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CLASSIFICATION OF ACUTE LEUKEMIA
BASED ON DNA MICROARRA Y GENE
EXPRESSIONS USING PARTIAL LEAST

SQUARES-

Danh V. Nguyen' imd David M. Rocke,.2
1 Center for Image Proc;essing and Integrated Computing and Z Depaftmenl of Applied Science.

University ofCalifomia. Davis. CA 95616

Abstract: Analysis of microarray data. when presented with raw gene expression
intensit:y data. often take two main steps when analyzing the data. First pre-
process the data by rescaling and standardizing so that overall intensities for
~h array are equivalent. Second, apply statistical methodologies to answer
scientific questions of interest. In this paper. for the data pre-processing step.
we introduce a thresholding algorithm for rescaJing ~h array. Step 2
involves statistical classification and di~sion reduction methodologies. For
this we introduce the method of partial least squares (PI.S) and apply it to the
leukemia microarray data set of Golub et aI. (1999). We also discuss the use of
principal components analysis (PCA). quadratic discriminant analysis (QDA)
and logistic discrimination (LD). Fmally. we di~ss other potential
applications of PLS in analyzing gene expression data that ~ p~ction
of a target gene. prediction of the reaction in ceil lines. assess~t of patient
survival. and generalisations in predicting multiple classes.

Di~nsion reduction. Logistic Discrimination. Predictioo. ~adratic
discriminant analysis

Key words:

INTRODUCTION

DNA microartay technology has revolutionised biological and medicinal
research. The usc: of DNA microarrays allows simultaneous monitoring of
the expressions of thousands of genes. In a short period of time reseaIChers
have gathered a wealth of gene expression data from microarrays (such as
high density oligonucleotide arrays and cDNA arrays). Prediction,
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classification, and clustering techniques are being used for analysis and
interpretation of the data. For instance, molecular classification of acute
leukemia [Golub et aI., 1999], cluster analysis of tumor and nonnal colon
tissues [Alon et aI., 1999], clustering and classification of human cancer cell
lines [Ross et aI., 2CXX>] and diffuse large B-cell lymphoma (DLBCL)
[Alizadeh et aI., 2CXX>], human mammary epithelial cells and breast cancer
[perou et aI., 1999, 2CXX>], and skin cancer melanoma [Bittner et aI., 2(XX)]
are some examples. These techniques have also helped to identify previously
undetected subtypes of cancer [Golub et aI., 1999; .Alizadeh et aI., 2CXX>;
Bittner et al., 2CXX>; Perou et aI., 2CXX>]. The problem of "prediction" may
come in various forms of applications as well; the prediction of patient
survival duration with germinal centre B-like DLBCL compared to those
with activated B-like DLBCL (gene expression subgroups) using Kaplan-
Meier survival curves [Ross et aI., 2CXX>] or the prediction of a target gene
expression are examples.

Gene expr~~ssion data from DNA microarrays are characterized by many
measured variables (genes) on only a few observations (experiments)
although both the number of experiments and genes per experiment are
growing rapidly. The number of genes on a single array are usually in the
thousands, so the number of variables, p, easily exceeds the number of
observations N. Although the number of measured genes is large there may
only be a few underlying gene components that account for much of the data
variation; for instance, only a few linear combinations of a subset of genes
account for nearly all of the response variation. Under similar data structure
in the field of chemometrics, the method of PLS (Partial Least Square) has
been found to !be very useful.

