved by minimizing the following energy for

each edge with respect to ρ

Ecircle =
1

N

∑
n

∣∣∣∣rαβ|n − ri + rj
2

− ρ [ẑ ∧ r̂ij]
∣∣∣∣2 (A.1)

The estimated radius of curvature is Rαβ =
√

(rij/2)2 + ρ2
∗ where ρ∗ is the value which

minimizes Eq. A.1. If the edge is smaller than three pixels, we assume it has infinite

curvature.

Myosin and cadherin was measured using the pixels for each edge obtained from the

segmentation produced via the watershed algorithm. To account for segmentation errors,

the pixels were by one pixel to increase their width. The average intensity over the set

of pixels was used as a proxy for protein line density.

A.3 Cell tracking

The above segmentation algorithm can be ran over every time-frame captured during the

image acquisition of the developmental process. This will produce a corresponding label

matrix for each time point. Importantly, the labels that cells are given in each image are

indexed by their spatial position and thus have no memory across time-points - i.e. the

cell labeled as index 10 in time-point t will not generally be 10 in time-point t+ 1. The

goal of tracking is to recover the list of labels one actual cell has in every time-point.
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Tracking was done using the point-matching of cell centroids after correcting for PIV

(Particle Image Velocimetry) estimated flow fields between time points. PIV flow fields

were estimated using cross-correlation between gridded regions defined on our image [1].

Specifically, denote the position of segmented cells in time-point t as Rα(t) and the PIV

flow field at this position to be vα(t). Tracking is then done by finding the set of indices

α′ that minimizes the following sum

D ≡
∑
α

|Ralpha(t)−Rα′(t− 1)− vα′(t− 1)∆t|2 (A.2)

We impose the matching be bipartite; only one cell can be tracked into another in the

subsequent time-point. This can be generalized to include divisions by simply doubling

the cells in time-point t to allow potential double matches. As posed, tracking is equiv-

alent to the Munkres assignment problem [118] and can be solved in polynomial time

using the Hungarian algorithm [95].

Given tracked cells, we can easily track edges and vertices throughout time as well.

Edges were tracked by simply tracking pairs of cells that remain in contact (as determined

by the segmentation algorithm above) throughout the course of the movie. T1 transitions

thus ‘destroy’ one edge and ‘create’ another. Dynamics of edge chemistry were then

obtained by looking at myosin/cadherin over time for each tracked edge. Similarly,

vertices were obtained by tracking triplets of cells that remained neighbors.
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A.4 Implementation of model simulation

All dynamical equations of motion were numerically integrated using MATLAB’s ODE15s

solver as the large time-scale separation between chemical feedback and mechanical equi-

libration resulted in a stiff system of equations. Fast results were obtained by storing all

topological adjacency matrices (e.g. which vertices were involved in which bonds, list of

vertices belonging to each cell, etc.) as sparse matrices that represented discrete exterior

derivatives. Specifically, we defined matrices d(0) and d(1) to be

d
(0)
<i,j>,k ≡ δk,i − δk,j d

(1)
α,<i,j> ≡

∑
<k,l>∈Eα

σα,<i,j>δ<i,j>,<k,l> (A.3)

Eα denotes the set of all edges belonging to cell α. Thus, one can think of d(0) as the

exterior derivative acting on zero-forms (vertices) which maps into the space of one-forms

(edges). Conversely, d(1) is the exterior derivative acting on one-forms. σα,<i,j> is chosen

such that d(1)d(0) = 0 and thus the discrete Stokes’ theorem holds. As MATLAB’s native

language is matrices and not iterative loops, matrix multiplication was utilized to quickly

convert between various geometric quantities such as vertex positions and edge lengths.

The topological quantities were also taken to be dynamical variables as T1 events

were allowed and common. T1 processes were implemented using MATLAB’s ODE event

functionality which allowed us to stop numerical integration of the equations if any given

edge’s length fell below a user-specified value rc. Once an event was recognized, the T1

exchange was enforced manually by updating all sparse topological matrices and rotating

the bond in question by a random angle centered around π/2. This was then used as the

initial condition to reinitialize the numerical integration. Under this scheme, a stable four-
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fold vertex is represented as a cyclic series of T1 events for a single bond. Furthermore,

resolution of rosettes was allowed via multiple T1 events occurring simultaneously on

neighboring bonds.

For the 2D rheology simulation presented in Chapter 2, a 15 x 15 square of cells was

initialized in a slightly disordered hexagonal lattice under constant pressure to balance

against the internal tension. Sinusoidal external forces were attached to the vertices on

the vertical boundary. Strain rate was measured on vertical junctions throughout the

bulk.

