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EQUATIONS OF STATE FOR STRONGLY NONIDEAL FLUID MIXTURES.

———-Applicationof Local-Compositions—Toward-——— e
Density-Dependent Mixing Rules

Wallace B. Whiting+ and John M. Prausnitz
Lawrence Berkeley Laboratory and
Department of Chemical Engineering
University of California

Berkeley, California 94720

ABSTRACT

A local-composition, two—fluid model has been developed
for equation—of-state calculation of fluid-phase equilibria
for asynﬁettic mixtures; it is applicable to gnypequation of
state of the van der Waals form. A modification of the
quasi-chemical theory of Guggengheim is applied to mixtures
at all ' fluid densities, Desirable boundary conditions are
ﬁet at low densities, at high densities, and at high tem-
peratures,

In effect, the locﬁl-composition model uses density-
dependent mixing rules. It contains no new adjustablé
binary parameters and can be extended to multicomponent mix-
tures without ternmary (or higher) parameters. It appears
that, when compared to convential one-fluid models, signifi-
cant improvement méy be obtained for vapor-liquid equilibria

of typical asymmetric mixtures.

fcurrent address: Department of Chemical Engineering, West
Virginia University, Morgantown, WV 26506



For representing thermodynamic properties of mixtures,
including phase equilibria, it is desirable to use an equa-
tion of state valid at all fluid densities. When such an
equation of state is available, mi;tures~containing super-
critical compomnents can be &escribed without the use of-
hypothetical standard states., In this work, we discuss a
new procédnre_for extending to mixtures an equation of state
for pure fluids. Our Qork is similar in cdncept; but not in
detail, to that of Mollerup (1981).

While much attention has been given toward establishing
new equatiohs of state for pure fluids, much less attention
has been given toward extending these equations to mixtures.
With few exceptions, the general procedure today for such
extension is to nse.the "one-fluid” method‘pIOposed by van
der Waals (1890)'ﬁ§ar1y a century ago: we supose that the
pfoperties of a fluid mixture at témperatute T, pressure P,
and composition x are the same as those of a hypothetical
pure fluid (at the same T and P) whose characteristic param-
eters (constants) are functions of composition x. These
functions, called mixing rules, are quadratic‘in mole frac-
tion; if Cii stands for any'consfant in the equation of
state for pure component i, them for the mixture (M) con-

taining m components:

m m
C.,L = X S x

. (1)
Moo j=1 |

.x.C. .
i%j 71
where x, is the mole fraction of component i. In the spe-

cial case where



Cij = (Ci_f_?j)/z_ , - . _ : N ‘2)

Equation 1 reduces to
m
c,= £ x.C.. . (3)

For many years, it has become common practice to use
Equation 3 for the constant that characterizes molecular
size (van der Waals’ b). For the constant that. character-—
izes intermolecuiar attraction (van der Waals’ a), Equation

1 is commonly used with

= (cC 051 - x. ) (4)

ij i€

ji ij
where kij is a binary parameter, usually positive and, for
simple mixtures, of order 10'2. During the last 20 years,
much atteation has been givén to this binary parametet but
littlekattentionfhas been given to the one—fluid theory and
Equation 1,

In an equﬁtion of state of the van der Waals form

(e.g., equations of Redlich-Ewong [1949], Soave [1972],

Peng-Robinson [1976]), it is necessary that Equation 1 hold

‘at low density because the second virial coefficient of a

mixture must_be a quadratib function of ﬁole fraction,

While this theoretically necessary result holds at low den-
sities, it does not, however, follow that a quadratic depen-
dence must hold at high (liquid-like) demsities. Indeed,o
empirical evidence clearly shows that, for nom-simple liquid
mixtureés, the quadratib mole—fraction rule is in efror,
often very much so.

For example, the liquid-phase excess Gibbs energy, GE.



is related to the equation of state through

GE = AE + pyE . (5)

E - '
A% = AA - RT £ N. 1nx. o (6)

© m @ .
- NRT RT]}pure
mixing / [ ]Mdv - .Z / [P-Ni V} v
: Vi i=1 v, -
V.
+ RT ¥ N, 1n[~3? , (7
i=1 LVmlJ '
where V, is the volume of the mixture, V., is the volume of

pure i, AAmixing is the Helmholtz enérgy’of mixing of a mix-

ture containing N, moles of component 1, N, moles of com-
ponent 2, etc. (For liquid mixtures at low or modest pres—
sures, the term PVE is negligible.) Without going into
details here, it is clear that 11qu1d mixture data for GE
(through gxper;mentally-determ1ned activity coefficients)
can give information on the best mixing.rules for an equa-

tion of state at high densities, as pointed out by Wilson

(1972). Unfortunately, Wilson's suggestion w#s»not followed
until Huron. and Vidal (Vidal, 1978; Hurqnvgnd~Vida1, 1979).
and Won (1981) proposed empirical, non-quadratic mixing
rules suggested by liquid-state activity—-coefficient data.
While these rules neceSsarily givevgdod results at high den-
sities, thej afe in error at low densities because they are
in conflict with the theoretical second-virialfcoefficignt

requirement. For calculating vapor—-liquid equilibria at low



or moderate pressures, this conflict often has little prac-

tieéi sigﬁ;f{cﬁnce béé;;g;; a{-sucﬂ p;;s;i;es, éésentiglli
all nonideality is in the liquid phase. However, an
incorrect mixing rule at low densities is nevertheless a
serious disadvantage because, as shown in Equatiom 7, the
liquid-phase excess function depends on an integral that
extends from the liquid-phase volume to the ideal-gas state;
therefore, if anm incorrect mixing rule is used in performing
the integration, the resulting expression may have empirical
value, but the empirically-dete}mined constants do not have
any clear physical significance. However, it is precisely
this significance that we need when we try to correlate

measured phase equilibria toward predicting behavior of sys-

~ tems where experimental data are not -available,

It would be desirable to utilize binary constant kij
(Equation 4), obtained from second-virial coefficient (Bij)
data, toward predicting vapor—liquid equilibria. This can-
not be.done if the mixing rule, obtained from liquid-phase

data, is invalid at low densities.

