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EXECUTIVE SUMMARY
Similar to many scientific and applied research fields, geography has moved from a data-poor and
computation-poor to a data-rich and computation-rich environment.  The scope, coverage and
volume of digital geographic datasets are growing rapidly due to new high-resolution satellite
systems, initiatives such as the U.S. National Spatial Data Infrastructure and the automated
collection of point-of-sale, logistic and behavioral data.  In addition, the types of geographic data
collected are expanding from the traditional vector and raster data models to include
georeferenced multimedia data.  This trend is likely to continue if not accelerate in the
foreseeable future.

Traditional spatial statistical and spatial analytical methods were developed in an era when data
collection was expensive and computational power was weak.  The increasing volume and
diverse nature of digital geographic data easily overwhelm mainstream spatial analysis techniques
that are oriented towards teasing scarce information from small and homogenous datasets.
Traditional statistical methods, particularly spatial statistics, have high computational burdens.
These techniques are confirmatory and require the researcher to have a priori hypotheses.
Therefore, traditional spatial analytical techniques cannot easily discover new and unexpected
patterns, trends and relationships that can be hidden deep within very large and diverse
geographic datasets.

The National Center for Geographic Information and Analysis (NCGIA) – Project Varenius
workshop on “Discovering geographic knowledge in data-rich environments” brought together a
diverse group of stakeholders with interests in developing and applying new techniques for
exploring large and diverse geographic datasets.  This included geographers, geographic
information scientists, computer scientists and statisticians.  The synergy created by the
discussions prior to, during and after the three-day workshop resulted in the identification of
research priorities and directions for continued development of “geographic knowledge
discovery” (GKD) theory and techniques.

This research report summarizes the activities surrounding the Project Varenius workshop on
“Geographic knowledge discovery in data-rich environments.”  Section 1 comprises an overview
of the workshop.  Section 2 lists the workshop participants.  Section 3 provides the position
papers submitted in response to the open Call for Participation.  Section 4 summarizes the
workshop presentations and discussion.

Many detailed recommendations for continued research and development in GKD theory and
techniques emerged during the three-day workshop.  Participants also identified several cross-
cutting research issues.  These issues are:

• What are the new questions for geographic research?  A fundamental question for the
geographic and related research communities is “What questions do we want to answer that
we could not answer previously?”  These communities need to form well-structured (but
possibly open-ended questions) in order to guide the computer science and related
communities in their tool and algorithm development

• Better spatio-temporal representations in GKD.  Current GKD techniques use very simple
representations of geographic objects and geographic relationships, for example, point objects
and Euclidean distances.  Other geographic objects (including lines, polygons and more
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complex objects) and geographic relationships (including non-Euclidean distances, direction,
connectivity, attributed geographic space such as terrain and constrained interaction
structures such as networks) should be recognized by GKD techniques.  Time needs to be
more completely integrated into geographic representations and relationships.  This includes
a full range of conceptual, logical and physical models of spatio-temporal objects.   Finally,
we need to formulate multiple representations (in particular, robust geographic concept
hierarchies) and granularities in spatio-temporal representation in order to manage the
complexity of GKD.

• GKD using richer geographic data types.  Geographic datasets are rapidly moving beyond the
well-structured vector and raster formats to include semi-structured and unstructured data, in
particular, georeferenced multimedia.  GKD techniques should be developed that can handle
these heterogeneous datasets.

• User interfaces for GKD.  GKD needs to move beyond the technically-oriented researcher to
the broader geographic and related research communities.  This requires interfaces and tools
that can aid these diverse researchers in the GKD process.  These interfaces and tools should
be based on useful metaphors that can guide the search for geographic knowledge and make
sense of discovered geographic knowledge.

• Proof of concepts and benchmarking problems for GKD.  There is a strong need for some
“examples” or “test cases” to illustrate the usefulness of GKD.  This includes a demonstration
of GKD techniques leading to new, unexpected knowledge in key geographic research
domains.  Also important is benchmarking to determine the effects of varying data quality on
discovering geographic knowledge.  A related issue is research and demonstration projects
that illustrate the usefulness of GKD techniques in forecasting and decision support for the
public and private sectors.

• Building discovered geographic knowledge into GIS.  Current GIS software uses simple
representations of geographic knowledge.  Discovered geographic knowledge should be
integrated into GIS, possibly through inductive geographic databases or online analytical
processing (OLAP)-based GIS interfaces.

• Developing and supporting geographic data warehouses. A glaring omission from current
research in GKD techniques is the development and supporting infrastructure for geographic
data warehouses (GDW).  To date, a true GDW does not exist.  This is alarming since data
warehouses are central to the knowledge discovery process.  Creating true GDWs requires
solving issues in geographic and temporal data compatibility, including differences in
semantics, referencing systems, geometry, accuracy and precision.  Supporting GDWs may
also require restructuring of transaction-oriented databases systems, particularly for flow and
interaction data.
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1 WORKSHOP BACKGROUND
Digital geographic datasets are growing rapidly due to activities as the development of the U.S.
National Spatial Data Infrastructure, the launching of new satellite systems with higher
resolutions, and the day-to-day collection of digital imagery, video, and sound.  Society has
changed from being data-poor to data-rich, while our techniques for deriving knowledge from the
data have remained inferential.  The problem has now become not finding the data, but filtering
through large volumes of data to finding meaningful geographic knowledge.  At the same time,
the types of datasets available are changing from the traditional vector and raster formats to
include such data types as video and audio, and the location of where these data were collected.
We must overcome these limitations and develop new approaches and methods that focus upon
separating the relevant from the irrelevant, the meaningful from the background noise.

The goal of the "Discovering geographic knowledge in data-rich environments" workshop and
research initiative is to find new automated methods for filtering large amounts of raw geographic
data into more user-consumable forms of knowledge.  This includes: i) spatial data mining; ii)
content-based and knowledge-based retrieval; iii) development of multi-media spatial data types;
iv) on-line analytic processing; v) refinement of non-parametric statistics; vi) incorporation of
computational intelligence techniques (such as neural networks and AI expert systems) into
spatial data analysis.

A key objective of the "geographic knowledge discovery" (GKD) workshop was to bring together
the diverse stakeholders in GKD and spatial data mining.  In the academic realm, these include:

i) geographers and other researchers interested in domain-oriented research questions;
ii) geographic information scientists formulating new digital geographic representations

and geocomputational techniques;
iii) computer scientists formulating computational techniques for knowledge discovery

from non-geographic and (increasingly) geographic databases; and,
iv) other scientists developing analytical techniques for data analysis (e.g., statisticians).

Also critical was bringing together academic researchers and scientists working in industry and
other private sector settings.

The Co-leaders and Steering Committee for the GKD workshop that reflected these diverse
stakeholders:

Initiative Co-Leaders
Jiawei Han, Simon Fraser University (computer science)
John R. Herring, Oracle Corporation
Harvey J. Miller, University of Utah (geography)

Steering Committee
Larry Band, University of North Carolina, Chapel Hill (geography)
Max J. Egenhofer, University of Maine (geographic information science)
Suchi Gopal, Boston University (geography)
Hans-Peter Kriegel, University of Munich (computer science)
Richard R. Muntz, University of California, Los Angeles (computer science)
John Roddick, University of South Australia (computer science)
Carl Stephen Smyth, Microsoft Corporation
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Elizabeth A. Wentz, Arizona State University (geography)
Aidong Zhang, State University of New York at Buffalo (computer science)

As can be seen from the participant list (pp. 7 - 9) and the position papers (pp. 10-42) the
workshop achieved the desired goal of bringing together a diverse group of GKD stakeholders.

The next section of this report provides the participant list and contact information.  Section 3
provides the research statements submitted during the open call for participation.  Section 4
provides a summary of the workshop presentations and discussion, including an overall synthesis
of research themes.   Section 5 summarizes the funded seed grant proposals that resulted from the
workshop.

Discovering Geographic Knowledge in Data Rich Environments

An NCGIA Varenius Specialist Meeting Kirkland, WA; 18-20 March, 1999



7
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Hornsby
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University of Maine
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3  RESEARCH STATEMENTS

3.1 Yvan Bedard
Over the last 15 years, we have been deeply rooted in R&D about spatial database modeling,
management and implementation at federal and provincial levels in Canada both on academic and
professional grounds. We have also been involved in R&D on spatial data warehousing and
Spatial OLAP for the last two years, with practical experiences. In particular, we realized a
Strategic positioning technical report for the Canadian National Defense on this topic. Dr. Bedard
is the scientific leader of two major projects on this topic (and which involve Dr. Jiawei Han) in
the context of GEOID, the new Canadian Network of Centres of Excellence in Geomatics.

My Ph.D. student Pierre Marchand and myself are very interested in participating to this meeting
because there is a high level of compatibility between our research focus and the issues that will
be discussed. In particular, besides the scientific discussions which will take place, it will provide
the best opportunity to establish the ground for cooperation and coordination between the NCGIA
and GEOID groups on this topic, probably the two largest formal university projects on the topic.
Finally, we will be very interested to share with the audience the results of our research,
especially the strategic R&D issues identified for the National Defense.

Our approach to knowledge discovery in spatial data is not yet based on automated techniques.
We strongly believe that prior to a fully automated spatial data analysis there lies a powerful
human space that has not been exploited yet. This space could greatly help spatial data mining in
supporting spatial iterative reasoning. We have carried out various research projects that could
greatly contribute to help knowledge discovery in data rich environments. Whatever the
approach, appropriate integration and availability of spatio-temporal data is the sine qua none
condition of effective spatial processing. Moreover, whereas most of the techniques involved in
spatial data mining imply an IT approach, we believe that there are other ways to generate
knowledge discovery in spatial data.

Data mining techniques have been used in the IT mainstream for quite some time, spatial data
mining is a recent phenomenon that is facing multiple barriers. "The reality is that the bulk of our
scientific knowledge lacks the spatial specificity in the relationships among variables demanded
by these advanced applications." [Berry]. "Managers would rather live with a problem they can’t
solve than apply a solution they don’t understand" [Woosley]

3.2 David Bennett (and Raja Sengupta)
The goal of our research is to develop interoperable technologies that integrate digital
geographical data and analytical tools that have been gleaned from network accessible
repositories into systems capable of supporting spatial analysis and problem solving (i.e., on-line
analytical processing). Our focus is not necessarily on how to perform data mining operations
designed to search through mountains of data in search of a few high quality gems. Rather, we are
more interested in how to manage these data once they are returned to the user.

Initial efforts will focus on the development of a system capable of supporting environmental
modeling. To address social and environmental problems it is often necessary to understand the
impact of human activities on a complex set of geographical processes that interact across space
and through time. Spatially explicit computer models can provide insight into spatio-temporal
relations and, thus, contribute valuable information to the decision making process. The creation
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and management of spatially explicit models, however, is often difficult and time consuming
because the real world systems that they represent are large and complex. Furthermore, the use of
such models often requires users to construct links among disparate software products, data
formats, and computing platforms. Performing these integrative tasks often requires
geoprocessing and computer skills that are beyond many potential users. Connections forged
among disparate software also require common communication protocols. Such protocols are in
development for geographical databases (e.g., SDTS (National Institute of Standards and
Technology, 1992), Open-GIS (http://www.opengis.org)). However, there is little support for the
distribution and sharing of geographical models and analytical tools. Nor is there strong support
for the transformation and integration processes that must be performed to make data applicable
to a particular project.

