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ARTICLE

Context-aware deconvolution of cell–cell
communication with Tensor-cell2cell
Erick Armingol 1,2,7, Hratch M. Baghdassarian 1,2,7, Cameron Martino 1,2,3, Araceli Perez-Lopez4,

Caitlin Aamodt2, Rob Knight 2,3,5,6 & Nathan E. Lewis2,6✉

Cell interactions determine phenotypes, and intercellular communication is shaped by cellular

contexts such as disease state, organismal life stage, and tissue microenvironment. Single-

cell technologies measure the molecules mediating cell–cell communication, and emerging

computational tools can exploit these data to decipher intercellular communication. However,

current methods either disregard cellular context or rely on simple pairwise comparisons

between samples, thus limiting the ability to decipher complex cell–cell communication

across multiple time points, levels of disease severity, or spatial contexts. Here we present

Tensor-cell2cell, an unsupervised method using tensor decomposition, which deciphers

context-driven intercellular communication by simultaneously accounting for multiple stages,

states, or locations of the cells. To do so, Tensor-cell2cell uncovers context-driven patterns of

communication associated with different phenotypic states and determined by unique

combinations of cell types and ligand-receptor pairs. As such, Tensor-cell2cell robustly

improves upon and extends the analytical capabilities of existing tools. We show Tensor-

cell2cell can identify multiple modules associated with distinct communication processes

(e.g., participating cell–cell and ligand-receptor pairs) linked to severities of Coronavirus

Disease 2019 and to Autism Spectrum Disorder. Thus, we introduce an effective and easy-to-

use strategy for understanding complex communication patterns across diverse conditions.
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Organismal phenotypes arise as cells adapt and coordinate
their functions through cell–cell interactions within their
microenvironments1. Variations in these interactions and

the resulting phenotypes can occur because of genotypic differ-
ences (e.g., different subjects) or the transition from one biolo-
gical state or condition to another2 (e.g., from one life stage into
another, migration from one location into another, and transition
from health to disease states). These interactions are mediated by
changes in the production of signals and receptors by the cells,
causing changes in cell–cell communication (CCC). Thus, CCC is
dependent on temporal, spatial and condition-specific contexts3,
which we refer to here as cellular contexts. “Cellular contexts”
refer to variation in genotype, biological state or condition that
can shape the microenvironment of a cell and therefore its CCC.
Thus, CCC can be seen as a function of a context variable that is
not necessarily binary and can encompass multiple levels (e.g.,
multiple time points, gradient of disease severities, different
subjects, distinct tissues, etc.). Consequently, varying contexts
trigger distinct strength and/or signaling activity1,4–6 of com-
munication, leading to complex dynamics (e.g., increasing,
decreasing, pulsatile and oscillatory communication activities
across contexts). Importantly, unique combinations of cell–cell
and ligand-receptor (LR) pairs can follow different context-
dependent dynamics, making CCC hard to decipher across
multiple contexts.

Single-cell omics assays provide the necessary resolution to
measure these cell–cell interactions and the ligand-receptor pairs
mediating CCC. While computational methods for inferring CCC
have been invaluable for discovering the cellular and molecular
interactions underlying many biological processes, including
organismal development and disease pathogenesis5, current
approaches cannot account for high variability in contexts (e.g.,
multiple time points or phenotypic states) simultaneously.
Existing methods lose the correlation structure across contexts
since they involve repeating analysis for each context separately,
disregarding informative variation in CCC across such factors as
disease severities, time points, subjects, or cellular locations7.
Additional analysis steps are required to compare and compile
results from pairwise comparisons8–11, reducing the statistical
power and hindering efforts to link phenotypes to CCC. More-
over, this roundabout process is computationally expensive,
making analysis of large sample cohorts intractable. Thus, new
methods are needed that analyze CCC while accounting for the
correlation structure across multiple contexts simultaneously.

Tensor-based approaches such as Tensor Component Analysis12

(TCA) can deconvolve patterns associated with the biological
context of the system of interest. While matrix-based dimension-
ality reduction methods such as Principal Component
Analysis (PCA), Non-negative Matrix Factorization (NMF), Uni-
form Manifold Approximation and Projection (UMAP) and
t-distributed Stochastic Neighbor Embedding (t-SNE) can extract
low-dimensional structures from the data and reflect important
molecular signals13,14, TCA is better suited to analyze multi-
dimensional datasets obtained from multiple biological contexts or
conditions7 (e.g., time points, study subjects and body sites).
Indeed, TCA outperforms matrix-based dimensionality reduction
methods when recovering ground truth patterns associated with,
for example, dynamic changes in microbial composition across
multiple patients15 and neuronal firing dynamics across multiple
experimental trials12. TCA exhibits superior performance because
it does not require the aggregation of datasets across varying
contexts into a single matrix. It instead organizes the data as a
tensor, the higher-order generalization of matrices, which better
preserves the underlying context-driven correlation structure by
retaining mathematical features that matrices lack16,17. Thus, with
the correlation structure retained, the use of TCA with expression

data across many contexts allows one to gain a detailed under-
standing of how context shapes communication, as well as the
specific molecules and cells mediating these processes.

Here, we introduce Tensor-cell2cell, a TCA-based strategy that
deconvolves intercellular communication across multiple contexts
and uncovers modules, or latent context-dependent patterns, of
CCC. These data-driven patterns reveal underlying communica-
tion changes given the simultaneous interaction between con-
texts, ligand-receptor pairs, and cells. We first show that Tensor-
cell2cell successfully extracts temporal patterns from a simulated
dataset. We also illustrate that Tensor-cell2cell is broadly
applicable, enabling the study of diverse biological questions
associated with COVID-19 severity and Autism Spectrum Dis-
order (ASD). While our approach can simultaneously analyze
more than two samples, we show that Tensor-cell2cell is faster,
demands less memory and can achieve better accuracy in
separating context-specific information than simpler analyses
accessible to other tools. We further demonstrate that Tensor-
cell2cell can leverage existing CCC tools by using their output
communication scores to analyze multiple contexts. Thus, Ten-
sor-cell2cell’s easily interpretable output leverages existing tools,
and enables quick identification of key mediators of cell–cell
communication across contexts, both reproducing known results
and identifying previously unreported interactors.

Results
Deciphering context-driven communication patterns with
Tensor-cell2cell. Organizing biological data through a tensor
preserves the underlying correlation structure of the biological
conditions of interest12,15,17. Extending this approach to infer
cell–cell communication enables analysis of important ligand-
receptor pairs and cell–cell interactions in a context-aware
manner. Accordingly, we developed Tensor-cell2cell, a method
based on tensor decomposition17 that extracts context-driven
latent patterns of intercellular communication in an unsupervised
manner. Briefly, Tensor-cell2cell first generates a 4D-
communication tensor that contains non-negative scores to
represent cell–cell communication across different conditions
(Fig. 1a–c). Then, a non-negative TCA18 is applied to deconvolve
the latent CCC structure of this tensor into low-dimensional
components or factors (Fig. 1d–e). Thus, each of these factors can
be interpreted as a module or pattern of communication whose
dynamics across contexts is indicated by the loadings in the
context dimension (Fig. 1e).