Simulation of the GBE model presented in Chapter 4 was started with a hexagonal

array of ∼ 100 cells with weak geometric disorder. Myosin pulses were modeled as a

stochastic force on the dynamical equation of myosin. The amplitude of fluctuations was

strongly dependent upon the edge orientation. This was sufficient to drive an ordered

transition towards a geometry dominated by DV-oriented stress-cables, taken to be the

vertical axis of the simulation.

A.5 Derivation of Cellular-Scale and Mesoscopic Stress

Tensor

The algorithm presented in Chapter 3 infers the mechanics of planar cell packings that

behave as quasistatic dry foams. However, in many applications one is more interested

in the mesoscopic stress rather than cellular scale mechanics. As such, in this section
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we define the stress tensor of the curved network model, show it’s divergence-less and

describe the coarse-graining procedure from cell to tissue level forces. Each cell is modeled

as an ‘active’ bubble, and as such, inside the bulk of cell α the stress tensor σab is

σab = −pαδab (A.4)

Similarly, the stress tensor on edge α, β (interface between cells α and β) is

σab = Tαβ δ(r − rαβ) τ̂aαβ τ̂
b
αβ (A.5)

where τ̂αβ denotes the tangent vector along the circular arc and δ(r− rαβ) localizes the

stress to the interface. As such, the functional form for the stress tensor in the vicinity

of interface α, β (depicted in Fig. A.2a) is

Rαβ

β

α

ταβ

Δθ

A B
α

γ

β
ri

rj

rk

rl

C D

Figure A.2: (a) Diagram of definitions used to compute divergence of stress near an
interface. (b) Analogous plot as in (a) used to compute divergence in the vicinity of
vertex i

σab(r) = −
[
pαH (Rαβ − r) + pβH (r −Rαβ)

]
δab

+ Tαβ δ(r −Rαβ) [H(θ + ∆θ/2)−H(θ −∆θ/2)] τ̂aαβ τ̂
b
αβ (A.6)

where H(x) is the Heaviside step function, r = |r| and θ is the angle measured from the

vertical axis and τ̂αβ = ẑ ∧ 1
|r−ραβ |

[r − ραβ]. With no loss of generality, we’ve chosen a
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polar coordinate system with origin at the centroid of the circular arc. The divergence

of this tensor is

∂aσ
ab =

[
(pα − pβ)− Tαβ

Rαβ

]
δ(r −Rαβ) = 0 (A.7)

As expected, since the curvature of the interface obeys the Young-Laplace Law the

divergence is zero. Unfortunately, this result is only valid in the bulk of the edge. Lastly,

we consider the divergence of the stress tensor in the vicinity of the tri-fold vertex,

depicted in Fig. A.2b. The functional form is

σab(r) = −
[
pαH (|r − ραβ| −Rαβ)H (Rγα − |r − ργα|) +

pβH (|r − ρβγ| −Rβγ)H (Rαβ − |r − ραβ|) +

pγH (|r − ργα| −Rγα)H (Rβγ − |r − ρβγ|)
]
δab+

Tαβ τ̂
a
αβ τ̂

b
αβ δ(|r − ραβ| −Rαβ)H(r · τ̂αβ)+

Tβγ τ̂
a
βγ τ̂

b
βγ δ(|r − ρβγ| −Rβγ)H(r · τ̂βγ)+

Tγα τ̂
a
γατ̂

b
γα δ(|r − ργα| −Rγα)H(r · τ̂γα)

The step functions associated to the contributions from each edge are necessary to impose

the discontinuity of stress across the vertex. The remaining step is to compute the
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divergence of the expression. The derivative of each pressure term is

∂c

[
pαH (|r − ραβ| −Rαβ)H (Rγα − |r − ργα|)

]
=

−pα εcd
[
τ̂ dαβ δ (|r − ραβ| −Rαβ)H (Rγα − |r − ργα|)−

τ̂ dγα δ (Rγα − |r − ργα|)H (|r − ραβ| −Rαβ)

]

Summing together the contributions from each cell, the contribution of bulk pressures to

the divergence at vertex i is found to be

∂aσ
ab
pressure(ri) = εbc

[
∆pαβ τ̂

c
αβ + ∆pβγ τ̂

c
βγ + ∆pγατ̂

c
γα

]
δ(0)H(0)

Similarly, the divergence of each edge term is

∂a

[
Tαβ τ̂

a
αβ τ̂

b
αβ δ(|r − ραβ| −Rαβ)H(r · τ̂αβ)

]
= − Tβα

Rβα

εbcτ̂ cαβδ(0)H(0) + Tαβ τ̂
b
αβδ

2(0)

The first term exactly cancels out the contribution from the bulk pressure, leaving us

with

∂aσ
ab(ri) =

[
Tαβ τ̂

b
αβ + Tβγ τ̂

b
βγ + Tγατ̂

b
γα

]
δ2(0) (A.8)

This is precisely due zero to our assumption of force balance. Thus we conclude that,

as defined, σab is balanced everywhere, directly following from edges with curvature that

obey Laplace’s Law and vertices at force balance. Armed with a sensible construction,
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we can compute the average stress per cell.