Our challenge, then, is to represent, capture, and use the knowledge of geoprocessing experts in
digital form in a manner that is flexible, robust, and adaptive (i.e., brittleness must be avoided)
and to use these digital experts to expedite the development of spatial models. Conceptually, such
a system would be of utility to power users running computationally intensive spatial models as
well as the computing novice who simply wants to understand how he will be effected by a
proposed transportation project. We have identified a set of four technologies that require further
research before such Internet-based GIS technologies reach their full potential. These follow
those set for in the "Call for Participation" and are as follows:

• Geoprocessing technologies are needed to bridge multiple vendor formats and heterogeneous
computing environments.

• Artificial intelligence technologies are needed to facilitate the acquisition of geographical
data and the transformation of these data into a usable form.

• Distributed processing capabilities are needed to harness the collective computational power
that resides on networks.

• Advances in the theory and application of public participation GIS are needed to better
understand how and to what extent geographical concepts and problem solving techniques
can be used by and communicated to the public at large.

If such advances can be made in the theory and application of geoprocessing technologies then
decision-makers, analysts, and stakeholders will have access to computing resources that may not
otherwise be available and a more level "technological playing field" on which to build consensus
and compromise.

We have begun the development of a system capable of supporting some of the tasked outlined
above. This system is being built using: distributed problem solving strategies, intelligent agents,
existing GIS software, and applicable web-based tools.  Collectively, these technologies must
model the activities of the geoprocessing expert as he or she goes through the complex task of
integrating data and analytical tools collected from various sources across the Internet and to
incorporate this behavior into a computer program. The objectives of this first phase of research
are to:

• Develop a geographical data model that supports geographical analysis across a
heterogeneous computing environment.

• Develop knowledge structures that capture in digital form the human expertise needed to
perform specific geoprocessing tasks.

• Develop intelligent agents that use elements derived from objectives 1 and 2 to automate the
integration of data and models.
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• Evaluate the effectiveness of this work by comparing computer generated solutions to those
generated manually by geoprocessing experts.

Future research will expand on these efforts and focus on:

• Developing a geographical model definition language that supports the query, manipulation,
and integration of geographical data and analytical tools stored in network accessible
repositories.

• Developing distributed computing capabilities that manage environmental models and data
on a virtual machine that is distributed across heterogeneous computing environments.

• Testing the ability of novice users to construct spatial analytical tools using this system.
• Testing the ability of novice users to properly interpret the results of spatial analytical tools.

The intended beneficiaries of this research include stakeholders (e.g., individuals impacted by
resource management decisions), resource managers, and scientists who do not possess the
technical expertise or the time needed to search for and integrate the geographical data and
analytical tools needed to make informed decisions or to study spatial processes.

3.3 Catherine Dibble
Grace, resilience, adaptation, and evolution are complementary themes. I have been working with
Genetic Algorithms and Holland classifier Genetics Based Machine Learning (GBML) since
coming to geography. First, by using an unusual alphabet to discover efficient yet diverse
solutions to the P-Median location-allocation facility location problem. Second, by developing a
spatial representation for GBML classifiers that supports the implementation and refinement of
adaptive expert system rule bases. Spatial classifiers can serve as effective relevance filters or
adaptive knowledge bases for large spatial data files such as those generated by remote sensing
and environmental monitoring systems, also as adaptive assistants for automated spatial data
selection and representation. Most recently, I am a co-founder of UCSB’s Computational
Laboratories Group and have been developing network and spatial agent-based simulations as
computational laboratories for scientists and theorists to model and explore the behavior of
complex spatial systems.

Whether the massively detailed data sets come from real-world data or laboratory simulations, in
each case the ultimate knowledge-engineering challenge is to design computational tools that
provide the greatest possible complementary leverage for human insight. I was the graduate
organizer for Barbara Buttenfield’s NCGIA Specialist Meeting on Formalizing Cartographic
Knowledge, and would very much like to contribute to innovative designs and research strategies
for Discovering Geographic Knowledge in Data-Rich Environments.

I’ve collected the abstracts from my four papers on Discovering Geographic Knowledge in Data
Rich Environments. Current research complements these by exploring graph theoretic and pattern
theory formalizations for spatial structure in adaptive systems.

Beyond Data: Handling Spatial and Analytical Contexts with Genetics Based Machine Learning.

This paper introduces a general class of Genetics Based Machine Learning (GBML) systems for
adding spatial context and analytical purpose to the data in Geographic Information Systems
(GIS). These flexible, adaptive expert systems inductively learn and apply relevant relationships
and rules based on spatial, temporal, and attribute characteristics of geographic data. In particular,
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this paper introduces a graceful and efficient new representation for evaluating both absolute and
relative spatio-temporal relations among objects or cells in geographic databases. Geographic
applications of GBML methodologies have been hindered by the difficulty of comparing spatial
and temporal positions in a way that allows efficient evaluation of their relationships across a
richly populated spatial database; explicit calculations of distances or buffer zones would be
prohibitively expensive considering the many comparisons that are required. The strategy
presented here allows GBML systems to efficiently develop and refine relevant rules based on
space-time-attribute information. Applications could filter salient data, construct structured yet
realistically complex models, or coordinate other GIS processing.

GBML systems do not require tedious and prohibitive knowledge elicitation and program (rule)
maintenance in order to be useful (unlike traditional expert systems), nor do they require strong
assumptions regarding data precision or functional forms (unlike statistics). Yet the rules and
relationships generated by the system are straightforward to edit or to query if desired (unlike
neural nets). In addition, the familiar space-time-attribute representations presented here are easy
to define for existing databases and thus facilitate the practical development of GBML systems as
complements to existing GIS.

Relevance Filters for Spatial Information

Dealing effectively with overwhelming masses of spatial data in the twenty-first century will
require more than improved technologies for faster computers or parallel algorithms.
Effectiveness incorporates but should not be confused with efficiency; the more fundamental
challenge remains ultimately the selection of relevant data for further attention or processing by
humans or computers. This paper defines a relevance filter as a mechanism interposed between an
extensive source of input data and a human or computer agent that seeks to make use of some
subset of the data for a particular analytical purpose. Consideration of the central principles for
the design of such relevance filters raises a number of theoretical and practical research questions
related to spatial information, and unifies several surprisingly diverse lines of research.

The Cartographer’s Apprentice

Difficulties in formalizing cartographic knowledge impede the development of automated
cartographic systems. The intuitive and complex operations are difficult to capture and describe,
and rule-based systems tend to be brittle in the face of changing map purposes and databases.
This paper explores the potential contribution of Holland Classifiers and Genetic Algorithms to
the development of adaptive software to support and enhance the design and generation of
cartographic products from geographic information systems. Along the way, we consider the
roles that such adaptive systems may play in helping to discover and formalize cartographic
knowledge and in complementing intelligent data base systems that assist and support even expert
cartographers.

Generating Interesting Alternatives in GIS and SDSS Using Genetic Algorithms
(Catherine Dibble and Paul J. Densham)

Decisions often are evaluated on the quality of the process that supported them. It is in this
context that GIS and SDSS increasingly are being used to generate alternatives to aid decision-
makers in their deliberations. Unfortunately, GIS and SDSS typically lack formal mechanisms to
help decision-makers explore the solution space of their problem and thereby challenge their
assumptions about the number and range of options available.
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We describe the use of a genetic algorithm to generate a range of feasible alternatives to location
selection problems. The ability of genetic algorithms to search a solution space and selectively
focus on promising combinations of criteria makes them ideally suited to such complex spatial
decision problems. We also describe the implementation of this algorithm in a microcomputer-
based SDSS and present representative results for several location selection problems. Finally, we
discuss the inherent parallelism of this algorithm and strategies for its decomposition that will
enable it to exploit the efficiency gains of parallel processing computers.

3.4 Doug Flewelling

Evaluating Spatial Character in Subsets of Very Large Datasets

Very large spatial datasets are becoming commonly available through digital libraries (Smith
1996), data warehouses (Garcia-Molina et al. 1995), and research archives (Levy and Marshall
1996). Plans to increase the number and size of these digital spatial archives through such efforts
as the National Spatial Data Infrastructure (FGDC 1994) are being implemented at the Federal
and local level. The availability of data and their suitability for a desired purpose do not
necessarily go hand-in-hand. The current state of digital archives is a “buyer beware” market with
few controls on what goes into a digital archive or assurances of fitness for use. Efforts such as
the Content Standard for Digital Geospatial Metadata (FGDC 1997) and Dublin Core (Weibel et
al. 1997) are attempting to standardize dataset labeling, but their use is voluntary in many cases.
The current euphoria at having and providing access often overlooks the risks and costs
associated with using the data. Without knowledge about the suitability or fitness of a dataset for
a particular task the user cannot draw meaningful or defensible conclusions. This article addresses
the need for a means to evaluate the suitability of very large spatial datasets for a given task.

There are two key elements necessary for scientists to determine that a dataset is the best one for
their needs. First they must have some knowledge of the dataset’s contents, through experience
with the dataset, through a detailed description or a reliable summary. In the case of detailed
description, metadata—data about data—can provide valuable statistics and data history, which
can show that the dataset should have the proper contents to address the problem domain. It is
possible, however, that the data collected are incomplete or unevenly distributed through space,
or may have any number of hidden problems. For instance, even though the metadata show that
each station in a weather dataset for 1988 has rainfall as a data field and 86% of the stations
reported rainfall, the dataset is of limited use for a scientist studying the 1988 drought if the
missing 14% are in the American Midwest. Second, the domain scientist must consider the
specific relationships among data elements in a spatial dataset. The relevance of a specific data
item in a scientific inquiry is an important factor since there are complex inter-relationships
present in spatial data. These specific relationships are, in fact, of greatest concern to spatial
scientists and must be preserved in any dataset used.

Scientists who have had experience with a particular dataset or its provider may have developed
an understanding of the peculiarities involved. They develop a level of trust—high or low—
which effects their future choices of datasets. Inexperienced users of digital archives, however, do
not have this advantage in picking their datasets and may have to download several seemingly
useful datasets before they find one that meets their needs. In an environment with a charge for
network time and data access, finding the right dataset can become expensive. In a traditional
market, imagine having to pay a fee to take a shirt off the shelf and try it on, or even having to
buy it based on a description like “green plaid, long sleeve, large.” In order to make digital spatial
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archives useful, users need a mechanism to try out datasets before investing time and money in
exploiting the entire dataset. The scientist must be able to assess the fitness of a particular dataset
for her tasks and to do so efficiently. The task of finding the right data is different from using the
data in scientific analyses and requires different supporting tools (Flewelling and Egenhofer
1993). Tools to compare and evaluate subsets of large spatial data sets are needed to support
effective use of spatial data archives. Assessment of the spatial character of datasets needs to be
based on the synoptic or aggregate-level of the data, not the attributes of the individuals in the
dataset.

