
UCSF
UC San Francisco Previously Published Works

Title
Loss of TET2 Affects Proliferation and Drug Sensitivity through Altered Dynamics of Cell-
State Transitions

Permalink
https://escholarship.org/uc/item/7fj905b3

Journal
Cell Systems, 11(1)

ISSN
2405-4712

Authors
Morinishi, Leanna
Kochanowski, Karl
Levine, Ross L
et al.

Publication Date
2020-07-01

DOI
10.1016/j.cels.2020.06.003
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7fj905b3
https://escholarship.org/uc/item/7fj905b3#author
https://escholarship.org
http://www.cdlib.org/


Loss of TET2 affects proliferation and drug sensitivity through 
altered dynamics of cell-state transitions

Leanna Morinishi1, Karl Kochanowski2, Ross L. Levine3,4,5, Lani F. Wu2,*, Steven J. 
Altschuler2,*,#

1Bioinformatics Graduate Group, University of California, San Francisco, San Francisco, CA 
94158, USA

2Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, 
CA 94158, USA

3Human Oncology and pathogenesis Program and Center for Hematologic Malignancies, 
Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA

4Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, 
NY 10065, USA

5Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 
10065, USA

Summary

A persistent puzzle in cancer biology is how mutations, which neither alter growth signaling 

pathways nor directly interfere with drug mechanism, can still recur and persist in tumors. One 

example is the mutation of the DNA demethylase TET2 in acute myeloid leukemias (AMLs) that 

frequently persists from diagnosis through remission and relapse (Rothenberg-Thurley et al., 2018; 

Corces-Zimmerman et al., 2014; Nibourel et al., 2010), but whose fitness advantage in 

chemotherapy is unclear. Here we use isogenic human AML cell lines to show that TET2 loss-of-

function alters the dynamics of transitions between differentiated and stem-like states. A 

conceptual mathematical model and experimental validation suggest these altered cell-state 

dynamics can benefit the cell population by slowing population decay during drug treatment and 

lowering the number of survivor cells needed to re-establish the initial population. These studies 
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shed light on the functional and phenotypic effects of a TET2 mutation in AML and illustrate how 

a single gene mutation can alter a cells’ phenotypic plasticity. A record of this paper’s Transparent 

Peer Review process is included in the Supplemental Information.

Graphical Abstract

eTOC Blurb

Many recurrent mutations in cancer do not directly alter growth signaling or interfere with drug 

mechanism, yet are frequently observed in remission and relapse. Here we show that one such 

mutation in TET2, a commonly mutated epigenetic modifier in AML, can alter switching 

dynamics between stem-like and differentiated cell states, enhancing population fitness. This study 

illustrates how one mutation can alter phenotypic plasticity, and thereby provide an evolutionary 

strategy to promote cell population growth in and out of drug.

Introduction

A major challenge in cancer biology is to understand the function of recurrent mutations in 

the emergence of tumors or response to drug therapy. Some mutations clearly benefit cancer 

populations by altering regulation of growth signaling or programmed cell death (e.g. 

mutations in p53 or TGFβ signaling, Sanchez-Vega et al., 2018) or by directly interfering 

with drug effect (e.g. acquired EGFR T790M mutations in response to EGFR inhibitors, Ma, 

Wei and Song, 2011). However, for many observed mutations it is unclear how they affect 

either proliferation or drug resistance.
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One example are mutations in the DNA demethylase TET2, found in ~15-20% of de novo 
AMLs (i.e. AMLs in patients with no clinical history of myelodysplastic syndrome (MDS) 

and no prior exposure to leukemogenic therapies; Cheson et al., 2003; Nibourel et al., 2010; 

Cancer Genome Atlas Research Network, 2013). Mutated TET2 is associated with pre-

leukemic states such as clonal hematopoiesis (where a clone becomes overrepresented in the 

blood; Busque et al., 2012), and mutational persistence and adverse outcome in human AML 

(Corces-Zimmerman et al., 2014; Rothenberg-Thurley et al., 2018; Ding et al., 2012; 

Metzeler et al., 2011). However, due to its ability to alter DNA methylation genome-wide, 

the mechanisms by which TET2 mutation confers a benefit to AML cancer cell populations 

remain unclear. One possibility is that epigenetic variation in cancer cells increases 

phenotypic flexibility, enabling tumor evolution and progression (Feinberg et al., 2016; 

Flavahan et al., 2017). Indeed, recent studies have shown that loss of epigenetic effectors 

such as KDM5A in breast cancer (Hinohara et al., 2018) can affect drug sensitivity by 

enabling greater cell heterogeneity. Here we investigate whether TET2 loss similarly affects 

cell fitness in AML using an integrated approach of mathematical modeling and 

experimentation in paired WT and TET2-mutant isogenic human AML cell lines. We 

discover that TET2 mutation alters the dynamics of transitions between stem-like and 

differentiated cell states, enhancing population fitness in chemotherapy and lowering the 

number of cells needed to establish a cell population.

Results

TET2 loss-of-function mutation renders AML cell populations more stem-cell like

To investigate the consequences of TET2 mutation, we chose to compare isogenic human 

myeloblast cell lines expressing wildtype or mutant TET2 (Figure 1A). In human AMLs, 

TET2 is often found with truncating mutations or missense mutations in its catalytic domain 

resulting in TET2 loss-of-function (Hirsch et al., 2018; Smith et al., 2010). Therefore, 

isogenic cell lines were created by knocking out TET2 (TET2KO) in two cell lines (KG1 and 

Thp1, see Methods). Methylation profiling confirmed that TET2KO has the expected effect 

on DNA methylation (Yamazaki et al., 2015; Asmar et al., 2013; Rasmussen et al., 2015): 

TET2KO cell lines display a significantly higher degree of hypermethylation compared to 

their WT counterparts (TET2WT; t-test p-values KG1 <2.2e-16 and Thp1 2.9e-4; Figure 1B).

