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Abstract 
In this paper, a new comp~ession method 

for constant removal from very large scientific 
and statistical databases is presented. The 
new method combines the best features from 
several classical constant removal compression 
methods. The result, both analytical and 
experimental, shows that the method is supe­
rior to these popular methods in terms of 
compression effectiveness and efficient search­
ing on the compressed data. In addition to 
the development, analysis and validation of 
this new method, this paper. also presents 
analysis of several traditional constant remo­
val methods for the purpose of analytic com­
parison. A large collection of experiments 
have been designed and run to observe and 
validate the behavior of the compression 
methods. Another contribution of the paper is 
that performance characteristics are identified 
for different compression methods under 
different data properties assumptions. The 
result can be used as a basis of selecting 
compression methods. by matching the proper­
ties of the database at hand to the data pro­
perties experimented in the paper. 

Supported by the Office of Energy 
Research, U.S. DOE under Contract No. DE­
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* on leave from Dept. of Computer Sci­
ence, Heilongjiang Univ., China. 
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1. Overview and Motivation 

We are interested in very large Scientific 
and Statistical databases (SSDBs) ([5], [4]). 
SSDBs are prevalent in scientific, socio­
economic, and business applications. Exam­
ples of SSDBs are experiments and simulations 
for scientific applications, census, health, and 
environmental data for socio-economic appli­
cations, and inventory and transaction 
analysis for business applications. These data­
bases are often very large and sparse. Exam­
ples are scientific databases such as earth­
quake monitoring databases and high energy 
physics databases where the so-called noise 
(values that fall below certain threshold 
values) are converted into nulls or zeros 
(referred to as constants in the literature). 
The volume of these data is large because they 
are typically collected by automatic devices 
and most of the collected data are noise 
because interesting events typically scatter 
between long periods of inactivity. 

Other kinds of databases such as sum­
mary databases prevalent in SSDBs are also 
very large and sparse. An example is the sum­
mary data of a multi-factor parametric experi­
ment of corrosion of materials under different 
conditions such as temperature, acidity, salin­
ity, and duration. Attributes such as material, 
temperature, acidity, salinity, and duration 
represent' parameter data. Attributes such as 
amount of corrosion is the measured data. 
The former kind of attributes are referred to 
as category attributes, and the latter is 
referred to as a summary attribute. Two fac­
tors cause these SSDBs to be extremely large. 

. First, they may contain hundreds of summary 
attributes. Second, the cardinalities of the 
category attributes can themselves be quite 
large; and the number of tuples generated is 
the product of these cardinalities. These data­
bases can be quite sparse. In the corrosion 



experiment database, suppose that tempera­
ture does not have too much effect on certain 
types of material, then in the corrosion 
column there would be the same value in con­
secutive positions for all the acidity, salinity, 
and time. 

To remove the large collection of con­
stants is an essential requirement for manag­
ing these SSDBs. This requirement rules out a 
large body of compression techniques in the 
literature that deals with transmission and 
text compression such as Huffman encoding [8] 
and those in [1,7,8,9,10,11,12] as mentioned in 
[13]. 

In addition to the amount of compres­
sion one can achieve using a compression 
method, there are two other important 
requirements that we stress in evaluating and 
selecting a compression method. The first is 
the ability to perform efficient and random 
searching in the compressed database, given a 
logical position of the original database. This 
requirement is essential to provide a querying 
capability on the database using the 
compressed data structure as the physical 
structure. Another equally important require­
ment on a compression method is the capabil­
ity to provide an efficient mapping from arbi­
trary positions in the compressed data back to 
the corresponding logical positions in the origi­
nal database. 

The following example illustrates the 
importance of this requirement. Because of 
the size and sparsity of SSDBs as mentioned 
before, it is desirable to have operators that 
can directly operate on compressed data 
without first decompressing it. Operators such 
as transposition and aggregation are good 
examples of why direct manipulation on 
compressed data is desirable [17]. These 
operators, however, rely heavily on the ability 
~ di~cover efficiently, given an arbitrary posi­
tlo~ In the .c<?mp~essed data, the corresponding 
logical pOSitIOn In the original database, in 
order to reposition the data items in the new 
transposed space. To continue our example of 
corrosion-experiment data, instead of ordering 
the data in the order of material, temperature 
acidity, salinity, and duration, a transpositio~ 
request to reorder the data so that now the 
data ~pace is linearized in the order of, say, 
matenal, duration, salinity, acidity, and tem­
perature. For each data item in the 
compressed data, a backward mapping is 
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necessary to discover the coordinates of the 
original space, so that a new position can be 
computed corresponding to the new requested 
space. To have an efficient transposition algo­
rithm depends strongly on the ability to per­
form fast backward mapping. Classical 
methods such as run-length encoding [6] and 
its derivatives such as header compression [2,3] 
provide good performance in terms of remov­
ing long runs of constants, but they have a 
poor forward and backward mapping capabil­
ity. Also, these methods can not be used on 
dynamic database environment· where addi­
tions and deletions may be required. 

