UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Integer Comparison and the Inverse Symbolic Distance Effect

Permalink

https://escholarship.org/uc/item/7fj4w27r
Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 29(29)
ISSN
1069-7977

Authors

Varma, Sashank
Schwartz, Daniel L.
Lindgren, Robb
et al.

Publication Date

2007
Peer reviewed

Integer Comparison and the Inverse Symbolic Distance Effect

Sashank Varma (sashank@stanford.edu)
Daniel L. Schwartz (danls@stanford.edu)
Robb Lindgren (robblind@stanford.edu)
Janet Go (janetgo@stanford.edu)
Stanford Center for Innovations in Learning, Stanford University 450 Serra Mall, Building 160, Stanford, CA 94305-2055

Keywords: Symbolic distance effect; mental representation.

Introduction

The positive integers constitute the most well-studied number class. An important finding is the symbolic distance effect (SDE): the greater the distance between two positive integers, the faster they are compared (Moyer \& Landauer, 1967). The SDE is important because it indicates that numerical symbols are understood in part as magnitudes, i.e., using a mental number line. The current study investigated whether the SDE holds for all integers positive, negative, and zero.

Method

21 participants were recruited from the Stanford University community. Two repeated measures were varied orthogonally. Distance had two levels: far and near. Comparison type had four levels: positive (x vs. y), negative ($-x$ vs. $-y$), mixed (x vs. $-y$), and zero (x vs. 0 (positive valence) and $-y$ vs. 0 (negative valence)). The dependent variable was response time on correct trials

Results

A multivariate analysis revealed reliable main effects of comparison type $(F(3,18)=69.79, p<.001)$ and distance $(F(1,18)=10.51, \quad p<.005)$ and a reliable interaction $(F(3,18)=15.13, \quad p<.001)$. Means, standard errors, and sample comparisons are shown in Figure 1. Positive comparisons showed an $\operatorname{SDE} \quad(t(20)=4.33, p<.001)$, suggesting use of magnitude processing (i.e., a mental number line). Negative comparisons showed an $\operatorname{SDE}(t(20)=$ $4.43, p<.001$), also suggesting use of magnitude processing.

Figure 1: Symbolic distance effects.

Surprisingly, mixed comparisons showed an inverse SDE, with far comparisons slower than near comparisons $(t(20)=4.94, p<.001)$. This is inconsistent with the use of magnitude processing, which predicts a conventional SDE. It is also inconsistent with the use of rules (e.g., "positives are greater than negatives"), which predicts a flat line.

Zero comparisons failed to show an $\operatorname{SDE}(t(20)=.08$, $p>.93$). A natural interpretation is that participants used rules (e.g., "positives are greater than zero"), not magnitude processing. To test this interpretation, we conducted a multivariate analysis with two repeated measures, valence (i.e., the sign of the non-zero number) and distance. The interaction was reliable $(F(1,20)=6.57, p<.02)$, as shown in Figure 2. Positive-valence comparisons show an SDE and negative-valence comparisons an inverse SDE.

Discussion

This study investigated the mental representation of integers. The results suggest that integers partition mentally into two classes, non-negative and negative. Comparisons within the same class show an SDE. This is consistent with conventional magnitude processing, i.e., a conventional mental number line stretching from $-\infty$ to ∞. By contrast, comparisons across classes (i.e., a negative integer to either a positive integer or zero) show an inverse SDE. This is inconsistent with conventional magnitude processing. We are developing a new (and unconventional) mathematical model to account for these results.

Acknowledgments

This research was supported by the National Science Foundation under grants REC-0337715 and SLC-0354453. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation

Reference

Moyer, R. S., \& Landauer, T. K. (1967). The time required for judgments of numerical inequality. Nature, 215, 1519.

