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Nonlinear dynamics of antihydrogen in magnetostatic traps:
implications for gravitational measurements

A.I. Zhmoginov, A.E. Charman, J. Fajans, and J.S. Wurtele
Department of Physics, University of California, Berkeley, California 94720

(Dated: May 1, 2013)

The influence of gravity on antihydrogen dynamics in magnetic traps is studied. The advan-
tages and disadvantages of various techniques for measuring the ratio of the gravitational mass to
the inertial mass of antihydrogen are discussed. Theoretical considerations and numerical simula-
tions indicate that stochasticity may be especially important for some experimental techniques in
vertically oriented traps.

PACS numbers: 37.10.Gh, 04.80.Cc, 05.45.-a, 45.20.Jj

I. INTRODUCTION

A. Background and Motivation

Trapping of neutral antihydrogen was first achieved in
2010 by the ALPHA collaboration [1] and, by 2011, AL-
PHA had reported confinement times up to 1000 s [2].
Focus is now shifting from proof-of-principle produc-
tion and confinement toward precision measurements and
tests of fundamental physics.

There are multiple long-term goals motivating antihy-
drogen research: the first is to search for possible CPT
violation by examining the spectra of anti-atoms. A first
step in this direction was taken in 2012, when ALPHA
measured the frequency of transitions between hyperfine
levels to a relative precision of 10−3 [3]. Future work will
concentrate on high precision measurement of this hyper-
fine splitting, and of the two-photon 1S→ 2S transition.

A second goal is to search for violations of the weak
equivalence principle — the equality of the inertial and
gravitation mass of any object, independent of its com-
position or structure. Initial experiments with sensitivity
to gravitational effects of the earth on neutral antimatter
have been conducted [4, 5], and others are planned [6, 7].
The ALPHA collaboration has inferred limits on the ratio
F = M

m of gravitational mass M to inertial mass m of an-
tihydrogen by carefully comparing the simulated and ex-
perimentally determined temporal and spatial distribu-
tions of antihydrogen annihilations observed during the
slow turn-off of magnetic trap which confined the anti-
atoms. Values of F > 110 and F < −65 were rejected [4]
at a statistical significance level of 95%. In a 2012 publi-
cation on antihydrogen trapping [5], the ATRAP collabo-
ration reported a gravitational measurement that rejects
F values greater than 200 at a 2σ level. Their methodol-
ogy was mentioned only briefly, but is apparently based
on counting annihilation events during radial field shut-
down in their vertical trap. Understanding the possibili-
ties and limitations of these techniques on trapped neu-
tral antimatter provides the motivation for the present
work. Two other experiments intending to test the weak
equivalence principle, AEGIS [6] and GBAR [7] also rely
on the Antiproton Decelerator (AD) at CERN, but will

use beams of antihydrogen rather than trapped popula-
tions, and hence their operation is beyond the scope of
this paper.

We present here a detailed study of the influence of
gravity on the nonlinear classical dynamics of trapped
antihydrogen and, in particular, how features of the non-
linear dynamics impact gravitational measurement tech-
niques in vertical traps. Horizontal traps will be dis-
cussed in more detail elsewhere. Analysis is performed
in some generality, but specific numerical examples are
motivated by what we infer are the methodology and,
roughly, the field geometry used in [5], as well as the pos-
sibility of using a vertically-oriented version of the AL-
PHA trap. Unless we have misunderstood the ATRAP
methodology, our simulations and analysis show no ef-
fect of gravity at the levels of sensitivity claimed in their
measurement, or, indeed, at lower sensitivity.

B. Dynamical Framework

ALPHA [8] and ATRAP [9] trap neutral antihydro-
gen in a quasi-static magnetic minimum created by three
sets of external coils: two mirror coils produce a field Bm

confining the anti-atoms axially, and a multipole coil pro-
duces a field Bp confining them radially. Both the mir-
ror and multipole fields will exhibit spatial variation, and
may also have time dependence. These trapping fields are
superimposed on a static, uniform background solenoidal
field Bb = Bbẑ (a legacy of the charged-species trapping
preceding antihydrogen production), which reduces the
effective trap depth but also, felicitously, tends to sup-
press non-adiabatic spin flips in the neutral anti-atoms
near the field minimum. The total magnetic field at a
position r and time t is then given by the vector sum

B(r, t) = Bb +Bp(r, t) +Bm(r, t). (1)

The orientation of Bb, which here establishes the lon-
gitudinal (z) axis, will be assumed to be either verti-
cal or horizontal, i.e., parallel to or perpendicular to the
Earth’s local gravitational acceleration g.

The present analysis presupposes a number of other
simplifying assumptions. A semiclassical approach de-
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scribes the internal states of the anti-atom quantum me-
chanically while treating the center-of-mass (COM) de-
grees of freedom classically. While we allow for the pos-
sibility of matter/antimatter asymmetry in gravitational
interactions, such that the anti-atom may have an ef-
fective gravitational mass M different from its inertial
mass m, we shall here presume, consistent with CPT
invariance, that each antihydrogen is precisely electri-
cally neutral, so experiences no net external Coulomb
nor COM Lorentz forces, but can experience a Zeeman
force due to a non-zero expectation value for its mag-
netic moment, whose magnitude is identical to that of
an ordinary hydrogen atom in the corresponding inter-
nal quantum state.

Trapping times are sufficiently long so that we may
confine attention to anti-atoms which have relaxed to the
orbital ground state [10], in which the anti-atom’s mag-
netic moment is dominated by the positron spin, and
to low-field-seeking spin states, such that the anti-atoms
can be trapped near a magnetic minimum. (Those anti-
atoms in a high-field seeking state quickly hit the trap
wall and are thus not considered here). The effects of
the magnetic field on the internal state are small since

µBB = 1
2~Ωe � α2mc2, (2)

where α = e2/~c (in Gaussian units) is the fine structure
constant, ~ = h/2π is the reduced Planck’s constant, c
the speed of light in vacuo, m is the rest mass of the
positron and e is the magnitude of its electric charge,
while µB = e~/2mc is the Bohr magneton, and Ωe =
Ωe(r, t) = eB/mc is the local positron gryofrequency,
where B = B(r, t) = |B(r, t)| is the magnitude of the
total magnetic field at position r and time t.

Characteristic antihydrogen translational tempera-
tures T are such that translational motion remains en-
tirely non-relativistic:

kBT � mc2,

where here kB is Boltzmann’s constant. The tempera-
ture should also be sufficiently low so that as the anti-
atom translates, the changes experienced in local mag-
netic field strength remain adiabatic with respect to spin
dynamics: √

kBT
m
|∇Ωe|

Ωe
� Ωe. (3)

for spatial positions r accessible to trapped anti-atoms.
A related asumption is that the characteristic radial
bounce frequency ωr and longitudinal bounce frequency
ωz are both small compared to Ωe. Under these assump-
tions, the magnetic moment adiabatically tracks the di-
rection of the field, and the classical COM dynamics is
governed by the Hamiltonian

H = H(r,p, t) = 1
2mp

2 + µBB(r, t) +M g ·r, (4)

where p = |p|, p = mṙ is the momentum of the anti-
hydrogen. The + sign in front of µB is appropriate for

anti-atoms that are in a low-field seeking hyperfine state
— those that can be stably trapped in a local minimum
of B(r, t).

