
Lawrence Berkeley National Laboratory
Recent Work

Title
A NEW COMPRESSION METHOD WITH FAST SEARCHING ON LARGE DATABASES

Permalink
https://escholarship.org/uc/item/7fh1r6nk

Authors
Li, J.Z.
Rotem, D.
Wong, H.K.T.

Publication Date
1987-03-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7fh1r6nk
https://escholarship.org
http://www.cdlib.org/

l

,
,
f

LBL-22393

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA, BERKELEY

Information and Computing.
Sciences Division . :;:_"~J0~'i;::i"I~J~:E D

8 " (' '\.,_ ',' - ',r--rORY

To be presented at the 13th International
Conference on Very Large Data Bases,
Brighton, England, September 1-4, 1987

A NEW COMPRESSION METHOD WITH
FAST SEARCH!NG ON LARGE DATABASES

J.Z. Li, D. Rotem, and H.K.T. Wong

JUN 2 G 1987

March 1987
TWO-WEEK LOAN~ C

'"
This is a Library Circulating Co

I which: may be borrowed foF('
~------------ ~ i-'fo- t" - .. .cr." .• a,

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

(':.~

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

...

A New Compression Method with

Fast Searching on Large Databases

JeZe Li, De Rotem, and H.K.T. Wong

Computer Science Research Department
Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720

March, 1987

LBL-22393

This research was supported by the Applied Mathematics Sciences Research Pro­
gram of the Office of Energy Research, U.S. Department of Energy under Contract
DE-AC03-76SF00098.

LBL-22393

A New Compression Method with
Fast Searching on Large Databases

Jian-zhong Li*, Doron Rotem** and Harry K. T. Wong***

Lawrence Berkeley Laboratory,
University of California

Berkeley, California 94720

Abstract
In this paper, a new comp~ession method

for constant removal from very large scientific
and statistical databases is presented. The
new method combines the best features from
several classical constant removal compression
methods. The result, both analytical and
experimental, shows that the method is supe­
rior to these popular methods in terms of
compression effectiveness and efficient search­
ing on the compressed data. In addition to
the development, analysis and validation of
this new method, this paper. also presents
analysis of several traditional constant remo­
val methods for the purpose of analytic com­
parison. A large collection of experiments
have been designed and run to observe and
validate the behavior of the compression
methods. Another contribution of the paper is
that performance characteristics are identified
for different compression methods under
different data properties assumptions. The
result can be used as a basis of selecting
compression methods. by matching the proper­
ties of the database at hand to the data pro­
perties experimented in the paper.

Supported by the Office of Energy
Research, U.S. DOE under Contract No. DE­
AC03-76SFOOO98.

* on leave from Dept. of Computer Sci­
ence, Heilongjiang Univ., China.

** on leave from University of Waterloo,
Canada.

*** Now with Ashton-Tate Advanced
Development Center.

1. Overview and Motivation

We are interested in very large Scientific
and Statistical databases (SSDBs) ([5], [4]).
SSDBs are prevalent in scientific, socio­
economic, and business applications. Exam­
ples of SSDBs are experiments and simulations
for scientific applications, census, health, and
environmental data for socio-economic appli­
cations, and inventory and transaction
analysis for business applications. These data­
bases are often very large and sparse. Exam­
ples are scientific databases such as earth­
quake monitoring databases and high energy
physics databases where the so-called noise
(values that fall below certain threshold
values) are converted into nulls or zeros
(referred to as constants in the literature).
The volume of these data is large because they
are typically collected by automatic devices
and most of the collected data are noise
because interesting events typically scatter
between long periods of inactivity.

Other kinds of databases such as sum­
mary databases prevalent in SSDBs are also
very large and sparse. An example is the sum­
mary data of a multi-factor parametric experi­
ment of corrosion of materials under different
conditions such as temperature, acidity, salin­
ity, and duration. Attributes such as material,
temperature, acidity, salinity, and duration
represent' parameter data. Attributes such as
amount of corrosion is the measured data.
The former kind of attributes are referred to
as category attributes, and the latter is
referred to as a summary attribute. Two fac­
tors cause these SSDBs to be extremely large.

. First, they may contain hundreds of summary
attributes. Second, the cardinalities of the
category attributes can themselves be quite
large; and the number of tuples generated is
the product of these cardinalities. These data­
bases can be quite sparse. In the corrosion

experiment database, suppose that tempera­
ture does not have too much effect on certain
types of material, then in the corrosion
column there would be the same value in con­
secutive positions for all the acidity, salinity,
and time.

To remove the large collection of con­
stants is an essential requirement for manag­
ing these SSDBs. This requirement rules out a
large body of compression techniques in the
literature that deals with transmission and
text compression such as Huffman encoding [8]
and those in [1,7,8,9,10,11,12] as mentioned in
[13].

In addition to the amount of compres­
sion one can achieve using a compression
method, there are two other important
requirements that we stress in evaluating and
selecting a compression method. The first is
the ability to perform efficient and random
searching in the compressed database, given a
logical position of the original database. This
requirement is essential to provide a querying
capability on the database using the
compressed data structure as the physical
structure. Another equally important require­
ment on a compression method is the capabil­
ity to provide an efficient mapping from arbi­
trary positions in the compressed data back to
the corresponding logical positions in the origi­
nal database.

