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Abstract The reduced Rayleigh equation for the scatter-
ing of a surface plasmon polariton incident non-normally
on a one-dimensional ridge or groove on an otherwise pla-
nar metal surface is solved by a purely numerical approach.
The solution is used to calculate the transmission, reflection,
and out-of-plane scattering coefficients of the surface plas-
mon polariton. The angular dependence of the out-of-plane
scattering is found to have a conical nature.

Keywords Surface plasmon · Polariton

Introduction

In the great majority of the theoretical studies of the scat-
tering of a surface plasmon polariton by linear surface topo-
graphical defects, ridges, and grooves, it has been assumed
that the surface electromagnetic wave is incident normally
on the defect [1–13]. The single exception to this general
practice is the work of Nikitin and Martı́n-Moreno [14] who
studied the scattering of a surface plasmon polariton inci-
dent obliquely on a one-dimensional surface relief defect
with the use of both an approximate impedance bound-
ary condition and a Rayleigh expansion. This scattering
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geometry is an important one to study because the determi-
nation of surface plasmon polariton reflection coefficients
are easier to obtain experimentally in oblique incidence.
In addition, the solution of the oblique incidence case
constitutes the more general case.

In this paper, we present an approach to the determination
of the reflection, transmission, and out-of-plane scatter-
ing coefficients of a surface plasmon polariton incident
obliquely on a one-dimensional nanoscale topographical
surface defect on an otherwise planar vacuum-metal inter-
face. It is based on a purely numerical solution of the
reduced Rayleigh equation for this scattering problem, and
is exact when the surface profile function defining the
defect satisfies the condition [15–23] for the validity of the
Rayleigh hypothesis [24]. This has been discussed in our
earlier work [13].

In addition to providing exact results for the reflection,
transmission, and out-of-plane scattering coefficients, we
also show that the out-of-plane scattered field is in fact con-
ically scattered, a feature that has not been noted in earlier
studies of this problem.

Although the incident surface plasmon polariton is p-
polarized, the fact that it is incident obliquely on the one-
dimensional surface defect means that the scattered volume
electromagnetic fields have both p- and s-polarized com-
ponents. Consequently, we have to work with the reduced
Rayleigh equation for a two-dimensional rough surface [25].

In the form used in this paper, the reduced Rayleigh
equation is applicable only to lossless metals. This is not
a serious restriction because the surface plasmon polariton
propagation length is in general significantly longer than
the width of a nanoscale surface defect, as was discussed in
[13]. It is a restriction that can be lifted at the expense of
having to solve a more complicated, one-dimensional 2 x 2
matrix integral equation for the scattering amplitudes [8].

mailto:rfitzgerald@utep.edu
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The Scattered Field

The system we study consists of vacuum in the region
x3 > ζ(x1), and a metal, characterized by an isotropic,
frequency-dependent, real dielectric function ε(ω), in the
region x3 < ζ(x1) (Fig. 1). We work in the frequency
region where ε(ω) < 0, which is the frequency region in
which a surface plasmon polariton exists.

The surface profile function ζ(x1) is assumed to be a
single-valued function of x1 that is differentiable, and is sen-
sibly nonzero over only a finite portion of the x1 axis about
its origin.

A surface plasmon polariton of frequency ω is obliquely
incident on the surface defect. The electric field in the region
x3 > ζ(x1)max is the sum of an incident and a scattered
field:

E(x|ω) = − c

ω
[−iβ0(k‖)k̂‖ + k‖x̂3] exp[ik‖ · x‖ − β0(k‖)x3]

+
∫

d2q‖
(2π)2

{ c

ω
[iβ0(q‖)q̂‖− q‖x̂3]Ap(q‖) + (x̂3 × q̂‖)As(q‖)

}

× exp[iq‖ · x‖ − β0(q‖)x3], (2.1)

where

k‖ = k‖(ω)(cos φ0, sin φ0, 0), k‖(ω) = ω

c

[
ε(ω)

ε(ω) + 1

] 1
2

,

(2.2)

and φ0 is the azimuthal angle of incidence of the surface
plasmon polariton, measured counterclockwise from the
negative x1 axis. The subscripts p and s denote the p- and
s-polarized components of each of these fields with respect
to the plane of incidence, defined by the vectors k̂‖ and x̂3,
and the plane of scattering, defined by the vectors q̂‖ and
x̂3, respectively.

The function β0(q‖) appearing in Eq. 2.1 is defined by

β0(q‖) = [q2‖ − (ω/c)2] 1
2 , Reβ0(q‖) > 0, Imβ0(q‖) < 0.