Since theory demands a quadratic mixing rule at low

-densities, while experiment shows that this rule is not

reliablé at high densities, we require density-dependent
mixing rules. Our procedure for deriving such rules is
based on our knowledge at the two density limits. At low
densities, we want to satisfy the second-virial coefficient
requirement. At high densities, we want a result similar to

that given by recent equations for the excess Gibbs energy;



these equations are based on the two-fluid theory coupled
with the local-compositioﬁ concept (Maurer, 1978; Kemeny and
Rasmussen, 1981).

Before deriving density-dependent mixing rules, it is
useful to reflect on the physical need for such rules. At
lof dénsities. molecules are relatively freevin'the sense
that they do not seriously interfere with each other’s
motion, position, or orientation. Therefore, at low densi,-;=
ties, the distribution of molelcules in space is essentially
random, that is, a particular molecule does not exercise any
p;eference in its choice of partmer in a two—body‘collision;
that choice is dictated primarily by availability (that is,
composition) rather than by intermoleéular forces. At low
densities, then, we have a state,déscribed by the word ran-
domness. |

At high densities, however, the motion, position, and
orientation of a:given molecule are strongly affected by the
close presence of other molecules, that is, by intermolecu-
lar forces. In a mixture, thefe are several types of
molecules available, and, therefore, a. given molecule hayv.
well "prefer'” to surround if;elfvwith'one type'rather'th;n
another. This preference is described by the word nonran-—
domness.

The task of density-dependent mixing rules is to
describe in a continuous manner how the structure of a mix-~
ture changes from randomness at low densities to nonrandom-

ness at high densities. We have no theoretically rigorous



method for describing this transition; in effect we can

interpolate between desired 1imit§.I>Su§ﬁ iigggéolatggn‘
described here.'

An alternate method to introduce nonrandomness is
through a “chemical” hypothesis where we assume the

existence of new species (e.g., dimers) whose concentrat

only

is

ions

are calculated through anm empirically-determined equilibrium

constant. This method has a long history, having been used

extensively, for example, for strongly nonideal vapors

(e.g., acetic acid) and for strongly nonideal liquid mix-

tares (e.g., alcohols in hydrocarbons). More recently,

unified treatment, where chemical equilibria are superim-

posed on a van—der—Waals-like equation of state, was

described by several authors, e.g., Gmehling et al. (1979)

and Baumgdrtner, Rupp, and Wenzel (1979). The disadvantage

of this procedure follows from arbitrariness iﬁvdeciding

what associated species are ptesent'and, more serious, from

computational complexity for systems containing more than

two components.

Before discussing our procedure for taking into account

nonrandomness due to attractive intermolecular forces, we

discuss first our procedure for calculating the properties

.0f our athermal reference system.

ATHERMAL ENTROPY OF MIXING

Our description of nonrandomness uses a perturbation

about an athermal reference system. For our purposes here,



wé assume that the properties of a mixture of molecules
.intéracting with purely repulsive pdtentials ({our reference
system) is well described by some simpie model, for example,
one-fluid theory applied to the Carnahan-Starling (1969)
equation of state for ﬁard spheres.> We then perturd our
reference’ﬁystem by adding corrections for nonrandomness due
to the presence of attractive intermolecular potemtials,

For the athermal entropy of mixing (chain-like) large
and small molecules, it -is better to use the Flory-Huggins
(Flory, 1941; Huggins, 1941) expression (or a modification
thereof) than that corresponding to ideal mixing. For
liguid-state lctiVity-coefficienf'models, it is convenient
to use the Flory—Hnégins expression; which uses volume frac
tions, an appropria;e measure of composition at high demsi-
ties. Equations of state, however, must meet the low-

density limit of ideal mixing, which unses mole fractions.

To test the one—fluid athermal model, we have calcu-
lated the high-deﬁSity»enttopy ofvmixing using the (hard-
sphere) Carnahan—Stariing eqnation of state, Figure l'éhows
a cdhpa:isqn between this entropy of mixing and that calcu-
lated from the Flory—Hﬁggi#s exprés#ion.' (Appendix A shows
'what’assnmptions must be ﬁade to recover the Flory-Huggins
result from the repulsive part of the van der Waals equa-
tion.) Although the Carnahan-Starling entropy of mixing is
greate; than ;hat for'ideal-mi;ing, it is far short of the
Flory-Huggins result for a binary mixture of molecules wiﬁh

a size ratio of 10:1. In a later section, we briefly dis-



cuss a method for achieving the Flory-Huggins result at high

density, wh{le réi;ining ihé ifoper lbw—&éﬁkitiiiimif.

For the calculation shown in Figure 1, we use the

\

(one—-fluid) Carnahan—-Starling equation of state:

2 3
P = PRT‘-l +_E + £ o & , . . (8)
L (1 - &)3 ]
“where ' :
£ = bpld | (9)

and p is the molar density. Parameter b is calculated using
Equation 1 with cross term bij calculated using the Lorentz
({cube-root) rule, 'The molar entropy of mixing for this

-equation of state is:

m
ure
*mixzing = -R I x; ln(xip/pg )
i=1
| '§13§_4l | m {g-(sci-4)] :
+ Rf 2822 } -RI oz, Tt (10)
(1-¢) i=1 -E . '
La-e)? ] 1M aegp? |
where
&, = b,pB0T/4 . | - | (11)
We have also calcu;ated Asmixing with the Mansoori et

al. (1971) equation; the results are éssentially the same as
_those obtained from Equation 10, even for a binary system
with‘a’ﬁize ratio of 10:1, We prefer to use the one-flﬁid
model fof our reference system beéause it ailows us, if
necessary, to use a binary ﬁarameter (to account fdr the
nonadditi#ity of molecular diamétéfS). to correlate experi-

mental data. However, we have not used that binmary parame-
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ter in this work.

TWO-FLUID THEORY AND LOCAﬁ COMPOSITION

We assume that some nonrandomness occurs in mixtures of
nearly equal-sized molecules if their intermolecular poten-
tials are significantly different. Further, we assume that
this nonrandomness exists, to some extent, at all densities
gre#ter than zero.

For simplicity, we first consider mixtu&es containing
'‘molecules of nearly equal size. However, the results can be
generalized to mixtures‘of molecules that differ appreci;bly
in size by redefiniﬁg the characteristic energy, as ind;—
cated later.

First, we separate ;he residual Helmholtz enefgy into a

repplsive,(ha:d-sphetq) part and an attractive part:

A - Aid = ATeP 4 pattr , o (12)
whére superscfipt id §tands for the,ideal-gﬁs contribution.