The following example illustrates the
importance of this requirement. Because of
the size and sparsity of SSDBs as mentioned
before, it is desirable to have operators that
can directly operate on compressed data
without first decompressing it. Operators such
as transposition and aggregation are good
examples of why direct manipulation on
compressed data is desirable [17]. These
operators, however, rely heavily on the ability
~ di~cover efficiently, given an arbitrary posi­
tlo~ In the .c<?mp~essed data, the corresponding
logical pOSitIOn In the original database, in
order to reposition the data items in the new
transposed space. To continue our example of
corrosion-experiment data, instead of ordering
the data in the order of material, temperature
acidity, salinity, and duration, a transpositio~
request to reorder the data so that now the
data ~pace is linearized in the order of, say,
matenal, duration, salinity, acidity, and tem­
perature. For each data item in the
compressed data, a backward mapping is

2

necessary to discover the coordinates of the
original space, so that a new position can be
computed corresponding to the new requested
space. To have an efficient transposition algo­
rithm depends strongly on the ability to per­
form fast backward mapping. Classical
methods such as run-length encoding [6] and
its derivatives such as header compression [2,3]
provide good performance in terms of remov­
ing long runs of constants, but they have a
poor forward and backward mapping capabil­
ity. Also, these methods can not be used on
dynamic database environment· where addi­
tions and deletions may be required.

In this paper, a new constant removal
compression method is proposed and is shown
to be superior to the classical methods and
their derivatives both analytically and experi­
mentally in most situations. It also lends
itself to dynamic changes in databases. There
are three other important contributions in this
paper. First, analysis in terms of compression
ratios and searching efficiency is given for the
new compression method as well as for three
other competing constant removal methods.
Second, a large collection of experiments has
been performed to validate the analytic results
of these methods. Third, data characteristics
have been identified under which a compres­
sion method can be selected to provide the
best compression ratio.

The rest of the paper is organized as fol­
lows, the next section provides some back­
ground and terminology for the sections to fol­
l<?w. Section three discusses our new compres­
sion method, called BAP. Experiments and
analysis results are given in Section four. In
that section, comparison of BAP with other
constant removal methods is given to provide
a performance metric under different situa­
tions. Finally, Section five provides some con­
clusion and a discussion for future work. An
appendix with a list of most the commonly
used symbols in the paper is also provided.

2. Background

In this section, some important terms on
constant removal compression will be intro­
duced. Also, we will survey three popular
techniques for constant removal. They are bit
map, run-length encoding and header compres­
sion. The terms logical database and physical
database are used to refer to the uncompressed

and compressed database respectively. The
forward mapping is a mechanism that deter­
mines the position in the physical database for
a given position of a value in the logical data­
base. The backward mapping is a mechanism
that determines the position in the logical
database for a given physical position in the
physical database.

2.1. Bit Map

A bit map compression scheme consists
of a bit map and a physical database which
stores the non-constant values. The bit map
is employed to indicate the presence or
absence of non-constant data. The following
example shows how the bit map compression
scheme can be employed to implement a ver­
sion of c~nstant suppression.

Example:

Original data 6tring

dl, c, c, d2, c, c', c, d3.

Compressed data string

bit map: 10010001.

physical database: dl, d2, d3.

For the bit map compression method,
the mapping mechanism must search the
whole bit map for both forward and backward
mapping. And thus, the access time for both
forward and backward mapping is O(N), where
N is. the number of bits in the bit map or
equivalently the number of elements in the
database.

2.2. Run-Length Encoding

The application of run-length encoding
to constant removal is that each consecutive
run of constants (there can be a few different
types of constants to be removed) is replaced
by a triple consisting of a separator SEP, an
encoding of the constant X to be removed and
a counter C indicating the length of the run.
Of course the decoding algorithm must be
given sufficient information which enables it to
correctly interpret each component of a triple
as well as additional values which may be
present in the data stream without any
compression.

To search a run-length encoded database
for both forward and backward mapping, a
sequential search has to be done to sequence

3

through the data, counting the number of
unsuppressed values and references to the
number of repeated values. The time required
here is again O(N).

2.3. Header Compression

The header compression scheme is shown
below. The vector L represents the
uncompressed form of a database, in which
the O's are the constant to be suppressed and
the V's are the unsuppressed values. Beneath
the vector L is the list of counts which
comprise the compression header, H. The
odd-positioned counts hold accumulations of
unsuppressed values; and the even-positioned
counts hold the accumulations of zeros. The
physical, compressed form of the data is
represented by P.

L: Vl V2 0 0 0 0 0 0 0 0 0 V3 V4
V5 V6 V7 0 0 V8 V9 VI0 0 0 0

H: 2,9,7,11,10,14

P: VI V2 V3 V4 V5 V6 V7 V8 V9 VI0

For the header compression method,
both forward and backward mapping can be
processed by binary searching on the header,
H. The header may be organized as a B-tree
or accommodated in fast storage if it is
sufficiently small. Both forward and backward
mappings require O(Jog s) time where s is the
size of the header.

3. The BAP Compression Scheme

In this section we consider a new
compression method which incorporates the
advantages of several existing techniques.

The compression technique presented
here constructs a physical database which con­
sists of three parts: Bit vector (BV), Address
vector (A V), and Physical vector (PV), and is
therefore called the BAP compression tech­
nique.

3.1. An overview or the BAP method

Let DB=(xl,x2, ... ,XN) be a logical data­
base, and c be the constant to be suppressed.
The bit vector, BV, indicates locations of con­
stants and non-constants in the database and

"" ~'\I . "

will be stored on disk in a compressed form as
explained later. The physical vector PV is the
vector of the non-constants in DB, i.e.

PV = (Yl.Y2 •... .Yu)

where, YJ are in DB and YJ~c. The YjS are
arranged according to their logical order in DB
for 1 ~ j ~ n , n ~ N and are stored on disk.
It is assumed that non-constants cannot be
compressed, hence no compression algorithm is
applied to PV. Finally, the address vector AV
is typically small and will be used as an index
for searching in the database; we will show
that in most practical applications it can be
stored in fast storage.