(2.3)

The function β0(k‖) = (ω/c){−1/[ε(ω) + 1]} 1
2 is real

and positive because ε(ω) is real and negative.
We can write a similar expression for the electric field in

the region x3 < ζ(x‖)min, and use it with Eq. 2.1 in satis-
fying the boundary conditions at the surface x3 = ζ(x‖).
However, it has been shown in [25] that the field in the
medium can be eliminated from the problem. The ampli-
tudes Ap,s(q‖) then satisfy a matrix integral equation, called
the reduced Rayleigh equation, which can be written in the
form

1

1 − ε(ω)

[
ε(ω)β0(p‖) + β(p‖) 0

0 β0(p‖) + β(p‖)

] [
Ap(p‖)
As(p‖)

]

+
∫

d2q‖
(2π)2

J (β(p‖) − β0(q‖)|p‖ − q‖)

×
[

p‖q‖ − β(p‖)p̂‖ · q̂‖β0(q‖) −i(ω/c)β(p‖)(p̂‖ × q̂‖)3

i(ω/c)(p̂‖ × q̂‖)3β0(q‖) (ω/c)2p̂‖ · q̂‖

] [
Ap(q‖)
As(q‖)

]

= −J (β(p‖) − β0(k‖)|p‖ − k‖)
[

P‖ − β(p‖)p̂‖ · k̂‖β0(k‖)
i(ω/c)(p̂‖ × k̂‖)3β0(k‖)

]
, (2.4)

where

J (α|Q‖) =
∫

d2x‖e−iQ‖·x‖ eαζ(x1) − 1

α
, (2.5)

= 2πδ(Q2)F (α|Q1), (2.6a)

with

F(α|Q1) =
∞∫

−∞
dx1e

−iQ1x1
eαζ(x1) − 1

α
. (2.6b)

The function β(q‖) is defined by

β(q‖) = [q2‖ − ε(ω)(ω/c)2] 1
2 , Reβ(q‖)

> 0, Imβ(q‖) < 0.

(2.7)
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Fig. 1 The schematic diagram of the studied system
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The vanishing of the coefficient of Ap(p‖) on the left-
hand-side of Eq. 2.4 is the dispersion relation for surface
plasmon polaritons at the planar interface between vacuum
and a metal whose dielectric function is ε(ω). This means
that the coefficient Ap(p‖) has a pole at q‖ = k‖. It
is preferable to solve integral equations for smoothly vary-
ing functions than for functions with singularities. Thus,
we wish to remove the singularity from the function we
solve for. At the same time, the infinitesimal translational
invariance of our system in the x2 direction has the con-
sequence that the two components of the two-dimensional
wave vectors appearing in this problem is conserved in the

scattering. We deal with both of these points by introducing
new unknown amplitudes cp,s(p1) by

Ap(p‖) = 2πδ(p2 − k2)
cp(p1)

ε(ω)β0(p‖) + β(p‖)
(2.8a)

and

As(p‖) = 2πδ(p2 − k2)
cs(p1)

β0(p‖) + β(p‖)
. (2.8b)

When these expressions are substituted into Eq. 2.4, we
obtain the equations satisfied by cp,s(p1). We write them in
the form

[
cp(p1)

cs(p1)

]
= (ε(ω) − 1)F (β(p‖) − β0(k‖)|p1 − k1)

[
p‖k‖ − β(p‖)p̂‖ · k̂‖β0(k‖)
i(ω/c)(p̂‖ × k̂‖)3β0(k‖)

]

+(ε(ω) − 1)

∫ ∞

−∞
dq1

2π
F(β(p‖) − β0(q‖)|p1 − q1)

×
⎡
⎣

p‖q‖−β(p‖)p̂‖·q̂‖β0(q‖)
ε(ω)β0(q‖)+β(q‖) − i(ω/c)β(p‖)(p̂‖×q̂‖)3

β0(q‖)+β(q‖)
i(ω/c)(p̂‖×q̂‖)3β0(q‖)

ε(ω)β0(q‖)+β(q‖)
(ω/c)2p̂‖·q̂‖

β0(q‖)+β(q‖)

⎤
⎦

[
cp(q1)

cs(q1)

]
. (2.9)

Although, to simplify the notation, we have written this
equation in terms of the vectors p‖ and q‖, we emphasize
that the two components of each vector is k2(ω), so that

p‖ = (p1, k2, 0), p‖ = (p2
1 + k2

2)
1
2 , p̂‖ = (p1, k2, 0)

(p2
1 + k2

2)
1
2

,

(2.10a)

and

q‖ = (q1, k2, 0), q‖ = (q2
1 + k2

2)
1
2 , q̂‖ = (q1, k2, 0)

(q2
1 + k2

2)
1
2

.

(2.10b)

Equation 2.9 is the equation we have to solve. We will do
so numerically.

The Reflection, Transmission, and Radiation
Coefficients

To determine the reflectivity and transmissivity of the sur-
face plasmon polariton, and the out-of-plane scattering coef-
ficient, we need the total time-averaged incident, reflected,
and transmitted fluxes of the energy of the surface plasmon
polariton and of the volume electromagnetic field scattered
into the vacuum.