To demonstrate how Tensor-cell2cell recovers latent patterns
of communication, we simulated a system of 3 cell types
interacting through 300 LR pairs across 12 contexts (represented
in our simulation as time points) (Fig. 2a). We built a 4D-
communication tensor that incorporates a set of embedded
patterns of communication that were assigned to certain LR pairs
used by specific pairs of interacting cells, and represented through
oscillatory, pulsatile, exponential, and linear changes in commu-
nication scores (Fig. 2a–f; see Supplementary Notes for further
details of simulating and decomposing this tensor). Using
Tensor-cell2cell, we found that four factors led to the decom-
position that best minimized error (Supplementary Fig. 1a),
consistent with the number of introduced patterns (Fig. 2f). This
was robustly observed in multiple independent simulations
(Supplementary Fig. 2a).

Our simulation-based analysis further demonstrates that
Tensor-cell2cell accurately detects context-dependent changes
of communication, and identifies which LR pairs, sender cells,
and receiver cells are important (Fig. 2g). In particular,
the context loadings of the TCA on the simulated tensor
accurately recapitulate the introduced patterns (Fig. 2f, g), while
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ligand-receptor and cell loadings properly capture the ligand-
receptor pairs, sender cells and receiver cells assigned as
participants of the cognate pattern (Fig. 2g). Indeed, we
observed a concordance between the “ground truth” LR pairs
assigned to a pattern and their respective factor loadings
through Jaccard index and Pearson correlation metrics (Supple-
mentary Tables 1–2). Moreover, Tensor-cell2cell robustly

recovered communication patterns when we added noise to
the simulated tensor (Supplementary Fig. 2 and Supplementary
Notes).

Tensor-cell2cell robustly extends cell–cell communication
analysis. To demonstrate the power of accounting for multiple
contexts simultaneously, we compared the computational
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Fig. 1 Tensor representation and factorization of cell–cell communication. In a given context (n-th context among N total contexts), cell–cell
communication scores (see available scoring functions in ref. 5) are computed from the expression of the ligand and the receptor in a LR pair (k-th pair
among K pairs) for a specific sender-receiver cell pair (i-th and j-th cells among I and J cells, respectively). This results in a communication matrix
containing all pairs of sender-receiver cells for that LR pair (a). The same process is repeated for every single LR pair in the input list of ligand-receptor
interactions, resulting in a set of communication matrices that generate a 3D-communication tensor (b). 3D-communication tensors are built for all
contexts and are used to generate a 4D-communication tensor wherein each dimension represents the contexts (colored lines), ligand-receptor pairs,
sender cells and receiver cells (c). A non-negative TCA model approximates this tensor by a lower-rank tensor equivalent to the sum of multiple factors of
rank-one (R factors in total) (d). Each component or factor (r-th factor) is built by the outer product of interconnected descriptors (vectors) that contain
the loadings for describing the relative contribution that contexts, ligand-receptor pairs, sender cells and receiver cells have in the factor (e). For
interpretability, the behavior that context loadings follow represent a communication pattern across contexts. Hence, the communication captured by a
factor is more relevant or more likely to be occurring in contexts with higher loadings. Similarly, ligand-receptor pairs with higher loadings are the main
mediators of that communication pattern. By constructing the tensor to account for directional interactions (panels a, b), ligands and receptors in LR pairs
with high loadings are mainly produced by sender and receiver cells with high loadings, respectively.
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efficiency and accuracy of our method with respect to CellChat10,
the only tool that summarizes multiple pairwise comparisons in
an automated manner (Table 1). Since CellChat cannot extract
patterns of CCC across multiple contexts, we instead use the
output of its joint manifold learning on pairwise-based changes in
signaling pathways as a comparable proxy to the output of
Tensor-cell2cell. Despite the use of these proxy comparisons, we
emphasize that the conceptual outputs reported by Tensor-
cell2cell are unique. Briefly, we found that Tensor-cell2cell is
faster, uses less memory, and achieves higher accuracy when
analyzing CCC of multiple samples (Supplementary Fig. 3); using
a GPU further increases computational speed of Tensor-cell2cell.
See more details regarding this comparison in the Methods and

Tensor-cell2cell is fast and accurate section of the Supplementary
Notes.

A major advantage of Tensor-cell2cell is that it acts as a robust
dimensionality reduction method for any communication scores
arranged as a tensor. To illustrate this, we set out to harness the
sample-wise communication scoring outputs of other tools.
Tensor-cell2cell can restructure these outputs into a 4D-
communication tensor (Fig. 1), extending their capabilities to
recover context-dependent patterns of communication. This
generalizability enables users to employ any scoring method.
Thus, we ran Tensor-cell2cell on communication scores gener-
ated by sample-specific analysis with CellPhoneDB19, CellChat10,
NATMI9, and SingleCellSignalR20, as well as the built-in scoring
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of Tensor-cell2cell. Specifically, we analyzed twelve bronchoal-
veolar lavage fluid (BALF) samples from patients with different
severities of COVID-19 (healthy, moderate and severe) with each
method listed above. We assessed the consistency of decomposi-
tion between all five scoring methods by using the CorrIndex21.
The CorrIndex value lies between 0 and 1, with a higher score
indicating more dissimilar decomposition outputs; we thus
report our similarity results as (1-CorrIndex). Our results indicate
that Tensor-cell2cell can consistently identify context-dependent

communication patterns independent of the initial communica-
tion scoring method (Fig. 3a, Supplementary Fig. 4), with a mean
similarity score of 0.82. Furthermore, differences in decomposi-
tion results are driven at the ligand-receptor resolution, yet tend
not to propagate to the cell- or context-resolution (Supplemen-
tary Notes and Supplementary Figs. 5 and 6). While these results
agree with previous reports regarding the inconsistency of scoring
methods for ligand-receptor interactions22, they also show the
power of tensor decomposition to resolve these inconsistencies

Fig. 2 Tensor-cell2cell recovers simulated communication patterns. a Cell–cell communication scenario used for simulating patterns of communication
across different contexts (here each a different time point). b Examples of specific ligand-receptor (LR) and (c) cell–cell pairs that participate in the
simulated interactions. Individual LR pairs and cell pairs were categorized into groups of signaling pathways and cell types, respectively. In this simulation,
signaling pathways did not overlap in their LR pairs, and each pathway was assigned 100 different LR pairs. d Distinct combinations of signaling pathways
with sender-receiver cell type pairs were generated (LR-CC combinations). LR-CC combinations that were assigned the same signaling pathway overlap in
the LR pairs but not in the interacting cell types. e A simulated 4D-communication tensor was built from each time point’s 3D-communication tensor. Here,
a communication score was assigned to each ligand-receptor and cell–cell member of a LR-CC combination. Each communication score varied across time
points according to a specific pattern. f Four different patterns of communication scores were introduced to the simulated tensor by assigning a unique
pattern to a specific LR-CC combination. From top to bottom, these patterns were an oscillation, a pulse, an exponential decay and a linear decrease.
The average communication score (y-axis) is shown across time points (x-axis). This average was computed from the scores assigned to every ligand-
receptor and cell–cell pair in the same LR-CC combination. g Results of running Tensor-cell2cell on the simulated tensor. Each row represents a factor, and
each column a tensor dimension, wherein each bar represents an element of that dimension (e.g., a time point, a ligand-receptor pair, a sender cell or a
receiver cell). Factor loadings (y-axis) are displayed for each element of a given dimension. Here, the factors were visually matched to the corresponding
latent pattern in the tensor, and their loadings were normalized to unit Euclidean length. Assigned pattern scores and loading source data are provided in
the Source Data file.

Table 1 Methodological strategy and context-based analysis in available tools.