The idea behind our method is that in
addition to efficient compression we need fast
forward and backward mapping capabilities
between the logical and physical database. In
fact we will show that after compressing the
logical database DB, we can find what is the
position in PV of any of the Xl'S in one disk
access, provided that A V is maintained in fast
storage. Conversely, given a position j in the
physical database PV, we can determine what
was its original location in DB, again using
only a single disk access.

We now describe the components BV and
A V in more detail.

3.2. Bit Vector (BV)

The bit vector is

where,

1
o

Since BV is a bit vector of N bits, we can
compress it using run length encoding in
which we replace each run of zeroes by a
counter which indicates the length of this run.
There are several methods for achieving
efficient run length encoding, the main prob­
lem here is how to encode the counters and
provide a separator between counters. We
chose to use in our case the Golomb encoding
method [14,15J which was proven to achieve a
compression ratio close to the information
theoretic lower bound.

4

We had to modify this method 50 that
we could also search in the compressed data.
To this end, we divide BV into subvectors of D
bits each, where D is a parameter chosen by
the user. We will later show a mathematical
analysis of how D is determined in order to
maximize the efficiency of our compression
scheme, subject to limitations such as storage
size, block size and required response tim~.
Each subvector in BV is compressed indepen­
dently using Golomb's method and stored on a
separate disk block (or a sequence of a few
consecutive blocks). We now give an overview
of Golomb's encoding method.

3.2.1. Golomb's encoding scheme

We define the compression ratio of a
binary vector to be the ratio between the
number of bits it occupies before and after it
is compressed. The efficiency of Golomb's
scheme is achieved by encoding the counters
and the separators using a special method.
The codeword for each counter is constructed
as follows. A parameter m is c.hosen . as
explained later, and then each run of r con­
secutive zero bits is divided into rr/m 1 groups
consisting of m bits each except for the last
group which may contain less than m bits.
Each group is encoded by a I-bit and the last
group is encoded by a counter of fixed length.
The idea of the method is illustrated below.
The codeword for each counter consists of a
variable-length prefiz which has a I-bit for
each group of m O-bits, and a fixed-length tal1
which counts the number of O-bits in the last
group. The prefix consists of Lr/m J I-bits fol­
lowed by a O-bit as a separator. The tail con-

sists of a bin~ry number of flOg2m 1 bits and

its vlffie ~s? ~ ~lr/m J. It is shown in [15J
that in order to maximize the efficiency of the
method, the parameter m should be chosen as
the integer such that pm is as close as possible
to 0.5, where p is the O-bit probability. The
compression ratio is shown in [151 to be a ran­
dom variable with expected value R where

R

1 where m=---.
log2P

\..1

3.2.2. Using Golomb's method in BAP

Turning back now to the BAP method,
we will compress each subvector in BV
independently and store it on a disk block. Let
us assume that the probability P(c), of finding
a constant in each location of the database is
fixed and independent of other locations.
From [15], we know that the expected value of
the compression ratio in this case is

R

where m

1
(l-P(c)Xlog~+(l-P(c)lII)-l) .

1
log:?(c) .

We are now in a position to explain how
the user should choose the parameter D. It is
intuitively clear that we are interested in hav­
ing D as large as possible to maximize the
compression efficiency. On the other hand as
we explain later, in order to ensure that no
more than k block accesses will be required for
searching in the database, we require that
each compressed subvector will fit on a
sequence of at most k consecutive blocks. In
most practical applications we will require
k= 1. Given a block size of S bits and an
expected compression ratio R, it follows from
the above restriction that the size of the sub­
vector D should be chosen such that after
compression each subvector of :D bits should
with a very high probability occupy less than
kS bits. We found experimentally (see Table
1) that the distribution of the compression
ratio has a very small standard deviation for
all practical values of P(c) (typically less than
1.2 percent of R). Hence by using a compres­
sion ratio R' =.98R which is slightly smaller
than the expected compression ratio R, we
ensure with extremely high probability that no
overflow will occur when we choose D to be
the maximum integer such that

...Q...<kS
R' -

In practice, a small overflow area may be
assigned to the file so that in the unlikely
event that any of the compressed subvectors
requires more than kS bits, the remaining bits
will be stored in the overflow area. Assuming
no overflow, the compressed database will
occupy fN/D 1 blocks, each block of size S
bits.

5

3.3. Address Vector (A V)

The division of BV into subvectors
imposes a division of the database DB into
d= rN/D 1 sections, each consisting of Dele­
ments. In each one of these sections we may
have zero or more non-constants. We define
the address vector as

AV = (al'~ ... ,3-d)

where, al=O, and for i~2, at is the relative
position in PV of the last non-constant ele­
ment in the (i-l)1II section of DB if such a non­
constant exists; otherwise (all elements in the
(i_l)tll section are constants) , we set at=3+-1'

The key point of this compression tech­
nique is that AV can reside in main memory
by choosing the parameter D to be sufficiently
large. Our experiments indicated that for all
practical database sizes and values of P(c), no
further compression of AV is needed. However,
if the size of AV turns out to be larger than
the available memory, we can take advantage
of the fact that the difference between two
successive elements in A V is very small (and
bounded by 2D) as compared to the absolute
value of each element, which depends on the
size of PV.

In order to compress AV, we may use a
relative encoding method [16] in which we
store the difference of two consecutive ele­
ments instead of storing the actual elements.
The method can be illustrated by the follow­
ing example.

Example:

Original elements of AV

1000 .1500 2000 2500 3000 10500
11120

Relative encoding

1000 500 500 500 500 700

In this way, the size of each element is
encoded in log~2D) bits instead of log:z(I PV I)
bits where I PV I denotes the number of ele­
ments in the physical vector.

3.4. An Example of BAP

The following example will be used to
illustrate the BAP compression technique. For
simplicity we will not specify BV and A V in
their compressed form.