The electric and magnetic fields of the incident surface
plasmon polariton in the vacuum region x3 > ζ(x1) are

E>(x|ω)inc = c

ω
(ik̂1β0(k‖), ik̂2β0(k‖),

− k‖) exp[ik‖ · x‖ − β0(k‖)x3] (3.1a)

H>(x|ω)inc = (−k̂2, k̂1, 0) exp[ik‖ · x‖ − β0(k‖)x3],(3.1b)

while in the region of the metal x3 < ζ(x1), they are

E<(x|ω)inc = c

ω

(
ik̂1β0(k‖), ik̂2β0(k‖),

β0(k‖)
β(k‖)

k‖
)

exp[ik‖ · x‖ + β(k‖)x3] (3.2a)

H<(x|ω)inc = (−k̂2, k̂1, 0) exp[ik‖ · x‖ + β(k‖)x3]. (3.2b)

Consequently, the time-averaged Poynting vector for the
surface plasmon polariton in the vacuum region is

〈S>(x|ω)〉inc = c2

8πω
Re(k1, k2, iβ0(k‖)) exp[−2β0(k‖)x3]

= c2

8πω
k‖ exp[−2β0(k‖)x3]. (3.3)

Thus the magnitude of the total time-averaged incident flux
in the vacuum per unit width of the field is

P >
inc = c2

8πω

k‖
2β0(k‖)

. (3.4)
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Similarly, the total time-averaged Poynting vector for the
surface plasmon polariton in the metal is

〈S<(x|ω)〉inc = − c2

8πω

β0(k‖)
β(k‖)

Re(k1, k2, −iβ(k‖))

exp[2β(k‖)x3]
= c2

8πωε(ω)
k‖ exp[2β(k‖)x3]. (3.5)

The magnitude of the total time-averaged incident flux in
the metal per unit width of the field is therefore

P <
inc = c2

8πωε(ω)

k‖
2β(k‖)

. (3.6)

Thus, the total incident flux is

Pinc = P >
inc + P <

inc = c2

16πω
k‖

(
1

β0(k‖)
+ 1

ε(ω)β(k‖)

)

= c2

16πω

k‖
β0(k‖)

(
1 − 1

ε2(ω)

)
. (3.7)

We now turn to the reflected and transmitted surface
plasmon polaritons. As a surface plasmon polariton is p-
polarized, we consider the contribution to the scattered
electric field in the vacuum from the p-polarized waves
which, in view of Eqs. 2.1 and 2.8a, becomes

E>(x|ω)sc,p =
∞∫

−∞

dq1

2π

c

ω
[iβ0(q‖)q̂‖ − q‖x̂3] cp(q1)

ε(ω)β0(q‖) + β(q‖)

× exp[iq‖ · x‖ − β0(q‖)x3], (3.8)

where it should be understood that q2 = k2. The contribu-
tion to this expression from the surface plasmon polariton is
given by the residues at the poles of the integrand occurring
at q1 = ± k1. The manner in which this calculation is car-
ried out is described in [26], and we present only the results
here.

Thus, for the scattered fields in the vacuum we have

E>(x|ω)sc,spp = it (ω)
c

ω
[iβ0(k‖)k̂1, iβ0(k‖)k̂2, −k‖]

×exp[ik1x1 + ik2x2 − β0(k‖)x3] x1 > 0

(3.9a)

= ir(ω)
c

ω
[−iβ0(k‖)k̂1, iβ0(k‖)k̂2, −k‖]

× exp[−ik1x1 + ik2x2 − β0(k‖)x3] x1 < 0 (3.9b)

H>(x|ω)sc,spp = it (ω)(−k̂2, k̂1, 0)

× exp[ik1x1 + ik2x2 − β0(k‖)x3] x1 > 0

(3.10a)

= ir(ω)(−k̂2, −k̂1, 0)

× exp[−ik1x1 + ik2x2 − β0(k‖)x3] x1 < 0, (3.10b)

where

t (ω) = ε(ω)

ε2(ω) − 1

β0(k‖)
k1

cp(k1) (3.11a)

r(ω) = ε(ω)

ε2(ω) − 1

β0(k‖)
k1

cp(−k1). (3.11b)

Similarly, for the scattered fields in the metal we have

E<(x|ω)sc,spp = it (ω)
c

ω

[
iβ0(k‖)k̂1, iβ0(k‖)k̂2, − k‖

ε(ω)

]

× exp[ik1x1 + ik2x2 + β(k‖)x3] x1 > 0

(3.12a)

= ir(ω)
c

ω

[
−iβ0(k‖)k̂1, iβ0(k‖)k̂2, − k‖

ε(ω)

]

× exp[−ik1x1 + ik2x2 + β(k‖)x3] x1 < 0 (3.12b)

H<(x|ω)sc,spp = it (ω)(−k̂2, k̂1, 0)

× exp[ik1x1 + ik2x2 + β(k‖)x3] x1 > 0

(3.13a)

= ir(ω)(−k̂2, −k̂1, 0)

× exp[−ik1x1 + ik2x2 + β(k‖)x3] x1 < 0. (3.13b)

The time-averaged Poynting vector of the reflected plas-
mon polariton in the vacuum region is therefore

〈S>(x|ω)〉ref = c2

8πω
|r(ω)|2(−k1, k2, 0) exp[−2β0(k‖)x3].