Tool Communication Scorea Context Evaluation Simultaneous
Contexts

Multimeric
LR pairs

Data
Resolution

Platform Refs.

Tensor-cell2cell Expression Mean,
Expression Product and
Geometric Mean

Builds a tensor with all
contexts simultaneously and
runs a tensor decomposition,
accounting for the correlation
structure across contexts

Unlimitedb Yes Bulk,
Single Cell

Python This work

CellChat Mass-action-based
probability

Runs separate analyses of
each context, does pairwise
comparisons and harmonizes
them through a joint manifold
learning

2 Yes Single Cell R 10

CellPhoneDB Expression Mean None 1 Yes Single Cell Python 19

CellTalker Differential
Combinations

Differential analysis between
two contexts

2 No Single Cell R 8

Connectome Modified Expression
Product

Differential analysis between
two contexts. An overall
analysis of cell-type
importance can be done for
more contexts

2 No Single Cell R 11

ICELLNET Expression Product None 1 Yes Bulk,
Single Cell

R 74

iTalk Differential
Combinations

Differential analysis between
two contexts

2 No Single Cell R 75

NATMI Expression Product and
Normalized Expression
Product

Differential analysis between
two contexts

2 No Bulk,
Single Cell

Python 9

NicheNet Personalized-
PageRank-based score

None 1 No Bulk,
Single Cell

R 55

scAgeCom Geometric Mean Differential analysis between
two contexts

2 Yes Single Cell R 76

scTensor Expression Product None 1 No Single Cell R 77

SingleCellSignalR Regularized Expression
Product

None 1 No Single Cell R 20

aFor further details about distinct communication scores, see ref. 5 and/or respective references for each tool.
bDependent on computational resources (e.g., memory availability).
LR, ligand-receptor.
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and identify biologically and conceptually consistent commu-
nication patterns.

Since Tensor-cell2cell requires the use of multiple conditions
or samples, we also assessed biases that may have been introduced
by batch effects during gene expression count transformation
(e.g., normalization, batch correction, etc). Specifically, we
assessed the impact of applying the log(CPM+ 1) and the
fraction of non-zero cells as preprocessing methods23, and
ComBat24 and Scanorama25 as batch-effect correction. Here, we
also used the BALF COVID-19 samples and built the 4D-tensors
using the gene expression values obtained in each case. After
running the tensor decomposition, these strategies generated
results that seem biologically comparable, as measured with a
mean similarity score of 0.86 (Fig. 3b). As expected, using the raw
counts leads to the most biased and different results in
comparison to the other preprocessing methods; the mean
similarity score between raw counts and all other approaches is
0.77. In contrast, the highest similarity was between the
log(CPM+ 1) and the non-zero fraction of cells. This result is
also expected since the non-zero fraction of cells is comparable to
the log(CPM+ 1). However, the non-zero fraction performs
better in comparisons of lowly expressed genes23 (e.g., receptors
on the cell surface26), so we included this fraction as part of the
Tensor-cell2cell built-in workflow. Thus, Tensor-cell2cell can
detect consistent CCC signatures independent of the method by
which gene expression is corrected, with the exception of raw
counts, as indicated by the high similarities observed (Fig. 3b).

Tensor-cell2cell links intercellular communication with vary-
ing severities of COVID-19. Great strides have been made to

unravel molecular and cellular mechanisms associated with
SARS-CoV-2 infection and COVID-19 pathogenesis. Thus, we
tested our method on a single-cell dataset of BALF samples from
COVID-19 patients27 to see how many cell–cell and LR pair
relationships in COVID-19 could be revealed by Tensor-cell2cell.
By decomposing the tensor associated with this dataset into 10
factors (Fig. 4a and Supplementary Fig. 1b), Tensor-cell2cell
found factors representing communication patterns that are
highly correlated with COVID-19 severity (Fig. 4c) and other
factors that distinguish features of the different disease stages
(Supplementary Fig. 7), consistent with the high performance that
the classifier achieved for this dataset (Supplementary Fig. 3f,h).
Furthermore, these factors involve signaling molecules previously
linked with severity in separate works (Supplementary Table 3).

The first two factors capture CCC involving autocrine and
paracrine interactions of epithelial cells with immune cells in
BALF (Fig. 4a). The sample loadings of these factors reveal a
communication pattern wherein the involved LR and cell–cell
interactions become stronger as severity increases (Spearman
correlation of 0.72 and 0.61, Fig. 4c and Supplementary Fig. 7).
Although this observation was not reported in the original study,
it is consistent with a previous observation of a correlation
between COVID-19 severity and the airway epithelium-immune
cell interactions28. Specifically, epithelial cells are highlighted by
Tensor-cell2cell as the main sender cells in factor 1 (Fig. 4a), and
we further provide details of the molecular mechanisms involving
top-ranked signals such as APP, MDK, MIF and CD99 (Fig. 4b).
These molecules have been reported to be produced by epithelial
cells29–35 and participate in immune cell recruiting31–33,36, in
response to mechanical stress in lungs34 and regeneration of the
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alveolar barrier during viral infection35. In addition, epithelial
cells act as the main receiver in factor 2 (Fig. 4a), involving
proteins such as PLXNB2, SDC4 and F11R (Fig. 4b), which were
previously determined important for tissue repair and inflamma-
tion during lung injury37–39. Remarkably, a new technology for
experimentally tracing CCC revealed that SEMA4D-PLXNB2
interaction promotes inflammation in a diseased central nervous
system40; our approach suggests a similar role promoting

inflammation in severe COVID-19, specifically mediating the
communication between immune and epithelial cells, as reflected
in factor 2 (Fig. 4b).

Our strategy also elucidates communication patterns attribu-
table to specific groups of patients according to disease severity
(Fig. 4a). For example, we found interactions that are character-
istic of severe (factor 8) and moderate COVID-19 (factors 3 and
10), and healthy patients (factor 9) (adj. P-value < 0.05,