Given
DB = (1,0,0,4,0,0,0,0,0,0,0,0,8,0,0,0,12,0,0,0,0,17,0,
0,20), let the constant be 0 and assume D = 5.
Using BAP, the database DB will be
compressed as follows

BV = (1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,1)

PV = (1,4,8,12,17,20),

and

AV = (0,2,2,3,4).

Let us consider the element as in AV. Since it
is equal to ~ we know that there are no non­
constants in the second section of DB. As a
further illustration, we note that the last non­
constant in the third section of DB is 8 which
appears in the third position of PV. We there­
fore have a.=3.

3.S. Forward Mapping

In this section we discuss the mapping
from the logical database to the physical data- .
base.

Given the ordinal position, LP, of a
desired instance in. the logical database, we
want to determine whether this instance is a
suppressed constant or an unsuppressed value.
In the case it is unsuppressed, we would like
to find its position in the physical vector (PV).
In the description of the mappings, we assume
k=l, i.e., each subvector is compressed into a
single block. A generalization to any k is
straightforward. The algorithm is as follows.

ALGORITHM FM

SN== rLP/D 1; offset:=LP mod D;
READ block with relative position SN

in compressed BV

and decompress it into a buffer.

IF bv(offset)=0 THEN
DB(LP)=c

ELSE
DB(LP)=PV(AV(SN)+bitsum(offset));

return

return

where, the function bitsum(x) is a function
which counts the number of 1's among the
first x bits in the buffer and bv(j) is a function
which gives the value of the jib bit in the
buffer.

6

Consider the following example where
D=5,

BV = (1,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,1)

PV = (2,5,9,13,18,21),

and

AV = (0,2,3,4).

Let the required logical position be LP=12.
Then rLP/D 1= r12/51=3, we I:ead in the
third subvector of BV into the buffer, (in this
example no decompression is performed) and
find that bV(2) is a 1-bit and bitsum(2)=1.
Thus,
DB(12)=PV(AV(3)+I)=PV(3+1)=PV(4)=13.

THEOREM 1. Given that AV is in
fast storage, Algorithm FM requires one disk
access to find the position in PV corresponding
to a logical position LP and two disk accesses
to find the value of the element in logical posi­
tion LP of DB.

Proof. From the algorithm FM, it is
obvious that since A V resides in main
memory, we need to access a single block of
BV in order to find the position in PV of the
element which is in position LP in DB. In the
case that the required element is a non­
constant and we need its actual value, one
more block access in PV is needed. All the
other operations specified by the algorithm do
not require access to the disk Q.E.D.

3.6. Backward Mapping

Given a position PP of a non-constant
element y in PV, we want to find the logical
position LP of this element in DB. The algo­
rithm is a little more complicated than the
forward mapping algorithm. As before, we
denote the number of elements in A V by d
where d= rNjD 1.

ALGORITHM BM

(1) We perform a binary searc h in A V to
find the first entry larger than PP.

I:=min{i I PP:S;AV(i)} if PP:S;AV(d),

otherwise I:=d+l;

Comment: At this point we know that
the required non-constant y is in the (I_I)"'

',.

section of DB;
(2) READ the (I-I)'" block of BV and

decompress it into the buffer;

(3) set j:=PP-AV(I-I);

Comment: j-I indicates how many non­
constants precede the input non-constant y in
the (I-I)'" section of DB;

(4) Let rel(j) be the relative position in
the buffer of the j&h I-bit.

(5) LP:=rel(j) +(1-2)Dj

The last step is justified by noting that
there are (1-2)D elements in preceding sections
of the database and the input non-constant y
is in position rel(j) of the (I-I)'" section of DB.

Consider the example we used for the
forward mapping again. Let PP=4 and there­
fore the input non-constant y is 13. Then 1=4
and we read into the buffer the (1-1)11& block of
BV. In this case j=4-3=1 which means that no
non-constants appear in the (1-1)11& section
before the input non-constant y. We find
rel(j)=2 which means that y is the second ele­
ment in its section. The logical position LP is
therefore 12.

As in the case of forward mapping, we
have the following theorem.

THEOREM 2. If AV is contained in
fast storage, backward mapping can be per­
formed using one disk access.

3.7. Compression Efficiency

DEFINITION 1. The compression
ratio R(X) of a given compression method X
will be defined as the ratio of the total size of
the database before and after it is compressed
using method X.

Let BAY be the number of bits of each
element in A V and Bpy be the number of bits
of each element in PV. Using the BAP

compressio~ technique, BV requires d= I ~ 1
blocks which is S·d bits where S is the lock
size in term of bits, A V requires d X BAY bits
and PV requires an expected space of
N(I-P(c))XBpy bits. Thus, the number of bits
to store the compressed database by BAP is

7

NOB(BAP)=S·d + N(I-P(c))-Bpy+d·BAV.

It is obvious that P(c) is inversely pro­
portional to NOB(BAP). We have the follow­
ing theorem.

THEOREM 3. The compression ratio
of BAP is

N
R(BAP) = Bpy" NOB(BAP)

We assume that Bpy, the size of each
uncompressed element, is the same in the logi­
cal database and PV.

3.8. Experiments

We experimented with a simulated data
base of 400,000 elements to find the standard
deviation of the compression ratio. The
results are summarized in Table 1. For a
given P(c), we took groups of 12288 bits and
compressed them using Golomb's method and'
then recorded the number of bits in the
compressed vector (E.S.). From this we com­
puted the actual compression ratio and stan­
dard deviation among the groups. As we see
from the table, the standard deviation is very
small and increases with P(c). In our experi­
ments, we took a slightly smaller compression
ratio (.98*R) to guarantee with a very high
probability that no overflow occured. Assum­
ing a blocksize of 4096 bits, the D computed
using this compression ratio is also listed 10

Table I (Theoretical D).