The study of antimatter gravitational forces requires
examining the antihydrogen dynamics for various as-
sumed values of the ratio F = M/m and comparing these
results with experimental observation. The gravitational
force modifies the dynamics in ways that depend on trap
orientation, on field geometry, on initial conditions, and
on the time profile of the trap turn-off. In ALPHA, an
octupole field provides transverse confinement, and the
trap axis is horizontal, perpendicular to g [8]. ATRAP
instead employs a quadrupole for transverse confinement,
while the trap axis is vertical, parallel to g [9].

In cylindrical coordinates (r, φ, z) oriented such that
the solenoidal field points along ẑ, the squared-
magnitude of the total field (1) is

B2 = B2(r, φ, z, t) = B2
r (r, φ, z, t) +B2

φ(r, φ, z, t)

+ [Bm z(r, z, t) +Bp z(r, φ, z, t) +Bb]
2
, (5)

where Br and Bφ are the radial and azimuthal field com-
ponents, which arise from both the multipole and the
mirror coils. Clearly, the general form of the trapping
potential µBB will depend non-trivially on (r, φ, z) and
possibly on t if field turn-off is modeled. However, since
the decay of the magnetic fields is very slow, unless oth-
erwise noted, our dynamical analysis will be performed
presuming a frozen value of the Hamiltonian, and the ex-
plicit t dependence inB = B(r) or thereforeH = H(r,p)
will generally be suppressed in the notation.

C. Basic Dynamic Considerations: Regular versus
Stochastic Trajectories

We can gain some basic understanding of the dy-
namics if we temporarily ignore the radial component
of the mirror field and any end effects from the multi-
pole. Under these simplifications, an order-` multipole
field yields B2

r + B2
φ ∝ r2`−2, with no φ-dependence

in field magnitude, i.e., B = B(r, z). For a vertical
trap, the total (magnetic and gravitational) potential
U(r) ≡ µBB + Mg · r is then axially symmetric and
separable, i.e., U(r) = Ur(r) + Uz(z), and the longitu-
dinal antihydrogen motion along z is uncoupled from the
transverse motion in the (r, φ) plane. The trajectories
are regular and fully determined by integrating two one-
degree-of-freedom Hamiltonian systems, namely

H‖(z, pz) = 1
2mp

2
z + Uz(z), (6a)

H⊥(r, pr; pφ) = 1
2mp

2
r + 1

2mr2 p
2
φ + Ur(r), (6b)

where pr and pz are, respectively, the radial and longitu-
dinal components of the momentum, and the azimuthal
component pφ represents the angular momentum along
ẑ.
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In this situation, there are three dynamical invariants:
the perpendicular energy H⊥ = E⊥, the parallel energy
H‖ = E‖, and the angular momentum pφ = mrvφ, where
vφ = (ẏx − ẋy)/r is the azimuthal velocity. Any one
trajectory with total energy E = E‖+E⊥ will not be er-
godic and will not explore the entire energy hypersurface
H(r,p) = E. Consider the consequences of very slowly
lowering the transverse confining field, i.e., Ur → 0 as
t→∞. With uncoupled motion there will be no correla-
tion between the axial dynamics, where gravity acts, and
the transverse dynamics; the motions are uncoupled and
non-ergodic. Consider an anti-atom that has a kinetic en-
ergy below the level of transverse potential barrier, but
above the axial potential barrier. Such an anti-atom is
confined transversely, but may escape the trap axially.
Nonetheless, it will remain confined if enough of its en-
ergy is tied up in transverse motion; because there is no
coupling, it would never come to possess sufficient energy
to overcome the axial barrier.

In more realistic geometries, some amount of coupling
will be caused by the radial components of the mirror
field, by the octupole end effects, and by higher-order
multipole contributions. If the coupling were sufficient to
make the motion fully ergodic, then an antihydrogen with
total energy E exceeding the lowest of the axial trapping
potentials Umin would eventually escape. Knowing Umin

would then allow one to obtain a bound on M by vary-
ing only the radially confining potential. Such ergodicity
may have been implicitly assumed in the gravitational
discussion in [5].

Since the dynamics in a realistic magnetic field formed
by mirror and multipole coils are not fully integrable, nor
expected to be fully ergodic, numerical simulation may be
required. For small coupling, large regions of phase space
should remain integrable. The KAM theorem [11] sug-
gests that the majority of resonant tori will survive suf-
ficiently small perturbations and the corresponding tra-
jectories remain quasiperiodic. In this case, many anti-
atoms would remain trapped even when, ostensibly, they
appear to have sufficient energy to escape axially.

The remainder of this paper is organized as follows. In
Sec. II, a perturbation theory is used to study the influ-
ence of coupling on the anti-atom dynamics. A discussion
of numerical issues and detailed simulation results for a
vertical trap with a field profile similar to that of the
ATRAP experiment are presented in Sec. III. These re-
sults indicate weak coupling between the transverse and
longitudinal dynamics, which may be typical for other ex-
isting atom traps [12] as well. An alternative approach to
measuring antihydrogen gravitational mass in a vertical
trap, which involves turning off the mirror fields (which
does not require anti-atom ergodicity), is also discussed.
Our conclusions are given in Sec. IV.

II. ANALYTICAL DESCRIPTION OF SINGLE
ANTI-ATOM MOTION

Detailed analysis of single anti-atom dynamics in a
magnetostatic trap is crucial for understanding antihy-
drogen losses, laser cooling of trapped antihydrogen, and
limitations of different approaches to measuring the grav-
itational mass of antihydrogen. While there is no general
solution for the full three-dimensional anti-atom trajec-
tory in arbitrary fields, the analysis can be considerably
simplified and some insight provided by the case of a trap
with nearly-separable confining potentials.

To begin, we apply canonical Hamiltonian perturba-
tion theory [13] to analyze single anti-atom motion and
then use obtained results in Sec. III C to compare numer-
ical simulations with analytical predictions.

A. Perturbation theory for weakly coupled motion

Consider antihydrogen motion in an almost separable
potential U(r, φ, z), i.e., U(r, φ, z) = Ur(r) + Uz(z) +
δU(r, φ, z), with δU much smaller in magnitude than
Ur(r) + Uz(z). After rewriting the original (frozen)
Hamiltonian (4) as

H(r, φ, z, pr, pφ, pz) =
p2
r

2m
+

p2
φ

2mr2
+

p2
z

2m
+

+ Uz(z) + Ur(r) + δU(r, φ, z) = H0 + δU, (7)

the term δU can be considered as a perturbation to the
integrable system with integrable Hamiltonian H0. For
trap designs like those to be discussed in Sec. III B, the
magnitude of the perturbation δU may be comparable in
relative magnitude to the trapping well depth (reaching
O(1/3) for the vertical quadrupole trap). However, at
least in our examples, this maximal value for δU is ac-
cessible to only those anti-atoms that are weakly trapped
in both radial and axial directions, so the perturbation
theory should provide some insight into more typical tra-
jectories.