The repulsive contribution to thé-Helmholtz energy of
the mixture is calculated with a2 ome—-fluid model which is .
known to represent welllthe propertieS’pf mixtures of
molecules interacting solely with repulsive potentials
(Henderson and Leonard, 1970). Although much of the struc-
ture of the fluid is determined by the repulsive part of the
intermolecular potenti#ls (¢cf. Chandler, 1978), our goal is
to calculate ;he effgcts of the attractive potential on the
nonrandomness of the mixture.

For a binary mixture, we consider two representative
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fluid regions, as shown in Figure 2. One region centers

ukrddiﬁkiAtype?ldaaig}iié. and the other cemnters around a

type-2 molecule. The local compositions in these two types
of regions are not the same. As suggested by quasi-chemical
theory (Guggenheim, 1935; Renon, 1968), we approximate these
local compositions through Boltzmann factors of a function
with units of energy, aEij (i=1,2; j=1,2), characteristic of
the like and unlike two-body interactions. For.hypothétical
fluid (1), local mole fractions X,; and x,q are related to
mole frgctions ;1 and x5 through

Iy .x.l exP(_GEZI/RT),

= 13
x, exp(-aElllnr) (13)

11

and X5 * x93 = 1. Similarly, for hypothetical fluid (2),

X1, ) Xy exp(faEIE/RT) . (14)
x22 x, exp(-aEzz/RT) : '

Equations 13 and 14 indicate that the local mole frac-
tion of i molecules around a central j molecule is propor-
tional to the total number of i molecules and proportional
j,'which

is characteristic of the attractive ij interaction. Unlike

to the Boltzmann factor whose argument contains aEi

»Gnggenh'eim, we allow aEij to dependvon dengity,

The proper way to evaluate aEij is unclear. Equations

13 and 14 reduce to the quasi-chemical theory (Guggenheim,

1935 and 1952) if °Eij is the energy of interaction (per

-mole) between a j molecule and an i molecule which are

nearest neighbors on a lattice. (See Appendix B.) On the

other hand, Equations 13 and 14 give the local mole frac-
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tions in UNIQUAC if “Eij is the energy (per mole) of a fluid
whose molecules interact with an ij type potemtial, i.e., if
aEij is (z2/2) times‘the energy of interaction (per mole) of
nearest—neighbor molecules of type i and j, where z is tho
coordination number of the lattice (Maurer and Prausnitz,
1978). Given this discrepancy, we consider Eij to be some
molar energy of a fluid in which the molecules interact with
an ij potential and a a proportionality factor of order
unity. If ¢ is unity, the UNIQUAC expression is recovered;
if a equals (2/z) (e.g., 1/6 for hexagonal oiose packing),
we obtain quasi-chemical theory. In our work, we have some-
what arbitrarily used a = 0.5.

It would be ‘tempting to use a as a binmary paremeter;
however; as explained later, we cannot extend local-v
composition theoiy to ﬁnlticomponent mixtures unless a is a
universal coanstant, |

As argued by Guggenheim (1966), Eij should be a free
(Helmholtz) energy, because both the entropy and potential
energy of a configuration contribnté‘to its probability.

We, therefore, define'Eij as the attractive Helmholtz energy
(per mole) of a fluid in which the molecules interact with
an ij potential. .

In previous liquid-stato models, Eij was considered
independent of density and temperature becaunse, by implica-
tion, the molecules were confined to sites on a quasi-

lattice. 'For liquids, this simplification may be reason-

able, but, for lower densities, we ezpect Eij to be a strong



i3

function of density and a weak function of temperature. For

any equation of state of the van der Waals tjpé[ wé‘cdn‘chi4‘“

culate E. .
1)

equation of state; Eij is the attractive Helmholtz energy

as a function of density and temperature from the

of a system whose molecules interact with an ij intermolecu-
lar potential.’

Assuming additivity, the total attractive intermnal
energy of the fluid mixture is given by the sum of contribu-

tions from all types of regions: , )

DR = N Ggpugytagangg) + Nplxppuiptagaugy) . (19)
whetg uij is the mblar attractive energy of a.fluid whose
molecules interact accordimg to the ij potemtial. Eguation
15 can be integrated with respect to temperature (at con-
stant density amnd composition) to obtaiﬁ the att:active
Helmholtz energy of the mixture. This Helmholtz energy is
then differentiated with respect to density to produce an
equation of state for the mixture. This procedure is demon-
sfrated'below for the van der Waals equation, But if is
important to emphasize that the same procedure can be
applied to any equation of state of the van der Waals type,
fhat'is, to any equation of state that séparates-the repul-

sive and attractive contributions to the residual Helmholtz

energy (Equation 12),.
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EXAMPLE. Extension of va

Mixture

The simplest reasomable equation of state for fluids is

the van der Waals (1873) equation,

P = pFeP - gp2 , (16)
which we use here for illustration. For PY€P, van der Waals

suggested

pre? - L ARL_ . - (162)
but this part;cnlar choice is not important here. For
illustrative purposes, we assume that a is independent of
ﬁempetature; (Asva result of this assumption, the attrac-
tive free enérgyris the same as the attractive energy.) By
integrating the equation of state with respect to density.

we obtain an expression for the total Helmholtz energy:

p
A-A(T,p,ideal-gas state)=N [ J% dp=Ar°p+A‘ttt , (17)
. 0 o

where

A2EET = —N4aZ/b - (18)
and b is calculated as in Equation 10 and &=bp/4. To obtain
the attractive part of the internal emergy, we apply the

relation,

[43(A/'1‘)/:3(1/T)]N'v =0 , ' (19)

to the attractive Helmholtz energy:

U3ttt - 3(-Nap/T)/3(1/T) = -Nap . (20)

The local compositions are now given by
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[a(a.@/b.. - a.i/b“)-4§i]

Ji 11 1
L RT | -

X

P X,
T = g7 exp (21)

X

ii i L
where §i=biip/4.

Eqnation 21 shows an important feaﬁure of the local-
composition model: the local mole fraétions become identi-
cal to the respective-ﬁulk mole fractions at infinite tem-
perature and, more important, at the low-density limit, Any
consistenf’treatment of non-randomness must meet this boun-
dary condition. To do so, any equation of state may be used
provided thatithe attractive internal energy is proportional
tp the density inlthe loﬁ—density limit. All reasonable
equations of ;tate have such a density.depeﬁdence.