We conducted some simulations to
examine the size of the database that can be
compressed using BAP subject to a given
block size, internal memory for storing A V and
required response time for searching. We
looked at 3 different blocksizes (512,1024 and
4096 bytes). For each of these block sizes we
looked at the compression efficiency when
searching must be performed in 1, 3 or 5
block accesses of the database. We conducted
these experiments for P(c)=.9 in Table 2 and
P(c)=.95 in Table 3. For example, we can see
from Table 2 that if the blocksize is 512 and
internal memory is sufficient to hold 1000 ele­
ments of AV, we can compress a database of
8,429,570 elements and perform searching in
one block access.

We also conducted experimen~ to exam­
ine the relationship between the compression
ratio, R(BAP), and the probability P(c) of the
occurrence of a constant. For each P(c) in the
range 0.2 up to 0.9 (step 0.1) and P{c)=O.9S,
we generated a file of 400,000 elemen~. In this
experiment the probability of a constant in
each location of the database was gener~ted
independently. As expected, the results in
Figure 1 indicate that the compression ratio
R(BAP) increases rapidly with P{c), for P{c)
equal to .95 the compression ratio exceeded
16.

4. Comparison with Other Compression
Techniques

In this section, we compare the efficiency
of the compression techniques BAP, header,
bit map and run-length both from the point of
view of efficiency of searching and compression
efficiency.

4.1. Comparisons or the Time Complex­
ity

We consider the time complexity of the
forward mapping and the backward mapping
of the four compression techniques mentioned
above. We discuss the time complexities in
term of accesses of -secondary memory.

As we saw in Section 3, the forward
mapping algorithm of the BAP compression
technique requires 0(1) accesses. As opposed
to this algorithni, the run-length and bit,-map
compression techniques require O(N) accesses
for forward mapping where N is the number of
elemen~ in the database. The header
compression technique is much better than the
run-length and bit-map compression techniques.
It requires O(log (HS)) accesses where HS is the
expected size of the header. Thus, with
respect to the forward mapping, BAP is the
best one of the four techniques, the header
compression is superior to the run-length and
bit map compression techniques.

As we saw in Section 3, the backward
mapping algorithm of BAP's is a 0(1) algo­
rithm. In case of backward mapping, BAP
compression technique is still the best one of
the four techniques. The header compression
technique, which requires again O(log(HS))
accesses for the back mapping, is superior to
the run-length and the bit map compression

8

techniques.

4.2. Compression Efficiency

First, we will derive the analytic expres-­
sions which represent the compression
efficiency for the header, bit map, and run­
length compression techniques. Then the
compression efficiency of these techniques are
compared to BAP.

The derivation of the analytic expres-­
sions of compression efficiency for the header,
bit map, run-length compression techniques
are similar to that of BAP in section 3.

4.2.1. Header Compression

In order to derive the compression ratio
of the header compression technique, we need
to derive the average header size of this tech­
nique.

LEMMA 1. Let DB be a logical data­
base with size N and constant probability P(c).
The average number of elements in the header
of the header compression technique is

HS = 2(N-1)·P(c)-(1-P(c)).

PrOor. We define a break as a consecu­
tive pair of elements in which the first is a
constant and the second is a non-constant.
Each occurrence of a break represents a switch
from a constant run to a run of non-constants.
The probability of a pair of elements in DB to
form a break is P(c)·(l-P(c)). There are N-l
possible pairs, thus the average number of
breaks is (N-1)'P(c)·(I-P(c)). And hence, the
average number of constant and non-constant
run pairs, is

(N-l)'P(c)'(l-P(c)).

Since each constant run and nonconstant
run pair requires 2 elements in the header
[2,31, the average number of elements in the
header is

HS = 2(N-l)·P(c}{1-P(c)).

Q.E.D.
Let Boc be the average number of bits of

each element in the header and Bpy be the
average number of bits of each nonconstant in

'-.,.

....

\.1

the compressed database (this is also the size
of each element in PV of BAP). In the header
compression technique, the header size is
HS· Ba:: bits and the non-constants require
N(l-P(c))xBpy bits. Thus, the number of bits
to store the compressed database by the
header compression is

NOB(HC) = N(l-P(c»·Bpy+HS·Ba::.

And hence, the compression ratio of the
header compression technique is .

N·Bpy
R(HC) = NOB(HC)'

4.2.2. Bit Map Compression

In bit map compression technique, the
bit map requires N bits, and the non-constants
require N(l-P(c»xBpy bits. Thus, the number
of bits to store the compressed database by
the bit map technique is

NOB(BM) = N(l-P(c»·Bpy+N.

Thus, the compression ratio of the bit
map compression technique is

N·Bpy
R(BM} = NOB(BM}'

4.2.3. Run-length Compression

For this method we assume the values in
the database are drawn from a certain domain
and allow the compression of any run of simi­
lar values in the database. For this reason we
introduce the variable domain size (DS) of the
database which counts how many different
values the elements can assume. For a given
value XI in the domain, we denote by P(XI) the
probability it is found in any location of the
database. First, we derive the average length
of runs in a given database. Let DB be a given
database with size N and domain size OS.

LEMMA 2. The average length of
runs in DB is

_ [S N 1

RL = E(P(xl}E P(»'
1-1 J-1 1- XI

Proof : The proof follows by observing
that the length of a run of Xl'S is a random
variable with geometric distribution where the
run is terminated as soon as a non XI appears.

9

The expected value of this random variable is

1 . The above result is obtained by sum­
I-P(xl)

ming over all elements of the domain.
Q.E.D.