To gain an unbiased overview of the molecular changes induced by TET2KO, we examined 

the transcriptomic and epigenomic profiles of the paired isogenic cell lines. RNAseq 

analysis identified ~300 similarly differentially expressed transcripts in both cell lines (fold-

change>2, Supplemental Figure 1A, including reduced expression of myeloid differentiation 

markers (ITGAM, CORO1A, Wald test, BH adjusted p-values 9.99e-9 and 7.73e-2) and 

increased expression of markers associated with leukemic progenitors (CD38−, HLA-DRA−, 

TAL1, Wald test, BH adjusted p-values 3.83e-26, 1.74e-16, and 3.90e-7, Figure 1C, 

Supplemental Figure 1B; Chan et al., 2012; Nishioka et al., 2013; Vagapova et al., 2018). 

These data are consistent with analysis of TCGA LAML (phs000178.v1.p1) and OHSU 

(Tyner et al., 2018) datasets, which showed that TET2 expression is strongly correlated with 

genes expressed in the granulocytic lineage (Fisher’s exact test adjusted p-values 6.27e-33 

and 9.49e-20, Supplemental Tables 1-2, see Methods).
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Differentially expressed genes in TET2KO cells were found to be enriched for targets of 

RUNX1, a hematopoietic regulator known to promote stemness and myeloid fate decisions 

(Fisher’s exact test adjusted p-value 7.76e-6, Supplemental Figure 1C, Supplemental Table 

3; Ran et al., 2013). Consistently, the proximal promoter of RUNX1 was significantly 

differentially methylated in TET2KO (Wald test, minimum adjusted p-value 1.22e-27, 

Supplemental Figure 1D) with a concomitant increase in the expression the RUNX1a 

isoform (Supplemental Figure 1E). Methylcellulose colony forming unit assays of TET2KO 

cells also show increased numbers of colonies associated with oligopotent progenitor cells 

compared to TET2WT controls (CFUGEMMs, Figure 1D, Supplemental Figure 1F). Overall, 

these data suggested that TET2KO populations acquire more stem-like signatures, which was 

further validated by comparing their DNA methylation profiles to those of normal 

hematopoietic progenitors and leukemic stem cells (LSCs, Supplemental Figure 1G).

The TET2KO-mediated acquisition of stem-like signatures was much more pronounced in 

KG1 than Thp1 in terms of expression profile and potential to form colonies of diverse 

myeloid lineages in methylcellulose assays (Figure 1D, Supplemental Figure 1F). This is 

presumably because the monocyte-like cells, Thp1, are already more differentiated than the 

myeloblast-like cells, KG1, regardless of TET2 mutational status. We therefore chose to 

focus on KG1 cells for the remainder of this work.

TET2 mutation changes dynamics of cell-state switching

To test whether this change in stem-like molecular signatures is caused by an increase in the 

fraction of cells with CD34hiCD38lo surface marker expression (a classic LSC-like profile; 

Costello et al, 2000; Gerber et al., 2012; Nishioka et al., 2013; Zeijlemaker et al., 2018) in 

TET2KO compared to TET2WT cells, we measured CD34 and CD38 surface marker 

expression in the KG1 population using flow cytometry. Quantification of CD34/CD38 

expression revealed that the fraction of putatively stem-like CD34hiCD38lo cells was indeed 

increased in TET2KO cell populations (Figure 2A, Supplemental Figure 2A).

To confirm that KG1 CD34hiCD38lo cells are more stem-like than CD34hiCD38hi, we 

fractionated TET2WT and TET2KO cells by CD38 expression and measured the expression 

of genes associated with hematopoietic differentiation. Consistent with bulk RNAseq data 

showing higher levels of pro-differentiation marker expression in TET2WT cells compared to 

TET2KO (Fig 1C), we found that differentiation markers increased with increasing levels of 

CD38 expression across both cell lines (trend seen for ITGAM, CORO1A, and TAL1, but 

not HOXA5; Supplemental Figure 2C). Further, growth rate decreased with increasing levels 

of CD38 expression (Supplemental Figure 2E) across KG1 TET2WT and TET2KO cells. 

Together, these data further support that KG1 CD34hiCD38lo cells are more stem-like and 

self-renewing, where CD34hiCD38hi cells are more differentiated and non-dividing.

How does TET2KO alter the ratio between stem-like and differentiated cells? One possibility 

is that TET2KO reduces the rate of differentiation. To test this, subpopulations of stem-like 

(L, CD34hiCD38lo) and differentiated (H, CD34hiCD38hi) cells were sorted in both TET2WT 

and TET2KO populations, and the ratio of L and H cells was monitored over time to steady-

state (Figure 2D-E, Supplemental Figure 3B). Indeed, sorted stem-like L populations 

repopulated the differentiated state more slowly in TET2KO (Figure 2D), and sorted TET2KO 
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differentiated cell populations repopulated the stem-cell like state more rapidly than 

TET2WT (Figure 2E). These data suggest that TET2KO facilitates the reversible switching 

from differentiated to stem-like states in AML cells and provides intuition for why TET2KO 

has a larger fraction of stem-like cells in the population.

Mathematical modeling illustrates consequences of altered cell-state dynamics for survival 
of cell population

What are the functional consequences of having such altered cell-state dynamics, and in 

particular a higher fraction of stem-like cells? To address this question, we developed a 

simple mathematical model with two cell states (Figure 3, second panel): a stem-cell-like 

state L, and a more differentiated state H. This model is fully characterized by a linear, 

homogeneous system of ordinary differential equations (ODEs) with 6 parameters with 

values > 0 (see Methods). Parameters are denoted by: dL and dH, the death rates of the L and 

H states; gL and gH, the rates at which the L and H states proliferate; and rLH and rHL, the 

transition rates from L to H and H to L, respectively.

Using this model, we asked under which circumstances the observed altered cell-state 

dynamics – specifically an increased switch rate towards a stem-like state – would benefit a 

cell population. First, we focused on the impact of such altered cell-state dynamics during 

drug treatment (i.e. high death rates). In this case, the time to population collapse is 

dominated by the largest negative eigenvalue; the less negative the eigenvalue, the slower the 

population collapse. By computing the eigenvalues for the ODE, it can be seen that 

increasing the switch rate towards L slows population decay and “benefits” a drug-treated 

cancer population as long as:

(gL − dL) > (gH − dH) (Inequality 1)

This inequality simply compares net production rates (proliferation rate minus death rate) 

and requires it to be higher at L than H. In fact, while Inequality 1 is true, increasing rHL or 

decreasing rLH will slow population decay (Figure 3, first panel; see Methods) and thus 

“benefit” the cell population. This finding is in line with recent studies showing that cancer 

cells can reversibly transit between stem and differentiated states with different drug 

sensitivities (Jordan et al., 2016; Su et al., 2017; Gupta et al., 2011).