Combining Equations 13, 14, 15, and 21, for # binary.
mixturé, we obtain tye atttactive internal énergy of the

mixture:

la(oddotit) g |
2 [iliié] | ii__ii )
Zoxi Ty Ty eEP RT |
j=1 l. J1 .' l. _I
attr 2
Il - 7 x, — F-— .22)
i=1 * 3ki 2ii
lq(o5i-—1d) 4z |
2 . I bk. b, 1'
5 x i__ii
~ “xeIP| RT |
k=1 . |
We now integrate Uattr, néing Equétion 19, to obtain the

attractive Helmholtz energy of the mixture:

. (23)
This expression for A2t cap be differentiated with réspeét

to mole number to obtain the attractive chemical potential
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of either component. Further, it can be differentiated with.
respect to density to obtain the attractive pressure. The

equation of state is

P = prepP , pattr (24)

where

2 2 a..4¢. aa . .4
:oTx, J2ii2%s) exp{__ll_éi}
pattr__p2 i=1_ =1 Z JL Py | L_BThii 1 (25)
2 [aaii4§i?
2 X . expl—/0/ T~

Equation 25 is the attractive contribution to the equa-
tion of state for a binary mixtur; using the local-
compositibn model wi?h'the van der Waals equation. To com-
pare this contribution to that of the onéafluid van der
Waals model, we define ay (the effective van der Waals a for

the mixture) by

ay = -pttT/p | | (26)
where P2ttT g given by Equation 25. Figuré 3 shows ay as a
function of compos;tion for two densities. For the local-
composition model, 8y differs from that for the ome-fluid
model only at the higher density, as eipected. Of particu-
lar interest is the difference between the slopes of the two
cur?es. These slopes are directly related to the chemical
potentials of the cémponents of the’mixﬁure; the different
slopes suggest that phase equilibria calculated using the

new two-fluid theory are significantly different from those

calculated using conventional one-fluid theory.
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LOW-DENSITY LIMIT

At low densities, every equation of statfe for a mixture

shoufd give a second virial coefficient with a quadrat%c

mole-fraction dependence (Réed and Gubbiams, 1977). By dif-
ferentiating Equation 24 (using a reasonable expression for
PT®P), the second virial coefficient for a binary mixture is

2 2 b,

- _ _2ijPii ’
T’x,p_éo— Z Z xlx (b RTb ) ’ (27)

B _iP.Rl]

= wrl
R _ =1 j=1 ij

which 1is quadratic in mole fraction. Any equation of state
for which the attractive Helmholtzbenergy is proportional to
the density in the low-density limit can be used with the

local-composition model to give the proper second-virial-

coefficient limit,

BIGH-DENSITY LIMIT
For liquid-like densities, we desire that the local-

composition model become identical to the liquid-state
activity-coefficient model on which it is based. To compare
these models, we must evgluate fhe molar excess Gibbs energy
of a binmary ?ixtu:e, which can be calcnlatéd from an equa-
tion of state by

gé = % r'1’“"3+ RT lap -RT % x1 1in“’e , (28)

i=1 - i=1

where p is the molar density of the mixture at (T,P,x) and

where pgﬁfe

is the molar density of pure liquid i at the
same (T,P). These densities are used to calculate the

respective residual chemical potentials from
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ur o= 2 [y , (P=pRT) g| - (29)
ENL p2 JT,v,x

where the equation of state for pure componént i is used to
-calculate pg,pure and the equation of state for the mixture
is used to calculate pf¥., It is important to note that Equa-
tion 28 is valid only when all components are subcritical,
i.e., when the equation of state has a liquid-like density
root for all pure components at (T,P); otherwise, the excess
Gibbs energy of the mixture is undefined. If Equation 24 is
used jn Equation 29, the high—-density limit (for a bi;ary
mixture of equi-sized molecules) is:

SE = :%E'g x anzli exp[gﬁ:ﬁia?”’l] . (30)
The fqrm of equation 30 is the same as that of the three-
parameter Wilson (1964) gquation for mixtures of components -

with equal molar volumes.

EXTENSION TO MIXTURES OF MOLECULES OF UNEQUAL SIZE

To extend our model to binary mixtures of molecules not
nearly equal in size, we assume that each molecule of type i
has an exterﬁal surface area q; (calculated by the method of
Bondi [1968)); only this area is available for intermolecu-
lar attraction. If we designate the average attractive

Helmholtz energy perbunit surface area of an ij interaction

as nij’ the attractive internal energy of a type 1 region is
u = Q11 a71/7y + X991 Q1t arq7Ty , (31)
11 1] a(l/T) j 21°%1 | a(llT) J x

where xji is the local mole fraction of type j molecules in
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a type i regiomn. A similar relation holds for u(2). For a

binary mixture, the total attractive internal energy'ismigg—"”

sum of the contributions from each type of region:
attr
ﬂ_ﬁ__ = xlu(1) * xzu(z)“ f v (32)
To calculate the local mole fractions, we use Equations

13 and 14 with the new definition of characteristic energies

in terms of the surface areas:

1 _ Xy '{'“ql'("gl.'“ll)]

x,., x, °*P RT (33)
11 1 t J

PR U B L PGPS PPRR)

e ) I (34)
22 2 |

where X591 +x71=1 and x12+x22=1.

Equations 31-34 are fundamentaliy different from simi-
lar equations used in the derivation of the UNIQUAC equa-
tion. Our equations use localvmble fractions; those in UNI-
QUAC use local surface fractionms. If‘iqﬁal surface frac;'
tions had been used here, the necessary low-density limit
would not have been met.