Let BRL be the number of bits of the
counter field in the run length encoding
scheme, Bpy be the average number of bits of
the record fields in the compressed database
and F be the number of bits of the separator
field that indicates run-length encoding fol­
lows. Assume that RN is the expected value
of the number of runs. We assume that runs
of size smaller than four are left uncompressed
in the database, since compression only
increases the length of the stored object.

The total number of bits to store the
compressed database required by the run­
length compression technique is

NOB(RL} = RNx(BRL+Bpy+F)+(N-RNxRL)xBpy.

The second term represents uncompressed runs
in the database.

The compression ratio of the run-length
compression technique is

N-Bpy
R(RL) = NOB(RL)'

4.3. Comparisons of Compression
Efficiency

In the following experiments, we use the
assumption that the counters in AV of BAP,
those in header compression and run-length
encoding are all of the same size B. Using our
previous notation, BAv=Ba::-BRL=B.We also
use HC, BM and RL as a short-hand notation
for the header compression, bit map compres­
sion and run-length compression technique
respectively.

4.3.1. BAP and Header compressions

In this secti~n we want to derive a con­
dition under which the compression ratio of
BAP is higher than that of HC .

THEOREM 4. If HS > d(S+B) then
B

R(BAP) >
R(HC).

R(HC) otherwise R(BAP) <

.;.;

Proof. From section 3 and section 4,
the difference between the average numbers of
the bits of each value required by the two
techniques is NOB(HC}-NOB(BAP), that is

HS·B+N(I-P(c»·BPYO-{S·d +N(I-P(c»·Bpv +d-B)

The theorem follows by finding the con­
dition on HS which makes the left hand side of
the above equation greater than zero. Q.E.D.

To compare the compresstion ratio of
BAP and HC 'in practice, we did experiments
in cases of clustering and non-clustering con­
stant runs.

In this experiment we tried to simulate
clustering of runs rather than generating them
independently. In many realistic data base
environments we can expect such clusterings
to occur. We first chose a P(c), which is the
ratio of constants to all values in the data
base. We then generated files of 400,000 ele­
ments for each chosen run-length and scat­
tered the runs randomly in the database such
that the overall number of zeros is consistent
with the required ratio. The results of these
experiments are shown in Figures 2 and 3
where B was set at 32. The ratios were set at
P(c)=O.7 (Fig. 2) and P(c)=O.9 (Fig. 3). Let
RLa:: be the experimentally generated total
length of the constant run and non-constant
run pairs. The goal of this experiment was to
find the "break point", b, of RLs= such that
R(BAP) > R(HC) when RLs=< band
R(BAP) $ R(HC) when RLs=~b. We found
that the breakpoint was approximately 85 for
P(c)=.7 and 180 for P(c)=O.9. Both compres­
sion ratios increase with the increase in RLs=.

We also conducted experiments on data­
bases in which the generation of constants is
independent between the different locations. In
this case we found that the compression ratio
of BAP always dominates that of HC. The
relationship between the two methods is sum­
marized in Figure 4 for various values of P(c).

4.3.2. BAP and Bit Map Compression

Since the BAP method is a derivative of
bit map compression, it is clear that if we use
Golomb's encoding in both cases we will end
up having a slightly better compression
efficiency using bit maps. For that reason we
examined the effect of Golomb's method by
trying one method with Golomb's compression

10

and the other without it, as explained next.

In this experiment, eight files of size
400,000 elements were generated for P(c)=0.2,
004, 0.5, 0.6, 0.7 I 0.8 and 0.9 . Each file was
generated with B=32 and 0=4096. We
compressed the files using BAP with Golomb's
method and the bit map without it. We then
examined the difference of R(BAP) and
R(BM). Figure 5 shows that R(BM) is greater
than R(BAP) when P(c) < 0.5 and R(BM) is
smaller than R(BAP) when P(c) > 0.5. The
difference of R(BAP) and R(BM) is very small
when P(c) < 0.7. But when P(c) > 0.7, the
difference increases rapidly, that is, BAP
becomes much better than BM. The conclu­
sion from this experiment is that the addi­
tional overhead involved in using Golomb's
encoding is justified for bit map and BAP for
databases in which P(c) is larger than 0.5.

4.3.3. BAP and Run-length Compres­
sions

It is difficult to compare these two
methods as they should be used under
different environments. .As we explained ear­
lier, run-length encoding can be used in cases
were many different values from the domain
can be compressed where as BAP is mainly
used to suppress a single prevalent constant.
We can still compare under a given situation
the expected compression ratio of the two
methods using the analytical expressions for
the compressed data base size provided ear­
lier. Here, we only give the experimental
results.

Again in this set of experiments we gen­
erated clustered runs of different sizes based
on a predetermined ratio, P(c), of constants
and non-constants in the data base. The file
size in each case was 400,000 elements and for
each test we fixed a run length and randomly
scattered runs in the data base of this fixed
length. The number of runs was of course
determined by P(c) and the run length. For
run length compression, for each specified run
length ,we generated files with 5000 runs and
10000 runs for the case P(c)=O.7 and 500 runs
and 1000 runs for P(c)=O.9.

The goal of this experiment was to
examine the "break point", b, of run lengths
such that R(BAP) > R(RL) when RL<b and
R(BAP) $ R(RL) when RL~b. In this experi­
ment, we assume that B=32 and D=4096.

I)

Figure 6 illustrates the experimental
results when P(c)=0.7. The break points are
approximately 57 and 30 when RN=5,OOO
and 10,000. In Figure 7, we repeated the same
experiment with P(c)=O.9. The break points
in this case are approximately 720 and 360
when RN=500 and 1,000 respectively. We
also conducted experiments in which zerpes
are randomly scattered in the data base. We
generated a file with domain size DS equal to
100. However, the most likely element in the
file was zero which was generated with proba­
bility P(c); all the other 99 values were equally
likely and generated with a total probability
of I-P(e). The run length encoding compres­
sion was allowed to compress any run of
values of length more than three. The results
of this experiment are shown in Figure 8. As
we can see, the BAP method always dominates
run;.length encoding in this experiment.