The first step in applying the perturbation theory to
Eq. (7) is to find the action-angle variables of the unper-
turbed Hamiltonian H0. The axial motion is uncoupled
from the transverse oscillations [13]:

Iz(H‖) =
1

2π

∮
pz dz, (8)

where Iz is the axial action, and the integration is per-
formed over a closed trajectory solving p2

z/2m+Uz(z) =

H‖. The frequency of the axial oscillations is ωz = ψ̇z =
∂H‖/∂Iz, where ψz is the angle variable canonically con-
jugate to Iz. Assuming that the magnetic field profile
Uz is almost quadratic in some vicinity of z = 0, ωz(Iz)
is nearly constant for small Iz (when the anti-atom os-
cillates near the center of the trap). However, when Iz
becomes so large that the anti-atom trajectory passes
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FIG. 1. Phase space portrait of dynamical system governed
by H‖ = p2

z/2m + Uz(z) showing two separatrices passing
through the lower S1 (bold solid) and the higher S2 (dot-
ted) axial potential barriers (top); and a corresponding ax-
ial potential profile Uz(z) (bottom). The axial coordinate
z is normalized to the device half-length L, pz is normal-
ized to {2mmax

z
[Uz(z)− Uz(0)]}1/2, and Uz is normalized to

max
z

[Uz(z)− Uz(0)].

near one of the mirror coils, the frequency ωz(Iz) de-
creases, vanishing eventually at Iz = I∗z , where the anti-
atom turning point reaches a local maximum of Uz(z).
This trajectory corresponds to a separatrix in the (pz, z)
phase space (Fig. 1).

The radial action Ir can be found similarly. First
consider a canonical transformation of H⊥ = p2

r/2m +
p2
φ/2mr

2 + Ur(r) effected by the generating function:

Ψ(r, φ, Ir, Pφ) =

∫
pr(r; Ir, Pφ) dr + Pφφ, (9)

where pr(r; Ir, Pφ) solves equations of motion for pφ = Pφ
and H⊥ = H⊥(Ir, Pφ), with Ir(H⊥, pφ) given by

Ir(H⊥, pφ) =
1

2π

∮
pr(r;H⊥, pφ) dr. (10)

After this transformation, H⊥ becomes a function of the
new actions Ir and Pφ and is independent of the new
2π-periodic angles ψr and ψφ = φ+ ∆, where

∆(r; Ir, Pφ) ≡
r∫
∂pr
∂Pφ

dr. (11)

The canonical angles are generally defined up to an over-
all constant. In the following, we choose ψr = 0 when the

anti-atom is closest to the device axis and ψz = 0 when
the z coordinate reaches its maximum, and ∆(r = 0) = 0.

It is generally difficult to obtain analytical expressions
for the frequencies ωr ≡ ψ̇r = ∂H⊥/∂Ir and ωφ ≡ ψ̇φ =
∂H⊥/∂Pφ. Their values are related at Pφ = 0, when
the anti-atom velocity has a vanishing azimuthal compo-
nent. Introducing the full period of transverse oscillation
T⊥(Ir), one can see that φ has a period T⊥, while ψr has a
period T⊥/2. Then, recalling that φ = ψφ−∆(ψr; Ir, Pφ),
one obtains ψφ(t + T⊥/2) − ψφ(t) = φ(t + T⊥/2) − φ(t)
and, therefore, ωφT⊥/2 = π, or ωφ = ωr/2.

B. Axisymmetric perturbation

First, consider the case of a purely axisymmetric per-
turbation δU(r, z). The Hamiltonian written in action-
angle variables is

H(I,ψ) = H0(Ir, Iz)

+

∞∑
k=−∞

∞∑
l=−∞

δUk,l(Ir, Iz) e
ikψr+ilψz ,

(12)

where δUk,l are the radial/azimuthal Fourier components
of δU(ψ; I). The only resonances are, therefore, of the
form k ωr + l ωz = 0. This can be rewritten as:

k

z2∫
z1

dz√
H‖−Uz(z)

= −l
r2∫
r1

dr√
E−H‖−Ur(r)−

P 2
φ

2mr2

, (13)

where z1, z2, r1, and r2 are the longitudinal and radial
turning points, and H‖ is a function of Iz. Note that for

the pure quadrupole field with Ur ∼ r2, the right-hand
side of Eq. (13) is independent of E, Iz, and Pφ, while
the left hand side is a function of Iz only.

Consider a long trap with the radius Rw much smaller
than the longitudinal half-length Z. The ratio ωr/ωz
scales as Z/Rw and the axial scale of the perturbation
δU will be on the order of the characteristic coil ra-
dius Rc. Since the perturbation maximum is reached at
R ≈ Rw near the mirrors, the resonance harmonics δUk,l
and the corresponding resonance widths δI ∼

√
|δUk,l|

grow with increasing anti-atom energy. But even for
the highest-energy anti-atoms, δUk,l is roughly propor-
tional to (Rc/L) max[δU ] exp(−k|Rc/Rw|) and is small.
In this case, the radial anti-atom oscillations are adi-
abatic [14, 15]. Assuming that most neighboring res-
onances do not overlap, the system dynamics within
resonance islands is expected to be regular, becoming
stochastic in small vicinities of the island separatrices
only. However, since ωz(Iz) vanishes at the critical point
I∗z (see Sec. II A), there will be an area in the phase space
where resonances accumulate and overlap [16], thus form-
ing a stochastic layer in a vicinity of the separatrix at
Iz = I∗z [14, 15].

The systems with axisymmetric perturbations δU(r, z)
possess another non-generic property which does not
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survive once azimuthal angle dependence is introduced.
Namely, for small δU , all antihyrogen trajectories, even
stochastic ones, are localized and cannot change their
energy by more than a certain finite amount. With any
amount of angular dependence, this is no longer the case
and, in fact, some trajectories in certain time-dependent
two-dimensional dynamical systems are known [17] to
“diffuse” indefinitely albeit slowly, reaching any cho-
sen value of action at some sufficiently late moment of
time. Known as Arnold Diffusion, this phenomenon will
be at least partially responsible for slow anti-atom loss
from the stationary quadrupole and octupole traps (see
Sec. III C 1).

C. Non-axisymmetric perturbation

1. Resonances

Consider next an angle-dependent perturbation of the
form δU(r, φ, z) = δV (r, z) cosnφ for some fixed integer
n. The Hamiltonian is now:

H(I,ψ) = H0(Ir, Iz)

+ 1
2

∑
k,l

δVk,l(Ir, Iz)
(
einφ + e−inφ

)
eikψr+ilψz , (14)

where δVk,l is the angular Fourier component of
δV (ψ; I). After substituting φ = ψφ −∆(ψr; Ir, Pφ),

H = H0(Ir, Iz)

+
∑
k,l

(
δWk,l,n(Ir, Iz) e

ikψr+ilψz+inψφ+

+ δWk,l,−n(Ir, Iz) e
ikψr+ilψz−inψφ

)
, (15)

where δWk,l,n is calculated given all the δVk,l as well as
∆(ψr). Since the angle-dependent harmonic is fixed, the
resonance condition becomes:

Qk,l,±n(I) ≡ k ωr + l ωz ± nωφ = 0. (16)

Since all frequencies in Eq. (16) are functions of Ir, Iz
and Pφ, one can find the resonances in action space. Fix-
ing the total energy H0(Ir, Iz, Pφ) = E, the resonance
curves can, for example, be plotted in the (Iz, Pφ) coor-
dinates. Let REn be the set of such curves in the (Iz, Pφ)
space corresponding to Qk,l,±n = 0 for some k, l ∈ Z.
Such a plot is shown in Fig. 2 for the quadrupole trap
design discussed in more detail in Sec. III C. Notice that
the resonances k ωr + l ωz = 0 in Fig. 2 are character-
ized by nearly constant values of Iz, due to the fact that
both sides of Eq. (13) are independent of Pφ for the pure
quadrupole field.