The same inequality also captures other cases in which switching to a stem-like state is 

either beneficial or detrimental (Figure 3, third and fourth panels). If cells rarely die, such as 

in a non-drug-treated condition (dL ≈ 0, dH ≈ 0) (Case 1), inequality 1 simplifies to

gL > gH

Here, switching to the L state (increasing rHL) is beneficial for the cell population when the 

proliferation rate gL of L is higher than the proliferation rate gH of H, which is likely given 

the lower propensity of differentiated cells to divide. In this case, we expect cells carrying 

mutations that increase rHL to take over the population. Conversely, if the differentiated cell 
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state H were protected from the adverse effects of drug treatment (dH ≈ 0) (Case 2), 

inequality 1 simplifies to

gL − dL > gH

Here, increasing rHL is only beneficial if the net production rate of L is larger than the 

proliferation rate gH of H, which is unlikely for high doses of drug (dL ≫ 0). In this case, we 

expect cells carrying mutations that increase rHL to be depleted from the population over 

time.

Overall, this conceptual mathematical model suggests that altered cell-state dynamics – 

specifically an increased switch rate towards a stem-like state – can indeed benefit the cell 

population both in presence or absence of drug treatment, as long as it falls within the 

parameter regime outlined by Inequality 1.

Experimental validation of modeling predictions

Does the TET2 mutation put the AML cancer population in this predicted advantageous 

parameter regime? Since the proliferation, death and switching rates cannot be disentangled 

directly from measurements, we estimated these rates by fitting our model to time course 

data of sorted TET2KO and WT populations in the presence of cytosine arabinoside (AraC, a 

common first-line chemotherapy drug for AML; Figure 4B, Supplemental Figure 3B, see 

Methods). These parameter estimates confirmed that both KG1 TET2KO and WT 

populations during drug treatment are in a regime where the net production of 

CD34hiCD38lo stem-like L cells outstrips that of CD34hiCD38hi differentiated H cells (as 

required by Inequality 1, Figure 4A-B). Therefore, switching to the stem-like state is more 

advantageous. As the TET2KO populations have a higher rHL switching rate and a lower rLH 

switching rate, the model predicts that the TET2KO population, as a whole, is more drug 

resistant. Indeed, drug treatment experiments confirmed that TET2KO populations are less 

sensitive to AraC and doxorubicin than TET2WT populations (Figure 4C, Supplemental 

Figure 3G). We also used the same experimental setup to determine model parameters for 

different drug conditions and different CD38-defined subpopulations (Supplemental Figure 

3B,E, Figure 2). Our key results – Inequality 1 holds, TET2KO cells have a higher transit rate 

rHL, and TET2WT cells have a higher rate rLH – held true across experiments (Supplemental 

Figure 3J).

Further analysis of the model suggested two additional predictions. First, the model 

suggested that a population with a higher fraction of differentiated cell states will show 

reduced population survival in drug treatment (Figure 4D). To test this conjecture, two 

effectors known to enrich AML cell populations for the differentiated state (without altering 

cell death, Supplemental Figure 4C) were used: the inflammatory stimulus interferon 

gamma (IFNg) and the aldehyde dehydrogenase inhibitor disulfiram (DS; Amici et al., 2018; 

Xu et al., 2017). We confirmed that treatment with IFNg or DS enriched both TET2KO and 

WT populations for the differentiated cell state after 72 hours of exposure (Figure 4E, 

Supplemental Figure 4A-B). Moreover, both effectors increased the efficacy of AraC 

treatment in both TET2KO and WT populations, while several other effectors not known to 
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affect differentiation did not alter AraC sensitivity (Figure 4F, Supplemental Figure 4C, 

Supplemental Table 4).

Second, the model predicted that the increased ability of TET2KO to revert to a stem-like cell 

state (with higher proliferation potential) will result in improved TET2KO population 

outgrowth compared to TET2WT (Figure 4G). To test this prediction, we compared the 

number of colonies formed by TET2KO and TET2WT populations in methylcellulose assays, 

which assesses the ability of isolated cells to reform a colony (Figure 4H). As predicted, 

sorted stem-like cell populations showed increased cell colony numbers in both TET2KO and 

TET2WT populations. Moreover, unsorted TET2KO populations formed approximately 2x 

more colonies than their TET2WT counterparts (Figure 4I), highlighting their increased 

potential for population renewal. Thus, our results suggest that TET2KO populations not 

only have improved survival in the setting of therapeutic perturbations, but also have a 

higher likelihood to regrow an AML population from few surviving cells.

Discussion

Taken together, our results reveal that mutation of the epigenetic modifier TET2 in AML 

cells alters the transition dynamics between stem-like and differentiated cell states. These 

altered cell-state dynamics confer several benefits to the population in and out of drug, and 

provide a rationale for why the detection of TET2 mutants in patients in remission is 

strongly associated with a higher chance of relapse (Rothenberg-Thurley et al., 2018; Ding 

et al., 2012).

The key results from this study of a human CD34+CD38+ myeloid cell line (KG1) are 

consistent with past murine studies showing that TET2 mutation alters hematopoietic stem 

cell self-renewal and differentiation (Moran-Crusio et al., 2011). Future studies will be 

necessary to determine the generalizability of the cell state-switching phenomenon in other 

hematopoietic cell types and in vivo. Additionally, our study was limited to cell states 

defined by well-known surface markers. Incorporating powerful, unbiased approaches such 

as scRNAseq and analyses measuring RNA velocity (La Manno et al., 2018) could 

potentially uncover novel cell states and state switching dynamics that are relevant for drug 

survival.