(3.14)

Thus the total time-averaged reflected flux per unit width of
the field is

P >
ref = c2

8πω
|r(ω)|2 (−k1, k2, 0)

2β0(k‖)
. (3.15)

Similarly, the time-averaged Poynting vector of the reflected
plasmon polariton in the metal is

〈S<(x|ω)〉ref = c2

8πωε(ω)
|r(ω)|2(−k1, k2, 0) exp[2β(k‖)x3].

(3.16)

Therefore the total time-averaged reflected flux per unit
width of the field in the metal is

P <
ref = c2

8πωε(ω)
|r(ω)|2 (−k1, k2, 0)

2β(k‖)

= c2

8πωε(ω)
|r(ω)|2 (−k1, k2, 0)

2β0(k‖)
β0(k‖)
β(k‖)

= − c2

8πω
|r(ω)|2 (−k1, k2, 0)

2β(k‖)
1

ε2(ω)
. (3.17)
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The total flux of the reflected surface plasmon polariton is
therefore

P ref = P >
ref + P <

ref

= c2

8πω
|r(ω)|2 (−k1, k2, 0)

2β0(k‖)

(
1 − 1

ε2(ω)

)
. (3.18)

The magnitude of this flux is

Pref = c2

8πω
|r(ω)|2 k‖

2β0(k‖)

(
1 − 1

ε2(ω)

)
. (3.19)

Thus, the reflectivity of the surface plasmon polariton is

R(ω) = Pref

Pinc
= |r(ω)|2. (3.20)

Turning now to the surface plasmon polariton transmis-
sion coefficient, we see from Eqs. 3.1, 3.2, 3.9a, 3.10a,
3.12a, and 3.13a that the total electric and magnetic fields
of the surface plasmon polariton in the region x1 > 0 in
the vacuum and the metal can be written

E>(x|ω)tr, spp = (1 + it (ω))
c

ω
[iβ0(k‖)k̂1, iβ0(k‖)k̂2, −k‖]

× exp[ik1x1 + ik2x2 − β0(k‖)x3] (3.21a)

H>(x|ω)tr, spp = (1 + it (ω))(−k̂2, k̂1, 0)

× exp[ik1x1 + ik2x2 − β0(k‖)x3], (3.21b)

and

E<(x|ω)tr, spp = (1 + it (ω))
c

ω

[
iβ0(k‖)k̂1, iβ0(k‖)k̂2,− k‖

ε(ω)

]

× exp[ik1x1 + ik2x2 + β(k‖)x3] (3.22a)

H<(x|ω)tr, spp = (1 + it (ω))(−k̂2, k̂1, 0)

× exp[ik1x1 + ik2x2 + β(k‖)x3]. (3.22b)

The first term on the right-hand side of each of these expres-
sions arises from the incident field, which is present in the
region x1 > 0 even in the absence of the defect.

The time-averaged Poynting vector for the transmitted
surface plasmon polariton in the vacuum is then given by

〈S>(x|ω)〉tr = c2

8πω
|1 + it (ω)|2Re(k1, k2, iβ0(k‖))

exp[−2β0(k‖)x3]
= c2

8πω
|1 + it (ω)|2(k1, k2, 0)

exp[−2β0(k‖)x3]. (3.23)

Thus the total time-averaged transmitted flux per unit width
of the field is

P >
tr = c2

8πω
|1 + it (ω)|2 k‖

2β0(k‖)
. (3.24)

The time-averaged Poynting vector of the transmitted sur-
face plasmon polariton in the metal is

〈S<(x|ω)〉tr = c2

8πω
|1 + it (ω)|2

Re

(
k1

ε(ω)
,

k2

ε(ω)
, iβ0(k‖)

)
exp[2β(k‖)x3]

= c2

8πωε(ω)
|1 + it (ω)|2(k1, k2, 0)

exp[2β(k‖)x3].
(3.25)

Therefore, the total time-averaged transmitted flux per unit
width of the field in the metal is

P <
tr = c2

8πωε(ω)
|1 + it (ω)|2 k‖

2β(k‖)
. (3.26)

The total flux of the transmitted surface plasmon polariton
is therefore

P tr = c2

8πω
|1 + it (ω)|2k‖

(
1

2β0(k‖)
+ 1

2ε(ω)β(k‖)

)

= c2

8πω
|1 + it (ω)|2 k‖

2β0(k‖)

(
1 − 1

ε2(ω)

)
. (3.27)

The magnitude of this flux is

Ptr = c2

8πω
|1 + it (ω)|2 k‖

2β0(k‖)

(
1 − 1

ε2(ω)

)
. (3.28)

Consequently the transmissivity of the surface plasmon
polariton is

T (ω) = Ptr

Pinc
= |1 + it (ω)|2. (3.29)

To obtain the out-of-plane scattering coefficient we need
the three-component of the Poynting vector of the electro-
magnetic field radiated into the vacuum region. This field
contains both p- and s- polarized components. Its electric
field, the integral term on the right-hand side of Eq. 2.1, can
be written in the following form, which is particularly useful
for calculating the radiated power:

E>(x|ω)sc = i

∞∫

−∞

dq1

2π
exp[iq‖ · x‖ + iα0(q‖)x3]

×
[
(c/ω)[α0(q‖)q̂‖ − q‖x̂3]

ε(ω)α0(q‖) + α(q‖)
cp(q1)

+ (x̂3 × q̂‖)
α0(q‖) + α(q‖)

cs(q1)

]
. (3.30)

In writing this equation we have introduced the functions
α0(q‖) and α(q‖) through the relations

β0(q‖) = −iα0(q‖), β(q‖) = −iα(q‖), (3.31)
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so that

α0(q‖) = [(ω/c)2 − q2‖ ] 1
2 , Reα0(q‖)

> 0, Imα0(q‖) > 0

(3.32a)

α(q‖) = [ε(ω)(ω/c)2 − q2‖ ] 1
2 , Reα(q‖)

> 0, Imα(q‖) > 0.

(3.32b)

It should be kept in mind that in these equations q2 = k2.
The magnetic field radiated into the vacuum is then given by

H>(x|ω)sc = i

∞∫

−∞

dq1

2π
exp[iq‖ · x‖ + iα0(q‖)x3]

×
[

(x̂3 × q̂‖)
ε(ω)α0(q‖) + α(q‖)

cp(q1)

− (c/ω)[α0(q‖)q̂‖ − q‖x̂3]
α0(q‖) + α(q‖)

cs(q1)

]
. (3.33)

The three-component of the total time-averaged scattered
flux is then given by

P >
sc =

∫ L1
2

− L1
2

dx1

∫ L2
2

− L2
2

dx2〈S>(x|ω)3〉sc

= c

8π
Re

∫ L1
2

− L1
2

dx1

∫ L2
2

− L2
2

dx2

∞∫

−∞

dq1

2π

∞∫

−∞

dq ′
1

2π

× exp[i(q‖ − q ′‖) · x‖ + i(α0(q‖) − α∗
0(q ′‖))x3]

×
[

(êp(q‖) × ê
∗
s (q

′‖))3

dp(q‖)d∗
p(q ′‖)

cp(q1)c
∗
p(q ′

1)

− (êp(q‖) × êp
∗
(q‖′))3

dp(q‖)d∗
s (q ′)

cp(q1)c
∗
s (q

′
1)

+ (ês(q‖) × ê
∗
s (q

′‖))3

ds(q‖)d∗
p(q ′‖)

cs(q1)c
∗
p(q ′

1)

− (ês(q‖) × ê
∗
p(q ′‖))3

ds(q‖)d∗
s (q ′‖)

cs(q1)c
∗
s (q

′
1)

]
, (3.34)

where L1 and L2 are the lengths of the surface along the
x1 and x2 axes, respectively. In writing Eq. 3.34, we have
introduced the orthogonal unit vectors êp(q‖) and ês(q‖)
that are defined by

êp(q‖) = c

ω
[α0(q‖)q̂‖ − q‖x̂3], ês(q‖) = (x̂3 × q̂‖),

(3.35)

and the functions

dp(q‖) = ε(ω)α0(q‖) + α(q‖), ds(q‖)
= α0(q‖) + α(q‖).

(3.36)

After the integrations over x1 and x2 are carried out, Eq.
3.34 becomes

P >
sc = L2

c2

8πω

∞∫

−∞

dq1

2π
exp[−2Imα0(q‖)x3]

×Re

[
α0(q‖)

|cp(q1)|2
|dp(q‖)|2 + α∗

0(q‖)
|cs(q1)|2
|ds(q‖)|2

]
, (3.37)

where L2, the length of the surface along the x2 axis, is
assumed to equal the width of the incident surface plasmon
polariton in the direction perpendicular to its direction of
propagation. The function α0(q‖) is purely imaginary for
q‖ > (ω/c), so that we finally obtain

P >
sc = L2

c2

16π2ω

∫ √
(ω/c)2−k2

2

−
√

(ω/c)2−k2
2

dq1α0(q‖)
[

|cp(q1)|2
|dp(q‖)|2 + |cs(q1)|2

|ds(q‖)|2
]

. (3.38)

Normalized by the incident flux, this function yields the out-
of-plane scattering coefficient S(ω),

S(ω) = 1

π

|ε(ω)|3/2

ε2(ω) − 1

∫ √
(ω/c)2−k2

2

−
√

(ω/c)2−k2
2

dq1α0(q‖)
[

|cp(q1)|2
|dp(q‖)|2 + |cs(q1)|2

|ds(q‖)|2
]

. (3.39)

To obtain the angular distribution of the intensity of the
field scattered into the vacuum, we note that in terms of the
polar (θs) and azimuthal (φs) angles of scattering we have

q1 = ω

c
sin θs cos φs (3.40)

q2 = ω

c
sin θs sin φs = k2 = ω

c
n(ω) sin φ0, (3.41)

where 0 ≤ θs ≤ π/2, and −π ≤ φs ≤ π , while

n(ω) = [ε(ω)/(ε(ω) + 1)] 1
2 . From Eqs. 3.40–3.41 we

find that

q1 = n(ω)
ω

c
sin φ0 cot φs (3.42)