For the simple van der Waals equation , the attractive

Helmholti.enefgy for pure i is

-a..4§. )
—11__1 _
ii :
The attractive Helmholtz energy per unit surface area, qii'

is a function of density and may be also a function of tem-

perature. To calculate "ji’ we write
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BLEERAF! ‘
qinji = b_. s (36)
. J1
where
0.5
a..a.
a.. = .[—11~ii] (1 - k..) . (37)
q
I YLo9j9; | 13

We can now write an expression for the attractive contribu-
tion to the pressure for a binary mixture of molecules whose
attractive forces are described by the'simple van der Waals

equation:

2 2 a..4¢. aa; 4&;
)y 2 X.x. [_J.l___? exp ["_ 1_...’.'.]
tt 2i=1_j=1 Y3 bi; | L RTb;; |
pattr = -ps1=L : . (38)
% {aa.i4§i?
X.expl™ o1~
j=1 3 L RTby, )

In general, for any equation of state of the van der Waals
type, the appropriate expression for “ij is determined from
the equation of state with the pure—-component parameters

(a

ii'bii) replaced by the corresponding binary parameters

(aji'bji)' |
For the van der Waals equation, our local—-composition

model reduces to the onme—-fluid model if the energy parameter
per segment (a/bq) is the same for each species in a mix~
ture, regardless of molecular size, (In that event we have
an gthermal mixture,) Thus, we rely heavily on the referenée
system (i.e., the repulsive p#rt of the mixture equation of
state) to predict important entfqpic effects in mixtures of,
for instance, a polymer with its monomer. Some deficiencies .

of the reference system can be corrected with the function

Fji' discussed below.
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VAN LAAR’'S THEORY OF SOLUTIONS AND LOCAL-COMPOSITION THEORY

Early in this century, van Laar (1910) derived aﬁ
expression for the excess Gibbs energy of a liquid solution
using the van der Waals equation of state, Assuming that
- for a pure liquid v.=b, and that for the mixture

V=xlb1+x2+b2, van Laar's equation is

[211 |, 2212 | 222]

L ®1 2 |
where !i is the volume fraction:
XV .
3, . — _ - (40)
1 m : ;
Z X.y.
j=1 37

andxvi'is the molar volume of pure i at the same temperat;re
and pressure. | |
Van Laar assumed that the repulsive part of the eqﬁa;
tion of state does not affect the excess Gibbs energy, and,
thus, he was concerned only with what we call gE,attr' the
contribution to the excess Gibbs energy from the attractive
part of tﬁe intermolecular potenfial. For any equatiomn of

state of the van der Waals type, we can calculate this quan-

tity, and, for most of these equatioms, it has the form:

a a :
E,attr _ _a -1l -22
8 = ve(é) + vl .xle(gl) + V2 xze(gz) ’ (41)
where the reduced density & = b/4v, a is a quadratic func-

tion of mole fraction (and may be temperature-dependent),
and ©(§) is some function of reduced density. Table I shows

6(%Z) for three popular equations of state.
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To calculate gE,attr. we need not make van Laar’s
stringent assumptions. Instead, we assume that for each

.component the molar volume is proportional to b,

E =8 =&, , (42)
where
E. = i | (43)
i~ 4vi g - ‘

and we assume that for the mixture b=x1b1+x2b2, It follows

directly that

- 2a a
JEeater e(g,vglng_;; _ 231z a2

I .2 Viv 2 |
Lvl 172 VZJ

where O0(¢) is a function only of reduced density. Thus, for

. (44)

. many equations of stafe, we can derive a result similar to
the van Laar form that has been shown empirically to corre-
laté well liquid-state aciivity coefficients,

Appendix C shows that the local-composition thgory for
>an equation of the van der VWaals type.approaches the van
Laar result at conditions where random mixing prevails,
i.e., when the local compositions become-equai»to the .
respective bulk compositions,

To show the effect of local-composition theory on the
attractive contributionm to the excess Gibbs energy, we have
calcuiated this function fbr several model mixtures, In
each case, welmade the calculations for the mixture at 0°C
and 200 bar.  This pressuré isbabove the vapor pressure of

the most volatile component.
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Figure 4.shows the effect of ener;ynparameter a. In
this case, the size and sdfficé;areiﬂbhfameiefij‘b and q,
are the same for both components. The local-composition
curve ig always lower tﬁan the corresponding one-fluid curve
because the molecules are in more energetically favorable,
nonrandom configurations. The effect of locai—composition
theory increases with the difference between the energy
parameters; again, this.effect is to bevexpect;d because
higher asymmetry leads to increased nonrandomness. |

Figure 5 shows the effect of molecular-size differ-
ences..Résults_nsing local-composition theory differ only
moderately from those using one—-fluid theory, primarily
because we include only the effect of the attractive part pf
the intermolecular potential in calculating local compdsi-
tions. Since'the.major effect of molecula;-sizg'differences
on mixture properties is due to the repulsive (reference)
part of the inférmolecular potential, it does not appear in

gg,attr.

The binary parameter, kij' has a large effect on calcu-
lated mixture properties, as shown in Figure 6 for a mixture
of molecules where both size and energy parametérs are dif-
ferent. Again, the iocal—composition.theoryvpredicts an
excess Gibbs enetgyvlowér than thag_prédicted byvone—fluid
theory. For k12=0.05, we haye also calculated the exces§
enthglpy #nd excess entropy of the mixture, as shown in Fig-

ure. 7. The larger contribution to the excess Gibbs energy

comes, as expected, from the excess enthalpy.
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VAPOR-LIQUID EQUILIBRIA FOR ASYMMETRIC SYSTEMS

To show the effect of the loc§1~composition.mode1 on
calculated phase equilibfia, we consider several asymmetric
systems, We have chosen a very simple equation of state for
our example: the repulsive part is given by the expression
of Carnahan and Starling (1969), and the attractive part is

given by the van der Waals term:

2_¢3
P = pnrfl*é*é-i-? - ap? . (45)
L (1-2)3 |

‘where the reduced density is

4 °

We have used the following onme—~fluid mixing rule for the

repulsive contributioms to mixture properties:

2 2 '
by = 2 I xX.x.b.. , - (47)
Mooy g 1737H
where
[b}{S + b%43]3 : v
b, . = |-+ il , | (48)
+ L 2 J

To déterﬁine‘pu:e~component parameters for subcritical.
components, we use experimental values for the vaporbpres-
sure and the density of thé saturated liquid at the témpefa-
ture of interest. For the components whicﬁ are sﬁpetcriti—
cal at the temperatures considered, we used experimental
values for the fugacity and the density at the desired tem-

perature and at an arbitrarily chosen high pressure (400
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bar). From these pure-~component data, unique parameters a
and b were determined, as shown in Table II. )

The binary interaction parameter kij was .found, at the
temper;ture of interest, from cross-second-virial-
coefficient data for each binary pair (Table III). Iﬁ the
low-density limit, both the random-mixing andythe 1local-
composition models give the same second virial coefficient;
therefore, we use the same value for kij for both models. |

Figure 8 shows calculated and experimental‘vapor-liquid
equilibria for methane/water at 150°cC, Although both models
predict the vapor-phase composition reasonably well, the
local-cpmposition model prédicts the solubility of methane
in the liquid phase much better. (Note that the scale for
the mole fraction methane at low concentrations is loga-
rithmic.) The improvement in the fit of the methane/water
data by use of the local-composition model is not at the
expense of another binary ﬁarameter.