PLS has been useful as a predictive modelling regression method in the .
field of cbemometrics. A typical example, in spectroscopy, is to predict the i
chemical composition of a compound based on observed signals for a i
particular wavelength, where the number of wavelengths (variables) is much I
larger than the number of available samples. Examples of PLS applications i
in cbemometrics can be found in the Journal of Chemometrics (John Wiley)
and Chemometrics and Intelligent laboratory Systems (Elsevier). For an
introduction to PLS regression the reader is referred to a tutorial paper by
Geladi and KOiWalski (1986). The use of PLS in calibration can be found in
Martens and Naes (1989). Some theoretical aspects and data-analytical
properties of PLS have been studied by chemometricians and statisticians
[de Jong, 1993; Frank and Friedman, 1993; Gootis, 1996; Helland. 1988;
Helland and Almoy, 1994; Hoskuldsson, 1988; Lorber et aI., 1997; Phatak.
et aI., 1992; Stone and Brooks, 1990]. An interpretation of PLS based on
sequences of simple linear regression can be found in Garwaithe (1994).
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The method of PLS is also useful for various prediction problems based
on gene expression data. We briefly introduce the meth<xi here and give
details in the section on Methods. For simplicity we restrict to the case
where the response variable Y is univariate. For instance, the response
variable can be the expression values of a single "target" gene of interest,
however, if one i9 interested in predicting the expression values of several
genes (i.e., a "block" of genes) simultaneously PLS applies as well. Multiple
linear regression (MLR) is perhaps the most popular meth<xi used to predict
a response variable Y based on a set of predictor variables XI, Xu..., Xp. It is
well known that when there are more predictors than there are samples (p >
N) the MLR model will fit the data perfectly, but the model will not predict
new samples well. A common approach to deal with this problem is to first
reduce the dimension of the data by constructing a few summary
"components" and then use this reduced set of constructed components to
predict the response Y. An example of this approach is principal components
regression (PCR) [Massey, 1965; Jolliffe, 1986]. Here, principle component
analysis (PCA) is used to reduce the high dimensional data to only a few
gene components, which explain as much of the observed total gene
expression variation as possible (subject to orthogonality and norrning
constraints). This is achieved without regards to the response (leukemia
class) variation. Gene components constructed this way are called principal

components (pcs).
In contrast to PCA, PLS components are chosen so that the sample

covariance between the response and a linear combination of the p predictors
is maximum. The latter criterion for PLS is more sensible since there is no a
priori reason why constructed components having large prediCtor variation
(gene expression variation) should be strongly related to the response
variable (leukemia classes). Certainly a component with small predictor
variance could be a better predictor of the response classes. The ability of the
dimension reduction method to summarize the covariation between gene
expressions and leukemia classes may yield better prediction results. We will
demonstrate this contrast between PLS and PCA using the leukemia data.

This paper is organized was follows. In the Methods section we describe
the thresholding algorithm for array rescaling and the details of the
dimension ~uction method of PLS and PCA. After rescaling and
dimension reduction, we considered logistic and quadratic discrimination
between the leukemia classes. Results and comparison to Golub et al.
(1999) are given in the section on Results. We conclude and discuss the
potential applications of PLS in gene expression analysis in the sections on
Conclusions and Discussions respectively.
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MEmODS

A Thresholding Algorithm for Rescaling Gene ExpressioJlS

Pre-processing of gene array data is common for various reasons. The
main reason is the non-unifonn noises associated with array technologies
observed from one array (sample) to another. Thus, array rescaling (or
nonnalization) is important since subsequent analysis resuJts are meaningful
if the overall intensities for each array are equivalent. The use of
thresholding is especially common in data pre-processing. For instance,
discarding negative measurements (which occurs when a spot background
intensity measurement exceeds the signal intensity) or very low signal to
noise measurements. Although negative measurements (due to imperfect
measurement technology) should not be used in the analysis of the genes,
this information can be used to estimate the amount of noise present in each

array.
In this section we describe a thresholding algorithm which finds a

"cutoff" point for each array (hence, accounting for different levels of noise
specific to a given arrays). Genes with expression levels below the cutoff
point may be considered unreliable. Also, infonnation from the algorithm is
used to estimate the amount of noise present in a particular array. Gene
expression levels are then rescaled so that overall intensities for each array
are equivalent based on the estimate of the average noise for each array. The
algorithm is derived from a two-component error model for gene expression
arrays. Due to limited space, the reader is referred to Rocke and Durbin
(2<XX» for details of this model.