Synoptic Attributes of Spatial Datasets

With regard to this paper, the purpose of creating a subset of a spatial dataset is to identify salient
spatial properties of the dataset and to compare those properties to other spatial phenomena. To
perform this task meaningfully it is necessary for subsets of spatial datasets to retain those spatial
characteristics of the large datasets that are important to making a decision about the larger
dataset. For example, a scientist who is looking for a dataset that would help her evaluate
temperature change in North America for the last 100 years would need a dataset that is evenly
dispersed over the continent. A sample of the dataset should preserve that dispersion, perhaps at
the expense of picking the weather stations at large cities or even fully preserving spatial
clustering.

There are several spatial properties that might be used to describe individual spatial objects and
groups of objects. For our purposes, we need to preserve the properties of sets of spatial objects,
such as all populated places in the United States or the streams in a drainage network. Sets of
spatial objects have a limited number of spatial properties that are necessary to preserve among
which are: density, dispersion, and pattern (Unwin 1981).

In geography (Goodchild 1992) and geomorphology (Bloom 1978), pattern has traditionally been
recorded with descriptive terms such as regular, dendritic, or trellis (Figure 1). While such terms
are useful for classification they do not lend themselves to quantitatve measures of similarity.
Descriptive classifications do not say how dendritic a particular set of lines is or how similar one
set is to another. Parametric techniques, such as Horton’s (1945) stream ordering, describe
elements of pattern depending on the type of spatial objects in the set. However, none of these
methods arrive at a one-to-one correspondence between a value and an unique pattern. At best it
is possible to partially order the pattern of spatial datasets according to a reference pattern.

Points Lines Areas
A B A B A B

Sets of Spatial Objects with Similar Pattern

Figure 1: Similar pattern in sets of spatial objects of homogeneous type.

Measuring density in spatial datasets is much less problematic than pattern. Methods for
describing density of sets of spatial objects take different forms depending on the type of spatial
object (Figure 2). For points, a suitable surrogate for density is simply a count of the number of
points within a reference area. Total length of all lines in a reference area can be a measure of
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density for line sets. In the case of a set of area objects a more traditional percent of area filled
can be used.

Points Lines Areas
A B A B A B

Sets of Spatial Objects with Similar Density

Figure 2: Similar density in sets of spatial objects with respect to an enclosure.

Dispersion refers to the arrangement of the elements of a spatial dataset within a containing area
(Figure 3). For instance, an analysis of population in Maine shows that the largest cities in Maine
are in the south and population is clustered around four population centers in Maine. Dispersion is
similar to density except that dispersion implies an orientation relative to the containing area.
Density measures are invariant under rotation relative to the container, but dispersion measures
are not, unless the container is a circle.

While pattern, density, and dispersion are exclusively spatial properties, importance is a fourth
property that can play a key role in structuring sets of spatial objects. Importance is an ordering
function over the set of objects according to the key concept or concepts being studied (Kadmon
1972). In this manner, similarity is an user-defined concept applicable to the application at hand.
For instance, in a dataset on crime in America there would be some debate whether towns like
Presque Isle, Maine or Presque Isle, Ohio should be included. However, it is clear New York City
must be included. For this particular purpose, New York City is more important than most other
cities. Therefore, importance (or rank) according to a particular concept is a property of elements
in spatial datasets that may need to be preserved in subsets. We will use the concepts of density,
dispersion, and pattern to evaluate the similarity of spatial datasets.

Points Lines Areas
A B A B A B

Sets of Spatial Objects with Similar Dispersion

Figure 3: Similar dispersion of sets of spatial objects within a reference area.

The automated extraction of geographic knowledge in data-rich environments will require
consideration of the synoptic attributes of the dataset as well as the individual attributes of the
data elements. If a subset of a spatial dataset retains a large amount of the character of the original
dataset then processing times can be reduced when extracting geographic knowledge. General
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relationships can be discovered and proven or refined through closer and more detailed
examination of the data.
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3.5 Mark Gahegan

Neural Networks and Decision Trees in Geography: Knowledge Discovery through Classification

My main area of interest is in the development of suitable methods to make proper use of
inductive learning tools in a geographic setting, specifically for problems involving complex,
high dimensionality datasets. Work to date has focussed on three different application areas:
landcover classification (at the floristics level), spatial epidemiology and geological
interpretation, and has led to the development of packaged neural network-based classifiers that
are self-configuring or adaptive to the structure of a problem
(http://www.cs.curtin.edu.au/gis/donnet/) and knowledge-based visualisation tools
(http://www.cs.curtin.edu.au/gis/visualisation/).

The use of decision trees and (artificial) neural networks for data classification in geography and
remote sensing has seen a steady rise in popularity. Kamata and Kawaguchi (1993) and Civco
(1993) describe neural network classifiers whilst Lees and Ritman (1991), Eklund et al. (1994)
and Freidl and Brodley (1997) describe classification approaches based around decision trees.
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Initially, the focus of attention was on comparing classifier performance with established methods
(eg. Benediktsson, et. al., 1990; Hepner et al., 1990; Paola and Schowengerdt, 1995; Fitzgerald
and Lees, 1994). More recent efforts have concentrated on methodologies and customisation that
improve performance or reliability; a sign that the technology has reached at least some level of
acceptance. For example, Benediktsson, et al., (1993) and German et al. (1997) describe
performance improvements and Kanellopoulos and Wilkinson (1997) and Gahegan et al. (1998)
address methodological issues from the specific viewpoint of geographic datasets.

The kinds of classification problems that arise in geography or the wider earth sciences are often
characterised by their complexity, both in terms of the classes and the datasets used. For example,
classes may be difficult to define, may vary with location and over time, and their properties may
overlap in attribute space. Datasets increasingly contain many descriptive variables (layers) and
often contain a mix of statistical types; for example remotely sensed reflectance values
(quantitative data) supplemented with nominal data such as soil type or geology and ordinal data
such as slope or aspect. Data ‘saturation’ seems set to increase with the adoption of sensing
devices of greater sophistication, resulting in a higher spatial resolution and many more channels.
The complexity of the tasks to which these data are applied is also increasing; for example the
classification of deep geological structure from 300 channel airborne electro-magnetics data, or
socio-demographic indices from combinations of many indicator variables.

Addressing geographic classification problems successfully with tools based around inductive
learning and search requires detailed attention to methodology and often also a good deal of
further development and enhancement. To this end a black-box neural classifier has been
specifically engineered for application to geographic problems (German and Gahegan, 1996). It is
based on a feedforward, multi-layer perceptron, with various enhancements made (German et al.,
1997; Gahegan et al., 1998) Importantly, it is designed to be self-configuring, requiring only the
same setup as a standard Maximum Likelihood Classifier. The aim is to provide a tool where
configuration and control parameters are gleaned from a preliminary analysis of the data. This
analysis provides both a start condition and a means to control the adaptive behaviour of the
network. The research has led to a range of modifications to the standard Feedforward network,
including: scaling of inputs, initial network architecture and weight configuration, activiation
function, dynamic insertion, deletion and re-assignment of hyperplanes, output cost function and
performance evaluation.

Results so far show increased classification accuracy over established techniques. Furthermore,
the architecture appears scalable; accuracy and stability are maintained as the complexity of the
task is increased (for example by increasing the number of data layers (attributes), the number of
target classes or the inseparability of the classes).
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3.6 Myke Gluck
Information Retrieval (IR) as opposed to data retrieval (DR) may be described as the seeking of
indeterminate information resources to resolve an information need. Determinate information
resources are classic ’trivial’ exact match or SQL-type retrieval; For example: How many widgets
are left at the Chicago warehouse? The response from a system is determinate: 1200, say.
However, the desire for some information on the future Asian market for widgets is an
indeterminate query. Similarly seeking patterns in data and exploratory data analysis (EDA) are
indeterminate searches: there is not just one best response known a priori, if existing at all.
Indeterminate information seeking processes explore data rich environments which have
historically been text-based or numerically based. Now, however, multimedia resources much of
which have a geospatial nature, are exploding: this requires rethinking of the algorithms which
match users’ queries with the available information collection as well as the criteria for successful
searching of large information systems. (For example, we can see glimpses of many of the issues
to come in the work of the Alexandria Digital Library project.)

Indeterminate searches often need multiple sources to be retrieved and integrated in effective and
efficient ways to address the information need. With the goal of this initiative to find new
automated methods for filtering large amounts of raw geographic data into more user-consumable
forms of knowledge, I suggest that at least three major components need to come together for
improvements to be more than merely incremental. These components involve 1) improved
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metadata descriptions and related standards that focus on user’s needs, not just content
description, 2) more robust and user based measures of information retrieval and data integration
effectiveness to guide the retrieval engines, and 3) multimedia interactive tools that allow users to
explore FILTERED geographic data more efficiently and effectively to seek patterns in the data
or extract meaningful summaries of the information.

Metadata Information Integration

Metadata are frequently designed by experts in the data and not those with expertise in the
usability of data or of deep cognitive understanding of user behavior. The necessary preliminary
and tentative modifications of metadata for use by the Alexandria Digital Library Project indicate
this gap quite clearly. Solutions to these gaps that would indeed help and not hinder user ability to
locate and access the needed information are not trivial and need better understanding of user
requirements to resolve information need not just for transfer or interoperability of datasets and
software. One aspect of this process is the need for metadata that describes at more than the
highest level of a dataset. (Classical book cataloging is not amenable to these processes for this
(and many other) reasons: Try to find the sheet with a useful inset map on a larger cartographic
sheet in a map library?)

One possible avenue for development is the use of more microlevel metadata within an
information bearing object, some of which may be amenable to automated processing. Such
higher resolution may permit data integration across information bearing objects so that a single
new integrated dataset is delivered to the user which is much more focused on the current
information need without having to wade through the extraneous and irrelevant information and
data within the larger individual information bearing objects. For example, if information on the
hardwood hammocks of the Apalachicola National Forest within the boundaries of Leon County,
Florida, automated tools to take the county boundary files and do the necessary relational
algebraic operations on the Forest dataset would be of value. Such tools would need to process
micro level metadata files and execute the operations transparently to the user, providing a
retrieved set that is the integration of the initial raw information bearing objects with quality and
accuracy statements of the ’new’ integrated or retrieved set. Simultaneously, a third object
containing a video clip displaying the hammocks could also be retrieved and integrated into the
final delivered information bearing object. The algebra is clear and ’straightforward’ when the
relational data is selected but tools for discerning the subsets of the data to integrate are not
currently available for analyst support. Such tools will require rethinking the role of metadata in
retrieval processes, alternative forms of query posing, and the understanding of user needs.