2. Resonance widths

Characterizing anti-atom dynamics in phase space re-
quires a knowledge of locations and widths of all impor-

0
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FIG. 2. (Color online) Resonances kωr + lωz + sωφ = 0
in the (Īz, P̄φ) space plotted for E = 390 mK in a vertical
quadrupole trap: |s| = 0 (solid red), |s| = 1 (dash-dotted
blue), |s| = 2 (dashed magenta), |s| = 4 (dotted green). Only
resonances with |k| < 10, |l| < 12 and |s| < 12 are shown.
The action Iz is normalized to the action of the separatrix
trajectory corresponding to Īz = 1, and P̄φ = Pφ/(mRwv),

where v =
√

2E/m and Rw is the wall radius. Note that for
a perturbation with n = 4, all |s| = 1, |s| = 2 and |s| = 4
resonances affect anti-atom dynamics.

tant resonances. For sufficiently small δV , the charac-
teristic width of the resonance Qk,l,s(Ir, Iz, Pφ) = 0 is
defined by the amplitude of resonant oscillations ∆Ir ≈
|k|∆I, ∆Iz ≈ |l|∆I and ∆Pφ ≈ |s|∆I, where [18]

∆I = 4

√
|δWk,l,s|
|∂2
∗H0|

, (17)

and ∂∗ ≡ k ∂/∂Ir + l ∂/ ∂Iz + s ∂/ ∂Pφ.

Although, for a wide class of smooth functions, the
widths ∆I are expected to decrease exponentially with
|k|, |l|, and |s|, the calculation of the exact value of
δWk,l,s is generally quite complex. However, it can be
simplified for the Qk,l,0 = 0 and Qh,0,−2h = 0 resonances.
Indeed, δWk,l,0 for n = 0 is given by:

δWk,l,0 = 1
2 δVk,l. (18)

On the other hand, recalling that Qh,0,−2h vanishes at
Pφ = 0, one obtains for n = 2h:

δWh,0,−2h =
1

(2π)2

∞∑
k=−∞

2π∫
0

2π∫
0

δVk,0 cos(2hφ)

· eikψr−ihψr+2ihψφ dψrdψφ. (19)
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After substituting φ = ψφ −∆, this becomes:

δWh,0,−2h =
1

2π

∞∑
k=−∞

2π∫
0

δVk,0
2

· e2ih∆+ikψr−ihψr dψr = δV0,0/2, (20)

where we have used the fact that 2∆ ≡ ψr (mod 2π) for
Pφ = 0. In the following section, we use Eqs. (16), (18),
and (20) to find resonances, estimate their widths, and
reach some qualitative conclusions about antihydrogen
dynamics in the trap.

III. NUMERICAL SIMULATIONS

In this section, numerical simulations of single anti-
atom motion, aimed at assessing the ergodicity of anti-
atom trajectories and studying the feasibility of gravita-
tional measurement techniques, are discussed.

A. Computational framework

Antihydrogen dynamics were simulated using both
standard Runge-Kutta and fourth-order symplectic
schemes to integrate the COM equations of motion ṙ =
+∂H/∂p and ṗ = −∂H/∂r, where the frozen Hamilto-
nian H is given by Eq. (4). The magnetic field profile
B(r) was calculated from the presumed configurations of
magnetic coils at some fixed reference time. Since deter-
mining the magnetic field using the Biot-Savart law or
series expansions for each anti-atom at each moment of
time would be quite computationally expensive, we pre-
calculated B on a fixed lattice and then interpolated B
at instantaneous anti-atom positions. Given the repre-
sentation B(r) =

∑∞
n=0B2n(r, z) cos(2nφ + θ2n), in the

configurations of interest, harmonics Bn with n > 2 for
quadrupole traps and n > 4 for octupole traps can be ne-
glected. Therefore, instead of storing a three-dimensional
array of B values, we calculated B0(r, z) and B2\4(r, z)
on a two-dimensional lattice. The angular harmonics B0

andB2\4 were calculated using a fast Fourier transform of
B(r) on a ring (r, φi, z), where φi = 2πi/N with N = 64.

Using only bilinear interpolation to find B0 and B2\4 at
some intermediate point would be undesirable, since the
force acting on each anti-atom is proportional to ∇B,
which would then be a discontinuous function causing
noise and large numerical errors in antihydrogen trajecto-
ries. Instead, we used a bicubic interpolation [19], which
produced a C1-smooth approximation of B(r).

B. Trap geometries

Three device designs were considered: (a) a vertically-
oriented quadrupole trap with parameters similar to

FIG. 3. Set of coils used in our numerical simulations:
quadrupole coils (solid) with current directions shown with
arrows and mirror coils (dashed). The solenoid creating a
constant background field is not shown.

those of the ATRAP experiment, in which ergodicity
and feasibility of gravitational measurements via lower-
ing of the radial confining potential were studied; (b) a
vertically-oriented octupole trap otherwise similar to the
ALPHA apparatus, which we used to analyze alterna-
tive approaches to antihydrogen gravitational mass mea-
surements; and (c) a horizontally-oriented octupole trap
similar to the actual ALPHA apparatus (to be discussed
elsewhere).

In all device designs, the background magnetic field
Bb was directed along ẑ, with magnitude equal to 1 T.
In a device design motivated by ATRAP [5, 9] (but not
an exact model), two mirror coils of radius Rp = 10.4 cm
were placed at |z| = Z = 10 cm (Fig. 3). The total cur-
rent of approximately 265 kA flowing through each mir-
ror coil increased the magnetic field at the trap center
to 2.2 T, while creating a 375 mK axial well depth. The
quadrupole coil was modeled as a combination of 4 rect-
angular loops with longer sides of length 2Z = 20 cm
directed along ẑ and shorter sides of length Rl ≈ 6 cm
directed along either x̂ or ŷ (Fig. 3). Each loop coil lo-
cated at |x| = Rl or |y| = Rl carried the total current
of approximately 360 kA. As a result, a 375 mK radial
well was also created. The trap walls, on which the an-
tihydrogen are assumed to immediately annihilate, were
chosen to be at |z| = 1.2Z and at r = Rw = 1.8 cm. In
a realistic trap, there are no actual walls at |z| = 1.2Z,
but all anti-atoms reaching this location will never return
to the trapping volume and will annihilate shortly there-
after. Performing the angular Fourier decomposition of
B inside this volume, one obtains |B4(r, z)| < 60 G, while
B0 is between 2 T and 3 T, and |B2| ≤ 0.25 T. Neglecting
octupole and higher-order angular harmonics is therefore
justified for this trap.