We now describe the thresholding algorithm. Let the original gene
expression values for the ith array be XI, X2J..., xp and i=I, 2, ..., N is the
number of arrays. For brevity of notation we denote the collection of
expression values for array i by {Xjoj=I,p}={ Xii, Xi2J..., xip} and assume that
theSe values are sorted. The algorithm begins with an initial set, A(O),
consisting of noise values (negative measurements) and low signal to noise
measurements (small intensity minus background). The median of A(O), say
mo. gives an initial estimate of the amount of noise specific to the given
array. Similarly, the usual sample standard deviation of A(O), say So. gives
an initial estimate of the dispersion of the noise measurements in the given
array. Thus, expression values close to mo have high noise relative to signal
intensity. The algorithm then updates the original noise set. A(O), by adding
to this set all expression values close to mo. That is, enlarge the initial set
consisting of noise measurements by adding to it expression measurements
with high noise relative to signal intensity. How close to the initial estimate
of array-specific noise, mo. should a particular expression measurement be in
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order for it to be included in the noise set? One can, for instance, include all
expression measurements within two (or three) standard deviations (so) of
the initial array-specific noise estimate, mo. Thus, expression values below a
cutoff threshold of Uo = mo + C'So would be added to the initial noise set A(O),
where C is the number of standard deviation away from the median noise
estimate mo. However, rather than using the usual sample standard
deviation, which is highly effected by outliers, we used a robust measure of
dispersion given by So = MADo / 0.675, where MADo=rnedian {I Xj -mo I,
j= I, no} is the median absolute deviation about the median. Note that for the
same reason we have also used the median, rather than the mean as a
measure of location, to estimate the array-specific noise.

Thus, the updated noise set now consists of all the initial noise values
in A(O) and all expression values less than the cutoff threshold of Uo = mo +
c'So. Call this enlarged noise set A( I). A revised or updated estimate of the
amount of noise present in the given array is the median of the updated noise
set A(I), denoted mI. Similarly, the revised robust estimate of the dispersion
of the updated noise set is Sl = MADI /0.675. The updated noise set, A(I), is
again revised (updated) to include all expression values that are determined
to be high in noise relative to signal intensity, namely all expression values
less than "I = m, + C'SI. This updating process continues until the noise set

A(k) no longer changes. That is, the algorithm stops when the noise set A(k)
(for the ith array) converges. Denote this set by A(nj). Thus, at convergence,
the set A(n;) consists of the smallest nj values from array i. Convergence of
the algorithm is not guaranteed and in rare instances we have observed that
the algorithm fluctuates between two values. If these are not too different the
midpoint can be taken, for instance.

Estimate of the mean or median array-specific noise can now be obtained
by taking the sample mean or median of the set A(n;), for array i. (Any
appropriate statistics based on A(n;) may be used.) Similarly, values in A(n;)
can also be used to estimate the variation of noise within an array, hence
providing a way for calculating a confidence interval for a gene expression
value (when no replicated gene measurements are available). In most
instances the algorithm convef8es in less than 15 iterations. The steps of the
algorithm are given below.

Thresholding Algorithm Parameters: q and c
I. Select q% of the lowest expression values. Denote this initial set of

values by A(O) = {xJj=l, noJ.
2. Calculate the median of the initial set, mo= median{A(O)}.
3. Calculate the median of the absolute deviations about the median,

MADo=median {~J -mol, j= I, no} of the initial set of values A(O).
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4. Calculate the cutoff point. "0 = nIo + C. So. where So = MADrJO.6745 and c
=2. 2.5. or 3 (is the number of median absolute deviation above the

median).
5. Detennine the new set defined by A(I) = {all Xj< "oJ. -
6. Repeat steps 2 through 5 (for each new set A(k» and stop when nt = nt./

(convergence). At convergence denote the set of noise values by A(no
(with size no and the cutoff point by "/ for I =1 N.

7. Repeat steps I through 6 for each array, I = I, N.

As mentioned earlier, one application of the thresholding algorithm is to
use the infonnation from the algorithm to rescale the expression levels in
each array so that overall intensities are equivalent across all arrays. We
now describe this application. Suppose that the mean of A(nJ, m(l) = ni-1 tj
xii (i=l. ..., N;j=I, ..., nJ is used to estimate the average noise from array i.
One may consider a (I) multiplicative rescaling: Xii +- Xii Di or a (2)
subtractive rescaling: xii -xii -hi, where Di = M(l)/m(l). hi = m(l) and M(l) is
the overall mean of the ith array. Using strategy (I) to rescale an array with
high average noise would result in smaller (rescaled) expression values
relative to expression values of another array with lower average noise (and
similar overall average expression). Even baseline or control arrays are

.susceptible to errors since measurements come from the same system; hence,
the algorithm can be applied there as well. We have suggested only two
obvious strategies for rescaling the gene expression values and we focus on
(2) in this paper. Comparisons to strategy (I) or to other types of
transfonnations based on infonnation from the algorithm can be examined in
future studies.