In this paper, a new constant removal 
compression method is proposed and is shown 
to be superior to the classical methods and 
their derivatives both analytically and experi­
mentally in most situations. It also lends 
itself to dynamic changes in databases. There 
are three other important contributions in this 
paper. First, analysis in terms of compression 
ratios and searching efficiency is given for the 
new compression method as well as for three 
other competing constant removal methods. 
Second, a large collection of experiments has 
been performed to validate the analytic results 
of these methods. Third, data characteristics 
have been identified under which a compres­
sion method can be selected to provide the 
best compression ratio. 

The rest of the paper is organized as fol­
lows, the next section provides some back­
ground and terminology for the sections to fol­
l<?w. Section three discusses our new compres­
sion method, called BAP. Experiments and 
analysis results are given in Section four. In 
that section, comparison of BAP with other 
constant removal methods is given to provide 
a performance metric under different situa­
tions. Finally, Section five provides some con­
clusion and a discussion for future work. An 
appendix with a list of most the commonly 
used symbols in the paper is also provided. 

2. Background 

In this section, some important terms on 
constant removal compression will be intro­
duced. Also, we will survey three popular 
techniques for constant removal. They are bit 
map, run-length encoding and header compres­
sion. The terms logical database and physical 
database are used to refer to the uncompressed 



and compressed database respectively. The 
forward mapping is a mechanism that deter­
mines the position in the physical database for 
a given position of a value in the logical data­
base. The backward mapping is a mechanism 
that determines the position in the logical 
database for a given physical position in the 
physical database. 

2.1. Bit Map 

A bit map compression scheme consists 
of a bit map and a physical database which 
stores the non-constant values. The bit map 
is employed to indicate the presence or 
absence of non-constant data. The following 
example shows how the bit map compression 
scheme can be employed to implement a ver­
sion of c~nstant suppression. 

Example: 

Original data 6tring 

dl, c, c, d2, c, c', c, d3. 

Compressed data string 

bit map: 10010001. 

physical database: dl, d2, d3. 

For the bit map compression method, 
the mapping mechanism must search the 
whole bit map for both forward and backward 
mapping. And thus, the access time for both 
forward and backward mapping is O(N), where 
N is. the number of bits in the bit map or 
equivalently the number of elements in the 
database. 

2.2. Run-Length Encoding 

The application of run-length encoding 
to constant removal is that each consecutive 
run of constants (there can be a few different 
types of constants to be removed) is replaced 
by a triple consisting of a separator SEP, an 
encoding of the constant X to be removed and 
a counter C indicating the length of the run. 
Of course the decoding algorithm must be 
given sufficient information which enables it to 
correctly interpret each component of a triple 
as well as additional values which may be 
present in the data stream without any 
compression. 

To search a run-length encoded database 
for both forward and backward mapping, a 
sequential search has to be done to sequence 
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through the data, counting the number of 
unsuppressed values and references to the 
number of repeated values. The time required 
here is again O(N). 

2.3. Header Compression 

The header compression scheme is shown 
below. The vector L represents the 
uncompressed form of a database, in which 
the O's are the constant to be suppressed and 
the V's are the unsuppressed values. Beneath 
the vector L is the list of counts which 
comprise the compression header, H. The 
odd-positioned counts hold accumulations of 
unsuppressed values; and the even-positioned 
counts hold the accumulations of zeros. The 
physical, compressed form of the data is 
represented by P. 

L: Vl V2 0 0 0 0 0 0 0 0 0 V3 V4 
V5 V6 V7 0 0 V8 V9 VI0 0 0 0 

H: 2,9,7,11,10,14 

P: VI V2 V3 V4 V5 V6 V7 V8 V9 VI0 

For the header compression method, 
both forward and backward mapping can be 
processed by binary searching on the header, 
H. The header may be organized as a B-tree 
or accommodated in fast storage if it is 
sufficiently small. Both forward and backward 
mappings require O(Jog s) time where s is the 
size of the header. 

3. The BAP Compression Scheme 

In this section we consider a new 
compression method which incorporates the 
advantages of several existing techniques. 

The compression technique presented 
here constructs a physical database which con­
sists of three parts: Bit vector (BV), Address 
vector (A V), and Physical vector (PV), and is 
therefore called the BAP compression tech­
nique. 

3.1. An overview or the BAP method 

Let DB=(xl,x2, ... ,XN) be a logical data­
base, and c be the constant to be suppressed. 
The bit vector, BV, indicates locations of con­
stants and non-constants in the database and 

"" ~'\I . " 



will be stored on disk in a compressed form as 
explained later. The physical vector PV is the 
vector of the non-constants in DB, i.e. 

PV = (Yl.Y2 •... .Yu) 

where, YJ are in DB and YJ~c. The YjS are 
arranged according to their logical order in DB 
for 1 ~ j ~ n , n ~ N and are stored on disk. 
It is assumed that non-constants cannot be 
compressed, hence no compression algorithm is 
applied to PV. Finally, the address vector AV 
is typically small and will be used as an index 
for searching in the database; we will show 
that in most practical applications it can be 
stored in fast storage. 

The idea behind our method is that in 
addition to efficient compression we need fast 
forward and backward mapping capabilities 
between the logical and physical database. In 
fact we will show that after compressing the 
logical database DB, we can find what is the 
position in PV of any of the Xl'S in one disk 
access, provided that A V is maintained in fast 
storage. Conversely, given a position j in the 
physical database PV, we can determine what 
was its original location in DB, again using 
only a single disk access. 