α0(q‖) = ω

c

[
1 − n2(ω)

sin2 φ0

sin2 φs

] 1
2

. (3.43)

As we are interested in the field scattered into the
vacuum region and not in grazing angle scattering,
we have to restrict θs to be smaller than π/2. For
what range of the azimuthal scattering angle φs is this
condition satisfied? We see from Eq. 3.41 that when
θs = π/2, sin φs = n(ω) sin φ0. This equa-
tion is satisfied for φs = sin−1(n(ω) sin φ0) and
φs = π − sin−1(n(ω) sin φ0). Consequently, it is for φs

between these values that θs is smaller than π/2. However,
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we can say more about the angular range in the vacuum
within which the scattered field exists.

Consider the vector from the origin to the point
(q, θs, φs) in spherical coordinates. Its representation in
Cartesian coordinates is

q = q(sin θs cos φs, sin θs sin φs, cos θs). (3.44)

The angle α it makes with the x2 axis is obtained from

q̂ · x̂2 = cos α = sin θs sin φs. (3.45)

If this vector is rotated about the x2 axis with the angle α

kept fixed, it generates a cone whose axis is the x2 axis and
whose interior angle is 2α. Thus, we see from Eq. 3.41 that
the scattered field lies on the surface of a cone whose axis
is the x2 axis and whose angle α is defined by

cos α = n(ω) sin φ0. (3.46)

This conclusion is compatible with the limits on the varia-
tion of φs within which θs < π/2.

We now return to Eq. 3.39. From Eq. 3.42 we find that

dq1 = −n(ω)
ω

c

sin φ0

sin2 φs

dφs. (3.47)

When q1 = [(ω/c)2 − k2
2] 1

2 , we obtain from Eq. 3.41 that

φs = sin−1(n(ω) sin φ0). When q1 = −[(ω/c)2 − k2
2] 1

2 ,
we find that φs = π − sin−1(n(ω) sin φ0). These results,
together with Eq. 3.43, transform Eq. 3.39 into

S(ω) = − 1

π

(ω

c

)2 |ε(ω)|3/2

ε2(ω) − 1
n(ω) sin φ0

×
∫ γ

π−γ

dφs

[sin2 φs − n2(ω) sin2 φ0] 1
2

| sin φs |3
[

|cp(q1)|2
|dp(q‖)|2 + |cs(q1)|2

|ds(q‖)|2
]

= 1

π

(ω

c

)2 ε2(ω)

(|ε(ω)| + 1)(|ε(ω)| − 1)3/2
sin φ0

×
∫ π−γ

γ

dφs

[sin2 φs − sin2 γ ] 1
2

| sin φs |3
[

|cp(q1)|2
|dp(q‖)|2

+ |cs(q1)|2
|ds(q‖)|2

]

≡
∫ π−γ

γ

dφsS(θs , φs |ω), (3.48)

where γ = sin−1(n(ω) sin φ0) = (π/2) − α. Although
we have written the integrand in Eq. 3.48 as a function of
both θs and φs , it should be kept in mind that in view of
Eq. 3.41, θs is not independent of φs . The fraction of the
total time-averaged incident flux that is scattered into the
angular region (φs, φs + dφs) in the vacuum region is
therefore

S(θs, φs |ω) = 1

π

(ω

c

)2 ε2(ω)

(|ε(ω)| + 1)(|ε(ω)| − 1)3/2
sin φ0

×[sin2 φs − sin2 γ ] 1
2

| sin φs |3
[

|cp(q1)|2
|dp(q‖)|2 + |cs(q1)|2

|ds(q‖)|2
]

,

(3.49)

where γ ≤ φs ≤ π − γ , and
θs = sin−1(n(ω) sin φ0/ sin φs).

The Numerical Solution of Equation 2.9

In solving Eq. 2.9 numerically, we first replace the infinite
region of integration by the finite region (−Q, Q), where
Q is typically in the range 6(ω/c) − 7(ω/c). Integration
over this region is then replaced by summation through the
use of a numerical quadrature scheme, namely the extended
midpoint rule [27]. Different integration mesh sizes are
used in different regions of the q1 axis, depending on the
nature of the integrand in these regions. The poles in the
kernel of the equation for cp(p1) at q1 = ± k1(ω),
arising from the vanishing of the denominator in the fac-
tor 1/[ε(ω)β0(q‖) + β(q‖)] are dealt with by giving ε(ω)

in only this denominator an infinitesimal positive imagi-
nary part. It is convenient to choose the integration mesh in
such a way that ±k1(ω) are among the values that q1 takes.
This simplifies the determination of cp(±k1(ω)), in terms
of which the surface plasmon polariton reflection R(ω) and
transmission T (ω) coefficients are expressed. When the
wave number p1 is given the same discrete values that q1

takes, a pair of coupled matrix equations is obtained for
the values of cp(p1) and cs(p1) at these values of q1. This
system of equations is solved by a linear system equation
solver algorithm [28]. A detailed description of this method
of solution is presented in [13].