Factor 10 -0.02 0.74

Factor 9 -0.51 0.09

Factor 8 0.92 0.24

Factor 7 0.51 0.68

Factor 6 0.25 0.65

Factor 5 0.40 0.59

Factor 4 0.39 0.48

Factor 3 -0.26 0.75

Factor 2 0.61 0.76

Factor 1 0.72 0.50

Factor Spearman Coefficient Gini Coefficient

0.153PTPRC - MRC1
0.154MDK - LRP1
0.163ANXA1 - FPR1
0.170LGALS9 - HAVCR2
0.191CD99 - PILRA

Factor 10

0.243RETN - CAP1
0.263PTPRC - MRC1
0.266APP - CD74
0.269MIF - CD74 & CD44
0.274FN1 - CD44

Factor 9

0.238CCL3L1 - CCR1
0.238CCL3 - CCR5
0.261CCL8 - CCR1
0.275CCL3 - CCR1
0.297CCL2 - CCR2

Factor 8

0.191SELL - MADCAM1
0.229MIF - CD74 & CD44
0.231CD22 - PTPRC
0.241MIF - CD74 & CXCR4
0.307CD99 - CD99

Factor 7

0.222PTPRC - MRC1
0.241GZMA - F2R
0.293CCL5 - CCR1
0.305CCL5 - CCR5
0.333CD99 - CD99

Factor 6

0.192ITGB2 - ICAM1
0.201ITGB2 - ICAM2
0.210CD86 - CTLA4
0.211ITGB2 - CD226
0.213CD99 - CD99

Factor 5

0.234LAMB2 - CD44
0.242LAMB3 - CD44
0.245COL9A2 - CD44
0.289LGALS9 - CD44
0.321MIF - CD74 & CD44

Factor 4

0.172FN1 - ITGA4 & ITGB7
0.176FN1 - ITGA4 & ITGB1
0.177MDK - NCL
0.182RETN - CAP1
0.194SIGLEC1 - SPN

Factor 3

0.186F11R - F11R
0.186COL9A2 - SDC4
0.202MDK - SDC4
0.203SEMA4A - PLXNB2
0.212SEMA4D - PLXNB2

Factor 2

0.220CD99 - CD99
0.227MDK - ITGA4 & ITGB1
0.231MIF - CD74 & CD44
0.246MDK - NCL
0.268APP - CD74

Factor 1

Top-5 Ligand-Receptor Pairs

c

ba
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Supplementary Fig. 7). Factor 8 was the most correlated with
severity of the disease (Spearman coefficient 0.92, Fig. 4c) and
highlights macrophages playing a major role as pro-inflammatory
sender cells. Their main signals include CCL2, CCL3 and CCL8,
which are received by cells expressing the receptors CCR1, CCR2
and CCR5 (Fig. 4b). Consistent with our result, another study of
BALF samples28 revealed that critical COVID-19 cases involve
stronger interactions of cells in the respiratory tract through
ligands such as CCL2 and CCL3, expressed by inflammatory
macrophages28. Moreover, the inhibition of CCR1 and/or CCR5
(receptors of CCL2 and CCL3) has been proposed as a potential
therapeutic target for treating COVID-1928,41. Tensor-cell2cell
also deconvolved patterns attributable to moderate rather than
severe COVID-19, also highlighting interactions driven by
macrophages (factors 3 and 10; Fig. 4a). However, top-ranked
molecules (Fig. 4b) and gene expression patterns (Supplementary
Fig. 8) suggest that the intercellular communication is led by
macrophages with an anti-inflammatory M2-like phenotype, in
contrast to factor 8 (pro-inflammatory phenotype). Multiple top-
ranked signals in factors 3 and 10 have been associated with an
M2 macrophage phenotype acting in the immune response to
SARS-CoV-242–47.

In contrast to severe and moderate COVID-19 patients,
communication patterns associated with healthy subjects involve
all sender-receiver cell pairs with a similar importance. In
particular, factor 9 (Fig. 4a) demonstrated the smallest Gini
coefficient (0.09; Fig. 4c), which measures the extent to which
edge weights between sender and receiver cells are evenly
distributed in the factor-specific cell–cell communication net-
work. Smaller Gini coefficients show more even distributions, i.e.,
more equally weighted potential of communication across sender
and receiver cell pairs (see Methods). This indicates that the
intercellular communication represented by factor 9 is ubiquitous
across cell types. Thus, this conservation across cells may be an
indicator of communication during homeostasis, since the
context loadings for this factor are not associated with disease
(Supplementary Fig. 7). Interestingly, a top-ranked LR pair in
factor 9 is MIF-CD74/CD44 (Fig. 4b), which is consistent with
ubiquitous expression of MIF across tissues and its protective role
in normal conditions35,48. Thus, Tensor-cell2cell extracts com-
munication patterns distinguishing one group of patients from
another and detects known mechanisms of immune response
during disease progression (Supplementary Notes), which is
important for therapeutic applications.

Tensor-cell2cell elucidates communication mechanisms asso-
ciated with Autism Spectrum Disorders. Dysregulation of
neurodevelopment in Autism Spectrum Disorders (ASD) is
associated with perturbed signaling pathways and CCC in com-
plex ways49. To understand these cellular and molecular
mechanisms, we analyzed single-nucleus RNA-seq (snRNA-seq)

data from postmortem prefrontal brain cortex (PFC) from 13
ASD patients and 10 controls50. We built a 4D-communication
tensor containing 16 cell types present in all samples, including
neurons and non-neuronal cells, and 749 LR pairs; then we used
Tensor-cell2cell to deconvolve their associated CCC into 6
context-driven patterns (Fig. 5a and Supplementary Fig. 1c). In
these factors, we observe communication between all neurons
(factor 1), as well as communication of specific neurons in the
cortical layers I–VI (factors 2 and 3), interneurons (factor 4),
astrocytes and oligodendrocytes (factor 5), and endothelial cells
(factor 6).

Tensor-cell2cell’s outputs can be further dissected using
downstream analyses with common approaches. To illustrate
this, we ranked the LR pairs by their loadings in a factor-specific
fashion, and ran Gene Set Enrichment Analysis51 (GSEA) using
LR pathway sets built from KEGG pathways52 (see Methods). We
observed that each factor was associated with different biological
functions including axon guidance, cell adhesion, extracellular-
matrix-receptor interaction, ERBB signaling, MAPK signaling,
among others (Fig. 5b). Dysregulation of axon guidance, synaptic
processes and MAPK pathway have been previously linked to
ASD from differential analysis50,53, supporting our observations.
Moreover, our results extend to other roles associated with
extracellular matrix, focal adhesion of cells, regulation of actin
cytoskeleton, and signaling through ErbB receptors, which
involves Akt, PI3K, and mTOR pathways, as well as regulation
of cell proliferation, migration, motility, differentiation, and
apoptosis54. Thus, Tensor-cell2cell outputs can be used to assign
macro-scale biological functions to each of the factors, extending
the interpretation of factor-specific CCC.

After identifying main pathways involved in each factor, one
can further use sample loadings to identify how these functions
are associated with each sample group. By doing so, we found that
factors 3 and 4 significantly distinguish ASD from typically
developing controls (Fig. 5c). Neurons in cortical layers are the
main sender cells in factor 3, while interneurons are key receiver
cell types in factor 4 (Fig. 5a and Supplementary Fig. 9), with
parvalbumin interneurons (IN-PV), and SV2C-expressing inter-
neurons (IN-SV2C) as the top-ranked cells, consistent with the
previously reported cell types that are more affected in ASD
condition50 (i.e., with a greater number of dysregulated genes),
and that correspond to neurons in the cortical layers I–VI, IN-
SV2C and IN-PV. Thus, considering the overall decreased sample
loadings in the ASD group, the GSEA results, and the factor-
specific CCC networks built from the cell loadings (Supplemen-
tary Fig. 9), our analysis suggests that there is a downregulation of
axon guidance, cell adhesion, and ERBB signaling involving
neurons in cortical layers I–VI and interneurons in ASD patients.
See Supplementary Notes for further discussion.