We now describe the components BV and 
A V in more detail. 

3.2. Bit Vector (BV) 

The bit vector is 

where, 

1 
o 

Since BV is a bit vector of N bits, we can 
compress it using run length encoding in 
which we replace each run of zeroes by a 
counter which indicates the length of this run. 
There are several methods for achieving 
efficient run length encoding, the main prob­
lem here is how to encode the counters and 
provide a separator between counters. We 
chose to use in our case the Golomb encoding 
method [14,15J which was proven to achieve a 
compression ratio close to the information 
theoretic lower bound. 
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We had to modify this method 50 that 
we could also search in the compressed data. 
To this end, we divide BV into subvectors of D 
bits each, where D is a parameter chosen by 
the user. We will later show a mathematical 
analysis of how D is determined in order to 
maximize the efficiency of our compression 
scheme, subject to limitations such as storage 
size, block size and required response tim~. 
Each subvector in BV is compressed indepen­
dently using Golomb's method and stored on a 
separate disk block (or a sequence of a few 
consecutive blocks). We now give an overview 
of Golomb's encoding method. 

3.2.1. Golomb's encoding scheme 

We define the compression ratio of a 
binary vector to be the ratio between the 
number of bits it occupies before and after it 
is compressed. The efficiency of Golomb's 
scheme is achieved by encoding the counters 
and the separators using a special method. 
The codeword for each counter is constructed 
as follows. A parameter m is c.hosen . as 
explained later, and then each run of r con­
secutive zero bits is divided into rr/m 1 groups 
consisting of m bits each except for the last 
group which may contain less than m bits. 
Each group is encoded by a I-bit and the last 
group is encoded by a counter of fixed length. 
The idea of the method is illustrated below. 
The codeword for each counter consists of a 
variable-length prefiz which has a I-bit for 
each group of m O-bits, and a fixed-length tal1 
which counts the number of O-bits in the last 
group. The prefix consists of Lr/m J I-bits fol­
lowed by a O-bit as a separator. The tail con-

sists of a bin~ry number of flOg2m 1 bits and 

its vlffie ~s? ~ ~lr/m J. It is shown in [15J 
that in order to maximize the efficiency of the 
method, the parameter m should be chosen as 
the integer such that pm is as close as possible 
to 0.5, where p is the O-bit probability. The 
compression ratio is shown in [151 to be a ran­
dom variable with expected value R where 

R 

1 where m=---. 
log2P 
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3.2.2. Using Golomb's method in BAP 

Turning back now to the BAP method, 
we will compress each subvector in BV 
independently and store it on a disk block. Let 
us assume that the probability P(c), of finding 
a constant in each location of the database is 
fixed and independent of other locations. 
From [15], we know that the expected value of 
the compression ratio in this case is 

R 

where m 

1 
(l-P(c)Xlog~+(l-P(c)lII)-l) . 

1 
log:?(c) . 

We are now in a position to explain how 
the user should choose the parameter D. It is 
intuitively clear that we are interested in hav­
ing D as large as possible to maximize the 
compression efficiency. On the other hand as 
we explain later, in order to ensure that no 
more than k block accesses will be required for 
searching in the database, we require that 
each compressed subvector will fit on a 
sequence of at most k consecutive blocks. In 
most practical applications we will require 
k= 1. Given a block size of S bits and an 
expected compression ratio R, it follows from 
the above restriction that the size of the sub­
vector D should be chosen such that after 
compression each subvector of :D bits should 
with a very high probability occupy less than 
kS bits. We found experimentally (see Table 
1) that the distribution of the compression 
ratio has a very small standard deviation for 
all practical values of P(c) (typically less than 
1.2 percent of R). Hence by using a compres­
sion ratio R' =.98R which is slightly smaller 
than the expected compression ratio R, we 
ensure with extremely high probability that no 
overflow will occur when we choose D to be 
the maximum integer such that 

...Q...<kS 
R' -

In practice, a small overflow area may be 
assigned to the file so that in the unlikely 
event that any of the compressed subvectors 
requires more than kS bits, the remaining bits 
will be stored in the overflow area. Assuming 
no overflow, the compressed database will 
occupy fN/D 1 blocks, each block of size S 
bits. 
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3.3. Address Vector (A V) 

The division of BV into subvectors 
imposes a division of the database DB into 
d= rN/D 1 sections, each consisting of Dele­
ments. In each one of these sections we may 
have zero or more non-constants. We define 
the address vector as 

AV = (al'~ ... ,3-d) 

where, al=O, and for i~2, at is the relative 
position in PV of the last non-constant ele­
ment in the (i-l)1II section of DB if such a non­
constant exists; otherwise (all elements in the 
(i_l)tll section are constants) , we set at=3+-1' 

The key point of this compression tech­
nique is that AV can reside in main memory 
by choosing the parameter D to be sufficiently 
large. Our experiments indicated that for all 
practical database sizes and values of P(c), no 
further compression of AV is needed. However, 
if the size of AV turns out to be larger than 
the available memory, we can take advantage 
of the fact that the difference between two 
successive elements in A V is very small (and 
bounded by 2D) as compared to the absolute 
value of each element, which depends on the 
size of PV. 