Retrieval Measures

Traditional information retrieval (IR) used two measures of success: precision and recall.
Precision being defined as the ratio of the number of relevant items retrieved to the number
retrieved while recall defined as the ratio of the number of relevant items retrieved to the total
number of relevant items in the information collection. Automated methods for computing these
measures are really not available since they depend upon the assessment of relevance of items
and only the user can actually make that judgment. Complicating this is the infeasibility of having
users assess the relevance of several million or billion items in a large data store for each posed
query. The use of multimedia tools (graphics and sound) to form surrogates and to form a
viewable and explorable information space to assist retrieval is encouraging. Multimedia tools
allow users to explore clusters of information objects or data subsets and select from a
visual/auditory presentation those of interest or seeming to form meaningful patterns. However,
the construction of such spaces for multimedia viewing is still dependent upon system assessment
of relevance to form clusters. Research into novel measures of retrieval success is needed to avoid
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merely restating the relevance question. Historically, researchers have suggested various
weighting schemes and similarity measures for assessing the relevance of an information object
to a query but these have not yet led consistently to more than minor improvements, if even that,
from a user’s perspective. Having users determine the weights merely complicates the use process
with a steep learning curve for consistent weight assignments to query terms. Few schemes have
incorporated the spatial component into retrieval algorithms to attempt to improve precision or
recall.

Tools for Exploratory Data Analysis

Tools to assist users, especially expert users, in the exploration of large filtered or unfiltered data
sets is a third component necessary to help automate or support the discovery of geographic
knowledge in data-rich environments. Though the initiative seeks automated tools for filtering,
automation itself is a continuum. Note a wordprocessor is an automated tool but requires an
author to create a work. Thus, it seems reasonable to seek human-aided automated tools as well as
machine-aided human tools for improving discovery in such environments.

As an example of a tool that combines automated and manual support for data mining and data
exploration, we have been developing a seriation tool. The tool takes a data matrix and re-
expresses the raw data into fewer classes replacing the numerical value in the matrix cell with an
icon proportional in size to the classed data value. The user then is able to visually explore the
data, reclass the data, and to manipulate rows and columns of the classed data to seek meaningful
patterns ’manually.’ Included in the functions of the tool is an automated seriation algorithm for
both dichotomous and multi-valued data. The seriation process is a univariate scaling process
much like a visual principal component analysis. Multimedia support for this tool includes
simultaneous display of single variable and bivariate choropleth maps, brushing associated with
the classed data matrix, and sound functions to ’hear’ the classed data. Preliminary user testing
indicates that especially for data experts this tool is usable and useful. Research into algorithms
for multi-valued seriation and the various visual and auditory functions to coordinate the maps
with the matrix for data exploration and data mining are ongoing. This tool as just one in a class
of tools that could permit users to easily re-express data (reclass, move median windows, etc.)
allowing the analyst to explore the filtered data in conjunction with automated statistical methods
seeking meaningful patterns. Such tools could readily incorporate scene analysis and image and
sound processing algorithms allowing video and audio data to also be explored along with the
numerical and cartographic data.

Position Summary

Data mining and knowledge extraction from data rich environments is a complex task. It is a
creative process and fully automated tools will still need user intervention to assess the outputs. It
seems hopeful to attempt to devise such tools driven by at least three concepts: improved
metadata descriptions and related standards that focus on user’s needs, not just content description
permitting integration of information bearing entities, 2) more robust and user based measures of
information retrieval and data integration effectiveness to guide the retrieval engines, and 3)
multimedia interactive tools that allow users to explore FILTERED geographic data more
efficiently and effectively to seek patterns in the data or extract meaningful summaries of the
information.

3.7 Kathleen Hornsby

Spatio-Temporal Knowledge Representation over Shifting Granularities.
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Recent efforts in spatio-temporal knowledge representation to explicitly describe scenarios of
change as commonly experienced by geographic phenomena (Claramunt and Thériault 1996;
Renolen 1996; Hornsby and Egenhofer 1997; Hornsby and Egenhofer 1998) offer new insights
and opportunities for reasoning in data-rich environments. One aspect of developing approaches
that convey how phenomena change over space and time is to gain an appreciation that spatio-
temporal knowledge representation often requires shifting from one level of detail or granularity
to another in order to view change or an entity. Granularity is a term used by the AI community
among others to capture the notion that the world is perceived as at different grain sizes or
granules (Hobbs 1990; Dyreson and Snodgrass 1995). People view the world at different
granularities, abstracting from the world only those things that serve their present interests
(Hobbs 1990; Lam and Quattrochi 1992; Goodchild and Proctor 1997). These shifts in granularity
enable people to translate the complexities of the real world into simpler representations. The
converse, namely shifting to a more detailed view is also a common requirement. In the context
of data-rich environments, the need to shift granularities is particularly important. Efforts are
underway to define a set of operations that enable users to move between different granularities
(Stell and Worboys 1998) but further work is essential. Operations to collapse complex spatio-
temporal scenarios into coarser granularities are not currently implemented but are necessary as
are operations to support refinements in granularity.

Preliminary work on modeling scenarios of spatio-temporal change through tracking alterations
to an object's identity (Al-Taha and Barrera 1994; Hornsby and Egenhofer 1997) have suggested
different views of objects that are possible: objects of single identity and objects with parts
termed composite objects (Hornsby and Egenhofer 1998). Objects refer to the representation of a
real world phenomenon in an information system (Kim 1990) that might exist as a physical entity,
such as a building or a mountain, or something conceptual, such as Penobscot County or the
United States (Smith 1995). Shifting granularities can be understood from two orthogonal
perspectives. First, granularity of objects refers to changes that coarsen a view of an object, for
example a particular county, Aroostook County in the State of Maine, to a less detailed
conceptualization containing fewer parts, such as the six states that comprise New England, or to
the highest level of abstraction, a single object, the New England region, (Figure 1). In certain
circumstances, an object may even disappear altogether as objects that are unimportant to the task
at hand are abstracted away. Alternatively, a shift in the opposite way moves from a single object
to a more refined granularity of objects where composite objects and their parts become relevant.
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Figure 1: Shifting granularities over: (a) New England region, (b) the New
England states, and (c) Aroostook County in Maine.

Second, granularity also applies to transitions between temporally-ordered objects. This type of
shift is particularly interesting in the context of data-rich environments. As a simple example, the
building of a new public library in a town can be perceived and modeled as one operation on a
single object or from a different perspective, multiple operations over multiple objects, where
each of the separate tasks and events over time that contributed to the creation of the building
might be relevant (Figure 2). This refinement of detail gives us more information about the steps
in the planning and building process over time. Adjusting the granularity over transitions allows
one to refine or coarsen the temporal resolution as desired for the task at hand. More complex
examples can be drawn from analysis of battlefield environments, for instance, where the position
and movements of many participants might be tracked over time and reasoning performed at
different granularities.
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Figure 2: Shifting granularities over transitions between temporally-ordered
objects.

A set of operations to support shifts in granularities over objects that refine or coarsen people’s
views and additional operations to support shifts that expand the sequence of transitions or
collapse the sequence into fewer transitions will be necessary in data-rich contexts. This research
focuses on formalisms to support spatio-temporal knowledge representation under shifting
granularities.
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3.8 Eric D. Kolaczyk
An increasingly important problem in working with spatial data is that of processing and
combining information from data at a variety of scales. The quantity of available geospatial data
is growing exponentially with developments such as the launching of new satellite systems and
the widespread use of geographic information systems (GIS). Both of these technologies facilitate
data collection at multiple spatial and temporal scales. The ability to handle scale properly
therefore would seem to be an important characteristic for next-generation methods of spatial data
mining to possess.

From the standpoint of statistical and/or mathematical analysis, the word scale is by association
likely to bring to mind the word wavelet. Since their introduction in the mid-1980’s, wavelets
arguably have been used as the foundation for the vast majority of multi-scale methods offered
for mathematical and statistical analysis in the last decade. At a fundamental level, wavelet-based
methods, like their Fourier predecessors, are based on an approach that advocates transforming an
object of interest, for example, a vector of time series data or a matrix of image data, by matching
it (via a mathematical inner product) against a predetermined collection of shapes -- in this case
localized waveforms at a variety of locations and scales. Such an approach has been found to be
quite appropriate in, for example, image processing tasks, where the primary interest may be in
the visual quality of a final smoothed image or the long-term success in classification of image
types. In such contexts, the wavelet transform is used mainly as a tool for more efficiently
representing the information within the data, according to a collection of location-scale
combinations, in the form of the wavelet coefficients.

With many problems in spatial analysis, however, a wavelet transform seems a less appropriate
tool for creating a multi-scale model. For example, an arbitrary wavelet shape may not be easily
interpretable within the context generating a given dataset; or, put another way, there may be an
important aspect of interpretability possessed by the data in its original form that is lost upon
computing a wavelet transform and examining the resulting wavelet coefficients. Instead, often it
is desirable to have a framework for creating multi-scale models within which is preserved the
natural tendency to envision scale simply as a result of aggregation and disaggregation. Towards
this end, an approach based on partitioning (e.g., the operation underlying such algorithms as
CART [1]) would seem natural.

Quite recently several authors (including myself) have begun to pursue this line of research in
introducing a new class of multi-scale models within the statistics [2,3,4] and digital signal
processing [5,6] literatures. Through the use of recursive dyadic partition (RDP) strategies, the
simplicity and interpretability of partition-based methods is combined with the ability to create
efficient location-scale representations usually attributed only to wavelets. This basic framework
initially was developed for standard signal and image processing tasks, yet has the potential to
generalize to a variety of tasks arising with the analysis of spatial data in geography. Such
generalizations recently have become the focus of a collaborative effort between groups in the
Department of Mathematics and Statistics and the Department of Geography at Boston
University.
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If the data take the form of a time series, the partition-based multi-scale models, in their original
formulation, begin by recursively partitioning the data space in half, then quarters, then eighths,
and so on and so forth, up to the resolution of the data. For two-dimensional image data, the
operations are defined analogously, working in both vertical and horizontal directions. In either
case, the result of this partitioning is a hierarchy of aggregations of the data. Beyond the
convenient interpretability of these operations, however, lies a fundamentally important and
powerful accompanying property: a multi-scale likelihood factorization. Recalling the principle
that the information in the data is summarized by the data likelihood, the multi-scale likelihood
factorization shows explicitly how to re-express this information in such a way as to isolate at
each spatial-scale combination that which is new in moving from a coarser level of aggregation to
one level less coarse. In particular, this information is expressed through certain conditional
probabilities that possess simple, tractable mathematical expressions for common data-types such
as Gaussian or Poisson.

Given the above described structure, specific tasks like estimation and classification may be
pursued, typically with the inclusion of additional information in the model through the use of
prior distributions on the set of canonical multi-scale parameters accompanying the multi-scale
likelihood factorization (e.g., [4,5]). The end result, viewed from a certain level of abstraction, is
a type of hierarchical statistical model and, therefore, a type of graphical model [7].