An interesting question raised by this study is the degree to which the state switching rates 

are cell-intrinsic or extrinsically determined. In the process of confirming our model, we 

indeed found that the transition of TET2KO cells from CD38hi to CD38lo could be altered by 

effectors like DS and IFNg (Figure 4F). To characterize the extent to which cell-state 

switching rates are affected by signaling between the cells themselves, we grew KG1 

TET2WT cells in media conditioned by TET2KO cells and vice versa. The distribution of 

CD38 expression in TET2WT cells was not affected by TET2KO conditioned media, but 

CD38 expression clearly increased for TET2KO cells grown in TET2WT conditioned media 

with decreased switching rates from CD38hi to CD38lo (Supplemental Figure 4D-F). 

Together, these results suggest that the switching rates of TET2KO cells can be influenced by 

external perturbations, while switching rates of TET2WT cells are more stable. Future 

studies will be needed to identify key soluble factors that distinguish TET2KO conditioned 
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media from TET2WT and, more generally, to fully test the extent to which cell state 

switching rates are intrinsically determined.

This work provides further evidence that mutations which modulate switching rates between 

more and less drug-resistant states may provide an “evolutionary shortcut” to counteract the 

adverse effect of drug treatment (Jordan et al., 2016; Su et al., 2017; Gupta et al., 2011). The 

mechanisms driving this dynamic tumor heterogeneity will require deeper study, however, 

future therapeutic strategies incorporating this knowledge may better counteract tumor 

evolution in response to treatment. For example, a natural extension of the work presented 

here would be to use the model and understanding of cancer cell state switching dynamics to 

determine ideal dosing strategies (dosage, time course, pulsed administration, and so on) to 

help therapeutically manage patient outcomes. A recently published review made similar 

suggestions for future therapeutic development in melanoma (Bai et al., 2019).

Our results have implications for AML mutations beyond TET2: the conceptual 

mathematical model shows that as long as stem-like and differentiated cell states differ in 

their net production during drug treatment (i.e., Inequality 1 is fulfilled), any other mutation 

increasing the transition rate towards the stem-like state will be beneficial as well. Thus, we 

conjecture that mutations in other epigenetic modifiers might confer a fitness advantage to 

drug-treated AML populations through similar mechanisms. In cancer, the target space for 

mutations that directly interfere with drug function is likely smaller than the target space for 

dysregulation of cell states; this is known to be the case in bacteria, where the number of 

genes conferring increased antibiotic tolerance far exceeds the number of genes conferring 

drug resistance (Girgis, Harris, and Tavazoie, 2012; Brauner et al., 2016). Future studies 

characterizing cell states and transition dynamics will provide new insight into why certain 

mutations are selected for, and persist in, cancer, and may lead to new approaches which 

increase the efficacy of current cancer therapies.

Key Changes Prompted by Reviewer Comments

The manuscript was extended with supplemental figures showing the robustness of 

switching parameters to CD38 expression, the biological significance of CD38-defined 

subpopulations, and the effect of conditioned media on cell-state switching. An experiment 

showing sorted subpopulations returning to steady-state is now highlighted in Figure 2C-E. 

Figure legends and the Methods section were expanded and clarified extensively, especially 

those pertaining to the selection of the CD38 threshold and the range of fit parameters. The 

Introduction was revised to include more literary context. The Discussion section was 

expanded to include further limitations of our study and potential future directions in 

therapeutically managing patient outcome. For context, the complete Transparent Peer 

Review Record is included within the Supplemental Information.

STAR Methods

Resource availability

Lead Contacts—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by Steven J. Altschuler (steven.altschuler@ucsf.edu).
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Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—The RNA sequencing, DNA methylation, and flow 

cytometry datasets generated during this study along with original code to generate all 

figures are available at doi:10.17632/xmvz47rpg6.1. All original code to generate parameter 

fits or run the Gillespie algorithm is freely available for download at https://github.com/

AltschulerWu-Lab/tet2-dynamics.

Experimental Model and Subject Details

KG1 (RRID: CVCL_0374; male) and Thp1/Thp1 TET2KD (RRID: CVCL_0006; male) cells 

were generous gifts from the Shannon lab at UCSF and Levine lab at MSKCC, respectively. 

Cells were cultured in ATCC-recommended media and incubated at 37°C with 5% CO2. All 

cell lines were maintained in 75ml or 250ml Suspension Culture flasks (CellTreat, Pepperell, 

MA) between 0.5e6 and 1e6 cells/ml.

Method Details

Generating TET2 mutants—The AML cell lines KG1 and Thp1 were selected as they 

express wildtype TET2 but do not express mutant FLT3, which is known to have synergistic 

epigenetic effects (Kunimoto et al., 2018, Shish et al., 2015). To make TET2KO cells in the 

KG1 cell line, guides targeting exon 3 of TET2 (an exon with frequent indel mutations in 

patients with MDS; Smith et al., 2010) were designed in Benchling (5’-

CACCGAGGCCAATTAAGGTGGAACC-3’). pSpCas9(BB)-2A-Puro (PX459) V2.0 was a 

gift from Feng Zhang (Addgene plasmid #62988). Guides were cloned into PX459 using 

Bbsl sites, and vectors transfected into KG1 cells with the Cell Line Nucleofector Kit R 

(Lonza Group, Basel, Switzerland) with protocol V-001 and according to the manufacturer’s 

protocol. After 48h, FITC-positive cells were isolated via FACS and expanded for 10 days. 

The TET2 mutation created a frameshift mutation causing truncation upstream of the 

conserved catalytic domain of TET2, consistent with tumors observed in patients (Weissman 

et al., 2012).

Drug and effector treatment—Prior to addition to cell culture media, Cytosine Beta-D-

Arabinofuranoside (Sigma-Aldrich, St. Louis, MO) and 2-Deoxy-D-glucose (Sigma-

Aldrich) were dissolved in H2O, CCCP (Sigma-Aldrich), Disulfiram (Sigma-Aldrich), 

Etacrynic acid (Sigma-Aldrich), and Torin1 (Cell Signaling Technology, Danvers, 

Massachusetts) were dissolved in DMSO, and IFNg (Peprotech, Rocky Hill, NJ) was 

dissolved in culture media to 1000x the desired final concentration. Final DMSO (or other 

diluent) concentration was always 0.1%.