Clustering methods can be applied for grouping samples in an
unsupervised manner. Thus, we can assess the overall similarity

Fig. 4 Deconvolution of intercellular communication in patients with varying severity of COVID-19. a Factors obtained after decomposing the 4D-
communication tensor from a single-cell dataset of BALF in patients with varying severities of COVID-19. 10 factors were selected for the analysis, as
indicated in Supplementary Fig. 1b. Here, the context corresponds to samples coming from distinct patients (12 in total, with three healthy controls, three
moderate infections, and six severe COVID-19 cases). Each row represents a factor and each column represents the loadings for the given tensor
dimension (samples, LR pairs, sender cells and receiver cells), normalized to unit Euclidean length. Bars are colored by categories assigned to each element
in each tensor dimension, as indicated in the legend. b List of the top 5 ligand-receptor pairs ranked by loading for each factor. The corresponding ligands
and receptors in these top-ranked pairs are mainly produced by sender and receiver cells with high loadings, respectively. Ligand-receptor pairs with
supporting evidence (Supplementary Table 3) for a relevant role in general immune response (black bold) or in COVID-19-associated immune response
(red bold) are highlighted. c Coefficients associated with loadings of each factor: Spearman coefficient quantifying correlation between sample loadings and
COVID-19 severity, and Gini coefficient quantifying the dispersion of the edge weights in each factor-specific cell–cell communication network (to measure
the imbalance of communication). Important values are highlighted in red (higher absolute Spearman coefficients represent stronger correlations; while
smaller Gini coefficients represent distributions with similar edge weights). Loadings and coefficients are provided in the Source Data file.
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between samples across all factors; considering combinations of
factors can offer additional insights to the analysis as compared to
considering one factor at a time. We use hierarchical clustering to
group samples into four main clusters (Fig. 5d). Cluster 1 mainly
groups controls, cluster 2 is not associated with any category,
cluster 3 mostly represents ASD patients, and cluster 4 is

completely related to ASD condition. These clusters also reveal
that combinations of factors separate samples by ASD and
control groups. For example, samples in cluster 1 seem to have
smaller loadings in factors 1 and 5, and higher loadings in factors
3 and 4. Interestingly, the only ASD sample present in this cluster
had the smallest ASD clinical score, suggesting that CCC

Category
Clinical Score

59
36

55
38

58
79

59
58

52
94

55
77

54
08

58
93

58
41

53
87

55
31

43
41

60
33

59
76

59
78

59
39

55
65

58
64

59
45

54
19

51
44

54
03

52
78

Factor 5

Factor 1

Factor 2

Factor 3

Factor 4

Factor 6

Clinical Score

Mild Severe

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Patient ID

t=-2.460; P=2.265e-02 t=-1.649; P=1.141e-01 t=-1.981; P=6.090e-02

t=1.012; P=3.232e-01 t=-2.042; P=5.389e-02 t=-2.469; P=2.220e-02

d

c
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mechanisms are more similar to controls when the phenotype is
mild. In contrast, cluster 3 shows an opposite CCC behavior to
cluster 1. Cluster 4 also reveals that the combination of factor 6
with low sample loadings and factors 1 and 5 with high values is a
strong marker of several ASD patients, even though factors 1, 5,
and 6 did not show significant differences between sample groups
(Fig. 5c). Based on this, patients in cluster 4 had increased CCC
through the NRXNs-NRLGs, CTNs-NRCAMs, and NCAMs-
NCAMs interactions (synapse and cell adhesion) in neurons as
senders and receivers, and astrocytes and oligodendrocytes as
receivers, as well as a decreased CCC through VEGFs-FLT1,
PTPRM-PTPRM, and PTN-NCL interactions (angiogenesis,
neural migration and neuroprotection) related to endothelial
cells as the main receivers (Supplementary Table 4). Finally, both
ASD-clusters seem to be slightly distinct in terms of phenotype,
considering their mean clinical scores of 25.0 and 22.8,
respectively for clusters 3 and 4, but without significant
differences. Thus, downstream analyses reveal that multiple
dysregulations of CCC patterns captured by Tensor-cell2cell
occur simultaneously in ASD condition (Fig. 5d), even though
these patterns could not explain phenotypic differences when
considered in isolation (Fig. 5c).

Discussion
Here we present Tensor-cell2cell, a computational approach that
identifies modules of cell–cell communication and their changes
across contexts (e.g., across subjects with different disease sever-
ity, multiple time points, different tissues, etc.). Our approach can
rank LR pairs based on their contribution to each communication
module and connect these signals to specific cell types and phe-
notypes. Tensor-cell2cell’s ability to consider multiple contexts
simultaneously to identify context-dependent communication
patterns goes beyond state-of-the-art tools, which are either
unaware of the context driving CCC5,19,55,56 or require analysis of
each context separately to perform pairwise comparisons in
posterior steps10,11. Tensor-cell2cell is therefore a flexible method
that can integrate multiple datasets and readily identify patterns
of intercellular communication in a context-aware manner,
reporting them through interconnected and easily interpretable
scores.

Tensor-cell2cell robustly detects communication patterns using
many other scoring methods13. Thus, our method is not only an
improvement over other tools, but also greatly extends these
tools, enabling unique analyses with existing methods. One can
choose any tool of interest, run it on each context separately, and
use the resulting communication scores to build and deconvolve a

4D-communication tensor. Other tools, such as CellChat, allow
the generation of scores at the signaling pathway level instead of
LR pairs. This, combined with Tensor-cell2cell, could provide
additional information about changes in signaling pathways.
Thus, Tensor-cell2cell can also be used for analyzing any other
score linking gene expression from cell pairs, beyond just scores
based on protein-protein interactions. In this regard, our tool
outputs consistent results regardless of the preprocessing and
batch correction method we evaluated (Fig. 3b). Nevertheless, it is
best practice to employ integration/batch-correction methods to
correct gene expression and annotate cell types before running
Tensor-cell2cell to ensure this source of variation is controlled57.

Tensor-cell2cell is faster for analyzing multiple samples than
pairwise comparisons, providing a considerable improvement in
running time and reduced memory requirements (Supplementary
Notes). Tensor-cell2cell’s runtime can be further accelerated
when a GPU is available (Supplementary Fig. 3a). It is also more
accurate, resulting in 10–20% higher classification accuracy of
subjects with COVID-19 when compared to CellChat (Supple-
mentary Fig. 3e–h). However, we note that benchmarking CCC
prediction tools is challenging due to the lack of a ground truth5,
and it is hard to compare and evaluate tools because of the
qualitative differences in their outputs22 (Supplementary Notes).
While pairwise comparisons can be informative about differential
cellular and molecular mediators of communication, the results
are less interpretable (Supplementary Figs. 10–13), do not provide
the multi-scale resolution available in Tensor-cell2cell (Figs. 4a
and 5a), and do not identify context-dependent patterns.

Meaningful biology can be easily identified from Tensor-
cell2cell. For example, a manual interpretation of the BALF
COVID-19 decomposition found communication results not
previously observed in the original study27 and recapitulated
findings spanning tens of peer-reviewed articles (Supplementary
Table 3). This included a correlation between the lung
epithelium-immune cell interactions and COVID-19 severity28

and molecular mediators that distinguished moderate and severe
COVID-19 (see “Tensor-cell2cell elucidates molecular mechan-
isms distinguishing moderate from severe COVID-19” in
the Supplementary Notes). Additionally, Tensor-cell2cell results
can be coupled with downstream analysis methods to facilitate
interpretation and provide further insights of underlying
mechanisms. In our ASD case-study (Fig. 5), such analyses
included GSEA, clustering, visualization and statistical compar-
ison of factors, and factor-specific analysis of sender-receiver
communication networks (Supplementary Fig. 9). In the ASD
case-study, we found dysregulated CCC directly distinguished