As discussed above, the infonnation from the algorithm used to rescale
each array is given by the set of values A(nJ, i=I, 2, ...,72, obtained from
the algorithm. For example. strategy (I) and (2) described above are two
ways of using the infonnation in A(nJ to rescale each array. However, to
obtain A(nJ (i.e., to start the algorithm) the user needs to specify two
parameters, q (the starting value) and c (the number of standard deviations
away from the median noise estimate).

Some natural questions arise regarding the parameters (q and c) of the
algorithm. For instance. one may specify that 10% (q=IO) of the expression
values of the ith array be used to fonn the initial set Ao. Will the noise set at
convergence, A(nJ. be the same if we change q. i.e.. change the initial set
A(O)? The set A(nJ at convergence is insensitive to the starting value q when
applied to the leukemia data. Golub et al. considered molecular
classification of acute leukemia based on a 38 sample training data set and a
34 sample test data set. Samples were obtained from bone marrow aJKi
peripheral blood of acute leukemia patients. RNA was hybridized to high-
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density oligonucleotide microarrays (AfTyrnetrix) with probes for 6,817
human genes. The thresholding algorithm was applied to each of the 72
arrays with different starting percentages (q) of 1%,5%, 100/0,20% and 30%
(with c=3). The resulting cutoff points at convergence were the same (for the
various q) and only a few differ by negligible amounts.

An implicit assumption in developing the thresholding algorithm is that
small expression values are the noise values; however, "small" is relative to
the array. That is, the noise level is array-specific. The question is how small
is small (for each array)? The answer is the cutoff u at convergence, which
separates noise values from "real" expressed values. This depends on the
parameter c, the number of median absolute deviation above the median.
Increasing c corresponds to a more stringent standard, since expression
values must be larger to be excluded from the noise set. Since the resulting
cutoff point does not depend on q, we set q= 1 0% and ran the thresholding
algorithm for c=2.5 and 3. The results are given in Figure 1. The pattern of
Uj for c=3.0 and Uj for c=2.5 is similar (Figure 1). Also evident from Figure
1 is that the estimate of array-specific noise varies a lot from one array to
another. Therefore, it may not be optimal to use a single threshold value
across all arrays and the thresholding algorithm avoids this.

AtrI)'I

Figure J. Cut off point for c -2.0 and 3.0.

Although the example given here consists of high-density oligonucleotide
arrays, the thresholding algorithm can be applied to cDNA arrays as well.
Assume that after background subtraction we have intensity measurements
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for the red-fluorescent dye Cy5 and another for the green-fluorescent dye
Cy3 for ith alTaY. One strategy is to apply the above procedure to each set of
dye measurements separately. After separate rescaling based on separate
noise estimates for each channel. one can proceed to analyze the
log(Cy5/Cy3) (positive) measurements. The reason for the separate
applications of the thresholding algorithm to the sets of measurements from
different channels is that the level of noise may be channel-specific.

DIMENSION REDUCTION: PARTIAL LEAST SQUARES

After array rescaling we examined dimension reduction methods to
reduce the high p-dimensional gene space to a lower dimensional gene
component space which can predict leukemia 'classes well. Some aspects of
PLS are similar to principal component analysis (PCA), so we briefly review
PCA. PCA is well known and is a commonly used dimension reduction
method. Let X denote a data matrix of N rows, where each row consists of p
gene expression values from a particular microarray experiment. (Thus,
there are N samples or experiments.) Since the data dimension p is too large
for many conventional statistical tools to be applied, PCA attempts to reduce
this high gene dimension, p, to a much lower dimension, say K (K < N). This
is achieved by extracting K gene components which are linear combinations
of the original p genes. The components are extracted sequentially by
maximizing the objective criterion, var(Xc), subject to orthogonality and
norming constraints on the unit weight vector c. Very roughly, the
constructed components summarized as much of the information (variation)
of the original p genes, irrespective of response (leukemia) class
infonnation.