Cell-state transition model—We modeled a cell system with m states as a linear, 

homogenous system of ODEs. In matrix form this is written as

dv
dt = Mv
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where v is cell-state vector of length m, and M is a m x m matrix representing cell-state 

transitions. We do not assume the matrix M is stochastic, which allows expansion or 

contraction of the total number of cells in the system—reflecting cell division or drug 

sensitivity—to occur. In our study, we considered two states: L (CD38lo) or H (CD38hi):

d
dt

L
H =

(gL − rLH − dL) rHL
rLH (gH − rHL − dH)

L
H

Where gL and gH are the growth rates and dL and dH the death rates of cell-states L and H, 

respectively. Here, rLH is the transition rate from L to H, and rHL is the transition rate from 

H to L. All matrix parameters are considered to be real, non-negative numbers. If we define

α = − gL + rLH + rHL − gH + dL + dH
β = α2 + 4rLH(gH − dH) + 4rHL(gL − dL) + 4(gHdL + gLdH) − 4(gLgH + dLdH)

then the eigenvalues of M are

λ1 = 1
2( − α − β)

λ2 = 1
2( − α + β)

with eigenvectors

v1 = −
−gL + rLH − rHL + gH + dL − dH + β

1
2rHL

v2 = −
−gL + rLH − rHL + gH + dL − dH + β

1
2rHL

For convenience, we define the difference in production between the two states

P ≡ (gL − dL) − (gH − dH)

To find the regime where changing rHL (asympototically) increases survival rate, we focus 

on the larger of the other two eigenvalues, namely λ2. Taking the derivative of λ2 with 

respect to the state-switching parameters gives:

dλ2
drHL

= 1
2

rLH + rHL + P
β − 1

dλ2
drLH

= 1
2

rLH + rHL + P
β − 1
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Using Wolfram∣Alpha, we find: a) 
dλ2

drHL
> 0 holds if P > 0 and rHL > − ( rLH − P)2; and 

b) 
dλ2

drLH
≤ 0 holds if either (i) P > 0 , 0 ≤ rLH < P , and rHL > − ( rLH − P)2, or if (ii) P > 

0 and rLH ≥ P. In our model, we only consider non-negative, real-valued parameter values. 

Thus, as long as the inequality P > 0 holds, 
dλ2

drHL
> 0 and 

dλ2
drLH

≤ 0.

A two-state system with constant switching rates can equilibrate to a constant fraction of 

states (a steady state) provided the cell population does not rapidly crash. This is possible 

because flux into and out of each state can be balanced, and is why observations such as 

Figure 2D (where TET2KO cells appear to not switch and instead retain a stem-like state) 

can still be an accurate reflection of cells in constant flux. However, cell proliferation, death, 

and switching rates cannot be disentangled directly from bulk measurements. Therefore, we 

estimated these rates by fitting our model to time course data of sorted TET2KO and WT 

populations. To find best fit parameters for this system, cell-state compositions from the 

flow cytometry experiments shown in Supplemental Figure 3B & E or Figure 2D-E (using 

data from both CD38hi- and CD38lo-sorted subpopulations, described below) were used as 

input into the model. Prediction error (the sum of the differences between the predicted and 

measured number of cells in each cell-state at each timepoint) was minimized with 

fminsearch in MATLAB (version R2019a) with MaxIter of 5000. To eliminate “solutions” 

that did not converge or had poor fit, prediction error for 1000 sets of random parameter 

values was calculated to form a null distribution for each condition, and the 0.005-quantile 

for this null distribution was used as an upper limit for reasonable error values 

(Supplemental Figure 3H). To establish the probable range of transition parameters, best-fit 

parameters for 1000 random initializations (x0 in the fminsearch function) were found and 

plotted (Supplemental Figure 3I). Representative values for fit parameters for KG1 TET2WT 

and TET2KO cells are shown in Figure 4A. Median values for fit parameters or fit parameter 

ratios from converged solutions are shown in Supplemental Figure 3J and Supplemental 

Figure 4F.

Solving the matrix ODE gave

L
H =

v 1
1 v 1

2

v 2
1 v 2

2
Aeλ1t

Beλ2t (12)

After solving for the constants A and B, model predictions were made using representative 

best fit parameters and initial conditions observed in the experiment (e.g. number of CD38hi 

and CD38lo cells in day 0 sorted cell populations; method for calling CD38lo/hi described 

below).

For colony forming simulations, 100 colonies were “seeded” with 10 individual cells as 

colony founders with 50% in the L state and 50% in H unless otherwise noted. To simulate 

growth without drug treatment, rates were estimated by fitting the model to flow cytometry 

experimental data (described below) without AraC treatment. The Gillespie algorithm was 
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implemented to find the number of cells in the L or H states at time t. Cells “grew” for 10 

time-steps before the number of cells in each colony was counted. Colonies with more than 

100 cells were considered “grown out”.

DNA methylation profiling—DNA methylation was profiled using Illumina’s Infinium 

MethylationEPIC BeadChip (Illumina, San Diego, CA). DNA of technical replicates for 

each condition was extracted using the Zymo Quick-DNA kit (Zymo Research, Irvine, CA, 

KG1 n=6 per condition, Thp1 n=2 per condition). Bisulfite conversion, nanodrop 

quantitation, array scanning, and normalization was performed by the Vincent J. Coates 

Genomics Sequencing Laboratory at UC Berkeley.

mRNA-seq—RNA extraction of technical replicates was performed using the Lexogen 

SPLIT RNA extraction kit (Lexogen, Vienna, Austria, n=6 per condition), and libraries were 

prepared using the QuantSeq 3’ mRNA-Seq Library Prep Kit FWD for Illumina. Samples 

were quantified with Invitrogen Qubit (Invitrogen, Carlsbad, CA) prior to pooling, and 

library size and integrity was confirmed using the Agilent Bioanalyzer with the high-

sensitivity DNA kit (Agilent, Santa Clara, CA). RNA sequencing was performed using 50bp 

single-end sequencing on the Illumina HiSeq 4000 in the Center for Advanced Technology 

at UC San Francisco. A PhiX control library was used as an in-run control, spiked in at 5%.