In a trap design based on that of ALPHA, the mirror
coils located at |z| = Z = 13.7 cm created a 670 mK
axial well depth for antihydrogen. The octupole coil
was modeled as a combination of 8 rectangular loops
with longer sides of length 2Z, located at a distance
Rl = 2.3 cm from the device axis and connected by
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shorter sides of length 2Rl tan(π/8). The magnetic field
created by the octupole reached 1.5 T on the trap wall
(Rw = 2.22 cm). Simulated anti-atoms were assumed
to annihilate upon encountering this wall or else when
reaching |z| = L = 15 cm.

C. Vertical trap simulation

1. Ergodicity of anti-atom trajectories

As discussed in Sec. I, a suggested method of measuring
the gravitational mass of trapped antihydrogen by low-
ering the radial well depth of a vertically-oriented trap
and observing annihilations of escaping anti-atoms [5]
implicitly assumes the ergodicity of anti-atom trajecto-
ries. The assumption of ergodic trajectories with energy
higher than the lowest of the axial trapping potentials,
Umin ≈ 350 mK, was verified numerically by simulat-
ing anti-atom escape from the vertical quadrupole trap
described in Sec. III B. In our simulations, 6 · 103 anti-
atoms were initialized in the trap center homogeneously
within a cylinder of radius 1 cm and length 2 cm. The
ratio F = M/m of the anti-atom gravitational mass M
to the inertial mass m was chosen to be 200, in accor-
dance with the limit asserted in [5]. Initial anti-atom
velocities were distributed isotropically, and their en-
ergies were chosen randomly and homogeneously from
a range Umin ≤ E ≤ 550 mK. The anti-atom phase
space positions were then numerically evolved in time
in static fields for 103 seconds, during which a typical
anti-atom performed about 2 · 105 axial and more than
7 · 105 transverse oscillations. Every anti-atom encoun-
tering the device wall was assumed to annihilate imme-
diately, causing the total number of trapped anti-atoms
to drop over time. Figure 4 plots the simulated frac-
tion of anti-atoms remaining in the trap as a function of
time, f(t) = n(t)/n(0), from t = 0 s to t = 1000 s. Dif-
ferent numerical integration schemes showed good agree-
ment, and indicated that after 1000 s more than 25% of
all anti-atoms remained trapped in the device with only
2.5% of anti-atoms escaping in the last 999 seconds. That
is to say, most escaping antihydrogens escape very early
— about 90% anti-atoms which do escape leave the trap
within the first 10 ms, which is comparable to a single ax-
ial bounce time. The fact that in our simulations there
exist anti-atoms trapped in the system for 1000 s is not
consistent with the assumption of ergodicity; instead, it
indicates the existence of bounded regular trajectories.

It is instructive to see the effect of the angle-dependent
harmonic in B(r) on the anti-atom escape rate. In
one of our simulations, we considered an axisymmetric
potential U(r, z) = µBq 0(r, z) + Mgz identical to the
quadrupole potential except for an artificially suppressed
µBq 2(r, z) cos 2φ term (Fig. 4). This potential has the
same angle-averaged profile as in the quadrupole field,
but it cannot be physically realized. In this case, similar
to the previous quadrupole simulation, more than 50% of

FIG. 4. Fraction f(t) = n(t)/n(0) of anti-atoms remaining
trapped in a device as a function of time. Simulations were
performed for 6000 anti-atoms with energies within a range
350 mK ≤ E ≤ 550 mK for a trap with a quadrupole coil sim-
ulated by B(r, φ, z) = Bq 0(r, z) +Bq 2(r, z) cos 2φ (blue solid)
and a trap with an octupole coil simulated by B(r, φ, z) =
Bo 0(r, z) +Bo 4(r, z) cos 4φ (red solid). Antihydrogens escape
from axisymmetric potentials which, although not realizable
in multipole traps, share the same angle-averaged profiles with
quadrupole and octupole traps were also simulated: a trap
with U(r, z) = µBq 0 + Mgz (blue dashed) and a trap with
U(r, z) = µBo 0 +Mgz (red dashed). The gravitational to in-
ertial mass ratio F = M/m was equal to 200 in all simulations
except for one, where anti-atom escape from a quadrupole
trap with B(r, φ, z) = Bq 0(r, z) + Bq 2(r, z) cos 2φ assuming
F = 1 was analyzed (blue dotted).

all anti-atoms escaped within the first 10 ms. However,
f(t) at later times was much flatter in the axisymmetric
system, suggesting that the angular resonances may be
responsible for a slow anti-atom transport in phase space.
Indeed, such resonances may lead to Arnold diffusion,
which slowly empties resonance layers, driving resonant
anti-atoms to the walls.

The resonance effect of the angular harmonics is even
more strongly pronounced in fields with higher multi-
pole perturbations. To observe such effects, we simulated
anti-atom dynamics in the octupole field by changing the
total number of loop currents in the vertical quadrupole
trap described in Sec. III B from 4 to 8 and also increas-
ing the current Iq by approximately 4 times to create
a similar radial potential barrier, while also reducing the
transverse coil size from R to 0.6R. The survival fraction
f(t) obtained for the octupole field B = Bo 0 +Bo 4 cos 4φ
and the axisymmetric potential U(r, z) = µBo 0 + Mgz
are shown in Fig. 4. Although the axisymmetric potential
U(r, z) = µBo 0 + Mgz cannot actually be realized in a
multipole magnetic trap, simulating anti-atom dynamics
in it helps to highlight the role of angular perturbations
in long-time anti-atom dynamics.
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FIG. 5. Frequency map analysis (FMA) diagram [20] showing D(P̄φ, Īz) = ln |1− ΩB/ΩA| for Pφ(t) in a vertical quadrupole
trap. Primary frequencies ΩA and ΩB are calculated numerically over two successive 4 second time intervals A and B. Blue
and green colors correspond to regular quasiperiodic trajectories. Values of P̄φ and Īz together with ψr = ψz = ψφ = 0 define
the initial conditions for the system trajectory with: (a) E = 390 mK and (b) E = 475 mK.

FIG. 6. A FMA map similar to that in Fig. 5a, ob-
tained for E = 390 mK in a system with a trapping poten-
tial U = U0 + (U2/4) cos 2φ, where U0 and U2 are calculated
for the vertical quadrupole trap (Sec. III B). Color palette is
altered to highlight the parabolic curve (white arrows) con-
taining strongly nonlinear trajectories. It corresponds to the
boundary of the resonance island over the stable stationary
point (Fig. 7). The straight line at P̄φ = 0 corresponds to
trajectories near the saddle point.

2. Comparison with analytical predictions and frequency
map analysis

The majority of anti-atoms trapped for more than
10 ms in the quadrupole trap configuration considered
above would appear to exhibit regular trajectories. This
can be explained qualitatively using the formalism out-
lined in Sec. II. After calculating Ir and Iz numerically,
using Eqs. (8) and (10), the frequencies ωr, ωφ, and ωz
are obtained by differentiating the unperturbed Hamilto-

nian expressed as a function of the corresponding actions
I. Knowing these canonical frequencies, we identify all
resonances for anti-atoms with fixed energy E and plot
them in (Iz, Pφ) space. Figure 2 shows such a plot for a
vertically-oriented quadrupole trap (Sec. III B) and E =
390 mK, with resonances Qk,l,s ≡ k ωr + l ωz + s ωφ = 0
and |k| ≤ 10, |l| ≤ 12, and |s| ≤ 12. (Without limitation
on k, l, and s, the entire plot is covered by a dense set
of curves at this resolution). The triangular shape of the
plot is due to the fact that H⊥(Ir, Pφ) = E − H‖(Iz)
decreases as Iz increases.