In order to compress AV, we may use a 
relative encoding method [16] in which we 
store the difference of two consecutive ele­
ments instead of storing the actual elements. 
The method can be illustrated by the follow­
ing example. 

Example: 

Original elements of AV 

1000 .1500 2000 2500 3000 ..... 10500 
11120 

Relative encoding 

1000 500 500 500 500 ............ 700 

In this way, the size of each element is 
encoded in log~2D) bits instead of log:z( I PV I ) 
bits where I PV I denotes the number of ele­
ments in the physical vector. 

3.4. An Example of BAP 

The following example will be used to 
illustrate the BAP compression technique. For 
simplicity we will not specify BV and A V in 
their compressed form. 



Given 
DB = (1,0,0,4,0,0,0,0,0,0,0,0,8,0,0,0,12,0,0,0,0,17,0, 
0,20), let the constant be 0 and assume D = 5. 
Using BAP, the database DB will be 
compressed as follows 

BV = (1,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,1) 

PV = (1,4,8,12,17,20), 

and 

AV = (0,2,2,3,4). 

Let us consider the element as in AV. Since it 
is equal to ~ we know that there are no non­
constants in the second section of DB. As a 
further illustration, we note that the last non­
constant in the third section of DB is 8 which 
appears in the third position of PV. We there­
fore have a.=3. 

3.S. Forward Mapping 

In this section we discuss the mapping 
from the logical database to the physical data- . 
base. 

Given the ordinal position, LP, of a 
desired instance in. the logical database, we 
want to determine whether this instance is a 
suppressed constant or an unsuppressed value. 
In the case it is unsuppressed, we would like 
to find its position in the physical vector (PV). 
In the description of the mappings, we assume 
k=l, i.e., each subvector is compressed into a 
single block. A generalization to any k is 
straightforward. The algorithm is as follows. 

ALGORITHM FM 

SN== rLP/D 1; offset:=LP mod D; 
READ block with relative position SN 

in compressed BV 

and decompress it into a buffer. 

IF bv( offset )=0 THEN 
DB(LP)=c 

ELSE 
DB(LP)=PV(AV(SN)+bitsum( offset)); 

return 

return 

where, the function bitsum(x) is a function 
which counts the number of 1's among the 
first x bits in the buffer and bv(j) is a function 
which gives the value of the jib bit in the 
buffer. 
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Consider the following example where 
D=5, 

BV = (1,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,1) 

PV = (2,5,9,13,18,21), 

and 

AV = (0,2,3,4). 

Let the required logical position be LP=12. 
Then rLP/D 1= r12/51=3, we I:ead in the 
third subvector of BV into the buffer, (in this 
example no decompression is performed) and 
find that bV(2) is a 1-bit and bitsum(2)=1. 
Thus, 
DB(12)=PV(AV(3)+I)=PV(3+1)=PV(4)=13. 

THEOREM 1. Given that AV is in 
fast storage, Algorithm FM requires one disk 
access to find the position in PV corresponding 
to a logical position LP and two disk accesses 
to find the value of the element in logical posi­
tion LP of DB. 

Proof. From the algorithm FM, it is 
obvious that since A V resides in main 
memory, we need to access a single block of 
BV in order to find the position in PV of the 
element which is in position LP in DB. In the 
case that the required element is a non­
constant and we need its actual value, one 
more block access in PV is needed. All the 
other operations specified by the algorithm do 
not require access to the disk Q.E.D. 

3.6. Backward Mapping 

Given a position PP of a non-constant 
element y in PV, we want to find the logical 
position LP of this element in DB. The algo­
rithm is a little more complicated than the 
forward mapping algorithm. As before, we 
denote the number of elements in A V by d 
where d= rNjD 1. 

ALGORITHM BM 

(1 ) We perform a binary searc h in A V to 
find the first entry larger than PP. 

I:=min{i I PP:S;AV(i)} if PP:S;AV(d), 

otherwise I:=d+l; 

Comment: At this point we know that 
the required non-constant y is in the (I_I)"' 
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section of DB; 
(2) READ the (I-I)'" block of BV and 

decompress it into the buffer; 

(3) set j:=PP-AV(I-I); 

Comment: j-I indicates how many non­
constants precede the input non-constant y in 
the (I-I)'" section of DB; 

(4) Let rel(j) be the relative position in 
the buffer of the j&h I-bit. 

(5) LP:=rel(j) +(1-2)Dj 

The last step is justified by noting that 
there are (1-2)D elements in preceding sections 
of the database and the input non-constant y 
is in position rel(j) of the (I-I)'" section of DB. 

Consider the example we used for the 
forward mapping again. Let PP=4 and there­
fore the input non-constant y is 13. Then 1=4 
and we read into the buffer the (1-1)11& block of 
BV. In this case j=4-3=1 which means that no 
non-constants appear in the (1-1)11& section 
before the input non-constant y. We find 
rel(j)=2 which means that y is the second ele­
ment in its section. The logical position LP is 
therefore 12. 

As in the case of forward mapping, we 
have the following theorem. 

THEOREM 2. If AV is contained in 
fast storage, backward mapping can be per­
formed using one disk access. 