5. Summary and Conclusions

In this paper, a new compression method
called BAP for constant removal has been
introduced. The analysis of BAP's compres­
sion effectiveness and searching complexity
was developed. In order to compare BAP with
other classical constant removal methods such
as run-length encoding,. header compression,
and bit map, these methods were also analysed
using similar assumptions on data characteris­
tics. Extensive experiments were performed to
validate the analytical results obtained. We
experimented with databases in which runs are
clustered as well as independently generated
constants. We identified ranges under which
a partial order of compression methods is
derived in terms of the effectiveness of
compression ratio.

One of the conclusions of this study is
that there is no overall winner under all cir­
cumstances. However, BAP is the clear
winner in many ranges of data characteristics
with respect to compression ratio. In addition
to compression effectiveness in terms of physi­
cal size, BAP also gives very fast searching for
both forward and backward mapping, typi­
cally, just one disk access. BAP is also more
flexible in that it allows the user's computing
environment to be incorporated to achieve a
more tailored solution to the compression
problems. For example, the available amount
of main memory storage and effective block
size can have direct impact on the

11

performance of BAP both in terms of compres­
sion ratio and searching time.

One of the major disadvantages of the
classical methods such as run-length encoding
is that they cannot support updates to the
database without completely readjusting the
runs starting at the affected position all the
way to the end of the file. The proponents of
these methods claim that SSDBs are primarily
static but it is still an important requirement , .
to support limited amount of updates 10 order
to provide services such as removing outliers,
adjusting scientific observations, et,=. In BAP,
the support of a dynamic database is provided
by allowing some small percentage of free
space in each block. Since each block is an
independent unit of compression, the rest of
the blocks are not affected by an overflowed
block.

Weare planning to perform more experi­
ments by modelling the data clustering
characteristics in finer detail, in many more
different file sizes, main storage availability,
block sizes, etc. to obtain a more detailed
performance metric of BAP with respect to
other constant removal compression methods
for SSDBs.

Weare also working on algorithms that
can directly operate on compressed data using
the method BAP without first decompressing
the database. In addition to searching, opera­
tors such as transposition and aggregation are
being developed on databases compressed by
BAP. Results will be compared to the collec­
tion of similar algorithms of transposition and
aggregation on databases compressed by
header compression and run-length encoding
[17).

References

1. Aronson, J., "Data CompreS$ion - A Com­
parison of Methods", Institute for Computer
Science and Technology, National Bureau of
Standards, Washington, D.C., pp. 3-5.

2. Eggers, S. J., Shoshani, A., "Efficient
Accesses of Compressed Data", Proceedings of
the International Conference on Very Large
Database, 6, Montreal, 1980, 205-211.

3. Eggers, S. J., Olken, F., Shoshani, A., "A
Compression Technique for Large Statistical

Database", Proc. of the International Oonfer­
ence on Very Large Database, 1981, pp. 424-
434.

4. Shoshani, A., Olken, F., Wong, H.K.T.,
"Characteristics of Scientific Databases", Proc.
of the International Oonference on Very Large
Databases, 1984, pp. 147-160.

5. Shoshani, A., "Statistical Databases:
Characteristics, Problems, and some Solution" ,
Proc. of the International Oonference on Very
Large Database, 1982, pp. 208-222.

6. Alsberg, P. A., "Space and Time Savings
Through Large Database Compression and
Dynamic Restructuring", Proceeding of the
IEEE, Vol. 63, no. 8, August, 1975, pp. 1114-
1122.

7. Gottlieb, D., Hagerth, S., Lehot, P., Rabi­
nowitz, H., "A Classification of Compression
Methods and their Usefulness for a Large Data
Processing Center", Proceedings of the Inter­
national Oonference on Management of Data,
Boston, 1979, pp. 93-101.

8. Huffman, D. A. "A Method for the Con­
struction of Minimum Redundancy Codes",
Proceedings of IRE, Vol: 40, September, 1952,
pp. 1098-1101.

9. Aronson, J. "Data Compression - A Com­
parison of Methods", AOM Transactions on
Database Systems, Vol. 4, no. 4, December,
1979, pp. 531-544.

10. Hahn, B., "A New Technique for the
Compression and Storage of Data", Oommuni­
cation of the A OM, Vol. 17, no. 8, August,
1974, pp. 434-436.

11. Knuth, D. E., The art of the Oomputer
Programming, Volume 9: Sorting and Search­
ing, Addison-Wesley, Reading, Mass., 1973,
pp. 401.

12: Tarjan, R. E., Yao, A. C., "Storing a
Sparse Database", ul. Communications of the
ACM, Vol. 22, no. 11, November, 1979, pp.
606-611.

13. Bassiouni, M. A., "Data compression 10

Scientific and Statistical Databases", IEEE
Transactions on Software Engineering, Vol.

12

SE-11, no. 10, October, 1985, pp. 1041-1058.

14. Bahl, L.R. and Kobayashi, H. " Image
data compression by predictive coding IT:
Encoding algorithm", IBM J. Res. Develop.,
18(2), 1974.

15. Teuhola, Jukka, "A Compression Method
for Clustered Bit-Vectors", Information Pro­
cessing Letters, Vol. 7, No.6, October 1978.

16. Held, Gilbert, "Data Compression", John
Wiley & Sons, New York, 1983, pp. 49-51.

17. Wong, H.K.T and Li, Jian-zhong, "Tran­
sposition Algorithm on Very Large
Compressed Databases", Proc. of VLDB,
Kyoto, Japan, August 1986.