Fig. 5 Application of Tensor-cell2cell to study mechanisms underlying intercellular communication in patients with ASD. a Factors obtained after
decomposing the 4D-communication tensor from a single-nucleus dataset of prefrontal brain cortex samples from patients with or without ASD. Six factors
were selected for the analysis, as indicated in Supplementary Fig. 1c. Here, the context corresponds to samples coming from distinct patients (n= 23,
thirteen ASD patients and ten controls). Each row represents a factor and each column represents the loadings for the given tensor dimension (samples, LR
pairs, sender cells and receiver cells), normalized to unit Euclidean length. Bars are colored by categories assigned to each element in each tensor
dimension, as indicated in the legend. Cell-type annotations are those used in ref. 50. b GSEA performed on the pre-ranked LR pairs by their respective
loadings in each factor, and using KEGG pathways. Dot sizes are proportional to the negative logarithmic of the P-values, as indicated at the top of the
panel. The threshold value indicates the size of a P-value= 0.05. The dot colors represent the normalized enrichment score (NES) after the permutations
performed by the GSEA, as indicated by the colorbar. P-values were obtained from the permutation step performed by GSEA, and adjusted with a
Benjamini–Hochberg correction across all factors. c Boxplot representation for ASD (n= 13) and control (n= 10) groups of patients. Each panel represents
the sample loadings, grouped by condition category, in each of the factors. Boxes represent the quartiles and whiskers show the rest of each distribution.
Groups were compared by a two-sided independent t-test, followed by a Bonferroni correction. For each pairwise comparison, the exact values of the test
statistics (t) and the adjusted P-values (P) are shown. d Heatmap of the standardized sample loadings across factors (z-scores) for each of the samples.
Samples and factors were grouped by hierarchical clustering. Major clusters of the samples are indicated at the bottom. The category of each sample is
colored on the top, according to the legend. A clinical score of each patient is also shown, according to the colorbar. Controls, and ASD samples without an
assigned score, were colored gray. This clinical score summarizes the social interactions, communication, repetitive behaviors, and abnormal development
of the patients, as indicated in ref. 50. Loadings, enrichment scores, and clinical scores are provided in the Source Data file.
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ASD patients from controls and was linked with a down-
regulation of axon guidance, cell adhesion, synaptic processes,
and ERBB signaling in cortical neurons and interneurons (Fig. 5a,
b), consistent with previous evidence50,53,58,59. Moveover,
accounting for the combinatorial relationship of samples across
factors demonstrated additional complex relationships of CCC
dysregulation (Fig. 5d).

A limitation to consider is the potential of missing commu-
nication scores in the tensor (e.g., when a rare cell type appears in
only one sample). Although Tensor-cell2cell can handle cell types
that are missing in some conditions, the implemented tensor
decomposition algorithm can be further optimized for missing
values. Since the implemented algorithm is not optimized for this
purpose, we built a 4D-communication tensor that contains only
the cell types that are shared across all samples in our COVID-19
and ASD study cases. Thus, further developments will facilitate
analyses with missing values to include all possible members of
communication (i.e., LR pairs and cell types that may be missing
in certain contexts).

In addition to single-cell data analyzed here, Tensor-cell2cell
also accepts bulk transcriptomics data (an example of a time
series bulk dataset of C. elegans is included in a Code Ocean
capsule, see Methods), and it could further be used to analyze
proteomic data. We demonstrated the application of Tensor-
cell2cell in cases where samples correspond to distinct patients,
but it can be applied to many other contexts. For instance, our
strategy can be readily applied to time series data by considering
time points as the contexts, and to spatial transcriptomic datasets,
by previously defining cellular niches or neighborhoods as the
contexts, given their spatial signatures60. We have included
Tensor-cell2cell as a part of our previously developed tool
cell2cell61, enabling previous functionalities such as employing
any list of LR pairs (including protein complexes), multiple
visualization options, and personalizing the communication
scores to account for other signaling effects such as the (in)acti-
vation of downstream genes in a signaling pathway55,62,63. Thus,
these attributes make Tensor-cell2cell valuable for identifying key
cell–cell and LR pairs mediating complex patterns of cellular
communication within a single analysis for a wide range of
studies.

Methods
RNA-seq data processing. RNA-seq datasets were obtained from publicly avail-
able resources. Datasets correspond to a large-scale single-cell atlas of COVID-19
in humans64, a COVID-19 dataset of single-cell transcriptomes for BALF
samples27. COVID-19 datasets were collected as raw count matrices from the
NCBI’s Gene Expression Omnibus65 (GEO accession numbers “GSE158055” and
“GSE145926”, respectively), while the ASD dataset is available in the NCBI’s
BioProject under accession code “PRJNA434002”, but we obtained the log2-
transformed UMI counts from the “project website [https://cells.ucsc.edu/autism/
downloads.html]”. In total, the first dataset contains 1,462,702 single cells, the
second 65,813 and the last one 104,559 single nuclei. The first dataset contains
samples of patients with varying severities of COVID-19 (control, mild/moderate
and severe/critical) and we selected just 60 PBMC samples among all different
sample sources (20 per severity type). In the second dataset, we considered the 12
BALF samples of patients with varying severities of COVID-19 (3 control, 3
moderate and 6 severe) and preprocessed them by removing genes expressed in
fewer than 3 cells, which left a total of 11,688 genes in common across samples. In
the ASD dataset, PFC samples from 23 patients with and without ASD condition
(13 ASD patients and 10 controls) were considered, and preprocessed similarly to
the BALF dataset, resulting in a total of 24,298 genes in common across samples. In
all datasets, we used the cell type labels included in their respective metadata. We
aggregated the gene expression from single cells/nuclei into cell types by calculating
the fraction of cells in the respective label with non-zero counts, as previously
recommended for properly representing genes with low expression levels23, as
usually happens with genes encoding surface proteins26.

Ligand-receptor pairs. A human list of 2,005 ligand-receptor pairs, 48% of which
include heteromeric-protein complexes, was obtained from CellChat10. We filtered
this list by considering the genes expressed in the PBMC and BALF expression
datasets and that match the IDs in the list of LR pairs, resulting in a final list of

1639 and 189 LR pairs, respectively. While in the ASD dataset, 749 LR pairs that
matched the gene IDs were considered.

Building the context-aware communication tensor. For building a context-aware
communication tensor, three main steps are followed: (1) A communication matrix
is built for each ligand-receptor pair contained in the interaction list from the gene
expression matrix of a given sample. To build this communication matrix, a
communication score5 is assigned to a given LR pair for each pair of sender-
receiver cells. The communication score is based on the expression of the ligand
and the receptor in the respective sender and receiver cells (Fig. 1a). (2) After
computing the communication matrices for all LR pairs, they are joined into a 3D-
communication tensor for the given sample (Fig. 1b). Steps 1 and 2 are repeated for
all the samples (or contexts) in the dataset. (3) Finally, the 3D-communication
tensors for each sample are combined, each of them representing a coordinate in
the 4th-dimension of the 4D-communication tensor (or context-aware commu-
nication tensor; Fig. 1c).

To build the tensor for all datasets, we computed the communication scores as
the mean expression between the ligand in a sender cell type and cognate receptor
in a receiver cell type, as previously described19. For the LR pairs wherein either the
ligand or the receptor is a multimeric protein, we used the minimum value of
expression among all subunits of the respective protein to compute the
communication score. In all cases we further considered cell types that were
present across all samples. Thus, the 4D-communication tensor for the PBMC,
BALF and ASD datasets resulted in a size of 60 × 1639 × 6 × 6; 12 × 189 × 6 × 6, and
23 × 749 × 16 × 16 respectively (that is, samples x ligand-receptor pairs x sender cell
types x receiver cell types).