Note that maximizing the variance of the linear combination of the
genes, namely var(Xc), may not necessarily yield components predictive of
leukemia classes. For this reason, a different objective criterion for
dimension reduction (i.e., for selecting gene components) may be more
appropriate for prediction of leukemia classes, for instance. The criterion for
selecting gene components in PLS is to sequentially maximize the
covariance between the leukemia classes and a linear combination of the p
genes (also subject to orthogonality and norming constraints). That is, find
the gene component weights, w, such that cov(Xw, y) is maximum. where y
is the response vector of leukemia classes. We note that in PCA, the
leukemia class information (y) was ~ used in constructing the gene

components.
Based on the different objective criterion of PCA and PLS (namely

var(Xc) and cov(Xw, y» it is reasonable to suspect that if the original p
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genes are predictive of the leukemia classes, then the constructed
components from PCA would likely be good predictors of leukemia classes.
Therefore, prediction results should be similar to that based on PLS gene
components. Otherwise, PLS should perform better than PCA in predicting
leukemia classes. The results based on the leukemia data given in the next
section will support that this is indeed the case.

After dimension reduction by PLS (or PCA), the high dimension of p is
reduced to a lower dimension of K gene components. We constructed K=3
gene components and predicted the leukemia classes based on the 3
components. (One can choose K, for example, by cross-validation. This was
done but the final results did not change much so we choose the simpler
model with K=3.) Since the reduced gene dimension is now low,
conventional classification methods such as logistic discrimination and QDA
(Quadratic Discriminant Analysis) can be applied. For an introduction to
classical discrimination and classification the reader is referred to Flury
(1997), Johnson and Wichern (1993), Mardia et aI. (1979), and Press (1982).
Details of LD (Logistic Discrimination) using PLS components including
simulation results can be found in [Nguyen and Rocke, 2001].

RESULTS

Classification Based on SO Predictive Genes

Although PLS can handle the number of genes. p. as large as expected in
the human genome. experience indicates that prediction results are much
improved when a subset of predictive genes are selected for the actual
prediction or classification [Nguyen and Rocke. 2001]. This approach is
reasonable since only a subset of the genes (probes) deposited on the array
for investigation is predictive of the biological classes. For this reason and
also for comparison purposes we first analyse the same p=50 genes obtained
by Golub et at. (1999),

We constructed 3 gene components using PLS and PCA based on p=50
genes. Classification of the leukemia classes using the constructed gene
components in logistic discrimination and quadratic discriminant analysis
are compared. In this analysis we used the same set of 50 genes reported by
Golub et aI. as predictive of acute leukemia classes. That is. Golub et aI.
defined p(G, f) = (mt -m~(.ft + s~ as a measure of "correlation" (or
"distance") between gene Gj and the class indicator variable Y. where nit and
s.. k = I. 2. are the sample ~s and standard deviations of the log of the
expression levels of gene j in class I and 2 respectively. Twenty-five genes
closest to class I and another twenty-five genes closest to class 2 were
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selected to form a set of 50 "informative" genes. These are the selected
predictors. Based on these 50 genes we carried out the following analysis
steps: -

1. Apply the thresholding algorithm to each array for (multiplicative)

rescaling.
2. After rescaling, select the same 50 genes as in Golub et aI.
3. Consb1Jct PLS components and PCs based only on the original 38

training samples.
4. Consb1Jct test components based on training component infonnation.
5. Predict leukemia classes by (1) LO and (2) QOA using leave-one-out

cross-validation (CV) for the 38 training samples and then make out-of-
sample predictions for the 34 test samples based on the constructed
components from training information.

Leave-one-out CV predictions of the 38 training samples using QDA and
LD with PLS gene components resulted in 100% correct and 36/38 for K:s.
Based only on the training components, out-of-sample predictions for the 34
test samples were made. LD with PLS gene components resulted in one
misclassification. Five test samples with low "prediction strength" (pS,
defined in Golub et al.), samples # 54. 57, 00. 67. and 71 (with PS=O.23,
0.22. O.~, 0.15, and 0.30), and one misclassified by Golub et at. were
correctly classified with estimated conditional class probabilities of 0.97.
1.00. 0.98.0.89. and 1.00. The second misclassified sample (# 66) by Golub
et at. was the single misclassification by LD using PLS gene components.
(This was the same sample misclassified by all CAMDA'OO conference
participants.) LD using K:s did not predict the test sample well (with 7
incorrect). However. QDA using PLS components or K:s both had three
misclassifications in the test samples.

Figures 2(a)-(d) shows how the three constructed PLS gene components
and K:s separate the leukemia classes in the training and test data. It can be
Seen that PLS components separate the leukemia classes better than PCs.