Not all resonances shown in Fig. 2 influence the dy-
namics significantly. For example, consider a trap with
a perturbation possessing only one angular harmonic,
i.e., δU(r, φ, z) = V (r, z) cosnφ. For n = 0, correspond-
ing to an axisymmetric perturbation, all resonances have
the form k ωr + l ωz = 0. For n = 1, the only reso-
nances affecting anti-atom motion are those RE1 solving
Qk,l,±1 = 0 (shown with dash-dotted lines in Fig. 2).
The number of resonances increase with a quadrupole
field (n = 2). Indeed, every resonance Qk,l,±1 = 0 is
also a resonance for n = 2 since Q2k,2l,±2 = 2Qk,l,±1,
i.e., RE1 ⊆ RE2 . Other resonances Qk,l,±2 = 0 for which
either k or l is an odd number, including the resonance
ωr = 2ωφ at Pφ = 0 (see Sec. II A), are shown in Fig. 2
with yellow dashed lines. For the octupole perturbation
with n = 4, the number of resonances increases even fur-
ther since, again, RE1 ⊆ RE2 ⊆ RE4 , i.e., the set of all res-
onances Qk,l,±4 = 0 also includes resonances Qk,l,±1 = 0
and Qk,l,±2 = 0. This effect may be partially responsible
for the presence of a larger fraction of anti-atoms with
stochastic trajectories in the octupole traps (Fig. 4).

The fraction of anti-atoms affected by a specific reso-
nance depends on its width. Using Eqs. (18) and (20),
the widths of resonances Qk,l,0 = 0 and Qh,0,−2h = 0 can
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FIG. 7. Dependence of |〈P̄φ(t)〉|(Īz, P̄φ) calculated for E = 390 mK in a system with a trapping potential U = U0+(U2/4) cos 2φ,
where U0 and U2 are obtained for the vertical quadrupole trap (Sec. III B): (a) all anti-atoms are initialized with ψr = ψφ =
ψz = 0, (b) anti-atoms are initialized with ψφ = π and ψr = ψz = 0. The boundary (dotted line) of the resonance ωr = 2ωφ at
Pφ = 0 calculated using Eq. (20) contains two branches, for which the corresponding one-dimensional phase portraits are shifted
by π with respect to each other. For one of these branches [bottom curve on figure (a)] the initial condition with ψr = ψφ = 0
initializes the system state over the saddle point, hence 〈Pφ〉 is non-zero. For the other branch, this initial condition places the
system state over the stable stationary point, which makes 〈Pφ〉 = 0 within the maximum width of the resonance island.

be calculated numerically for a vertically-oriented trap
with parameters similar to those of ATRAP (Fig. 2). The
resonance Q1,0,−2 = 0 is then shown to affect a large frac-
tion of trapped anti-atoms, while Qk,l,0 = 0 resonances
have much smaller widths. Therefore, since there is no
resonance overlap over a large phase space volume, most
anti-atom trajectories are expected to be regular.

The predicted locations of resonances (along with their
widths) and the associated stochastic layers can be veri-
fied numerically using a variation of the Frequency Map
Analysis (FMA) method [20]. The core idea behind this
technique is to test system coordinates like Ike

iψk for
quasiperiodicity. Treating such a variable as a function
of time, one can approximate it as a sum of harmonics∑N
k=1Ake

iΩkt with |Ak+1| ≤ |Ak| and then compare the
values of Ak and Ωk on different non-intersecting time
intervals. If the frequencies and amplitudes change con-
siderably along a single anti-atom trajectory, it can be
regarded as a sign of stochasticity. Figure 5 shows the
FMA maps obtained by analyzing Pφ(t) for initial an-
gles ψφ = ψr = ψz = 0 and energies E = 390 mK and
E = 475 mK. The initial conditions corresponding to
chaotic anti-atom motion are shown with yellow and red
in Fig. 5. This figure and other numerical results ob-
tained for different initial angles suggest that nearly all
anti-atoms with energy E = 390 mK are characterized
by quasiperiodic trajectories (shown with blue) rather
than chaotic motion. Higher energy anti-atoms with
E = 475 mK, however, are more likely to exhibit stochas-
tic dynamics. Emergence of stochastic orbits for higher
energies can be attributed to the fact that many anti-
atoms can now reach regions near the wall (r = Rw) at
z ≈ Z, where the angle-dependent perturbation of the
trapping potential becomes particularly strong. Note,
however, that emergence of stochasticity does not neces-

sarily imply rapid anti-atom loss. In fact, the majority
of anti-atoms with initial states within the bright area in
Fig. 5b were shown to stay in the system for at least 100
seconds.

Some of the main features of the FMA maps shown
in Fig. 5 can be related to our analytical predictions.
Since agreement is better observed for weaker pertur-
bations δU (characteristic of traps with smaller radii),
consider an artificial system with a trapping potential
U(r, φ, z) = U0 + (U2/4) cos 2φ, where U0 and U2 are
calculated for a vertical quadrupole trap discussed in
Sec. III B. Calculating locations and widths of resonance
islands, all resonances except for ωr = 2ωφ can be shown
to affect only a small region of the system phase space.
On the other hand, the width of the resonance ωr = 2ωφ
calculated using Eq. (20) is sufficiently large to affect al-
most half of all 390 mK anti-atoms. Interestingly, the
perturbation harmonic δW1,0,2 corresponding to this res-
onance and considered as a function of Iz for Pφ = 0
passes through zero at some Iz = I∗. This means that
the phase portrait of the resonance island shifts in phase
by π after Iz goes through I∗. As a result, both when
Iz < I∗, ψφ = 0 or when Iz > I∗, ψφ = π, the anti-atom
is initialized over a saddle point and, thus, all such orbits
are not trapped within the resonance, but lie outside of
the resonance island. On the other hand, for Iz > I∗,
ψφ = 0 or Iz < I∗, ψφ = π, the system state is initial-
ized over a stable stationary point, and the correspond-
ing orbit turns out to be trapped for Pφ smaller than the
maximum resonance width.

These analytical predictions are in agreement with the
FMA map shown in Fig. 6. Indeed, the bright green
round curve in Fig. 6 corresponds to the separatrix of
the resonance ωr = 2ωφ, which can also be visualized by
plotting the average Pφ(t) for different anti-atom trajec-
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FIG. 8. Survival fraction f(t) = n(t)/n(tshut) in the
quadrupole trap under the assumption that F = 1 (solid) or

F = 200 (dashed). Anti-atoms are initialized with a
√
E dE

distribution and E ≤ 550 mK (black) and with a flat dis-
tribution and 350 mK ≤ E ≤ 550 mK (gray). The vertical
line corresponds to a time tR = 1000.16 s at which the radial
trapping potential drops down to Umin = 350 mK. The inset
shows a zoomed in region for t < tR.

tories (Fig. 7). If the anti-atom orbit is trapped within
this resonance, 〈Pφ〉 = 0, while for anti-atoms outside
of the resonance island, 〈Pφ〉 is finite. By crossing the
separatrix, one would therefore expect to see a jump in
〈Pφ〉. The analytical predictions for the resonance width
and for I∗, shown in Fig. 7 for ψφ = 0 and ψφ = π, would
seem to agree with the 〈Pφ〉 jumping near the actual sep-
aratrix.