Non-negative tensor component analysis. Briefly, non-negative TCA is a gen-
eralization of NMF to higher-order tensors (matrices are tensors of order two). To
detail this approach, let χ represent a C × P × S × T tensor, where C, P, S and T
correspond to the number of contexts/samples, ligand-receptor pairs, sender cells
and receiver cells contained in the tensor, respectively. Similarly, let χijkl denote the
representative interactions of context i, using the LR pair j, between the sender cell
k and receiver cell l. Thus, the TCA method underlying Tensor-cell2cell corre-
sponds to CANDECOMP/PARAFAC66,67, which yields the decomposition, fac-
torization or approximation of χ through a sum of R tensors of rank-1 (Fig. 1d):

χ � ∑
R

r¼1
cr � pr � sr � tr ð1Þ

Where the notation ⊗ represents the outer product and cr, pr, sr and tr are vectors
of the factor r that contain the loadings of the respective elements in each
dimension of the tensor (Fig. 1e). These vectors have values greater than or equal to
zero. Similar to NMF, the factors are permutable and the elements with greater
loadings represent an important component of a biological pattern captured by the
corresponding factor. Values of individual elements in this approximation are
represented by:

χijkl � ∑
R

r¼1
cri � prj � srk � trl ð2Þ

The tensor factorization is performed by iterating the following objective function
until convergence through an alternating least squares minimization17,68:

minfc;p;s;tg χ � ∑
R

r¼1
cr � pr � sr � tr
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Where �j jj j2Frepresent the squared Frobenius norm of a tensor, calculated as the
sum of element-wise squares in the tensor:
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All the described calculations were implemented in Tensor-cell2cell through
functions available in Tensorly69, a Python library for tensors.

Measuring the error of the tensor decomposition. Depending on the number of
factors used for approximating the 4D-communication tensor, the reconstruction
error calculated in the objective function can vary. To quantify the error with an
interpretable value, we used a normalized reconstruction error as previously
described12. This normalized error is on a scale of zero to one and is analogous to
the fraction of unexplained variance used in PCA:

χ �∑R
r¼1c
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Running tensor-cell2cell with communication scores from external tools. We
assessed the similarity of tensor decomposition on the BALF dataset using different
communication scoring methods (CellChat10, CellPhoneDB19, NATMI9,
SingleCellSignalR20, and Tensor-cell2cell’s built-in scoring). To enable consistency
between methods, we used the same ligand-receptor PPI database (CellChat—see
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“Ligand-receptor pairs”) and ran each method via LIANA22. LIANA provides a
number of advantages over running each tool separately, including consistent
thresholding and parameters, interoperability between methods and LR databases,
and modifications to allow methods that could not originally account for protein
complexes to do so. We adjusted parameters to match those of Tensor-cell2cell’s
built-in scoring by not filtering for minimal proportions of expression by cell type
or thresholding for differentially expressed genes.

As input to LIANA, we constructed a Seurat object with log(CPM+ 1)
normalized counts for each sample. For each tool and sample, LIANA outputs an
edge-list of communication scores for a given combination of sender and receiver
cells, as well as ligand-receptor pairs. We extended Tensor-cell2cell’s functionalities
to restructure a set of these edge-lists, each associated with a sample, into a 4D-
communication tensor (Fig. 1). This functionality enables users to either provide
input expression matrices and use Tensor-cell2cell’s built-in scoring, or to run their
communication scoring method of choice on each sample and provide the resultant
edge-lists as input. To further ensure consistency, we subset each resultant tensor to
the intersection of ligand-receptor pairs scored across all 5 methods. For each
method, this resulted in a tensor consisting of 12 samples, 172 ligand-receptor
pairs, and 6 sender and receiver cells.

Evaluating the effect of gene expression preprocessing and batch-effect
correction on Tensor-cell2cell. To evaluate how gene expression preprocessing
and batch-effect correction impact the results of Tensor-cell2cell, we assessed the
similarity of tensor decomposition on the BALF dataset. To compute the com-
munication scores for building the tensors (Fig. 1a), we used different gene
expression values, including the raw UMI counts, the preprocessed values with
log(CPM+ 1) and the fraction of non-zero cells23, and the batch-corrected values
with ComBat24 and Scanorama25. Except by the fraction of non-zero cells, which
already aggregated single-cells into cell-types, other values were aggregated into the
cell-type level by computing their average value for each gene across single cells
with the same cell-type label. As the communication score, we used the expression
mean of the interacting partners in each LR pair. Thus, we built 4D-
communication tensors as mentioned for the BALF data in the Methods subsection
“Building the context-aware communication tensor”. The tensor decomposition
resulting with the fraction of non-zero cells in this case corresponds to the same in
Fig. 4.

Measuring the similarity between distinct tensor decomposition runs. To
assess decomposition consistency between different scoring methods or pre-
processing pipelines, we employed the CorrIndex21. The CorrIndex is a permu-
tation- and scaling-invariant distance metric that enables consistent comparison of
decompositions between tensors containing the same elements, without need to
align the factors obtained in each case (separate tensor decompositions can output
similar factors but in different order). The CorrIndex value lies between 0 and 1,
with a higher score indicating more dissimilar decomposition outputs. To score
tensor decompositions, the output factor matrices must first be vertically stacked.
We implemented a modification that instead assesses each tensor dimension
separately (see Supplementary Note for more details). While taking the minimal
score between all dimensions tends to be more stringent, it disregards the com-
binatorial effects of all dimensions together. These combinatorial effects are
important because they better reflect the goal of tensor decomposition and because
similarity in those dimensions that are not the minimal one may be artificially
inflated. To facilitate the use of the CorrIndex and its modified version, we wrote a
Python implementation that is available on the Tensorly package69.

Downstream analyses using the loadings from the tensor decomposition. We
incorporate several downstream analyses of Tensor-cell2cell’s decomposition out-
puts to further elucidate the underlying cell- and molecular- mediators of cell–cell
communication. Each of these analyses are associated with a specific tensor
dimension, and thus, a specific biological resolution. This includes (1) statistical,
correlative, and clustering analyses to understand context associations for each
factor, (2) gene set enrichment analysis of ligand-receptor loadings to identify
granular signaling pathways associated with factors, (3) the generation of factor-
specific cell–cell communication networks to represent the overall communication
state of cells in that factor.

We can understand the context associations for a factor by comparing the
loadings of samples associated with distinct contexts. For statistical significance, we
conduct an independent t-test pairwise between each context group associated with
the samples and use Bonferonni’s correction to account for multiple comparisons.
We use this for both the COVID-19 BALF dataset (Supplementary Figures 7 and 8)
and the ASD dataset (Fig. 5c). We also conduct correlative analyses – assuming
ordinal contexts (i.e., healthy control < moderate COVID-19 < severe COVID-19),
we take the Spearman correlation between the sample loadings and sample severity
(Fig. 4c). Finally, we also hierarchically cluster the samples using their loadings
across all factors (Fig. 5d). For this purpose, we use the normalized loadings
resulting from the tensor decomposition, and standardize them across all factors.
Then, we apply an agglomerative hierarchical clustering by using Ward’s method
and the Euclidean distance as a metric. Note that this type of clustering analysis can
be applied to the other tensor dimensions.