Assessment of Constructed Components for Classification

To assess the performances of (1) the various component construction
methods and (2) the classification methods (LD and QDA), re-randomization
is necessary. (Re-randomization was not considered by Golub et al. so a
comparison here is not possible.) We considered a re-randomization scheme
with equal splitting of the 72 samples into 36 training samples and the
remaining 36 into test samples. The analyses above were repeated for 50 re-
randomizations and the results indicate that the prediction based on the 50
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Figure 2. Separability of leukemia samples in the training and test data sets by three gene
components extracted by PLS and PCA.

genes is stable--it is unlikely that the results depend on the original data
configuration of 38 training/34 test samples split. The average percentages
of correct classification over 50 fe-randomizations are given in Table 1.
Note that for each of the 50 randomizations (data sets), the prediction for the
36 b'aining samples is based on leave-one-out CV and prediction for the
remaining 36 test samples are based on out-of-sample prediction. Based on
the SO fe-randomizations, PLS gene components performed at least as well
or better than PCs on the training data for all (SO/50) fe-randomizations.
This is based on l~ve-one-out CV. For the out-of-sample prediction of the
test samples, PLS predicted at least as well or better than PCs in 42/50 re-

randomizations.

Table J. A VeRge percentaRe correct in 50 rc-~mizatioDS. --LD ~~ ~~~ ~A

PLS PC PLS PC
Training Data 99.56 96.44 99.56 97.00
Test Data 95.94 94.17 96.44 9S.44
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A Condition When PCs Fail to Predict WeD
-

Attempts have been made to study the settings where PLS will predict
well relative to other prediction methods, however, the conditions under
which PLS predicts well have not been fully ch~erized in the statistics or
chemometrics literature. The leukemia data set of Golub et aI. provides an
example of a condition under which PLS perfonns well relative to PCA. In
the analyses given above, although the results for PLS components were
better than that for PCs, the results for PCs were competitive nonetheless.
Examining the objective criterion of PLS and PCA, we noted in the Methods
section that it would be reasonable to expect prediction based on PCs to be
similar to that from PLS if the original genes are highly predictive of

leukemia classes. This is the case of the analyses based on the 50 predictive
genes. However, to see when PCs fail to predict well, while PLS components
succeeded. we consider their prediction ability based only on expressed
genes, but not expressed differentially for leukemia classes. This test
condition is based on the simple fact that' an expressed gene does not
necessarily qualify as a good predictor of leukemia classes. For instance,
consider a gene highly expressed across all samples, ALL and AML. In this

case, the gene will not discriminate between ALL and AML well.
We define a gene to be expressed if the measure expression value is

above the threshold value u detennined from the thresholding algorithm
(with parameter q=IO% and c=3.0) as described in the Methods section.
After rescaling, subset of p genes were retained for analysis. We analyzed
five (nested) sets of genes defined as expressed on (A) at least one may
(P=1,554), (B) 25% (P=1,O76), (C) 50% (P=864), (D) 75% (p=662) and (E)
100% (p=246) of the arrays. As before, we applied PLS and PCA to extraCt

gene components from these five data sets based on the 38 training samples.
Predictions of the 38 training samples were based on leave-one-out CV and

predictions of the 34 test samples were based on the training componenl:S
only. This leads to a drastic decrease in perfonnance of PCs relative to PLS.

(Re~lts not given here. For details, see Nguyen and Rocke (2001 ).) .
To assess whether the observed decrease in perfonnance of PCs relatIve

to PLS gene components is coincidental, we considered are-randomization
study as in the analysis of the 50 infonnative genes. PCs did much worse
relative to PLS gene components in the re-randomizations as well. The result
here is not surprising since PCA aims to summarize only the variation of the
p genes. These p genes are above the threshold and therefore considered
expressed. However, only a subset of p expressed genes are predict~ve ~f
leukemia classes. Why then does PLS components still perform well 10 th~s
mixture of expressed genes, both predictive and non-predictive of leu.ke~a
classes? This is most likely attributed to the choice of objective cntenon
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used. namely covariation between the leukemia classes and (the linear
combination of) the p genes. Since PLS components are obtained from
maximizing cov(Xw, y) it is more able to assign pattern of weights to the
genes which are predictive of leukemia classes. Details of the re-
randomization study can be found in Nguyen and Rocke (2001).