3.7. Compression Efficiency 

DEFINITION 1. The compression 
ratio R(X) of a given compression method X 
will be defined as the ratio of the total size of 
the database before and after it is compressed 
using method X. 

Let BAY be the number of bits of each 
element in A V and Bpy be the number of bits 
of each element in PV. Using the BAP 

compressio~ technique, BV requires d= I ~ 1 
blocks which is S·d bits where S is the lock 
size in term of bits, A V requires d X BAY bits 
and PV requires an expected space of 
N(I-P(c))XBpy bits. Thus, the number of bits 
to store the compressed database by BAP is 
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NOB(BAP)=S·d + N(I-P(c))-Bpy+d·BAV. 

It is obvious that P(c) is inversely pro­
portional to NOB(BAP). We have the follow­
ing theorem. 

THEOREM 3. The compression ratio 
of BAP is 

N 
R(BAP) = Bpy" NOB(BAP) 

We assume that Bpy, the size of each 
uncompressed element, is the same in the logi­
cal database and PV. 

3.8. Experiments 

We experimented with a simulated data 
base of 400,000 elements to find the standard 
deviation of the compression ratio. The 
results are summarized in Table 1. For a 
given P(c), we took groups of 12288 bits and 
compressed them using Golomb's method and' 
then recorded the number of bits in the 
compressed vector (E.S.). From this we com­
puted the actual compression ratio and stan­
dard deviation among the groups. As we see 
from the table, the standard deviation is very 
small and increases with P( c). In our experi­
ments, we took a slightly smaller compression 
ratio (.98*R) to guarantee with a very high 
probability that no overflow occured. Assum­
ing a blocksize of 4096 bits, the D computed 
using this compression ratio is also listed 10 

Table I (Theoretical D). 

We conducted some simulations to 
examine the size of the database that can be 
compressed using BAP subject to a given 
block size, internal memory for storing A V and 
required response time for searching. We 
looked at 3 different blocksizes (512,1024 and 
4096 bytes). For each of these block sizes we 
looked at the compression efficiency when 
searching must be performed in 1, 3 or 5 
block accesses of the database. We conducted 
these experiments for P(c)=.9 in Table 2 and 
P(c)=.95 in Table 3. For example, we can see 
from Table 2 that if the blocksize is 512 and 
internal memory is sufficient to hold 1000 ele­
ments of AV, we can compress a database of 
8,429,570 elements and perform searching in 
one block access. 



We also conducted experimen~ to exam­
ine the relationship between the compression 
ratio, R(BAP), and the probability P(c) of the 
occurrence of a constant. For each P(c) in the 
range 0.2 up to 0.9 (step 0.1) and P{c)=O.9S, 
we generated a file of 400,000 elemen~. In this 
experiment the probability of a constant in 
each location of the database was gener~ted 
independently. As expected, the results in 
Figure 1 indicate that the compression ratio 
R(BAP) increases rapidly with P{c), for P{c) 
equal to .95 the compression ratio exceeded 
16. 

4. Comparison with Other Compression 
Techniques 

In this section, we compare the efficiency 
of the compression techniques BAP, header, 
bit map and run-length both from the point of 
view of efficiency of searching and compression 
efficiency. 

4.1. Comparisons or the Time Complex­
ity 

We consider the time complexity of the 
forward mapping and the backward mapping 
of the four compression techniques mentioned 
above. We discuss the time complexities in 
term of accesses of -secondary memory. 

As we saw in Section 3, the forward 
mapping algorithm of the BAP compression 
technique requires 0(1) accesses. As opposed 
to this algorithni, the run-length and bit,-map 
compression techniques require O(N) accesses 
for forward mapping where N is the number of 
elemen~ in the database. The header 
compression technique is much better than the 
run-length and bit-map compression techniques. 
It requires O(log (HS)) accesses where HS is the 
expected size of the header. Thus, with 
respect to the forward mapping, BAP is the 
best one of the four techniques, the header 
compression is superior to the run-length and 
bit map compression techniques. 

As we saw in Section 3, the backward 
mapping algorithm of BAP's is a 0(1) algo­
rithm. In case of backward mapping, BAP 
compression technique is still the best one of 
the four techniques. The header compression 
technique, which requires again O(log(HS)) 
accesses for the back mapping, is superior to 
the run-length and the bit map compression 
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techniques. 

4.2. Compression Efficiency 

First, we will derive the analytic expres-­
sions which represent the compression 
efficiency for the header, bit map, and run­
length compression techniques. Then the 
compression efficiency of these techniques are 
compared to BAP. 

The derivation of the analytic expres-­
sions of compression efficiency for the header, 
bit map, run-length compression techniques 
are similar to that of BAP in section 3. 

4.2.1. Header Compression 

In order to derive the compression ratio 
of the header compression technique, we need 
to derive the average header size of this tech­
nique. 

LEMMA 1. Let DB be a logical data­
base with size N and constant probability P(c). 
The average number of elements in the header 
of the header compression technique is 

HS = 2(N-1)·P(c)-(1-P(c)). 