Results

To illustrate the preceding results, we have calculated the
reflection and transmission of a surface plasmon polariton
incident obliquely on a ridge or groove on an otherwise
planar silver surface, and its conversion into volume elec-
tromagnetic waves in the vacuum.

The dielectric function for silver was assumed to have the
free electron form

ε(ω) = 1 − ω2
p

ω2
, (5.1)

with a value of the plasma frequency given by
ωp = 11.76 × 1015s−1. This value was obtained from the

value of the surface impedance ξ = [ε(ω)]− 1
2 = −0.227i

at a wavelength λ = 600 nm [14].
In our illustrative example, the surface profile function

ζ(x1) is assumed to have the Gaussian form

ζ(x1) = A exp(−x2
1/R2). (5.2)
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Fig. 2 The frequency
dependence of the transmittance,
reflectance, and emittance, when
a surface plasmon polariton is
incident at an angle φ0 = 0 ◦
(black curves), 5 ◦ (red curves),
10 ◦ (green curves), 15 ◦ (blue
curves), and 20 ◦ (magenta
curves) on a Gaussian surface
defect, defined by Eq. 5.2, on an
otherwise planar silver surface.
The values of the parameters
assumed in obtaining these
results are
ωp = 11.76 × 1015 s−1,
R = 250 nm, A = 12 nm
(solid curve) and A = −12 nm
(dashed curve)
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It describes a ridge when A is positive, and a groove when
A is negative. The function F(α|Q) corresponding to this
profile function is

F(α|Q) = √
πR

∞∑
n=1

αn−1An

√
nn! exp

(
−R2Q2

4n

)
. (5.3)

The frequency dependence of the transmittance T (ω), the
reflectance R(ω), and the out-of-plane scattering coefficient
S(ω) has been calculated for the case where a surface plas-
mon polariton is incident on a groove or ridge at an angle φ0

from the normal to the defect. The defect is defined by Eq.
5.2. Its 1/e halfwidth R is fixed at a value R = 250 nm,
while its amplitude A is given the values A = ± 12 nm
(φ0 = 5, 10, 15, 20 ◦), A = ±24 nm (φ0 = 5, 10 ◦),
and A = ±36 nm (φ0 = 2.5, 5 ◦). These results are
compared with those obtained when the surface plasmon
polariton is incident normally on the defect (φ0 = 0 ◦).
The spectral range within which these functions are calcu-
lated is 0 < ω < ωp/

√
2, i.e., the range within which a

surface plasmon polariton exists at a vacuum-free electron
metal interface.

Fig. 3 The same as Fig. 2, but
for φ0 = 0 ◦ (black curves), 5 ◦
(red curves), 10 ◦ (green
curves), and |A| = 24 nm
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Fig. 4 The same as Fig. 2, but
for φ0 = 0 ◦ (black curves),
2.5 ◦ (cyan curves), 5 ◦ (red
curves), and |A| = 36 nm
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In Fig. 2, we present plots of T (ω), R(ω), S(ω), and the
sum R(ω) + S(ω) + T (ω) as functions of frequency for a
defect defined by A = ± 12 nm. The transmittance T (ω)

has a single minimum for both a ridge and a groove, the
emittance S(ω) has a single maximum for both surface pro-
files, as does the reflectance R(ω). We see from these results
that the reflectance is smaller than the transmittance and
emittance by factors of about 10,000 and 100, respectively.
For normal incidence, the differences between the values of
T (ω), R(ω), and S(ω) for a ridge and a groove are not large.
The minimum value of the transmittance is larger for a ridge
than for a groove; as φ0 increases, so does the transmittance,
which is still larger for a ridge than for a groove. The maxi-
mum value of the emittance is smaller for a ridge than for a
groove; as φ0 increases, the emittance increases slightly for
a ridge, but decreases more significantly for a groove. The
maximum value of the reflectance is larger for the ridge than
for the groove; as φ0 increases, the reflectance increases sig-
nificantly for a ridge, but remains almost the same for a
groove. Finally, unitarity (energy conservation) is satisfied

with an error smaller than approximately 0.5 % in all cases
considered. It is better satisfied for ridges than for grooves,
but less well satisfied as φ0 increases for both cases.

When the amplitude of the surface defect is increased to
|A| = 24 nm (Fig. 3), the results for T (ω), R(ω), S(ω),
and their sum are qualitatively similar to those presented
in Fig. 2. However, there are some quantitative differences.
The minima in the transmittance of both a ridge and a
groove occur at smaller values of this function, but the
minimum value of the transmittance is again larger for a
ridge than for a groove. The maxima in the emittance and
reflectance of both a ridge and a groove occur at larger val-
ues of these functions. However, the maximum value of the
emittance is larger for a groove than for a ridge, while the
maximum value of the reflectance is larger for the ridge than
for the groove.

These characteristics of the frequency dependencies of
the transmittance, emittance, and reflectance are maintained
when the amplitude of the surface defect is increased to
|A| = 36 nm (Fig. 4).