From the vantage of graphical models, it becomes more clear why these multi-scale models have
the potential to be generalized to arbitrary nested hierarchies of aggregation, and hence to a
variety of contexts in spatial analysis. Accompanying such generalizations are a number of
methodological and computational challenges, but many are expected to be tractable due to the
modular form possessed by these types of graphical models. Finally, another key feature of this
framework to note is that the underlying graph-based structure should allow for user-interpretable
graphical displays and tools to accompany the modeling process (e.g., graphical user interfaces
(GUIs)). This in turn may provide a natural way for combining our statistical modeling with
recent advances in hierarchical spatial databases (e.g., [8]).
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3.9 Brian Lees

The Importance of Data and Research Design in Extracting Geographic Knowledge from Large
Complex Spatial Data Sets

 During the last 10 years my group at the Australian National University has pursued a continuing
strategy concerning the development of methods and software tools for the analysis of very large
spatial data sets with diverse characteristics and high levels of redundancy. The main impetus for
the focus in this area were the early specifications of the EOS programs and polar-orbiting
platforms, as they were then envisaged. A further impetus was given by the 1991 Australian
IGBP Workshops on Global Change where a very high reliance was placed on spatial data
analysis as an important, future, scientific resource for dealing with the large data flows being
discussed. At that stage, techniques for dealing with this sort of data volume were not really well
understood.

Our initial work in Decision Trees was targeted at producing a data selection tool to deal with
pre-analysis data preparation for the HIRIS instrument. It soon became apparent that we required
a large data set, whose characteristics were well understood, to facilitate the development and
testing of our techniques. This led to a parallel project, the establishment of the Kioloa Pathfinder
Global Land Cover Test Site and its associated spatial databases.

The Kioloa data set consists of high quality GIS, remotely sensed and point data sets. The
behaviours of disparate data types, changes in scale and temporal sequence have all be examined
using this data set. Over the 10 years we have progressively investigated the refinement of non-
parametric statistics and the incorporation of computational intelligence techniques such as
decision trees (Moore et al., 1991; Lees and Ritman, 1991)), a wide range of artificial neural net
configurations (Fitzgerald and Lees, 1993, 1994, 1996), and genetic algorithms (Payne, 1998))
and compared their performances with a number of more conventional parametric techniques
(Lees, 1994, 1996a, 1996b). Our major insights have resulted in the development of a more
strategic approach to analysis. In particular, our spatial data mining experiments using Kohonen
nets have made us very aware of the importance of data descriptors.

Problem Statement

The implications of adopting computational intelligence techniques have not yet been fully
appreciated by many researchers working in spatial data analysis. These computational solutions
comprise several critical components. Firstly, the new hardware configurations without which
they could not be implemented. Secondly, the new algorithms themselves. Thirdly, the data, and
fourthly, the problem. Perhaps this fourth element could be better described as the problem
statement. Success depends on the adequacy of all of these, and on their correct integration. The
data, the problem statement and the links between the algorithm and the data, between the data
and the problem statement, and the problem statement and the algorithm have all received much
less attention than the matching of algorithms and hardware. As we become increasingly engaged
in harnessing our new computer power to the extraction of geographic knowledge in data rich
environments it is important to consider these other, equally important, facets of quantitative
investigation, analysis and prediction using spatial data.
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Data

After decades of accepting the questionable proposition that most phenomena in the natural world
are normally distributed we are now adopting non-parametric methodologies with enthusiasm.
The fact that many of these can be parallelised has, perhaps, added to this enthusiasm. There are
some costs in this enthusiasm. To produce results matching the quality of the more conventional,
parametric, techniques in the analysis of non-normally distributed data using non-parametric
methods, much larger and more carefully structured samples are needed. By definition, non-
parametric, supervised inductive learning systems have no information on the distribution of the
data other than that can be inferred from the learning sample. Few of the studies which have
appeared in the literature indicate that this has been recognised. That this is such a problem is
perhaps due to the fact that many of those involved are not data gatherers, but data processors.
There is a real temptation to use ’legacy’ data sets for experiments and this leads to the use of
proportional samples. Given the error minimisation rule on which many of these
systems are based, the use of a proportional sample as a learning sample will bias the system
towards the largest categories.

Data Models

Much of the published work on data models focuses on the data model as the rationale for
organising data in the computer. In computer science it is a means of capturing the semantics of
the data through definitions of the operations related to classes, describing which combinations of
operations are legal, which combinations of operations are equivalent, and consistency constraints
among data. This bias towards the computer science view of data models is quite understandable
as it is a necessary tool to deal with the data, but many phenomena have not been carefully
scrutinised by domain experts in the same way and I suspect that, when this happens, the whole
concept of data model will become considerably more complex and critical.

When we start to consider whether the measure used to code the data is appropriate to the
phenomena we wish to examine we need to remember that many disciplines, including
geography, routinely classify data as part of their collection protocols. This pre-analysis
processing is often not recognised as such but can be a major limitation to accurate prediction
based on such sampling. All too often phenomena distributed as a continuum are discretised into
gaussians on the assumption that this is an appropriate data model for the phenomenon. That this
is unnecessary now that we are no longer bound by the cartographic model of spatial data has not
really penetrated the consciousness, and standard procedures, of many disciplines.

All other things being equal, if one can provide a learning system with some indication of how
values in an attribute relate one to another, then the system will do a better job. Humans like to
simplify these relationships as we are unable to deal very effectively with high frequency
variability in data. By coding data to suit human perceptions, we degrade it and remove
information a non-human learning system may be able to interpret. Deriving appropriate
measures to code data for a machine learning system requires a knowledge of both the attribute,
and the interactions of attributes relating to the phenomenon being modelled. This is a vital step
in the successful extraction of geographic knowledge in data rich environments.

Data Scale & Data Domain

Both spatial and temporal variability are strongly scale dependent. There is a general trend in
most land cover data for spatial autocorrelation to be low at fine scale, to rise to a maximum at an
intermediate scale and then to decline. One can see a similar pattern in many forms of temporal
data. Spatial and temporal variability also depends on the data space, or domain, in which one
views the data. Spatial data can be envisaged as existing in a number of discrete domains (Lees,
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1994; Aspinall & Lees, 1995). In each of these there exist topological relationships, but these
relationships vary from domain to domain.

This view of data existing in ’domains’ has proven useful in dealing with the complex analysis of
data sets from disparate sources. It has been discussed before in the context of decision tree
analysis of mixed data sets from GIS, remote sensing and ground point observation. In these
cases, the analysis tools were envisaged as stepping from ’domain’ to ’domain’ to partition the data
set optimally. Our, later work with artificial neural nets envisaged this process taking place in
parallel, rather than in series. The basic concept can even be extended to encompass Harvey’s
(1973) discussion of methodological problems at the interface of spatial and social analysis.

There is often confusion about what can, reasonably, be used as an analytical ’data domain’ or
space. Most spatial analysis tools available in GIS are based on Waldo Tobler’s ’First Law of
Geography’. This states that ’everything is related to everything else, but near things are more
related than distant things’ (Tobler, 1970). The data domains are constructs within which this
relationship is optimal. If Tobler’s First Law is truer of our data set in ’Environmental Data Space’
than it is in ’Geographic Space’, then it suggests that the former ’space’ is the most appropriate
context for analysis. Domain knowledge is fundamental to constructing the necessary spaces for
analysis, and for understanding the relationships between the spaces. In many problems different
parts of the analysis need to be carried out in different data spaces. A conceptual framework for
Spatial Data Mining which incorporates this concept tends to lead to more successful, and fewer
idiosyncratic, results.
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3.10 Donato Malerba
Information extraction from maps is not a trivial task since objects in the charts must be
interpreted from their spatial characteristics such as shape, scale and contours. In order to
recognize a symbol in a map when it is not explicitly reported in the legend, some mechanisms
for defining and manipulating the symbols at a semantic level are necessary.

It is possible to define different tasks corresponding to the steps performed by human experts,
such as geologists, during their process of recognition and interpretation of morphological
concepts on a map. The first task is feature selection, which is useful for the recognition of the
major components in the map and is centered on the shape of objects, their size and ground
characteristics. Then the expert is ready to single out the major elements in the map and their
possible relations. A rather complex description language is required to describe the spatial
characteristics of an object in the map, concerning the shape, the orientation, the dimensions etc.,
as well as the relations intra-object and inter-objects. A suitable logic language in clause form can
be used for this purpose.

The problem of describing the map without loosing the ontological expressive power of the
image, may be solved by superimposing a grid, that is by dividing the map into regular
observation elements, called cells, the dimension of which is related to scale factors and to the
selected level of detail. Psychological studies (Fischler and Firschein, 1987) have shown that very
little can be recognized when a scene is viewed partially through a small window: Correct
interpretation must be decided entirely by the context. Thus, the choice of a suitable grid on the
map in order to indicate the cells should also take into account the problem of loosing the
continuity of a spatial concept when it appears over different, although adjacent, cells.

The subsequent steps are based on the use of explicit background knowledge and context. In fact,
the individuation of morphologies characterizing the landscape, the selection of the important
environmental elements, both natural and artificial, the recognition of forms of territorial
organization requires abstraction processes and deep domain knowledge. Although the human
process of image interpretation may be cast as a process of pattern recognition, techniques for the
induction of intensional descriptions of patterns, that is, techniques of conceptual learning,
appears to be more suitable for this task.

In a study concerning the Apulian region (Italy), an attempt to interpret maps by applying
conceptual machine learning techniques has been made. The territory considered for this study
covers 246 Km2 of the landscapes around the Ofanto River, spanning from the zone of Canosa
until its mouth. The goal is that of recognizing four morphological concepts deemed relevant for
environmental protection: regular grid systems of farms, fluvial landscape, system of cliffs, and
royal cattle track. The former consists of partitions of farms, which are arranged in a rectilinear
way. The fluvial landscape is individuated by the presence of waterways, fluvial islands and
embankments. The system of cliffs is related to the emergence of limestone as a single block.
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Finally, the royal cattle track, exclusively present in Southern Italy, is a road for the
transhumance.

The examined area is covered by five maps drawn to the scale of 1:25000. All maps are produced
by the Italian Military Geographic Institute (IGM). They are segmented into regular square cells
so that the problem of recognizing the four morphological concepts can be cast as a problem of
labeling each cell with at most one of the following labels: Regular-grid, fluvial-landscape,
system-of-cliffs and royal-cattle-track. Unlabelled cells are considered uninteresting with respect
to the goal of environmental protection.

The choice of a suitable grid on the map is critical, since a cell too big might not be consistently
labeled in one way, while a cell too small may cause loss of important information which is
fragmented into several, adjacent cells. In this study, the gridding system superimposed over IGM
charts to the scale of 1:25000 has proven itself a suitable resolution for the recognition task. In
particular each cell covers an area of 1 km2. The choice has been made after having observed that
a pool of fifteen geomorphologists and experts in territory planning were able to give a unique
interpretation to several cells cut out of the maps.