PrOor. We define a break as a consecu­
tive pair of elements in which the first is a 
constant and the second is a non-constant. 
Each occurrence of a break represents a switch 
from a constant run to a run of non-constants. 
The probability of a pair of elements in DB to 
form a break is P(c)·(l-P(c)). There are N-l 
possible pairs, thus the average number of 
breaks is (N-1)'P( c)·( I-P( c)). And hence, the 
average number of constant and non-constant 
run pairs, is 

(N-l)'P( c)'(l-P( c)). 

Since each constant run and nonconstant 
run pair requires 2 elements in the header 
[2,31, the average number of elements in the 
header is 

HS = 2(N-l)·P(c}{1-P(c)). 

Q.E.D. 
Let Boc be the average number of bits of 

each element in the header and Bpy be the 
average number of bits of each nonconstant in 

'-.,. 

.... 



\.1 

the compressed database (this is also the size 
of each element in PV of BAP). In the header 
compression technique, the header size is 
HS· Ba:: bits and the non-constants require 
N(l-P(c))xBpy bits. Thus, the number of bits 
to store the compressed database by the 
header compression is 

NOB(HC) = N(l-P(c»·Bpy+HS·Ba::. 

And hence, the compression ratio of the 
header compression technique is . 

N·Bpy 
R(HC) = NOB(HC)' 

4.2.2. Bit Map Compression 

In bit map compression technique, the 
bit map requires N bits, and the non-constants 
require N(l-P(c»xBpy bits. Thus, the number 
of bits to store the compressed database by 
the bit map technique is 

NOB(BM) = N(l-P(c»·Bpy+N. 

Thus, the compression ratio of the bit 
map compression technique is 

N·Bpy 
R(BM} = NOB(BM}' 

4.2.3. Run-length Compression 

For this method we assume the values in 
the database are drawn from a certain domain 
and allow the compression of any run of simi­
lar values in the database. For this reason we 
introduce the variable domain size (DS) of the 
database which counts how many different 
values the elements can assume. For a given 
value XI in the domain, we denote by P(XI) the 
probability it is found in any location of the 
database. First, we derive the average length 
of runs in a given database. Let DB be a given 
database with size N and domain size OS. 

LEMMA 2. The average length of 
runs in DB is 

_ [S N 1 

RL = E(P(xl}E P(»' 
1-1 J-1 1- XI 

Proof : The proof follows by observing 
that the length of a run of Xl'S is a random 
variable with geometric distribution where the 
run is terminated as soon as a non XI appears. 
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The expected value of this random variable is 

1 . The above result is obtained by sum­
I-P(xl) 

ming over all elements of the domain. 
Q.E.D. 

Let BRL be the number of bits of the 
counter field in the run length encoding 
scheme, Bpy be the average number of bits of 
the record fields in the compressed database 
and F be the number of bits of the separator 
field that indicates run-length encoding fol­
lows. Assume that RN is the expected value 
of the number of runs. We assume that runs 
of size smaller than four are left uncompressed 
in the database, since compression only 
increases the length of the stored object. 

The total number of bits to store the 
compressed database required by the run­
length compression technique is 

NOB(RL} = RNx(BRL+Bpy+F)+(N-RNxRL)xBpy. 

The second term represents uncompressed runs 
in the database. 

The compression ratio of the run-length 
compression technique is 

N-Bpy 
R(RL) = NOB(RL)' 

4.3. Comparisons of Compression 
Efficiency 

In the following experiments, we use the 
assumption that the counters in AV of BAP, 
those in header compression and run-length 
encoding are all of the same size B. Using our 
previous notation, BAv=Ba::-BRL=B.We also 
use HC, BM and RL as a short-hand notation 
for the header compression, bit map compres­
sion and run-length compression technique 
respectively. 

4.3.1. BAP and Header compressions 

In this secti~n we want to derive a con­
dition under which the compression ratio of 
BAP is higher than that of HC . 

THEOREM 4. If HS > d(S+B) then 
B 

R(BAP) > 
R(HC). 

R(HC) otherwise R(BAP) < 

.;.; 



Proof. From section 3 and section 4, 
the difference between the average numbers of 
the bits of each value required by the two 
techniques is NOB(HC}-NOB(BAP), that is 

HS·B+N(I-P(c»·BPYO-{S·d +N(I-P(c»·Bpv +d-B) 

The theorem follows by finding the con­
dition on HS which makes the left hand side of 
the above equation greater than zero. Q.E.D. 

To compare the compresstion ratio of 
BAP and HC 'in practice, we did experiments 
in cases of clustering and non-clustering con­
stant runs. 

In this experiment we tried to simulate 
clustering of runs rather than generating them 
independently. In many realistic data base 
environments we can expect such clusterings 
to occur. We first chose a P(c), which is the 
ratio of constants to all values in the data 
base. We then generated files of 400,000 ele­
ments for each chosen run-length and scat­
tered the runs randomly in the database such 
that the overall number of zeros is consistent 
with the required ratio. The results of these 
experiments are shown in Figures 2 and 3 
where B was set at 32. The ratios were set at 
P(c)=O.7 (Fig. 2) and P(c)=O.9 (Fig. 3). Let 
RLa:: be the experimentally generated total 
length of the constant run and non-constant 
run pairs. The goal of this experiment was to 
find the "break point", b, of RLs= such that 
R(BAP) > R(HC) when RLs=< band 
R(BAP) $ R(HC) when RLs=~b. We found 
that the breakpoint was approximately 85 for 
P(c)=.7 and 180 for P(c)=O.9. Both compres­
sion ratios increase with the increase in RLs=. 