CONCLUSIONS

In this paper we have presented a thresholding algorithm for estimating
the array-specific noise and outlined rescaling procedure based on
infoffilation from the thresholding algorithm. The algorithm is robust to
outlying observations and is not affected by starting values (q). For example,
we have applied the algorithm to the leukemia data set of Golub et aI. We
also described the use of the thresholding algorithm for cDNA arrays. Mter
array rescaling, we introduced the use of PLS as a dimension reduction
method for the analysis of gene expression data and illustrated the method's
effectiveness in predicting leukemia classes. Specifically, we have provided
examples on the use of PLS gene components for classifying leukemia
classes by quadratic and logistic discriminant analysis. The classification
results are favorable when compared to the original results of Golub et aI., as
well as those based on PCs. These results hold under re-randomization
studies as well. Finally, we have described a condition under which PLS
components are superior to PCs for prediction purposes.

DISCUSSION

Easy Data Set?

It is now well known (CAMDA '00 conference) that the leukemia data set
is an easy .data set. That is, the leukemia classes are easily separable with the
exception of one sample in the test data set. Nonetheless, the data set
exhibits interesting characteristics that led to an elucidation of PLS and ~A
for the analysis of microarray data. However, we have found similar
successes with PLS in other data sets as well. Additional examples of cancer
classifications, including normal versus ovarian tumor, diffuse large B-cell
lymphoma versus B-cell chronic lymphocytic leukemia, norma1 versus colon
tumor, and non-srnall-ceIl-Jung-carcinoma versus renal samples. using PLS
gene components can be found in Nguyen and Rocke (2001). Furthermore,
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the method performs well under a simulation model for gene expression data
[Nguyen and Rocke 2CXX>. 2001b. 2001c].

Potential Applications of PI.s to Microarray Data

Much published work in the analysis of gene expression data focuses on
clustering genes. One motivation for the use of clustering is that "similar"
gene expressions that are clustered together have similar functions, hence
providing clues to gene functions. In addition to the wide use of clustering,
we will discuss some other applications for microarray data in this section.
Another area of interest (currently not as popular as clustering genes) may be
the prediction of the expression of a target gene. Quantifying the predicted
gene expression values such that they are compatible with some clinical
outcomes is one use of this PLS prediction. Another use involves gene
expressions measured over time. PLS prediction can be used to predict a
target gene (or a cluster of target genes) over time. The goal of such an
analysis may be to see which genes are related to the target gene and how
this relationship varies with time.

Assessing the relationship between cellular reaction to drug therapy and
their gene expression pattern is another application. For example, Scherf et
al. (2CXX» assessed growth inhibition from tracking changes in total cellular
protein (in cell lines) after drug treatment. The response of cell lines to each
drug treatment can be considered as the response variables. Associated with
the cell lines are their gene expressions. Since the expression patterns are
from those of untreated cell lines, Scherf et al. focused on the relationship
between gene expression patterns of the cell lines and their sensitivity to
drug therapy. This relationship can be studied via a direct application of
univariate or multivariate PLS. which can handle the high dimensionality of
the data.

Another example. in cancer research, is the prediction of patient survival
based on gene expressions. However, here some of the observed times are
censored. Based on a simulation model of gene expression data, Nguyen and
Rocke (2(XXk) studied various dimension reduction strategies involving PLS
and PCA in the context of survival data with gene expressions as covariates.
The results based on PLS are favorable based on this preliminary simulation

study.
Finally, since many classification problems involve more than two

classes, such as the classification of various types of tumors (leukemia,
breast, renal. central nervous system, etc.), generalization to more than two
classes is needed. Preliminary study of multivariate PLS for predicting
multiple classes under a simulation model for gene expression data indicates
that the method is useful [Nguyen and Rocke, 2(XX)b].



Danh Nguyen and David Rocke 123

PLS Algorithm and Computing Feasibility

One clear advantage of PLS over other dimension reduction method,
such as PCA, is its computational feasibility. PLS components can be
constructed in a few seconds, despite the high dimension p. Other dimension
reduction methods, such as PCA, are much more computationally intensive
when p is in the thousands. The PLS algorithm can be found, for instance, in
Helland (1988), Hoskuldsson (1988), or Martens and Naes (1989).
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