Each cell is described by means of a first-order logic language (see Figure 1). Some descriptors
used to represent the cartographic objects are attributes, while others define relations between
objects. They have been defined by studying the behavior of geomorphologists and experts in
territory planning during their map interpretation process. Particular attention has been paid to the
definition of general descriptors so that they can be appropriate to describe maps even when the
scale of representation or the concepts to be learned change.

[class(x1)=royal_cattle_track] :-
contain(x1,x2), contain(x1,x3), contain(x1,x4), contain(x1,x5), contain(x1,x6),
type_of(x2)=primary_road, type_of(x3)=interfarm_road,type_of(x4)=main_road,
type_of(x5)=vineyard, type_of(x6)=building, color(x2)=black, color(x3)=black,
color(x4)=black, color(x6)=black, relation(x2,x3)=almost_parallel,
relation(x2,x4)=almost_perpendicular, relation(x3,x4)=almost_perpendicular,
distance(x2,x3)=115, density(x5)=low, density(x6)=low, outside(x2,x3,x5),
geographic_direction(x1,x2)=north_west, geographic_direction(x1,x3)=north_west

Figure 1: An example of cell and its corresponding description
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Classification rules of the morphological concepts have been automatically generated using a
conceptual learning system developed at the University of Bari, namely ATRE (Malerba et al.,
1998). Fourty-five training examples are taken from the same map. Some of the learned rules are
reported below:

class(X)=royal_cattle_track :-

  contain(X,Y), distance(Z,Y) in [90.0 .. 130.0] , type_of(Y)=interfarm_road.

class(X)=fluvial_landscape :-

  contain(X,Y), type_of(Y)=river_line, color(Y)=blue.

They can be automatically translated into the following natural language sentences: "if there is an
interfarm road at a distance between 90 and 130 m from another object, then the cell contains a
royal cattle track," and "if there is a blue line of type ‘river’ then the cell contains a fluvial
landscape."

The interpretation task is performed using the induced rules, and the performance of the whole
process is evaluated in terms of predictive accuracy, which is higher than 95% on an independent
set of eighty-six cells extracted from the other four maps.
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3.11 Duane Marble

Exploratory Data Analysis of Spatial–Temporal Interactions

In a recent series of provocative lectures Freeman Dyson (1997) stated that "If we are looking for
new directions in science, we must look for scientific revolutions. When no scientific revolution
is under way, science continues to move ahead along old directions." Dyson notes that he
recognizes two basic kinds of scientific revolutions, those driven by new concepts and those
driven by new tools. While concept–driven revolutions that result in explaining old things in new
ways have received the majority of methodological attention, they are actually relatively rare in
science. Tool–driven revolutions that generally result in the discovery of new things that have to
be explained have received considerably less methodological attention but, never the less, are
comparatively more commonly encountered.

The development of geographic information systems (GIS) over the last three decades, with the
recent melding of GIS and spatial analysis within the last decade of this century to form what is
now being called geographic information science (GIScience), is created a new tool–driven
revolution that appears highly likely to dominate scientific research in geography, and other
disciplines concerned with the spatial/temporal structure of our world, during the early decades of
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the coming century. The wide spread adoption of GIS technology in both the public and private
sectors has also led to the creation and general distribution of spatial and spatial/temporal
databases of increasingly massive size and detail. Currently, the conceptual basis for much of
spatial analysis is inadequate to actively assist in understanding the complex phenomena that we
are encountering in these databases. This situation results from a long term, myopic focus by
much of the spatial analysis community upon conceptually simple, spatially aggregative problems
coupled with an exceedingly slow acculturation by many in the same community to the potential,
major advances made available as a result of the rapidly development of GIS technology.

As Dyson noted, tool–driven revolutions focus upon the discovery of new things that must be
explained and in geography the explosive growth of disaggregative, spatial–temporal databases
have provided us with a host of things that are crying out to be explored. Some years ago, Walter
Isard (1960) noted that location and interaction are two sides of the same coin. Aside from the
seminal works such as that of Ullman (1957) and Berry (1966), it seems puzzling, until the
question of tools is considered, that geographers and others have paid far more attention to the
former than the latter. Very few tools for the analysis of complex data sets covering human
interaction (transportation, migration and communication) are available and this has significantly
hampered researcher activities in this area. This interaction between tools and problems is well
known (Marble, 1990).

In an effort to correct this imbalance and to improve our knowledge of spatial and
spatial/temporal interactions, the exploratory data analysis of spatial–temporal flows, based in
scientific visualization and statistics, has been the basis of a structured research effort at The Ohio
State University for several years (Marble, et al, 1995 and Marble, et al, 1997). These research
activities are directed toward the design and proof–of–concept testing of scientific visualization
and dynamic graphics–based tools for the exploratory analysis of spatial–temporal, interregional
flow systems. This series of powerful, interactive tools can assist researchers in generating
hypotheses relating to the spatial and temporal structure of interregional flows. It is our hope that
the availability of such tools will lead to a resurgence of interest in flows, as opposed to locations,
among geographic researchers.

The data representation found to be most useful involved the use of multi–dimensional dyadic
origin–destination matrices. An important initial step in the research was to examine and
significantly improve upon the useful but limited methods of computer-based flow mapping that
had been proposed earlier. It was necessary to develop visualization approaches that would permit
examination of the total set of flows and the identification within this set of "interesting subsets."
Following this, our attention was turned to creating an ability to quickly, easily, and selectively
explore the relationships that exist between various components of the flow data set (e.g., inflows
vs. outflows) and between the various interregional flows and selected characteristics of the
origin and destination regions (e.g., out–migration as related to unemployment in the region of
origin). This was accomplished in our prototype system by introducing forward and backward
brushing approaches.

Still another approach involved the use of fast algorithms for projection pursuit reduction of
dimensionality in the multi–dimensional flow matrices to permit visualization of flows to take
place. However one of the most interesting – and certainly the most frustrating – problem
encountered was to move from a "interesting" case developed through browsing the database to
the automatic identification of a set of similar cases within the database.
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Much still remains to be done in the development of tools for the exploration of massive
interregional flow data sets and it is my belief that participation in this Workshop will lead to
both new thinking and, hopefully, to new patterns of interaction with other researchers.
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3.12 Raymond Ng
There are the two aspects to my research contributions: data mining and content-based analysis.
With respect to the first aspect, my first publication on data mining [1] about 5 years ago, in fact,
started with spatial data in mind. At that time, because of one of my research grants, I worked
with academic and industry people in GIS, forestry and remote sensing. The thesis of that
publication is that natural distance functions exist for many forms of spatial data, and clustering
can be an effective and efficient way to discover certain kinds of knowledge in spatial data.

My research group and I continued along the lines of analyzing spatial clusters. Focusing on
geographic data, we developed a suite of techniques for further analyzing the identified spatial
clusters [2]. Those techniques range from finding proximity relationships to shape matching with
geographic features. A prototype was developed and demos were given in various international
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conferences. To this date, I believe the prototype is still among the state-of-the-art systems for
certain kinds of spatial analysis.

Another line of my data mining research that I believe is highly relevant to the workshop is
outlier detection. There are many data analysis and mining techniques (e.g., clustering) that
designate certain parts of the data as outlying and noisy. But the notions of outliers supported by
those techniques are basically second-class to whatever the primary tasks happen to be. Two
problems arise. First, those notions of outliers may not be general and may be too specific to the
primary tasks, whatever that may be. Second, inefficiencies occur because effort is spent on the
primary tasks. Thus, for outlier detection research, we seek to define what an outlier is in general,
and develop efficient ways to identify exactly those outliers and nothing else.

My outlier detection research consists of two parts: depth-based methods and distance-based
methods. In computational statistics, one can find outliers by defining some notions of depth over
the dataset. One well-known notion is called Tukey depth. In a recent paper, my collaborators and
I develop an algorithm for computing 2-D Tukey depth contours [3]. Our algorithm is more
robust and orders of magnitude faster than state-of-the-art algorithms. Our algorithm has been
generalized to 3-D. While this could be sufficient for many kinds of geographic data, the general
problem with depth contours is that their computation does not scale up well with dimensionality,
i.e., could be exponential with respect to the dimensionality.

Distance-based methods for outlier detection, in contrast, do not suffer from this problem. It is
linear with respect to the dimensionality of the dataset. In [4], my collaborator and I show a few
properties of distance-based outliers, arguing why they are rather natural semantically, and
present a few algorithms for computing distance-based outliers embedded in large and high-
dimensional datasets. From an applicability standpoint, a weakness of distance-based outliers is
that they require the existence of distance functions that are meaningful. (As such, distance-based
methods and depth-based methods are complementary.) I believe this is not a problem for many
kinds of spatial and geographic data.

As pointed out earlier, finding outliers is often a very natural form of knowledge discovery for
surveillance applications. In those applications, the user may already know what the norm is.
What the user does not know, and can get help from knowledge discovery modules, are what
forms the abnormalities manifest themselves, and when those abnormalities arise. I believe this is
an area that has been largely overlooked, and can be very valuable for analyzing and
understanding spatial data.

With respect to content-based analysis from images, my research revolves around three aspects:
compression/extraction, indexing and querying. When dealing with multimedia data, compression
is essential. Compared with compression, which can largely be considered as "syntactic", feature
extraction is more "semantic". However, "a picture is worth a thousand words"; numerous
features can be extracted from each image. Thus, there is the critical issue of feature selection.
My work described in [5] is concerned with feature selection for indexing. That framework has
been extended to deal with sub-image querying, whereby the user only gives specifications to part
of the images.

I believe feature extraction for image indexing and querying is very different from feature
extraction for knowledge discovery. In the former case, features are selected to maximize (in a
loose sense) discriminating power - essentially for differentiation. In the latter case, the situation
is less obvious. If we are looking for summaries, feature selection to maximize discriminating
power appears to be counter-productive. But we do want summaries that do not necessarily

Discovering Geographic Knowledge in Data Rich Environments

An NCGIA Varenius Specialist Meeting Kirkland, WA; 18-20 March, 1999



36

include every single image in the database; in other words, a certain amount of discriminating
power will be needed. Where to draw the line, I believe, is a very hard question. If we are looking
for outliers, the outcome also depends on what features are used. How to perform feature
selection appropriate for outlier detection is a non-trivial question as well.
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3.13 Jonathan Raper
At present, the creator/curator of any collection of 2D vector and raster graphics, static
photographic imagery, surface models, solid models, audio, video, real time GPS data streams,
panoramas, spreadsheets and text must marshal a whole series of applications to georeference,
store, retrieve and analyse such data. Yet such collections will be found in most libraries of the
future and many research data collections of the present. The lack of any integrated data store or
cross-data type indexing system capable of handling georeferenced data types is currently a major
limit to our ability to explore such collections for space-time patterns and coincidences.

There seem to be two distinct strategies for creating searchable multi-data type collections.
Firstly, the expansion of traditional databases from relational to object-relational and the
development of multidimensional query languages such as SQL3. The advantage of this
‘universal server’ approach is that the data store would be based on existing DBMS technology
and that hybrid multidimensional queries could be based upon methods bound to each data type.
However, this approach requires complex queries that are hard to optimise and the semantics of
such queries across data types with georeferencing would not always make sense.