Immunofluorescence for flow cytometry—Cells were pelleted and washed with wash 

buffer (HBSS + 1% BSA, filtered with a 50ml Steriflip unit (Millipore, Burlington, MA)) 

prior to 30m incubation in Fc Receptor Blocker (Innovex Biosciences, Richmond, CA) on 

ice in the dark. Cells were washed twice before resuspension in wash buffer containing 

conjugated antibodies for flow cytometry at their recommended concentrations (CD34-PE 

555822, CD38-PE-Cy5 555461, Becton Dickinson, Franklin Lakes, NJ), and incubation for 

30m on ice in the dark. Cells were washed three times and resuspended in 350uL wash 

buffer before measurement with flow cytometry at a flow rate of 9.0. Doublets were called 

based on gates drawn for FSC-A and FSC-W, and dead cells were counted based on gates 

drawn in FSC-A and SSC-A. All flow cytometry or FACS was performed on the Aria IIu in 

the Center for Advanced Technologies at UC San Francisco.

External marker tracking by flow cytometry—For Figure 2 and Supplemental Figure 

3B-C, equal numbers of CD38hi and CD38lo subpopulations of TET2WT and TET2KO cells 

were isolated by FACS (gate in Figure 2A, set such that <0.5% of unstained cells would be 

counted as CD38hi; see Supplemental Figure 2A) and seeded separately in a round-bottom 

96-well plate (CELLSTAR) at 1e5 cells/ml. For Supplemental Figure 3E-F, equal numbers 

of cells from the “tails” (bottom/top 5%) of the CD38 distributions of stained, unsorted 

TET2WT and TET2KO cells (see Supplemental Figure 3D) were isolated by FACS and 

seeded separately in a round-bottom 96-well plate (CELLSTAR) at 1e5 cells/ml. For day 0 

timepoints, aliquots of freshly sorted cells were reflowed and recorded. For Supplemental 

Figure 3A-C, cells were treated with 0, 1, or 4uM AraC in technical triplicates. No drug was 

applied to the technical replicates shown in Figure 2C and Supplemental Figures 3D-F. 

Plates were covered with Breathe-Easy sealing membranes (Sigma-Aldrich) before 

incubation. For longer timepoints, media (with or without drug, as relevant) was exchanged 
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every 3 days. At each timepoint, all cells in each replicate well were washed and stained for 

CD34 and CD38 (described above) and re-profiled by flow cytometry. To account for day-

to-day variations in Aria IIu laser power or other settings, raw fluorescence intensity for 

each channel was normalized by the median intensity of unsorted, unstained controls of the 

appropriate cell line for each timepoint prior to analysis. For all experiments, CD38hi and 

CD38lo cell counts for analysis and model-fitting were called based on the same sorting 

threshold shown in Figure 2A (see Supplemental Figure 2A). The number of living cells in 

each cell state served as input to the model to fit parameters for the cell-state transition 

matrix in both cell lines for both treated and untreated conditions (described above).

Methylcellulose colony forming unit assay—Cells were counted with the TC20 

automatic cell counter (Bio-Rad) with Trypan blue prior to plating in triplicate as technical 

replicates in MethoCult H4034 Optimum (Stemcell Technologies, Vancouver, CAN) in 

35mm cell culture dishes (Eppendorf, Hamburg, DE) according to the manufacturer’s 

instructions. Cells were incubated for 2 weeks at 37°C with 5% CO2. To maintain humidity, 

4 MethoCult dishes were incubated amongst three lidless 35mm dishes each filled with 3ml 

sterile ddH2O inside a 150mm glass petri dish with a lid (Corning, Corning, NY). Water was 

replenished every 3 days. Colonies were enumerated according to the manufacturer’s 

instructions. Results shown are representative results from two independent experiments.

Cell viability assays—For sorted population growth or effector viability assays 

(Supplemental Figures 2E & 4C), TET2WT and TET2KO cells were stained for CD34 and 

CD38 (described above) and segregated by CD38 expression with FACS as shown 

(Supplemental Figure 2D and Figure 2A, respectively). For day 0 timepoints, aliquots of 

freshly sorted cells were reflowed and recorded. Sorted cells were plated in round-bottom 

96-well plates (CELLSTAR, Dallas, TX) at 1e5 cells/ml with replicates for each timepoint. 

For treated conditions, AraC and effectors were diluted and added as described above. Plates 

were covered with Breathe-Easy sealing membranes (Sigma-Aldrich) before incubation at 

37°C with 5% CO2. For longer timepoints, media (with or without drug, as relevant) was 

exchanged every 3 days. At each timepoint, all cells in each replicate well were washed, 

stained, and measured with the Aria IIu for the first 2000 events. The density of living cells 

(# of cells per ml, Supplemental Figure 2E) was calculated as the number of living cells 

observed per sample divided by the total length of time the sample took to reach 2000 

events, and divided by the flow rate (~90 uL/minute for flow rate 9.0 on the Aria IIu).

For drug viability assays (Figure 4C, Supplemental Figure 3G), cells were plated as 

technical replicates at 1e5 cells/ml and treated with drug for 72h. For readout, plates were 

allowed to cool to room temperature before combining well-mixed cells and cell media 1:1 

with room temperature CellTitre-Glo 2.0 (Promega, Madison, WI) in opaque white tissue 

culture plates (Corning). Reactions were allowed to proceed according to the manufacturer’s 

protocol, and luminescence was read out with the Biotek H4 plate reader (BioTek, 

Winooski, VT) in the Center for Advanced Technology at UC San Francisco. Results shown 

are representative results from three independent experiments.

RT-qPCR and PCR—For measuring TET2 expression, RNA was extracted from three 

technical replicates with the Direct-zol RNA Miniprep kit (Zymo Research) according to 

Morinishi et al. Page 13

Cell Syst. Author manuscript; available in PMC 2021 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



manufacturer’s instructions with TRI Reagent (Thermo Fisher Scientific, Waltham, MA). 