3. Radial barrier shutdown

In the previous section, based on the numerical simu-
lation of dynamics governed by the frozen Hamiltonian,
we inferred that, for our numerical example, a signifi-
cant fraction of trapped anti-atoms with E ≥ Umin have
regular trajectories. This makes the assumption of tra-
jectory ergodicity unjustified. However, it is still possible
that the anti-atom gravitational mass can influence how
anti-atoms escape as the radial potential well lowers with
the decrease of the quadrupole coil current Iq. Suppose
that the shutdown of the quadrupole coil starts at t = t0.
If, for a fixed profile Iq(t), the fraction of trapped anti-
atoms f(t) = n(t)/n(t0) is different for different values of
F , one can use an experimental measurement of f(t) to
infer bounds on the gravitational mass. In the following,
we compare simulations of f(t) for F = 1 and F = 200.

We next identify the multipole field with the field
Bq(r, t) created by the quadrupole coils. Introducing
α(t) = Iq(t)/Iq(t0) so that Bq(r, t) = α(t)Bq(r, t0), the

field strength can be written as:

|B| =
√
B2
z +B2

r +B2
φ =

{
[Bbz +Bpz + αBqz(r, t0)]

2

+ [Bpr + αBqr(r, t0)]
2

+ α2B2
qφ(r, t0)

}1/2

=
√
B2
A + 2αG+ α2B2

q (r, t0), (21)

where B2
A = (Bbz + Bpz)

2 + B2
pr, G = BprBqr(r, t0) +

(Bbz +Bpz)Bqz(r, t0), and the subscripts r, φ denote the
radial and azimuthal components of vectors, respectively.

Equation (21) was implemented numerically by tabu-
lating zeroth-order and second-order azimuthal harmon-
ics of B2

A, G and B2
q (r, t0) independently. The simu-

lated antihydrogen ensemble contained 64,000 anti-atoms
with an energy distribution N (E) dE scaling like

√
E dE

[2, 21, 22]. All anti-atoms were initialized with energy
below 550 mK, because any anti-atom with higher en-
ergy leaves the device within 10 ms. We compared the
loss of anti-atoms due to the quadrupole coil shutdown
for F = 1 and F = 200. For the first t0 = 1000 sec-
onds, the quadrupole coil is energized α(t < t0) = 1.
Then, the quadrupole coil is turned off with a character-
istic time scale on the order of one second. A choice of
α(t) = exp[−2(t− t0)2/(t− t0 + 0.8 s)] for t ≥ t0, similar
to the reconstructed radial trapping potential shown in
Fig. 3b of Ref. 5.

The time-dependence of the fraction of anti-atoms re-
maining trapped after the initiation of shutdown is shown
in Fig. 8. According to Fig. 8, the dependencies f(t)
calculated for F = 1 and F = 200 are virtually iden-
tical. Introducing the moment of time tR ≈ 1000.16 s
when the radial potential barrier at z = 0 drops down
to Umin, one observes that, while approximately 3% of
anti-atoms escape the device prior to tR in a system with
F = 1, about 2.5% of anti-atoms escape over the same
time interval when F = 200. Note that if the anti-atom
motion were ergodic, no anti-atom de-trapping would be
observed until t = tR for the case where F = 200.

Of course, the fact that in ATRAP, about 10% of all
annihilation events were detected before t = tR [5] could
be attributed to the fact that the actual anti-atom dis-
tribution function might differ significantly from

√
E dE.

Additional simulations performed with a flat distribution
function, containing only anti-atoms with energies in a
range 350 mK ≤ E ≤ 550 mK, were shown to be in close
agreement with results obtained for aN (E) dE ∝

√
E dE

distribution and, in this case, the fraction of anti-atoms
escaping before t = tR reached 7%. A small deviation of
0.5% between the graphs of f(t) for t < tR shown in Fig. 8
could, in principle, be detected in an experiment. Note,
however, that we infer that only approximately 4 anti-
hydrogen annihilations (with 5 expected cosmic events)
were observed in total in Ref. 5 in the relevant time re-
gion between t = t0 = 1000 s and t = tR = 1000.16 s.
This count rate is at least two orders of magnitude lower
than that necessary to resolve the differences between the
curves shown in Fig. 8.
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FIG. 9. Dependence of 〈z〉/L on τ for 100 mK antihydrogen
atoms trapped in a vertical octupole trap with parameters
similar to those of ALPHA (Sec. III B) with: (a) artificial
separable potential Ū(r, z) = U(r, 0, 0)+U(0, 0, z)−U(0, 0, 0)
(green solid) and (b) realistic trapping potential U(r, φ, z)
(blue solid). Two fitted exponential functions exp(−2.6τ −
0.2)− 1 (green dotted) and 0.5(exp(−4.1τ)− 1) (blue dotted)
are shown for reference.

We infer from these simulations that one cannot es-
tablish a limit of F < 200 using the technique described
above with a vertical quadrupole trap. Note that the two
distributions studied here are very different, but lead to
the same conclusion.

In the following section we turn our attention an im-
proved technique.

4. Axial barrier shutdown

A natural alternate approach for measuring the anti-
hydrogen gravitational mass involves lowering the axial
trapping barrier in a vertical trap. Recall that if M > 0,
the gravitational potential Mgz lowers the trapping po-
tential at the bottom of the trap and raises it at the
top, relative to the trap center; for M < 0, the trap-
ping potential is lowered at the top and raised at the
bottom. Assuming that currents in both coils are very
nearly equal at each moment of time, and that the mag-
netic field they produce is decreasing in magnitude suf-
ficiently slowly, nearly all anti-atoms with M > 0 will
be expected to exit at the bottom of the trap, where the
trapping potential is slightly lower (Fig. 1). For M neg-
ative, antihydrogen would instead preferentially exit the
trap at the top. Observing the vertical location of anti-
hydrogen annihilations during slow shutdown of mirror
coils may, therefore, be a useful experimental technique
for quickly assessing the sign of M . Some preliminary
estimates of the required shutdown time and a numerical
simulation of such an experiment are discussed below.