We can use the LR-pair loadings of a factor to identify the signaling pathways
associated with it, by using the Gene Set Enrichment Analysis51 (GSEA). Before
running the analysis, pathways of interest have to be assigned to a list of associated
LR pairs. We do that by considering the KEGG gene sets available at the
“MsigDB51 [http://www.gsea-msigdb.org/]”. We annotate a LR pair available in
CellChat with the gene sets that contain all genes participating in that LR
interaction. Then, by filtering LR pathway sets to those containing at least 15 LR
pairs, we end up with 22 LR pathway sets. To run GSEA, we rank the LR pairs in
each factor by their loadings, and use the PreRanked GSEA function in the package
gseapy, by including the 22 LR pathway sets as input. As parameters of the
“gseapy.prerank” function, we consider 999 permutations, gene sets (LR pathway
sets here) with at least 15 elements, and a score weight of 1 for computing the
enrichment scores51.

Finally, we generate factor-specific cell–cell communication networks. To do so,
for a factor r, we take the outer product between the sender-cell loadings vector, sr,
and the receiver-cell loadings vector, tr. Conceptually, this outer product represents
an adjacency matrix of a factor-specific cell–cell communication network, where
each value is an edge weight representing the overall communication between a
pair of sender-receiver cells (Supplementary Fig. 9). We can further use this
network to understand the communication distribution inequality between sender
and receiver cells. We compute a Gini coefficient70 ranging between 0 and 1 on the
distribution of edge weights in the adjacency matrix (Fig. 4c). A value of 1
represents maximal inequality of overall communication between cell pairs (i.e. one
cell pair has a high overall communication value while the others have a value of 0)
and 0 indicates minimal inequality (i.e. all cell pairs have the same overall
communication values). More generally, the outer product between any two tensor
dimension loadings for a given factor conceptually represents the joint distribution
of the elements in those two dimensions and can be informative of how the specific
elements are related.

Benchmarking of computational efficiency of tools. We measured the running
time and memory demanded by Tensor-cell2cell and CellChat to analyze the
COVID-19 dataset containing PBMC samples. Each tool was evaluated in two
scenarios: either using each sample individually, or by first combining samples by
severity (control, mild/moderate, and severe/critical) by aggregating the expression
matrices. The latter was intended to favor CellChat by diminishing the number of
pairwise comparisons to always be between three contexts; thus, increases in
running time or memory demand in this case are not due to an exponentiation of
comparisons (n samples choose 2). CellChat was run by following the procedures
outlined in the Comparison_analysis_of_multiple_datasets vignette in its “tutorial
[https://github.com/sqjin/CellChat/tree/master/tutorial]”. Briefly, signaling path-
way communication probabilities were first individually calculated for each sample
or context. Next, pairwise comparisons between each sample or context were
obtained by computing either a “functional” or a “structural” similarity. The
functional approach computes a Jaccard index to compare the signaling pathways
that are active in two cellular communication networks, while the structural
approach computes a network dissimilarity71 to compare the topology of two
signaling networks (see ref. 10 for further details). Finally, CellChat performs a
manifold learning approach on sample similarities and returns UMAP embeddings
for each signaling pathway in each different context (e.g., if CellChat evaluates
10 signaling pathways in 3 different contexts, it will return embeddings for 30
points) which can be used to rank the similarity of shared signaling pathways
between contexts in a pairwise manner.

The analyses of computational efficiency were run on a compute cluster of
2.8 GHz ×2 Intel(R) Xeon(R) Gold 6242 CPUs with 1.5 TB of RAM (Micron
72ASS8G72LZ-2G6D2) across 32 cores. Each timing task was limited to 128 GB of
RAM on one isolated core and one thread independently where no other processes
were being performed. To limit channel delay, data was stored on the node where
the job was performed, where the within socket latency and bandwidth are 78.9 ns
and 46,102 MB/s respectively. For all timing jobs, the same ligand-receptor pairs
and cell types were used. Furthermore, to make the timing comparable, all samples
in the dataset were subsampled to have 2,000 single cells. In the case of Tensor-
cell2cell, the analysis was also repeated by using a GPU, which corresponded to a
Nvidia Tesla V100.

Training and evaluation of a classification model. A Random Forest72 (RF)
model was trained to predict disease status based on both COVID-19 status
(healthy control vs. patient with COVID-19) and severity (healthy control, mod-
erate symptoms, and severe symptoms). The RF model was trained using a Stra-
tified K-Folds cross-validation (CV) with 3-Fold CV splits. On each CV split a RF
model with 500 estimators was trained and RF probability-predictions were
compared to the test set using the Receiver Operating Characteristic (ROC). The
mean and standard deviation from the mean were calculated for the area under the
Area Under the Curve (AUC) across the CV splits. This classification was per-
formed on the context loadings of Tensor-cell2cell, and the two UMAP dimensions
of the structural and functional joint manifold learning of CellChat, for both the
BALF and PBMC COVID-19 datasets. All classification was performed through
Scikit-learn (v. 0.23.2)73.
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Statistics and reproducibility. No sample-size calculation was performed. Instead,
we used the number of samples included in each of the previously published datasets
that we used. The only data exclusion performed was for the PBMC COVID-19
datasets, which originally includes 284 samples. For running our benchmarking, we
subset the dataset to only include 60 samples. These samples were randomly selected
for each COVID-19 severity, with 20 corresponding to control patients, 20 to mild/
moderate COVID-19 patients, and 20 to severe/critical COVID-19 patients. For
reproducibility, we deposited all our analyses including data and exact versions of
code and software in a Code Ocean capsule. Results can be exactly replicated by
running the analyses in that capsule. Randomization and blinding do not apply to this
work because we analyzed previously published and annotated datasets.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All input data used for the analyses in this work and the result-generated data are
available online in a “Code Ocean capsule [https://doi.org/10.24433/CO.0051950.v2]”. In
particular, we used a single-cell atlas of COVID-19 in humans64, previously deposited in
the NCBI’s Gene Expression Omnibus database under accession code “GSE158055”, a
COVID-19 dataset of single-cell transcriptomes for BALF samples27, previously
deposited in the NCBI’s Gene Expression Omnibus database under accession code
“GSE145926”, and a single-nucleus ASD dataset previously deposited in the NCBI’s
BioProject database under accession code “PRJNA434002”. The list of ligand-receptor
interactions employed in our analyses corresponds to the database previously published
with CellChat10, and is available in a “Compendium of Ligand-Receptor Pairs [https://
github.com/LewisLabUCSD/Ligand-Receptor-Pairs/blob/master/Human/Human-2020-
Jin-LR-pairs.csv]” that we previously published5. The data generated in this study for the
loadings resulting from the tensor decompositions of the simulated, COVID-19 and ASD
datasets are available in the Source Data file. Source data that are not included in this file
can be found and reproduced in the Code Ocean capsule. All other relevant data
supporting the key findings of this study are available within the article and its
Supplementary Information files or from the corresponding author upon reasonable
request. Source data are provided with this paper.

Code availability
All the code used for the analyses in this work is available online in a “Code Ocean
capsule [https://doi.org/10.24433/CO.0051950.v2]”, which includes the exact version of
all tools and software employed, and allows one to perform online a reproducible run of
our analyses, outputting pertinent results. Tensor-cell2cell is implemented in our cell2cell
suite61, and its GitHub repository and full documentation can be found at http://lewislab.
ucsd.edu/cell2cell/, which also includes comprehensive tutorials that go from raw UMI
data to running Tensor-cell2cell, followed by downstream analyses using Tensor-
cell2cell’s outputs. The code for benchmarking the computational efficiency should be
run in a local computer, and is available in a “GitHub repository [https://github.com/
LewisLabUCSD/CCC-Benchmark]”.
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