Table IV shows tﬁe effect of local-coﬁposition theory

on predicted Henry's constants, H for several systems,.

il
Although the predicted vapor—phase composition was not much
affected by the new mixing rules, in each case, the calcu-

lated liquid—phase'§ompositions were shifted in the proper

direction, often dramatically so.

EXTENSION TO MULTICOMPONENT MIXTURES

We extend the local-composition model to multicomponent

mixtures by considering m different types of regions in the
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fluid, where m is the number of components. Each type of
..,m) at its

region contains a molecule of type i (i=1,2,.

center. - :
To calculate thermodynamic properties, we again sum the

contributions to the attractive internal energy of all the

regions:
attr m .
L = 5 z(8) (49)
. i
i=1
where
PRI B LIS FYPYALY sty
j=1 ditiL /T 4o
and where the local compositions are given by
x11 xi L RT ]
(52)

m
2 x.. =1 |, for all i .

=1 ¢
Substituting Equations 50-52 into Equation 49, we obtain

L AP ) RLILITY

pattr m =1 j%il a(1/T) ) LOPL T ;

—-ﬁ-— = ¥y x, + <+ . (53)
i=1 * S x o8 ny; |
k=1i kexpl- RT .l

To calculate the attractive Helmholtz energy, we
integrate U3'YT/T with respect to 1/T and obtain

attr m m , 'QQ'H"?
A28 4 , {___i-li

where
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R ¢ <E/N :
=1 j=1 . - . - T )" — e S - . . . - e e .--- - — ——--—---——-——-.--

where SE is the excess entropy of the mixture. This term
arises from the lower limit of integration, which i§ T =,
For the present, we assume that Fji is unity. Thi; is
equivalent to a#snming ihat the athermal entropy of mixing
is adequately given by the repulsive part of the equatiomn of
state (see the following section). If, however, Qe had

assumed that

Fo.o=2t | (56)

where v. s the molar volume of component i in the mixture,
‘"we would have recovered the three-parameter Wiison (1964)
équation fér nnequal-siied molecules provided that there is
no excess volume.

The‘funétidn Fji is, in general, density dependent agd
may require binary parameters. It mpst meet the following

conditions:

Fii = 1 : (57)
lim F,; = 1 ‘ (58)
p—>0 ji :

[aF..] : '

9riil .

LaT 1, ~ o . : | (59)

Unfortunately, there is no unambiguous way to calculate Fji
as a function of density. '‘Although Equation 47 is a tempt-

ing. choice fOr.Fji (since it reduces to the Flory-Huggins
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result at high-density), it canmot be used in practice
because Equation 59 is not satisfied.

.The integral of U3t%f (Equation 53) with respect to 1/T
cannot be solved amalytically if o is a binary parameter. Ve
have here set a=0.5, but, as experience grows, this value
may well change.

For the molar excess Gibbs energy of a mixture of
unequal-sized van der Waals molecules, the local-composition

model gives

m m aa; .4¢&
SE = -TsE.TOP - %} z . 1n 2 X. exp —ET;_-A
i=1 j=1 1 L ji J
m m ﬁ..4§ aa. .4¢&
T 2 xix. {-_'L}-_-—? exp{——u—_l}
_oimpd=1 1 3L b5 L RTb;: J
m aa; . 4%
i=1 L S I J
n pure .

where sE,rep is the contfibution to the excess entropy from
the repulsive part of the equation of state and where aji is-
given by Equation 36. Equatiom 60 is not identical to the
UNIQUAC eqnafiod.raithohgh similarities are evident. The
first term in Equation 60 is dependent on the chosen repul-
sive eiuation of state;vit is not the Staverman (1950) form
for the combinatorial excess Gibbs energy, as in UNIQUAC.
However, the Staverman equation could be recovered here with

the appropriate function Fij' The second term is more com-
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plicated'(in'part. because equations of state, in gemeral,

b;?didf a2 nonzero ei§e§§7;oinm;1m;;d ugés‘only mole frac-
tions, whereas the UﬁIQUAC equation uses surféce fractioﬁs.
Had we used volume fractions, we would not have met the
low-densitj; second-virial-coefficient boundary condition;.
The excess entropy arising from repulsive forces can be
E,rep

,célculated from any desired model. One example for s

is provided by the one—fluid Carnahan-Starling equation of

state for hard spheres:

<E,Tep = -R o pure)
s Z 2. 1n(p/p%
=1

’ _aye n £.(3¢.-4)
+ R{mi—%? - R X T, !-—1""'-&"'2'—! , (61)
where
¢ = _12,42 ’ ' . (62)
p.pRuTE _ :
PR L S | O (63)

Here, p is the molar density of the mixture at (T,P,x), and

pgure is the molar. density of pure i at (T,P). For the mix-

ture, b is found by a classical mixing rule, e.g., Equation

CONCLUSIONS

The local-composition model may be used to extend to

mixtures any one of many currently popular equations of

state, This model incorporates the effect of nonrandomness
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and, thereby, extends applicability of equations of state to
calculation of vapor-liquid equilibria for asymmetric mix-
tures. No new binary parameters are introduced. For
engineering applications, it is impdrtant that the complex-
ity of the computatioms is much less tham that for
chemical-theory models., The local—compositioﬁ model for
nonrandomness in fluid mixtures is internally consisient and
meets thevnecessary'low- and high-density boundary condi-
;ions.

The approach we have taken is to account for nonrandom-
ness due to the attractive part of the potential. In this
perturbation~-type approach, we have assumed that mnonrandom-
ness caused_byvrepnlsive potentials is adequately |
represented by our reference sysfem. the one-fluid model.
The choice of reference system, however, remains oﬁen; Any
desired reference system may be used with the local-
compositiop pertutb;tion presented here.