Alternatively, since multi-data type collections are classically what the originators of the
hypertext concept envisaged, these collections could be structured by user defined portable
pointer structures based upon text-based metadata associated with all the data types. The
advantage of this approach is that the arrival of XML as a new standard for mark-up on the web
and the flexible architecture of the next generation web browsers makes the storage and access to
such data types more and more straightforward. If data types can be stored with user-entered
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metadata in RDF/Dublin Core format, then hyperlink pointers can be computed by querying the
metadata collection or created by browsing. Directed graphs of hyperlinks forming ‘link sets’ can
be created and stored as access structures for a collection. The disadvantage is that such ‘link
sets’ carry no guarantee of completeness and might not exhaust the data space.

Access structures based on ‘link sets’ would be more akin to tours or thematic collections,
although multidimensional range queries over the georeferencing metadata fields would allow the
geographic exploration of collections. Spatial agents could also be developed to ‘roam’ such
collections looking for correspondences. I have a postgraduate student (Armanda Rodrigues)
working on the implementation of intelligent spatial agents for spatial data access whose work is
close to completion.

The potential of this second approach is currently being investigated using the Virtual Field
Course hub and client test bed and some preliminary indications would be presented at the
meeting.

3.14 Hanan Samet
The proper treatment of spatial data requires more than just storing spatial data. It also demands
proper treatment of nonspatial data such as that associated with the spatial object or location. For
example roads have speed limits, regions have people living there with income levels, cities have
populations, etc. All of this data, although inherently nonspatial, is said to be spatially-referenced
in the sense that it is associated with locations in space. This data can also be referenced by name
in the sense that aggregates of space have been given a name to facilitate reference to it.

Since spatial and nonspatial data are so intimately connected, it is not surprising that many of the
issues that need to be addressed are in fact database issues. Some deal with performance while
others deal with how to interface spatial algorithms with large databases. In our work, we have
observed that the algorithms that we developed are responses to spatial queries.  These queries
can be classified into two principal classes. The first is location-based. In this case, we are
searching for the nature of the feature associated with a particular location. For example, ``what is
the feature at location X?,'' ``what is the nearest city to location X?,'' or ``what is the nearest road
to location X?'' The second is feature-based. In this case, we are probing, in part, for the presence
or absence of a feature based on another feature, as well as seeking its actual location. For
example, ``what type of vegetation or land cover is found within 10 miles of the Mississippi
River?''

Dealing with location-based queries is quite straightforward using spatial data structures such as
the quadtree as they involve descending the tree until finding the object. Dealing with feature-
based queries is more difficult. The problem is with pure quadtree-like methods (i.e., based on
variable resolution) is that there is no indexing by features. The indexing is only based on spatial
occupancy. For example, if we want to find the locations where wheat is grown, we need to
examine each location (or block) and test if it is indeed a site where wheat is grown. Our goal is
to process the query without examining every location in space.

The pyramid is a regular decomposition representation based on multiple resolution that is useful
for such queries since the nodes that are not at the maximum level of resolution (i.e., at the
bottom level) contain summary information. The pyramid is best characterized as a space
hierarchy. Thus we could view these nodes as feature vectors which indicate whether or not a
feature is present at a higher level of resolution. Therefore, by examining the root of the pyramid
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(i.e., the node that represents the entire image) we can quickly tell if a feature is present without
having to examine every location.

There are numerous other representations for spatial data most prominent of which are those
based on the use of bounding boxes (e.g., members of the R-tree family [Gutt84]). They are
object hierarchies in the sense that objects are aggregated into groups of objects until there is just
one object group left. The bounding boxes are used as filtering devices to speed up search. While
these methods have been used extensively, they are not necessarily appropriate for all
applications. In particular, these representations are designed to distinguish between occupied and
unoccupied space. However, these representations, unlike the quadtree and the pyramid, are not
based on a regular decomposition. Therefore, when we want to combine different data sets such
as terrain, roads, and hydrography etc., representations that use bounding boxes are not very
attractive as they are not in registration. The problem, as mentioned above, is that these
representations are primarily designed for distinguishing between occupied and unoccupied space
in a particular map rather than correlating occupied space in the different maps which serve as
input to the operation. The result is that the computation is more complex.

The research that I am interested in conducting is the development of efficient representations to
support spatial data mining and algorithms. Some additional research involves he incorporation of
statistical information such as averages, means, ranges, etc. The pyramid is idea for the
representation of such information. I am also interested in exploring further the difference
between space and object hierarchies. I believe that we can learn quite a bit from the way these
issues have been dealt with in computer graphics research where the distinction is analogous to
the one that is made between image space and object space methods, respectively.

Other research interests involve knowledge discovery through the exploration of databases
containing spatial and nonspatial data. My goal is to provide users primitives so that they can
explore the data on their own rather than have explicit functions. As an example, we have
developed a method for finding nearest neighbors incrementally. This is in contrast to finding the
n nearest neighbors. An example of the utility of this operation which we call ranking is a query
that seeks the nearest hotel to a particular amusement park where rooms cost less than $20 per
night. One strategy for obtaining the answer is to incrementally locate the nearest neighboring
hotels of the amusement park until finding one with the appropriate nightly rate.

The alternative solution, finds the 10 nearest hotels and then checks their nightly rates and then
sorts them by distance. If none of the hotels meet the conditions of our query, then we must
restart the search from scratch and now look for the 20 nearest hotels, etc. Clearly, the ranking
approach is superior as only the minimum number of neighbors must be obtained.

We have recently applied the ranking idea to compute clusters in a spatial database. In In
particular, suppose we are given a set of locations of nuclear facilities N and a set of locations of
monitoring stations F. We wish to calculate the following:

1. For each nuclear facility, find the closest monitoring station.

2. For each monitoring station, find the closest nuclear facility.

The result of these two queries is very much like a Voronoi Diagram (also known as a Thiessen
polygon). Executing such queries is not possible using existing database technology. First of all,
it is difficult to express this query using SQL. Second, we have to be able to calculate it (i.e., we
need an algorithm). A more common example of the same query is one where we are given the
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locations of stores and warehouses and we wish to determine which warehouse should deliver to
which store.

It turns out that these queries are really repeated instances of ranking where we want the closest
(i.e., the element ranked number 1). In particular, in the case of query 1, we are ranking the
monitoring stations with respect to the nuclear facilities, while in the case of query 2 we are
ranking the nuclear facilities with respect to the monitoring stations. In technical database
terminology, the ranking operation is really like a join of the nuclear facilities and the monitoring
stations based on the values of the spatial (i.e., locational) attributes (also known as a spatial join).

Obtaining answers to queries 1 and 2 is a semi-join operation that just retains one value for each
pair, which is the closest one. We term the general operation a rank join (or distance join) and the
operation that retains the closest value a rank semi-join (or distance semi-join). This operation is
pretty straightforward to execute when we have a ranking primitive. In fact, this operation was
discovered by a user of the ranking primitive. We believe that there may be other operations that
can be discovered through the appropriate use of built in spatial operations. We are interested in
the further study of such techniques (e.g., finding shortest paths).

3.15 Shashi Shekhar

Clustering via Hypergraphs

Clustering is the process of identifying regions of high density data points in a non-uniformly
distributed multi-dimensional data space based upon a ‘‘distance’’ measure. In the spatial context
the Euclidean distance is a natural measure of proximity but ‘‘distance’’ could also be related to
the statistical notion of correlation.

A Hypergraph is a graph in which an an edge can connect more than two nodes. There is a one-
to-one correspondence between hypergraphs, binary matrices and bipartite graphs. We have
recently reported a clustering based min-cut hypergraph-partitioning method for spatial join
processing using a join-index [1]. Experiments performed on the Sequoia 2000 data sets show
that our method outperforms methods based on sorting and other graph heuristics.

Recently, methods based on hypergraph partitioning have been successfully employed to cluster
high-dimensional data [3]. These methods use the data mining concepts of frequent itemsets and
high confidence to generate a weighted hypergraph and then use a partitioning heuristic to cluster
the hypergraph.

We briefly describe how a weighted hypergraph can be constructed from a database of
transactions [3]. Later on we will define the concept of spatial transaction and show how
hypergraph partitioning can be used even when the data has a significant spatial component.

Given a database of transactions a data mining algorithm is used to generate association rules
which satisfy the constraints of minimum support and high-confidence. This process in effect
identifies transaction items which are highly correlated and statistically significant. For an
overview of efficient mining algorithms see [4].

The output from the mining algorithm is used to generate the edges and weights of a hypergraph.
The original set of items is mapped onto the nodes of the hypergraph and the frequent itemsets
represent the edges of the hypergraph. Since an itemset can contain more than two items they can
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be neatly mapped onto a hypergraph edge. For the weights of the hypergraph the average
confidence of the essential rules spanned by the itemset are used. Essential rules are rules in
which all the items of the itemset are involved but in which the implication set of the rule, the
right hand side, is a singleton. The hypergraph being generated, a partitioning algorithm can be
used to cluster the graph.

Spatial Transactions

How can we map spatial data and relationships into a weighted hypergraph? Spatial data are
characterized by complex data types like points, lines and regions. Spatial relationships on the
other hand depend upon the ‘‘granularity’’ of the underlying physical space: topological,
directional, metric or Euclidean. We define the concept of a spatial transaction to capture this
complexity.

A spatial transaction is defined in terms of a reference spatial object which acts as a unique
transaction identifier(tid). The items of the transaction include spatial objects or characteristics of
spatial objects which satisfy a user-defined spatial relationship with respect to the reference
object.

For example consider the database of all counties in the United States. The name of the county
and its spatial footprint will play the role of tid. The items which constitute the transaction could
be symbols representing a range of number of hospitals and indoor shopping malls which lie
within the county. For example if there are less than three hospitals in the county a symbol H0-3
could be reserved to denote this relationship. Then H0-3 will be an item in the transaction.
Similarly if there are between 5 and 10 shopping malls then a symbol S5-10 could be used.
Notice that the hospital and the shopping malls satisfy the topological relationship within with
respect to the county. The items need not necessarily symbolize the cardinality of spatial objects.
Spatial relationships between objects can also be represented as items. For example if the county
courthouse lies to the North-West of the county airport then a symbol C-NW-A could be a
symbol and thus an item in the transaction. Having constructed the database of spatial
transactions we could then model it as a hypergraph and pass the hypergraph as an input to the
clustering algorithm. It is interesting to note that because spatial data enjoys low updates, a spatial
join-index would be an ideal candidate to construct the database of spatial transactions. The
whole process is summarized in Figure 1.

Figure 1: Flow diagram for clustering algorithm.
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3.16 Monica Wachowicz
Geographical Information Science has become a scientific body of knowledge built from a base
in the domains of geographic visualisation, geographic information systems, and spatial analysis
(with strong ties to exploratory data analysis efforts in statistics). The volume of basic and applied
research carried out in each of these domains over the past decade is responsive to the changing
problems and issues that concern government, industry, and society.