We also conducted experiments on data­
bases in which the generation of constants is 
independent between the different locations. In 
this case we found that the compression ratio 
of BAP always dominates that of HC. The 
relationship between the two methods is sum­
marized in Figure 4 for various values of P( c). 

4.3.2. BAP and Bit Map Compression 

Since the BAP method is a derivative of 
bit map compression, it is clear that if we use 
Golomb's encoding in both cases we will end 
up having a slightly better compression 
efficiency using bit maps. For that reason we 
examined the effect of Golomb's method by 
trying one method with Golomb's compression 
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and the other without it, as explained next. 

In this experiment, eight files of size 
400,000 elements were generated for P( c )=0.2, 
004, 0.5, 0.6, 0.7 I 0.8 and 0.9 . Each file was 
generated with B=32 and 0=4096. We 
compressed the files using BAP with Golomb's 
method and the bit map without it. We then 
examined the difference of R(BAP) and 
R(BM). Figure 5 shows that R(BM) is greater 
than R(BAP) when P( c) < 0.5 and R(BM) is 
smaller than R(BAP) when P( c) > 0.5. The 
difference of R(BAP) and R(BM) is very small 
when P(c) < 0.7. But when P(c) > 0.7, the 
difference increases rapidly, that is, BAP 
becomes much better than BM. The conclu­
sion from this experiment is that the addi­
tional overhead involved in using Golomb's 
encoding is justified for bit map and BAP for 
databases in which P(c) is larger than 0.5. 

4.3.3. BAP and Run-length Compres­
sions 

It is difficult to compare these two 
methods as they should be used under 
different environments. .As we explained ear­
lier, run-length encoding can be used in cases 
were many different values from the domain 
can be compressed where as BAP is mainly 
used to suppress a single prevalent constant. 
We can still compare under a given situation 
the expected compression ratio of the two 
methods using the analytical expressions for 
the compressed data base size provided ear­
lier. Here, we only give the experimental 
results. 

Again in this set of experiments we gen­
erated clustered runs of different sizes based 
on a predetermined ratio, P( c), of constants 
and non-constants in the data base. The file 
size in each case was 400,000 elements and for 
each test we fixed a run length and randomly 
scattered runs in the data base of this fixed 
length. The number of runs was of course 
determined by P(c) and the run length. For 
run length compression, for each specified run 
length ,we generated files with 5000 runs and 
10000 runs for the case P(c)=O.7 and 500 runs 
and 1000 runs for P(c)=O.9. 

The goal of this experiment was to 
examine the "break point", b, of run lengths 
such that R(BAP) > R(RL) when RL<b and 
R(BAP) $ R(RL) when RL~b. In this experi­
ment, we assume that B=32 and D=4096. 

I) 



Figure 6 illustrates the experimental 
results when P(c)=0.7. The break points are 
approximately 57 and 30 when RN=5,OOO 
and 10,000. In Figure 7, we repeated the same 
experiment with P(c)=O.9. The break points 
in this case are approximately 720 and 360 
when RN=500 and 1,000 respectively. We 
also conducted experiments in which zerpes 
are randomly scattered in the data base. We 
generated a file with domain size DS equal to 
100. However, the most likely element in the 
file was zero which was generated with proba­
bility P(c); all the other 99 values were equally 
likely and generated with a total probability 
of I-P(e). The run length encoding compres­
sion was allowed to compress any run of 
values of length more than three. The results 
of this experiment are shown in Figure 8. As 
we can see, the BAP method always dominates 
run;.length encoding in this experiment. 

5. Summary and Conclusions 

In this paper, a new compression method 
called BAP for constant removal has been 
introduced. The analysis of BAP's compres­
sion effectiveness and searching complexity 
was developed. In order to compare BAP with 
other classical constant removal methods such 
as run-length encoding,. header compression, 
and bit map, these methods were also analysed 
using similar assumptions on data characteris­
tics. Extensive experiments were performed to 
validate the analytical results obtained. We 
experimented with databases in which runs are 
clustered as well as independently generated 
constants. We identified ranges under which 
a partial order of compression methods is 
derived in terms of the effectiveness of 
compression ratio. 

One of the conclusions of this study is 
that there is no overall winner under all cir­
cumstances. However, BAP is the clear 
winner in many ranges of data characteristics 
with respect to compression ratio. In addition 
to compression effectiveness in terms of physi­
cal size, BAP also gives very fast searching for 
both forward and backward mapping, typi­
cally, just one disk access. BAP is also more 
flexible in that it allows the user's computing 
environment to be incorporated to achieve a 
more tailored solution to the compression 
problems. For example, the available amount 
of main memory storage and effective block 
size can have direct impact on the 
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performance of BAP both in terms of compres­
sion ratio and searching time. 