In thiszOtk, we have only indicated the general ideas
and outlined the calcnlational procedure. Comparison with
experimental data requires a particular equation of state
more realistic than the van der Waals equation used here
only for illustrative purposes. Such comparison is givenm in

another publication (Whiting and Prausnitz, 1982).
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LIST OF SYMBOLS

a = energy parameter in the vam der Waals equation
ay = effective van der Waals parameter a for a mixture
A = total Helmholtz energy

size parameter in the van der Waals equation

-2
L]

second virial coefficient

w
1]

C = a constant appearing in some equation of state

E.. = function with units of emergy characteristic

of an ij interaction

F.. = function related to the infinite-temperature limit

of the excess entropy and defined by Equation 41

g = molar Gibbs energy
G = total Gibbs energy
ceang | i

H; = Henry's constant | lim ;—I

x.—0 i

L7i J
k = Boltzmann’s constant
kij = energy interaction parameter for the ij bimary
K = a proportionality factor

m = number of components

32



N =

NAv

o
n

o -3 (7 « ]
I It 0 (] il

o
]

<
]

4
]

i

total number of moles
= Avogadro’'s nﬁmber

number of moles. of component i
p;essure

external surface irea of ahii-molecule
idegl-gas constant
molar entropy

total entropy

absolute temperature
molar internal emergy

total internal energy
molar voluﬁé

molar volume of pure i

totdi volume
Guggenheimfs'interchange energyv
mole‘fraction of‘cdmponent i

= local composition of i molecules around a j molecule

a variable used in quasi-chemical theory

33
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z = coordination number of a lattice
a = degree-of-randomness pertufbation parameter,
equal to 0.5 in this work
AAmixing = Helmholtz energy change of mixing .
smixing molar ehtropy of miéing
eij = energy of iteraction between an i molecule and a
j molecule that are nearest neighbors on a‘lattice
nij.= attractive Helmholtzvenergy per unit surface area for
an.ij interaction
# = chemical potential
Qi = volume fraction of component i
p = density (N/V)
® = a function of reduced density only
E = reduced density
§; = reduced demsity of pure.i

Superscripts

.attr = attractive
E = excess (beyond the ideal-mixing coantribution)

(i) = region i
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id = ideal gas

pure = pure component

r = residual (i.e., without the ideal-gas part)
rep = repulsive

Subscripts

ij = the interaction between amn i molecule and a j molecule

M = mixture
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APPENDIX A. Entropy of Mixing from the Repulsive Part of

The repulsive part of the van der Waals equation is

_RT : : N (A1)

The entropy of mixing for Equation Al is

n _
- As = =R & xi1n(xiv€nr°/v) + R 1n(1 - b/v)
i=1

xi 111(1 - b1/V1) » A ' (AZ)

- R

tMp
-

i

where vg“r? is the molar volume of pure i at the same pres-—
sure and temperature as those of the mixture and v is the
molar volume of the mixture.

If we solve Equation Al for v,

= RT ‘
v = P + b .. (A3)
we get, upon substituting Equation A3 into Equation A2,
m ' v . '
Asmix = -R § xiﬂln‘xi 2 : (A4)

j=
the ideal-mixing result.

Instead of using Equation A3, we could assume that at

high pressure

;4L for all i, (AS)
ii »

o4

‘i.,e., the reduced densities of all the pure compoments and
of the mixture are equal to each other at the same pressure

and temperature. We then obtain
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APPENDIX B. erivation of Local-Compositions from Quasi-

The‘quasi-chemical theory of G;ggeﬁheiﬁ (1935, 1952) is‘
a.lattice theory in which nonrandomness is introduced
through the numbers of different types of "pairs” of
molecules. Two molecules form a pair if they are negrest
neighbors on thevlattice...The central equation Qf

Guggenheim’s theory is

2
X
= -2 kT ’ Bl
(NA-X)(NB-X) : gxp( w/ 2kT) (B1)

where 'z is the coordination number of the lattice, w is the

. interchange enérgy.* and zX is defined as the number of AB

pairs in the configuraticn;

If we use the twa—flnid theory of Scott (1956) to cal-
culate the total number of AB, AA, aand BB pairs, iﬁ terms of
local compositions , we obtain

x2_____ _ XAB*BA

.  (B2)
where the local composition xij is the composition of com-

ponent i in the neighborhood of a type~j molecule. In terms

of the molar energy of interaction, E, .

ije the interchange

energy is

 WNpy = Epp + Epp - Epp - Epg . - (B3)

Substituting Equations B2 and B3 into Equation Bl, we

obtain
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ZABTBA _ [-o(Epp+Eps-Epp-Epa)]
- e ——— == exp RT ’ (84)
BBXAA L J

where ¢=2/z. We assume that Equation B4 can be factored
into two parts; one part pertains only to a type-A region,
and the other part pertains only to a type-B region° Facf

- toring Equation B4 in this way, we obtain two relationmns, one

for each region:

xAB ‘-"G(EAB’EBB)?

- =aB _ ¢ (B5)
tpp EPL RT ]
2pa _ 1 |-e(Epa-Eap)]

where K is soﬁe‘proportionality‘constant depending only on
composition. To evaluate this constant, we consider the
‘randomness limit,. Fof any condifiong at which the exponen-—
tials in Equations B5 and B6 apfroaéh»nnity. the local com-
positions are equal to their respective bulk compositions,

i.e.,

(B7)

M
[
L

for i,j = 1 or 2. Thus,

. : (B8)

"
[}
M|

w b

Substitution:-of Equation B8 intO'Equations.BS~ﬁnd.BG yields
the expressions for the local compositions (Equations 13 and

14) .

=l=Interchange energy w is related to molecular pair energy

eij by
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- Z . - -
w=13 leyp + egy = epp - epp) .

Therefore, coordination number z cancels out in the exponen-

tial of Equation Bl1.
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APPENDIX C, Attractive Excess Gibbs Energy from Local~

Composition Theory. Limit for Random Mixing

To investigate the ramdomness limit of local-
composition theory, we here consider o to be a perturbation
parameter in the Boltzmann factor for the local composi-

tions. For an equation of state of the van der Waals form,

X, a(a../b..-a,./b..)4E.06(E&.)
;l exp{ jil “ji _“i1’ "ii i i 7

. L RT B

ii i

idi

ol U

(C1)

where {.=b..p/4, p is the density of the mixture, and ©6(§;)

is given in Table I for several equatioms of state and where

a > 0 for nonrandom mixing

a = 0 for random mixing.