Fig. 5 The dependence of the
transmittance, reflectance, and
emittance of a Gaussian ridge or
groove on an otherwise planar
silver surface on 2R/λ, when a
surface plasmon polariton
whose wavelength is
λ = 600 nm is incident at an
angle φ0 = 0◦ (black curves),
5 ◦ (red curves), and 10 ◦ (green
curves). The amplitude of the
defect is |A| = 12 nm. The
solid and dashed curves in each
case depict the results for a ridge
and a groove, respectively
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Fig. 6 Conical scattering of the
emittance when a surface
plasmon polariton whose
wavelength is λ = 600 nm is
incident at an angle φ0 = 10 ◦;
on a Gaussian surface defect,
defined by Eq. 5.2, on an
otherwise planar silver surface.
The values of the parameters
assumed in obtaining these
results are
ωp = 11.76 × 1015 s−1,
R = 30 nm, and A = 12 nm
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The frequency at which the maxima and minima of the
transmittance, emittance, and reflectance occur is almost
unaffected by changes in |A| as R remains fixed, and has a
value close to ω/ωp = 0.45 in all of the cases considered.

Until now, we have considered spectral dependencies
of the transmittance, emittance, and reflectance when the
width of the surface defect is fixed and its amplitude
is varied. We now consider the transmittance, emittance,
and reflectance of the surface defect as functions of its
width when its amplitude is fixed, as is the wavelength
of the incident surface plasmon polariton. In Fig. 5, we
present plots of these functions versus 2R/λ, in the inter-
val 0 ≤ 2R/λ ≤ 1, when the frequency of the surface
plasmon polariton is ω/ωp = 0.267 (λ = 600 nm),
while the amplitude of the surface defect is |A| = 12 nm.
The solid curve (——) and the dashed curve (- - - - -) for
each function depict the results obtained for a ridge and
a groove, respectively. The angles of incidence considered
are 0 (normal incidence [13]), 5, and 10 ◦. As the angle
of incidence increases, so does the transmittance, the emit-
tance decreases (increases), and the reflectivity decreases
(increases) for grooves (ridges).

We come now to the angular dependence of the inten-
sity of the field scattered into the vacuum region. Results

for scattering from a ridge and from a groove are presented
in Figs. 6 and 7, respectively. These results were obtained
in the following way. For a chosen value of φ0, a set of
equally spaced values of φs was created within the interval
sin−1(n(ω) sin φ0) < φs < π − sin−1(n(ω) sin φ0).
For each of these values of φs , the correspond-
ing value of θs was determined from the relation
θs = sin−1(n(ω) sin φ0/ sin φs). Then, for each pair of
values (θs, φs) obtained this way, we calculate S(θs, φs |ω),
given by Eq. 3.49, and construct a three-dimensional plot
of this function. In plotting S(θs, φs |ω), in this way, we see
that it is confined to a U-shaped curve in the (θs, φs) plane
defined by the curve θs = sin−1(n(ω) sin φ0/ sin φs). This
is a manifestation of the conical nature of the volume elec-
tromagnetic field scattered into the vacuum when a surface
plasmon polariton is incident obliquely on a line defect.
From the results presented in Figs. 6 and 7, we see that
for the values of the parameters defining the defects and
of the experimental parameters assumed in obtaining these
figures, the scattering patterns for scattering from a ridge
and from a groove are qualitatively and quantitatively very
similar. It is also seen that the scattering from each type of
defect is predominantly in the backward direction, i.e., into
the region x1 < 0.

Fig. 7 The same as Fig. 6, but
for A = − 12 nm
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Discussion and Conclusions

In this paper, we have first derived the reduced Rayleigh
equation for the scattering of a surface plasmon polari-
ton incident obliquely on a one-dimensional topographical
defect on an otherwise planar metal surface in contact with
vacuum. We have then applied this equation to the determi-
nation of the scattering coefficients for defects defined by
a Gaussian profile function. Two assumptions underlie the
present work, namely that the use of the Rayleigh hypoth-
esis is valid, and that the dielectric function of the metal
can be assumed to be real. These assumptions have been
discussed and justified in prior work [13].

We have studied quantitatively how the frequency depen-
dence of the transmittance, emittance, and reflectance of
a ridge differ from those of a groove for a Gaussian sur-
face defect, and have found that these differences are small
near normal incidence, but grow larger as the angle of inci-
dence increases. This behavior is more pronounced as the
depth of the groove increases. The frequencies at which
the spectral dependencies of the transmittance, emittance,
and reflectance have their minima or maxima are only very
weakly dependent on the values of the parameters A and R

that define this surface defect.
With regard to the angular dependence of the scatter-

ing patterns of the fields scattered into the vacuum from
either a ridge or a groove, the most interesting result is that
these patterns are confined to the surface of a cone whose
axis lies along the ridge or groove. Thus, the incidence
surface plasmon polariton undergoes conical out-of-plane
scattering when it impinges obliquely on such a linear topo-
graphical surface defect. This result should be verifiable
experimentally.
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