,,,

Appendix: List of Symbols Used in the Paper

N: number of elements of uncompressed database.

OS: domain size of a database.

S: block size.

P{c}: probability of appearance of constant c.

0: parameter chosen according to user's environment.

BAP: new compression scheme in this paper.

He: header compression scheme.

BM: bit map compression scheme.

RL: run-length compression scheme.

BY: bit vector in BAP.

A Y: address vector in BAP.

d: size of memory for AY (in number of elements).

PY: physical vector in BAP.

RN: number of runs in RL.

RL: average length of runs in RL.

RLlIC : average length of a pair of constant run and non-constant run in HC.

Bpv: average number orbits of each element in PY.

B A V: average number of bits of elements in A Y.

BHC : average number of bits of elements of the header in HC;

BRL : average number of bits of counter fields in RL.

B: common size used in experiments for BA V' B HC , BRL .

F: average number of bits of separator in RL.

R(BAP): compression ratio of BAP.

R(HC): . compression ratio of HC.

R(BM): compression ratio of BM.

R(RL}: compression ratio of RL.

13

Expeet.ed Expected S&.andard No.of bits Mt.UaJ Theoretieal D
oJ eompraeed compraeioD

DeviatioD D==O.98·R*4096 S.D./E.s.
p(e) IUbveef.Or ruio (S.D.)

(E.s.) .

0.6 7685 1.59896 25.2252 1418 0.0033

0.7 7231.5 1.89923 ·22.7560 8821 0.0031

0.8 4163.9 2.95108 22.2406 ·11846 0.0053

0.9 2355 6.21183 19.2256 2D945 0.0082

0.95 1200.09 10.2392 . 15.2876 41101 0.012

Table 1.

14

N:-D*d
-- No. or

8Ioc1111e
Memory for AV Bic.aol block accesses

(Ia a.rc-)
(No. or elements) compreaed Panmeter (limitation or

per mapping (d) .. b .. c&or D databaae aile)
(Ie)

1-,c0e6 8429.57 4214780 1

100 .. 4006 25288.7 12644400 I

'-4OH 42147.8 21073900 • .U
1-40e6 8429.57 8429570

,
1000 S·"ogS 25288.7 25288700 •

'·"006 42147.8 42147800 -.
1*8102 16859.1 8429570 1

100 '·8192 50577.4 25288700 I

5*8102 84295.7 42147800 •
1024

18819~ 1 16859.1 16859100

1000 388192 50577.4 50577400 S

5*8192 84295.7 8429fi7oo
S

1·32768 87436.5 33718300 1

sao 1·32788 202310 101155000 S

'-32768 337183 168591000
,

~
1*32768 87438.5 87436500 1

1000 1·12788 202310 202310000 S

'·32768 337183 337183000 ,

P(c)=o.9 R=2.1 0.98*R=2.0S8

Table 2~

15

Memory Cor AV &ita of N-D*d No. of
Block liM (No. or elements) (limitation of bloek accesses
CIa t.rt-) eDlDpre.aed Parameter per mapping (d) .. b.ee\or D database size)

(k)

1-40G6 13848.6 8924290 1

100 a-40G6 41545.7 20772900 •
'-4OH 89242.9 34821400 S

IU
1-40G8 13848.6 13848600 1

1000 S-,()g6 41545.7 41545700 •
,-4C)g8 89242.9 89242900 oS

1-8192 27897.2 13848600 1 .. _---

sao S-8192 83091.5 41545700 I:

5-8192 138486 89242900 ,
. .

1024
188H~:! 27697.2 27697200 1

1000 388192 83091.5 83091500 S

5-8192 138486 138486000 S

1-32768 110789 5539"300 1

SOC S-327G8 332366 186183000 S

'-32768 553943 276972000 S

«)g6
1-32768 110789 110789000 1

1000 1-32188 332366 332366000 I

5-32'168 553943 5539<&3000 ,
.).'.1

P(c)==O.95 R==3A5 0.988R=3.381

Table 3.

16

'-..

20 ~

O~----~--~~--~-----r----~----~----~--~
0.2 0.5

p(c)=O.7

Q.6

P(e)

Fig. 1

0.7 1

3.2~Y~---' ---

2.4~----~,------r-'----~I------r-,----~,~----T,------~,----~
~ ~ ~ ~ ~ ~ ~ ~ 100

Fig. 2.

17

8-

p(c}=O.9

Fig. 3.

___________ .-.,.-.-0 --"""'" """
,,""

O~----~----~----~----~----~~----r_--~
0.2 0.3 0..4 0.7 0.8 0.9

Fig. 4.

18

200

1.S~ ,

,

o.s

o~=======-________________ ==~~ ____ ~

-o.S~-----r-----'------~ ____ ~ ____ ~ ____ ~ ____ ~
cu 0.7 0:8 0.9

Fig. 5.

p(c)=O.7

2.5-

2-

.10

Fig. 6.

19

p(c)=o.9

10~F---y-R(BAP)

, ,

I

" ,

,

, ,
, T-R{RL l,RN-tOOO

"

O~~---l~----l~----'~----'~--~'~---·--l----~'----·~---lS~'
~OO ~O .00 ~ 500 550 .00 eo 700

Ri

Fig. 7.

-----------~-~--~

...",-""

.,.,-""
.",,-""

O;-----r----,-----r----T---~~--__ --__J
0.2 0.3 0.:5 0..8 0.8 0.9

fl(c)

Fig. 8 .

. 20

•

o

. ,~

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does.
not imply approval or recommendation of the
product by the Univ\=rsity of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable .

.~ ~

LAWRENCE BERKELEY LABORATORY
TECHNICAL INFORMATION DEPARTMENT

UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

t; ~I_'