σ̄abα =
1

Aα

∫
Aα

d2r σab(r) (A.9)

The last equality explicitly utilized the fact that the stress tensor is balanced and thus

the only contribution to the sum are the boundary forces n̂ · σ. In the context of the

present model, the average stress per cell simplifies to

σ̄abα =
1

Aα

∫
Aα

d2r σab(r) = pαδ
ab +

∑
{β}α

Tαβ
2Aα

∫
rαβ

dr τ̂aαβ τ̂
b
αβ (A.10)

This result was used in the main text to help predict future spindle axis in Chapter 3.

Lastly, we outline a systematic manner to coarse-grain the stress tensor to obtain

mechanics at the mesoscopic scale. Given smoothing kernel K(|r − r′|, η), where η

parameterizes the length-scale of averaging, we define the coarse-grained stress tensor

σ̃ab(r) =

∫
d2r′K(|r − r′|, η)σab(r′) (A.11)

Provided the kernel goes to zero at the boundary, the stress tensor remains balanced

under coarse-graining.

∂aσ̃
ab(r) =

∂

∂ra

∫
d2r′K(|r − r′|, α)σab(r′) =

∫
d2r′K(|r − r′|, η)∂aσ

ab(r′) = 0 (A.12)

To ensure the average stress is invariant, K(|r − r′|, α) must be normalized. As such,

the stress tensor at scale η is defined

σ̃ab(r, η) =
1

2πη2

∫
d2r′ e

− |r−r′|2

2η2 σab(r′) (A.13)

A graphical example of the coarse-graining procedure is shown in Fig. A.2c,d.
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A.6 Global stress inference on curved surfaces

Most, if not all, epithelial tissues are locally flat (for small patches of cells) but curved

at the organ-scale. For example, curvature of Drosophila embryonic epithelium becomes

non-negligible for regions containing ∼ 100 cells. As formulated in Chapter 3, the me-

chanical inverse is only well-defined for planar graphs. To this end, we leverage the

locality of our algorithm to formulate a tractable inference scheme for the balanced me-

chanical stress in a curved tissue’s tangent plane. Specifically, due to the inclusion of

edge curvature information, the inverse is massively over-determined which allows one to

‘measure’ both bulk and boundary stress using information of just bulk geometry. Con-

sequently, global mechanical patterns can be ‘stitched’ together by inferring stress on

local patches of cells that can, with good approximation, be treated as planar. The blue

cell array depicted in Fig. A.3a denotes the ‘true’ apical surface of the epithelial tissue.

Provided the area of interest is much smaller than the surface’s radius of curvature, we

can fit a well defined tangent plane to the patch. Let Rn
i denote the 3D position of the

ith vertex within patch n and thus is a matrix of size 3 x vn where vn is the number of

vertices contained in patch n. The best fit triad of vectors is obtained easily via an SVD

decomposition

Rn
i = UnΣV T

n (A.14)

The approximate planar graph of patch n, shown as the black cell array in Fig. A.3a,

is obtained by projecting Rn
i onto the two rows of Un associated to the two largest

singular values. As shown in Fig. A.3b, the dual weighted triangulation can be fit to the
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Figure A.3: (a) Graphical depiction of the process used to infer stresses in the tangent
plane of a small region of cells. The patch shown enclosed in the blue box in (c), shown as
the blue shaded cells, is projected onto the best fit tangent plane diagram, shown in black.
The red lines depict equivalent vertices for ease. (b) The inferred weighted triangulation
for the planar graph produced by the procedure outlined in (a). This is used as an
estimate for the tangential balanced stresses within the patch. (c) A synthetic spherical
embryo of ∼ 3000 cells, plotted both in the embedded space, as well as the cylindrical
unwrapping. Simulated tensions are plotted as a heatmap. (d) Scatter plot between
the inferred tensions using the workflow outlined and the known tensions shown in (a).
The inset displays the dependence on the number of patches used to cover the sphere.
As was expected, correlation is monotonic with sampling resolution. (e) A snapshot of
cell outlines during Drosophila embryogenesis at the onset of ventral furrow formation.
Instead of minimizing the quadratic energy over all degrees of freedom simultaneously, the
embryo is partitioned into overlapping patches, as shown overlayed on cell membranes.
The inversion is done separately on each patch and then stitched together. Grid size was
chosen to include 30 cells as it was small enough to neglect curvature effects.
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approximated planar graph using the algorithm outlined in the main text to obtain an

estimate for the balanced stress within the tangent plane of patch n.