For measuring CD38, ITGAM, CORO1A, TAL1, and HOXA5 expression, cells were stained 

for CD34 and CD38 (described above) and fractionated by CD38 expression via FACS 

(gates shown in Supplemental Figure 2B). RNA was extracted from sorted cells (2 replicates 

of 300k cells) with the RNeasy Plus Mini Kit (QIAGEN, Hilden, DE) according to 

manufacturer’s instructions. Reverse transcription with iScript Reverse Transcription 

Supermix (Bio-Rad, Hercules, CA) was followed by qPCR with DyNAmo Flash SYBR 

Green qPCR kit (Thermo Fisher Scientific) according to the recommended protocol on the 

BioRad CFX Connect in the Center for Advanced Technologies at UC San Francisco. The 

set of genes measured was composed of genes of interest from the bulk RNAseq experiment 

(Supplemental Figure 1B) and relevant gene sets in the literature (GSEA: 

gal_leukemic_stem_cell (Gal et al., 2006), gentles_leukemic_stem_cell (Gentles et al., 

2010), eppert_ce_hsc_lsc (Eppert et al., 2011)). Primers were obtained from IDT (San Jose, 

CA). Primer sequences for human RUNX1, TET2, HOXA5, and GAPDH were as 

previously described (Fujita et al., 2001; Cimmino et al., 2017; McLaughlin-Drubin et al., 

2011). Primer sequences for CD38, CORO1A, ITGAM, and TAL1 were generated with the 

Primer Design Tool in Benchling.

Quantification and Statistical Analysis

Differential RNA expression analysis—mRNA reads were mapped and counted using 

the Integrated QuantSeq data analysis pipeline on Bluebee Platform (Bluebee, Rijswijk, 

Netherlands). Briefly, reads were trimmed with BBDuk, aligned to human GRCh38 with 

STAR, and counted with HTSeq-count. Gene filtering and differential expression analysis 

was performed in R (version 3.6.0; R Core Team, 2019). Genes were filtered by count such 

that all genes had 3 or more samples with 10 or more counts. Differential expression 

analysis was then performed using DESeq2 (version 1.24, Love et al., 2014) on gene counts. 

Genes that were found to be significantly differentially expressed (N=6 technical replicates; 

Wald test, BH adjusted p-value < 0.05) with an absolute Log2fold-change in expression > 

1.5X in a paired analysis of untreated cell lines were submitted to Enrichr (Kuleshov et al., 

2016) for enrichment analysis. Statistical details can be found in the Results section and 

legends for Figure 1 and Supplemental Figure 1.

Differential DNA methylation analysis—Differential methylation analysis was 

performed with ChAMP (package version 2.14.0, Tian et al., 2017) in R (version 3.6.0; R 

Core Team, 2019). Significantly differentially methylated regions (KG1 n=6, Thp1 n=2 

technical replicates per condition; Wald test, BH adjusted p-value < 0.05) were found with 

DMRcate (version 1.20, Peters et al., 2015), and visualization done with Gviz (version 1.28, 

Hahne et al., 2016). Statistical details can be found in the Results section and legend for 

Supplemental Figure 1.

Methylation age and stemness profiles—Quantile normalized values from the 

aforementioned ChAMP analysis were used as input to the DNA methylation age calculator 

in R as per the tutorial (horvath.genetics.ucla.edu) (Horvath, 2013). For visualization 

purposes, results for TET2WT and TET2KO cells were normalized to TET2wt.
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For the “stem-like” epigenetic signatures, we used a publicly available dataset of DNA 

methylation profiles from normal hematopoietic progenitors and leukemic cells sorted by 

CD34/CD38 expression (GEO: GSE63409; Jung et al., 2015). Linear discriminant analysis 

(LDA) was applied using the MASS package (version 7.3-51.4, Venables et al., 2002) in R 

to identify an optimal transform that increased separation of DNA methylation profiles 

across three key reference populations: normal HSCs, CD34+CD38− putative LSCs, and 

CD34− leukemia cells. The rest of the public dataset, as well as methylation data from the 

paired TET2wt/TET2ko cell lines, was projected into the lower-dimensional LDA space.

TET2 expression analysis—Expression profiles for the following datasets were queried 

from the Cancer Genomics Data Server (CGDS) using cdgsr (version 1.3.0, Cerami et al., 

2012). Our results are, in part, based upon data generated by The Cancer Genome Atlas 

managed by the NCI and NHGRI. Information about TCGA can be found at http://

cancergenome.nih.gov. For the datasets TCGA-LAML (dbGaP accession phs000178.v1.p1) 

and AML-OHSU (Tyner et al., 2018), genes with coefficient of variation < 0.1 across 

samples were dropped from subsequent analysis. Pearson correlation calculations were 

performed in R (version 3.6.0). Genes with expression that strongly correlated (cor > 0.45) 

or anti-correlated (cor < −0.45) with TET2 expression were submitted to Enrichr (Kuleshov 

et al., 2016) for enrichment analysis. Statistical details can be found in the Results section 

corresponding to Supplemental Tables 1-2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• TET2 knockout in human AML cell lines increases stem-like signatures

• TET2KO cells have altered dynamics between stem-like/differentiated states

• Altered cell-state switching dynamics provides fitness advantage in and out of 

drug
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Figure 1. TET2KO cells are more stem-like than TET2WT isogenic counterparts.
(A) Overview of molecular profiling performed on isogenic TET2 mutant AML cell lines. 

(B) Representative volcano plot and histogram of CpG methylation in TET2KO cells relative 

to TET2WT (shown for KG1). (C) TET2KO cells show decreased expression of myeloid 

commitment markers (ITGAM, CORO1A) and increased expression of markers associated 

with stemness (CD38−, HLA-DRA−, TAL1) compared to TET2WT in both KG1 and Thp1 

cells (Supplemental Figure 1B, mean ± s.e., n=6). (D) KG1 and Thp1 (Supplemental Figure 

1F) TET2KO cells produce a higher percentage of colonies associated with oligopotent 

progenitors (CFUGEMM) compared to TET2WT in methylcellulose assays (mean ± s.e., 

n=3).
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Figure 2. TET2KO increases the propensity of differentiated (CD34hiCD38hi) Cells to switch to a 
more stem-like (CD34hiCD38lo) cell state.
(A) KG1 TET2KO cell lines show a shift in CD38 surface marker expression. The threshold 

for calling cells CD38lo or CD38hi (vertical dashed line) is defined by negative controls, 

such that 99.5% of unstained cells are incorrectly called CD38lo (Supplemental Figure 2A). 