One of the major disadvantages of the 
classical methods such as run-length encoding 
is that they cannot support updates to the 
database without completely readjusting the 
runs starting at the affected position all the 
way to the end of the file. The proponents of 
these methods claim that SSDBs are primarily 
static but it is still an important requirement , . 
to support limited amount of updates 10 order 
to provide services such as removing outliers, 
adjusting scientific observations, et,=. In BAP, 
the support of a dynamic database is provided 
by allowing some small percentage of free 
space in each block. Since each block is an 
independent unit of compression, the rest of 
the blocks are not affected by an overflowed 
block. 

Weare planning to perform more experi­
ments by modelling the data clustering 
characteristics in finer detail, in many more 
different file sizes, main storage availability, 
block sizes, etc. to obtain a more detailed 
performance metric of BAP with respect to 
other constant removal compression methods 
for SSDBs. 

Weare also working on algorithms that 
can directly operate on compressed data using 
the method BAP without first decompressing 
the database. In addition to searching, opera­
tors such as transposition and aggregation are 
being developed on databases compressed by 
BAP. Results will be compared to the collec­
tion of similar algorithms of transposition and 
aggregation on databases compressed by 
header compression and run-length encoding 
[17). 
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Appendix: List of Symbols Used in the Paper 

N: number of elements of uncompressed database. 

OS: domain size of a database. 

S: block size. 

P{c}: probability of appearance of constant c. 

0: parameter chosen according to user's environment. 

BAP: new compression scheme in this paper. 

He: header compression scheme. 

BM: bit map compression scheme. 

RL: run-length compression scheme. 

BY: bit vector in BAP. 

A Y: address vector in BAP. 

d: size of memory for AY (in number of elements). 

PY: physical vector in BAP. 

RN: number of runs in RL. 

RL: average length of runs in RL. 

RLlIC : average length of a pair of constant run and non-constant run in HC. 

Bpv: average number orbits of each element in PY. 

B A V: average number of bits of elements in A Y. 

BHC : average number of bits of elements of the header in HC; 

BRL : average number of bits of counter fields in RL. 

B: common size used in experiments for BA V' B HC , BRL . 

F: average number of bits of separator in RL. 

R(BAP): compression ratio of BAP. 

R(HC): . compression ratio of HC. 

R(BM): compression ratio of BM. 

R(RL}: compression ratio of RL. 
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Expeet.ed Expected S&.andard No.of bits Mt.UaJ Theoretieal D 
oJ eompraeed compraeioD 

DeviatioD D==O.98·R*4096 S.D./E.s. 
p(e) IUbveef.Or ruio (S.D.) 

(E.s.) . 

0.6 7685 1.59896 25.2252 1418 0.0033 

0.7 7231.5 1.89923 ·22.7560 8821 0.0031 

0.8 4163.9 2.95108 22.2406 ·11846 0.0053 

0.9 2355 6.21183 19.2256 2D945 0.0082 

0.95 1200.09 10.2392 . 15.2876 41101 0.012 

Table 1. 
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N:-D*d 
-- No. or 

8Ioc1111e 
Memory for AV Bic.aol block accesses 

(Ia a.rc-) 
(No. or elements) compreaed Panmeter (limitation or 

per mapping (d) .. b .. c&or D databaae aile) 
(Ie) 

1-,c0e6 8429.57 4214780 1 

100 .. 4006 25288.7 12644400 I 

'-4OH 42147.8 21073900 • .U 
1-40e6 8429.57 8429570 

, 
1000 S·"ogS 25288.7 25288700 • 

'·"006 42147.8 42147800 -. 
1*8102 16859.1 8429570 1 

100 '·8192 50577.4 25288700 I 

5*8102 84295.7 42147800 • 
1024 

18819~ 1 16859.1 16859100 

1000 388192 50577.4 50577400 S 

5*8192 84295.7 8429fi7oo 
S 

1·32768 87436.5 33718300 1 

sao 1·32788 202310 101155000 S 

'-32768 337183 168591000 
, 

~ 
1*32768 87438.5 87436500 1 

1000 1·12788 202310 202310000 S 

'·32768 337183 337183000 , 

P(c)=o.9 R=2.1 0.98*R=2.0S8 

Table 2~ 
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Memory Cor AV &ita of N-D*d No. of 
Block liM (No. or elements) (limitation of bloek accesses 
CIa t.rt-) eDlDpre.aed Parameter per mapping (d) .. b.ee\or D database size) 

(k) 

1-40G6 13848.6 8924290 1 

100 a-40G6 41545.7 20772900 • 
'-4OH 89242.9 34821400 S 

IU 
1-40G8 13848.6 13848600 1 

1000 S-,()g6 41545.7 41545700 • 
,-4C)g8 89242.9 89242900 oS 

1-8192 27897.2 13848600 1 .. _---

sao S-8192 83091.5 41545700 I: 

5-8192 138486 89242900 , 
. . 

1024 
188H~:! 27697.2 27697200 1 

1000 388192 83091.5 83091500 S 

5-8192 138486 138486000 S 

1-32768 110789 5539"300 1 

SOC S-327G8 332366 186183000 S 

'-32768 553943 276972000 S 

«)g6 
1-32768 110789 110789000 1 

1000 1-32188 332366 332366000 I 

5-32'168 553943 5539<&3000 , 
.).'.1 

P(c)==O.95 R==3A5 0.988R=3.381 

Table 3. 
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