Alas, the weighted dual triangulation is unique up to an overall scale, owing to the

fact that mechanical equilibrium is unchanged by re-scaling all tensions and pressures by

an overall constant. In the present case, this implies that there is an overall scale that is

unknown for each defined patch, defined as λnm, that must be determined by continuity.

As patches are defined to overlap (shown in Fig. A.3e. for Drosophila embryo) a subset

of edges are involved in multiple inferred regions. Scales between adjacent patches can

be matched together by enforcing equivalence of tensions in all shared edges. This was

achieved by minimizing

1

2

[ N∑
n,m=1

n+1∑
n′=n−1

m+1∑
m′=m−1

∑
e∈[Enm ∩En′m′ ]

[
λnmT

nm
e − λn′m′T n

′m′

e

]2
]

+ Λ

[ N∑
n,m=1

λnm − npatches
]

(A.15)

e ∈ [Enm ∩ En′m′ ] denotes the set of all edges that are shared by patch (n,m) and (n′,m′).

In words, scale λnm for each patch is found by minimizing the squared difference between

inferred tensions of edges shared by adjacent patches globally, subject to the constraint

that the average scale is 1 to ensure a non-trivial solution λnm 6= 0.

The outlined procedure was validated in-silico for synthetic spherical embryos con-

taining roughly 3000 cells, with mechanics patterned by a vertex model minimized on

the surface of a sphere. An example of a simulated embryo with azimuthal pattern of

tension is shown in Fig. A.3c, both in the embedding space and in the cylindrical un-

wrapping of the sphere. As shown in Fig. A.3e for Drosophila, the surface of the embryo
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is partitioned into overlapping uniform patches. Mechanics was inferred in each patch

as previously described. As shown in Fig. A.3d, great agreement between inferred and

known tensions was found provided the patch size was small compared to surface cur-

vature. The inset shows this occurred when the defined patches contained 100 or less

cells. This was used to define the patch size used in the empirical measurements during

Drosophila embryogenesis as shown in Fig. A.3e.

ImSaNe [73] was used to measure, parameterize, and store the surface and embedding

coordinates of the Drosophila embryonic surface. Segmentation of cells was done using the

cylindrical mapping of the embyro. The 3D vertex positions were subsequently estimated

using the embedding grids obtained from the ImSaNe algorithm [73].
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[57] Yoël Forterre, Jan M Skotheim, Jacques Dumais, and Lakshminarayanan Mahade-
van. How the venus flytrap snaps. Nature, 433(7024):421, 2005.

[58] Christian Frantz, Kathleen M Stewart, and Valerie M Weaver. The extracellular
matrix at a glance. J Cell Sci, 123(24):4195–4200, 2010.

166



[59] Margaret L Gardel, Karen E Kasza, Clifford P Brangwynne, Jiayu Liu, and David A
Weitz. Mechanical response of cytoskeletal networks. Methods in cell biology,
89:487–519, 2008.

[60] Scott F Gilbert. Induction and the origins of developmental genetics. In A concep-
tual history of modern embryology, pages 181–206. Springer, 1991.

[61] Frederick Gittes, Brian Mickey, Jilda Nettleton, and Jonathon Howard. Flexural
rigidity of microtubules and actin filaments measured from thermal fluctuations in
shape. The Journal of cell biology, 120(4):923–934, 1993.

[62] Richard Goodyear and Guy Richardson. Pattern formation in the basilar papilla:
evidence for cell rearrangement. Journal of Neuroscience, 17(16):6289–6301, 1997.

[63] Alain Goriely and Martine Ben Amar. Differential growth and instability in elastic
shells. Physical review letters, 94(19):198103, 2005.

[64] F Graner, Y Jiang, E Janiaud, and C Flament. Equilibrium states and ground
state of two-dimensional fluid foams. Physical Review E, 63(1):011402, 2000.

[65] Carsten Grashoff, Brenton D Hoffman, Michael D Brenner, Ruobo Zhou, Maddy
Parsons, Michael T Yang, Mark A McLean, Stephen G Sligar, Christopher S Chen,
Taekjip Ha, et al. Measuring mechanical tension across vinculin reveals regulation
of focal adhesion dynamics. Nature, 466(7303):263, 2010.

[66] Jeremy BA Green and James Sharpe. Positional information and reaction-diffusion:
two big ideas in developmental biology combine. Development, 142(7):1203–1211,
2015.
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