(B) Schematic illustration of flow cytometry experiment to quantify CD38 expression over 

time. Cells from either KG1 TET2WT or TET2KO cell lines are sorted by CD38 expression 

via FACS (fluorescence-activated cell sorting) into CD38lo or CD38hi based on the threshold 

in (A), and changes in CD38 expression are assessed every 72h by flow cytometry. (C) The 

distributions of CD38 expression measured by flow cytometry for sorted “lo” or “hi” 

populations over 12d in 0uM AraC, colored by the original sorted population (n=3). (D-E) 

Shown is the percent of CD38hi cells in originally pure populations of CD38lo cells (D), or 

the percent CD38lo cells in originally pure populations of CD38hi cells (E) for KG1 

TET2WT and TET2KO cells after 0, 3, 6, 9, and 12 days of growth in drug-free media (mean 

± s.e., n=2).
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Figure 3. Mathematical model reveals advantageous and disadvantageous parameter regimes for 
cell-state switching.
(left) If model parameters satisfy Inequality 1, increasing rHL and/or decreasing rLH (black 

arrows) slows population decay and benefits a drug-treated cancer population. (General 

model) Schematic representation of mathematical model with two cell states: a stem-cell-

like state L and a differentiated state H. Parameters dL and dH represent the death rates of 

the L and H states; gL and gH the proliferation rates; and rLH and rHL the transition rates 

from L to H and H to L. (Case 1) If cells rarely die (dL ≈ 0, dH ≈ 0) and the proliferation 

rate gL is higher than gH, increasing rHL is always beneficial. (Case 2) Conversely, if one 

state were protected from drug effect (dH ≈ 0), increasing rHL is only beneficial in the 

unlikely scenario when net production rate of L is larger than the proliferation rate gH.
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Figure 4. TET2KO cells’ altered cell-state dynamics enable longer-term drug survival in 
chemotherapy.
(A) Schematic illustration of model in 1uM AraC treatment. Numbers are representative 

estimated rates of transition, proliferation, and death (see Supplemental Figure 3H-I). (B) 

The percent of KG1 CD38lo cells in originally pure populations of sorted CD38hi cells in 

1uM AraC after 0, 3, and 6 days (mean ± s.e., n=3). Dashed lines: predictions from the 

model. (C) Shown is fold-change cell viability relative to TET2WT cells after 72h exposure 

to varying concentrations of AraC (mean ± s.e., n=5). (D) Model predictions for drug 

survival given increasing values of the transition parameter rHL for a toy model that fulfills 

Inequality 1. Inset: survival as a function of the ratio of rHL/rLH. (E-F) TET2KO CD38hi 

cells were isolated by FACS and incubated with or without effector for 72h in the presence 

of 1uM AraC. (E) The CD38 distributions after 72h in DMSO, DS, or IFNg treatment (n=3, 

TET2WT in Supplemental Figure 4A). (F) The percent of living cells in the population 

relative to control after 72h in DMSO, DS, or IFNg treatment (mean ± s.e., n=3). (G) Model 

predictions for colony outgrowth from a small population given sorted CD38lo and CD38hi 

(left) or unsorted cells (right; see Methods, mean of 10 runs). (H) Number of colonies in 

methylcellulose assays after seeding equal numbers of TET2WT and TET2KO cells (mean ± 
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s.e., n=3). (I) Number of colonies in methylcellulose assays for cells sorted by CD38 

expression (mean ± s.e., n=3).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

PE Mouse anti-Human CD34 BD Biosciences 555822

PE-Cy5 Mouse anti-Human CD38 BD Biosciences 555461

Chemicals, Peptides, and Recombinant Proteins

Cytosine Beta-D-Arabinofuranoside Sigma-Aldrich C6645

Disulfiram Sigma-Aldrich D2950000

Human IFN-g PeproTech 300-02

Critical Commercial Assays

CellTiter-Glo 2.0 Cell Viability Assay Promega G9242

QuantSeq 3’ mRNA-Seq Library Prep Kit FWD for Illumina Lexogen 0.15.24/96

MethoCult H4034 Optimum STEMCELL #04034

Deposited Data

Raw and analyzed data This paper; Mendeley data doi:10.17632/xmvz47rpg6.1

Epigenome analysis of leukemia stem, blast and normal 
hematopoietic stem/progenitor cells

Jung et al., 2015; GEO GSE63409

Experimental Models: Cell Lines

Human male: KG-1 ATCC CCL-246; RRID: CVCL_0374

Human male: THP-1 ATCC TIB-202; RRID: CVCL_0006

Oligonucleotides

Primer HOXA5-F:
TCTCGTTGCCCTAATTCATCTTTT

McLaughlin-Drubin et al., 
2011

N/A

Primer HOXA5-R:
CATTCAGGACAAAGAGATGAACAGA

McLaughlin-Drubin et al., 
2011

N/A

Primer CD38-F:
CACCAAGCGCTTTCCCGAGACC

This paper N/A

Primer CD38-R:
GAGAGGCCCCTCCAGTGCAGAA

This paper N/A

Primer CORO1A-F:
GTGGTCCGCTCCAGCAAGTTCC

This paper N/A

Primer CORO1A-R:
CAGACCGTGGGCGCATTCTTGT

This paper N/A

Primer ITGAM-F:
CTCCGTGGACGTGGACAGCAAC

This paper N/A

Primer ITGAM-R:
AATGGCCACGTCCGTCAGCTTG

This paper N/A

Primer TAL1-F:
GGGAGCCGGATGCCTTCCCTAT

This paper N/A

Primer TAL1-R:
ACTTCATGGCCAGGCGGAGGAT

This paper N/A

Recombinant DNA

pSpCas9(BB)-2A-Puro (PX459) V2.0 Addgene #62988

Software and Algorithms
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REAGENT or RESOURCE SOURCE IDENTIFIER

Code to generate all figures This paper; Mendeley data doi:10.17632/xmvz47rpg6.1

Code pertaining to model This paper; GitHub https://github.com/AltschulerWu-Lab/
tet2-dynamics

DNA methylation age calculator Horvath, 2013 https://horvath.genetics.ucla.edu/html/
dnamage/

R R Core Team, 2019 https://www.R-project.org

MATLAB R2019a https://www.mathworks.com
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