As discussed in the text, the attractive excess Gibbs energy

is:
m - m aa--4§-f(§-)
- jirsi i
gE' attr .—_-.%I Z xiln Z xjexp{ RT - ) ]
i=1 j=1 bji
pure
m a. . g
purey _1i_21__ _ .
+ .Z x. f(gd ) . ;- (c2)
i=1 ii
y pure_i, pure pure . : : p
where éi biipi /4 and Py is the 11q§1d,densxty_of.

pure i at the same temperature and pressure as the mixture.

Using L'Hopital’s rule, we obtain

: E,attr - _ = DI [aii4§ie(gi)]
lim g z Z.xix. "
a0 | i=1 j=1 *7JL ji
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' ] m a. .4§pure
S A N 21 511’3‘_",?) Tiiz,,-i"_“‘ , (c3)
i=1 . - ii

which is Equation 41 of the text. Algebraic rearrangement

gives van Laar's result.



TABLE I, The Funotion 8(f) for Three Equations of State.

Equation of State

van der Waals

Redlich—-Kwong

Peng-Robinson

wvhere § = ft

Pattr

v(v+b)

A

v(vtb) + b(v-b)

o(t)

1n(1+48)
4T

2?3 ln[l + 4[1+!112;il§]
162 L1+ 11-(2)% 5121

9¢
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TABLE II. Pnre Component Parameters for Equatxon 45

Qgggggggi T(°C) a(dr-m®/mo1?) b(cm®/mol) a_ Data Ref.
CH, 150 2.215 51 .42 1.16 2
300 2.054 . 48.90 1.16 2

'Cnson 25 12.009 79.42 1.43 1,8
C,Hg 300 - 5.782 84 .22 1.70 7
C;Hg 121 10.324 120.80 - 2.24 6
co, 25 3.869 55.05 1.12 5
H,0 121 6.150 34.96 1.40 4
150 5.987 34.36  1.40 4
300 5.307 32.50  1.40 4
N, 38 1.271 | 46.62 0.91 3
NH, 38 4.485 43.70 1.28 5

Data References

1. Ambrbse, D. and Sprake, C. H. §., 1970. J. Chem. Ther-
modynamics, 2:631.

s l

Angus, S., Armstrong, B., and de Reuck, K. M., 1978.

International Thermodynamic Tables of the Fluxd State. 5:
Methane. Pergamon Press, Oxford.

3. Angus, S., Armstrong, B., and de Reuck, K. M., 1979,
International Thermodynamic Tables of the Fluid State. §6:

Nitrogen. Pergamon Press, Oxford.

4. Bain, R. W., 1964. EL Ste
Majesty’s Statiomery Office, Edi

5. Din, F., ed., 1956. hermodynami
1, Butterworths, Londo

<

6. Ibid, v.2.
, H. M., and Straty, G. C., 1976,

Goodwin, R. D oder
) Technical Note, No. 684.

7 ‘ ., R
Nat. Bur. Stand. (U.S.

8. Reid, R. C., Prausnitz, J. M., and Sherwood, T. K.,
1977. The Properties of Gases and Liguids. 3rd ed.,
McGraw—-Hill, New York.
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TABLE III. Binary Parameters for Equation. 37 from
Cross-Second-Virial-Coefficient Data.

System T(°C) ki Data Ref. for By,
CH,/RE,0 150 0.382 5
300 0.299 5
C,Hg/Hy0 300 0.103 : : 1
C,H,/H,0 121 0.425 : 3
C0,/CH;0H 25 0.398 2
N, /NHj 38 0.657 4

Data References for B12

1. Coan, C. R., and King, Jr., A. D., 1971, J. Am. Chen.
Soc., 93: 1857. :

2. Hemmaplardh, B., and King, Jr., A. D., 1972. J. Phys.
Chem., 76: 2170,

(2]
=
]
=]

. Kobayashi, R., and Katz, D, L., 1953, Ind. Eng.
5: 440,

How

4, Reamer, H. H., and Sage, B, H., 1959. J. Chem. Eng.
Data, 4: 303,

Rigby, M., and Prausnitz, J. M., 1968. J. Phys. Chem.,
2: 330. : v

~3 th



TABLE IV Benry s Constants for Asymmetric Mixtures Prediocted Using Binary Parametors
from Seoond Virial- Coefficient Data (Table IXX).

System ' T(° C) - 1nH, (bar) ' Data $ef.
-lggg—fluig , local-composition -exg_giggnt|

cu,/H,0 150 15.90 - 12.04 | 10.95 5

300 10.89  9.68 8.94 5
c,H /H,0 300 - 9.49 8.48 | 8.90 1
C,H /H,0 121 - 23.02 17 .41 ' 11.42 2
co, /CH, OH 25 10.31 5.63  4.93 3
N, /NH, 38 12.64 - SRR £ 8.77 A 4,

Data References

1. Danneil, A., T8dheide, K., and Franck, E. U., 1967. Chem. Ing. Tech., 39: 816;;
2. Kobayashi, R., and Katz, D. L., 1953. Ind. Eng. Chem., 45: 440.
3. Ohgaki, K., and Katayana, T;, 1976.. J. Chem. Eng. Data, 21: 53.
4. Reamer, H. H., and Sage, B. H., 1959. J. Chem. Eng. Data, 4: 303,

5. Sultanov, R. G., Skripka, V. G., and Namiot, A. Yu., 1971. Gazov. Promysh,.,
16(4): 6; 1972. Ibid., 17(5): 6.

6t
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TWO-FLUID THEORY FOR A BINARY MIXTURE

@0 | 099
® 0320
® ® | e
1"YPE-v1 REGION v_ .WPE-Z REGION

- @,
%21Y21 Xy UTE Xz U T XppUa2

FOR THE MIXTURE:

A0

UoHr. 0 2)
= x,u -+ X, U
N 1= 2
u(l) = molar attractive internal energy of hypothetical fluid i

i=1o0r2
Xy = mole fractioa of component i
xij = local mole fraction of component i about a central molecule j

uij = attractive ihCerngl energy per mole for a hypothetical fluid
where all molecules interact according to an ij potential

N‘= total number dfvmoles
XBL22-5144"

Figure 2,
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MOLAR EXCESS FUNCTION
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