The characteristic adiabatic time-scale τ∗, on which
the trapping potential should be lowered in order to de-
termine the sign of M can, in principle, be estimated
by analyzing the axial motion under the Hamiltonian
H‖(pz, z, t). Suppose that M > 0 and consider an anti-
atom which is about to cross the inner separatrix S1 pass-
ing through the saddle point of the lower potential barrier
(Fig. 1). Let T (H‖, t) be the period of the antihydrogen
trajectory calculated for a frozen potential profile U(z),
and let T be the smallest period of all orbits between
two separatrices. If T is sufficiently large, the anti-atom
may cross another separatrix S2 passing through the sad-
dle point of the upper potential barrier, after the time
∆τ = (2MgL/U)τ , where U is the trap depth and τ is
the actual field shutdown time. As a result, the proba-
bility for such an anti-atom to leave the device at the top
(pz > 0) will be approximately equal to the probability
of leaving at the bottom (pz < 0). On the other hand, if
T � ∆τ , nearly all antihydrogen crossing S1 will leave
the device at the bottom before reaching S2. The field
shutdown is then adiabatic if it occurs on a time-scale
much larger than τ∗ defined by:

2MgL

U
τ∗ = T . (22)

The value of T can be estimated by recalling that T (H‖)
goes to infinity (logarithmically) near both separatrices,
and the minimum of T is therefore comparable to

T ∼ lz

√
2m

U

[
ln

(
4U

MgL

)
+

2L

lz

]
, (23)

where lz is the characteristic scale length of the axial
confining potential. Assuming that M = m, this es-
timate suggests that for 100 mK antihydrogen with a
Gaussian distribution trapped in a device similar to AL-
PHA, τ∗ is expected to be of an order of the second.
To verify this conjecture, numerical simulations of an-
tihydrogen escaping from a trap with separable poten-
tial Ū(r, z) = Ur(r) + Uz(z), where Ur(r) = U(r, 0, 0),
Uz(z) = U(0, 0, z) − U(0, 0, 0), and U(r, φ, z) = µB
is the confining potential of an ALPHA-like appara-
tus described in Sec. III B, were performed. Lowering
the current in the mirror coils according to Im(t) =
Im0 e

−(t−t0)/τ , we calculated the z coordinates of all sim-
ulated annihilation events and plotted their average 〈z〉
as a function of τ . As expected, this average annihilation
position 〈z〉(τ), shown in Fig. 9, converges to the bottom
of the trap −L as τ goes to infinity. The characteristic
time-scale of this dependence is on the order of a second,
in agreement with the prediction for τ∗.

If implemented, this experimental technique could po-
tentially allow one to distinguish between F > α(τ) and
F < −α(τ) with α(τ) → 0 as τ → ∞. Choosing a
sufficiently large τ , it might even allow one to distin-
guish F ≥ 1 from F ≤ −1 for even 300 mK antihydro-
gen atoms. Unfortunately, however, this proposed tech-
nique would be very sensitive to possible deviations of
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the actual trapping potential U(r, φ, z) from its separa-
ble approximation Ū(r, z). One consequence of the non-
separability of U(r, φ, z) is the emergence of stochastic
layers near the separatrices. If the layers overlap, anti-
atom dynamics within the region confined by S1 and S2

will be stochastic, and the approximate expression de-
rived for T will no longer be valid. On the other hand,

a small non-separable field component δU = U − Ū may
perturb low-energy antihydrogen trajectories as the mir-
ror coils are being shut down. Indeed, if the oscillations
of Iz due to the perturbation δU are sufficiently strong
and exceed the distance between the separatrices, anti-
atoms will cross both of them numerous times. As a
result, anti-atoms with M > 0 will retain a finite prob-
ability of leaving the device at the top, even if the field
shutdown is infinitely slow.

This effect can be observed by simulating 100 mK an-
tihydrogen escape from a device with a realistic trap-
ping potential U(r, φ, z). Now 〈z〉(τ) does not converge
to −L as τ → ∞, but instead becomes saturated at
〈z〉 ≈ −7.5 cm (Fig. 9). Therefore, increasing the shut-
down time τ (beyond about 0.5 s in our case) does not
necessarily lead to a substantial decrease of α(τ) nor to
improvement of the antihydrogen mass measurement.

5. Accuracy of the gravitational mass measurement

As discussed in the previous section, 〈z〉 of escaping
particles measured in a vertical trap with de-energized
mirror coils can be very sensitive to the gravitational
mass M of the cold antihydrogen. This effect could, in
principle, be used to determine the value of M , or simply
check whether M is greater or smaller than zero. Here,
we determine an accuracy of such a hypothetical test by
comparing 〈z〉 for F = −1 and F = 1 assuming that there
are only 500 annihilation observations. To accomplish
this, we follow the procedure discussed in Ref. 4, namely
we calculate the reverse cumulative averages 〈z〉∗k(t) for
640 sets sk, each containing 500 simulated annihilation
events. This reverse cumulative average is defined as the
average z of events occurring after the time t, i.e.,

〈z〉∗k(t) ≡

( ∑
i∈sk, ti<t

zi

)( ∑
i∈sk, ti<t

1

)−1

. (24)

Likely statistical fluctuations of {〈z〉∗k} can then be visu-
alized by plotting a confidence region [z1(t), z2(t)], cho-
sen in such a way that the intervals (−∞, z1) and (z2,∞)
each contain only 5% of the values of {〈z〉∗k}.

The simulations were performed for a vertical trap with
parameters similar to those of the ALPHA apparatus.
The confidence regions for F = ±1, but different values
of the antihydrogen temperature and shutdown times are
shown in Figs. 10 and 11. In these simulations, the time
profile of the current in the mirror coils was chosen to
be Im(t) = Im0 e

−t/τ with τ = 0.05 s, 0.1 s, and 0.3 s
(we have chosen t0 = 0 for simplicity). According to
our results, a measurement of 〈z〉 for τ = 50 ms and a√
E exp(−E/kT ) dE particle distribution with T up to

at least 600 mK can be used to distinguish between F =
−1 and F = +1 hypotheses with a 95% confidence. In
other words, a measurement 〈z〉 > 0 (< 0) is inconsistent
with F = +1 (F = −1) hypothesis since this average
lies outside of the 95% 〈z〉-confidence region simulated
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for F = +1 (F = −1). Note that calculating 〈z〉 of
late-time events can further improve the accuracy of the
method (Fig. 10). Simulations performed for a horizontal
ALPHA trap suggest that a similar test on the sign of M
can be accomplished only for cold plasmas and a large
octupole coil shutdown time. Fixing the antihydrogen
temperature at 30 mK, we see that two 95% confidence
regions for F = ±1 intersect when τ < 0.2 s.

IV. CONCLUSIONS

Measuring the ratio of the gravitational to inertial
mass in neutral antihydrogen is possible in vertical and
horizontal traps, but will require detailed simulations of
the nonlinear dynamics of trapped anti-atoms, as these
dynamics affect the nature of any signal of the gravita-
tional interaction, and limit the accuracy with which it
might be extracted. Our study of a vertical quadrupole
trap based on the ATRAP experiment shows that the
claimed experimental sensitivity is not realized with an

experimental methodology inferred from Ref. 5. Surpris-
ingly, insufficient stochasticity can limit schemes to mea-
sure the gravitational mass of antimatter. In particular,
because of a lack of ergodicity, radial shutdown in a ver-
tical trap does not appear to offer much sensitivity to
F = M/m. The coupling of axial and transverse motions
and the related notion of stochasticity of typical trajec-
tories in phase space plays especially important roles in
other measurement techniques as well. In some cases,
Arnold diffusion [17, 18, 23] and other consequences of
stochasticity can limit the precision with which gravi-
tational interactions can be inferred. Systematic effects
from small field errors and detector misalignments also
need to be carefully understood.
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