In the NCGIA Specialist Meeting, I would like to focus on the issues related to large
environmental data sets since they represent a major challenge for both domain and information
sciences. The domain sciences, most of which developed under data poor conditions, must now
adapt to a world that is data rich - so data rich that large volumes of data often remain unexplored
while the media they are stored upon deteriorate or become obsolete. The information sciences,
most of which developed in a pre-computer era or when batch processing by computer was the
norm, must now adapt to a world that is not only digital but highly dynamic - in which there is a
potential for information systems to produce answers in real time as an analyst explores data and
poses "what if" questions. It is in this context of both increasing data availability and rapidly
evolving computing technologies that I see a substantial challenge for research in spatio-temporal
methods. The challenge is two-fold: to extend geographic visualisation, GIS, and spatial analysis
methods (currently developed for static data) into a spatio-temporal realm and to integrate these
domains of Geographic Information Science to produce innovative methods (and associated
tools) that facilitate policy decisions, assessment evaluations, planning and development
strategies.

Key among these is the view of the overall challenge as a multi-step process oriented approach of
manipulating data (which can include quantitative and qualitative information) to arrive at valid,
novel, potentially useful, and ultimately understandable spatio-temporal patterns and processes in
data. Geographic Visualisation (GVis) methods emphasise human visual thinking, graphical data
manipulation, and human computer interaction. In contrast, GIS methods offer tools for
developing domain specific models, query languages for data and meta-data manipulation, and
data interoperability for distributed computer environments. From Exploratory Data Analysis
(EDA), quantitative methods provide the statistical modelling used for developing data mining
algorithms designed to produce sets of statements about local dependencies among variables from
very large data sets. The strength of the development and integration of GVis, GIS, and EDA
methods lie in the powerful integrated system that they can provide. A system from which to
store, explore, and evaluate very large amounts of observational and model simulation data, and
subsequently understand and communicate this understanding. Particularly when applied to
environmental data, designing an integrated GVis- GIS-EDA system is definitely a non-trivial
task.

Some envisaged capabilities are:
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• a scheme for creating conceptual hierarchies of information (e.g. GeoVRML worlds that
support varied levels of detail that react to a user’s virtual distance from a location in the
world);

• graphical interactive data exploratory tools such as linked and brushing techniques using
space-time cubes, multivariate glyphs, and parallel coordinate fplots (e.g. Visage, SAGE, and
SDM);

• flexible database protocols supporting spatio-temporal data types and operators that allow
rule-based spatio-temporal reasoning (e.g. LDL++, extended with spatial and temporal
construct suitable for the application domain of atmospheric sciences);

• proactive tools such as animation and hypermedia to direct database queries and mediate
database navigation (e.g. tools developed for the Alexandria Digital Library Project),

• data mining tools for tracking and detecting evolving physical phenomena in very large data
sets (e.g. CONQUEST and GeoMiner tools for clustering, feature extraction, and simulation);

• dynamic space-time modelling capabilities of object-oriented or object-relational databases
(e.g. inheritance, polymorphism, and complex database objects and scenarios).

Having suggested some capabilities for an integrated GVis-GIS-EDA system, I have attempted to
illustrate my working knowledge background as well as the interdisciplinary topics that can be
discussed in NCGIA Specialist Meeting.
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4  SUMMARY OF WORKSHOP PRESENTATIONS AND DISCUSSION

4.1 Thursday, March 18

4.1.1 Plenary I - Status and trends in geographic information science
Presented by Jonathan Raper.

This plenary session reviewed a wide range of topics related to the worldview of geographic
information science, the role of technology in generating structured, semi-structured and
unstructured digital geographic data and the role of geographic information in generating
geographic knowledge.  Some of the key points of the presentation were:

i) There is a sharp contrast between the worldviews of geographic information science
and the attempts at non-scientific understanding and problem-solving in post-positivism
and within political contexts.  Specifically, GIScience involves a rigid view of processes
(logic), space (geometry) and time (absolute).  It is unclear that the scientific worldview
can lead to useful knowledge for the non-scientific and cognitive-based perspectives on
understanding the world as well as in non-scientific decision processes.

ii) Information is conceived and generated from particular ontological and
epistemological perspectives.  Thus, a key question is "what is this information about?"
when practicing GIScience and GKD.  Also, intellectual property rights vary across
nations.  The institutional and community settings of information collection and use can
confound GIScience and GKD.

iii) Geographic data collection technologies are generating multi-media georeferenced
databases that involve structured, semi-structured and unstructured information.  Can we
develop GKD techniques that can handle semi-structured and unstructured data as well as
"mine" across multi-media?

4.1.2  Plenary II - Methods for geo-spatial data mining

Presented by Jiawei Han.

This plenary session provided a survey of various methods for discovering knowledge in large
geo-spatial databases from the point of view of spatial data mining. The survey covered the
following major themes:

Motivation.  Necessity is the mother of invention.  The computerization of our society has led to
the collection of huge amounts of spatial data.  To facilitate efficient analysis of such data, new
tools must be built.  Spatial warehouse and spatial OLAP are tools and infrastructures to facilitate
spatial database integration/consolidation and on-line analysis of multidimensional spatial data.
In addition to the spatial data warehouse, spatial data mining tools for extracting interesting
patterns and knowledge from spatial data should be systematically developed.

Methods for spatial data warehousing. A spatial data warehouse requires all the features of a
nonspatial data warehouse plus spatial dimensions and spatial measures.  The materialization of
certain spatial measures, such as region merging, etc. may lead to the explosive growth of storage
space requirements.  Thus selective materialization of spatial data cubes and spatial measures and
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methods for fast computation of spatial region merges, and other spatial operations applying to
massive number of spatial objects need to be developed.

Integrated spatial OLAP and mining. An architecture called spatial OLAM (on-line analytical
mining) systematically supports spatial data mining mechanisms in large spatial databases.  A
system prototype, GeoMiner, which implements such an architecture is introduced.  Previous
research has addressed methods and experimental results for implementation of such integrated
OLAP and data mining techniques.

Overview of geo-spatial data mining methods. An overview of recent research and developments
on geo-spatial data mining covered the following issues.

a) Characterization and comparison of spatial objects

Spatial objects that share similar characteristics can be grouped together and be
summarized at various abstraction levels.  Each group of spatial objects can also
be compared to see the differences in their general characteristics.

b) Spatial association

Methods for association between spatial and non-spatial predicates can discover
rules such as, "80% of gas stations outsides of the city are near highway
intersection."  Methods exist for progressive refinement of data mining quality.

c) Spatial classification and prediction

Given a set of target classes, spatial classification select the most relevant set of
attributes and attributes values which determine which target class a spatial
object belongs to.  Also, spatial classification can be used for classify some
unknown spatial objects and predicting the class labels or certain unknown
values.

d) Spatial clustering and outlier analysis

Spatial clustering group spatial objects into clusters so that objects in the same
cluster are quite similar whereas objects in different clusters are rather different
from each other. The five categories of clustering methods are partitioning
algorithms, hierarchical algorithms, density-based algorithms, grid-based
algorithms, and model-based algorithms.  Spatial objects that do not belong to
any cluster are called outliers; distance measures can be used to identify outliers
and analyze their properties.

Future research topics in spatial data mining.   These include:

a) Establishing a theoretical foundation for spatial data mining.

b) Performance improvements of methods for mining different kinds of spatial
knowledge.

c) Integration of cartographic modeling and spatial data mining.
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d) Integration with existing spatial data analysis techniques.

e) Mining spatio-temporal data, raster/image data, and Web data.

f) Development of an integrated, intelligent geographic information systems.

g) Development and exploration of spatial data mining applications.

4.1.3 Panel: Tasks for spatial data mining in large geo-spatial databases
Panel coordinator: Hans-Peter Kriegel.  Panel members: Dick Muntz, Raymond Ng, Hanan Samet
and Shashi Shekar.

Spatial trend detection.  One form of geographic knowledge discovery is spatial trend detection.
Spatial trends can consist of both global and local components.  GKD can help reveal the factors
that lead to local deviations from global or expected trends.  A motivating example is the role of
physical features in attracting unusual populations and activities, in particular, retirees to the
Bavarian region of Germany.  This leads to unusual local deviations in economic activities from
the expected global trend.  A thematic map example indicated the need for spatial data mining
across heterogeneous spatial databases.

Spatial clustering and outlier detection.  With respect to spatial cluster detection, the relevant
questions are: i) given 1 cluster, what are the interesting properties of the cluster? ii) given n
clusters, what do they have in common? and; iii) given 2 clusters, what are the “discriminating”
properties on which the clusters are different?  Methodologies for answering these questions
include thematic map correlation, determining proximity relationship using reference maps and
boundary shape matching.

Although outliers may be "noise" to one person, they can also be another person’s "signal."  This
is particularly true in surveillance applications such as environment monitoring.  Traditional
statistical tests for outlier detection are univariate and distribution-based.  More recent statistical
methods are based on the concepts of “depths.”  This method organizes data points as layers in
the data space.  Points in outer layers are more likely to be outliers.  This approach is not
computationally efficient in k-dimensional space for k ≥ 4.  An alternative methodology for
spatial outlier detection is based on distances.

An example system that uses clustering is the Conquest Scientific Query Processing System.
This is a data mining system that locates cyclic storms and their trajectories from weather and
climate data.  Derived associations among attributes and clustering techniques identify outliers
that may indicate cyclonic activity.  The system also has various normalization techniques and
can generate calendar-oriented statistics.

Open issues for spatial clustering include:
• Capturing direction and connectivity relationships in addition to distance;
• Capturing other types of geographic space, including spherical and attributed space (i.e.,

geographic space with spatially-varying properties that affect interaction);
• Constraint-based clustering (i.e., clustering when interaction is restricted, e.g., travel

across a river limited to bridges);
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• Methods that search for voids among clusters.

Spatial querying in GKD. Efficient spatial querying is central to spatial data mining.  Geographic
knowledge can be directly acquired through efficient query support that allows formulation of
complex queries.  Relevant classes of queries include queries about objects, such as i) all objects
that contain a given point or set of points; ii) all objects that have non-empty intersection with a
given object; iii) all objects that have a partial boundary in common; iv) all objects that have a
boundary in common; v) all objects that have any points in common; vi) all objects that contain a
given object; and, vi) all objects that are included in a given object.  Another class are proximity
queries, such as: i) the nearest object; and, ii) objects within a given distance.  Finally we
consider queries involving non-spatial attributes of objects, such as "given a point, find the
minimum enclosing object of a particular type."

Central to efficient query support are spatial data structures.  Quadtrees and R-trees are best
suited for location-based queries while pyramids are best suited for feature-based queries.

General research questions for geographic knowledge discovery
• How to analyze or mine semi-structured (map, vector data) or unstructured data (image

raster data)?
• How to represent unstructured data for mining? (video data to 2D trajectories)
• How can feature extraction interact with knowledge discovery?
• What is the objective of feature extraction?

• For content-based querying, these are features intended to maximize discriminating
power.

• For data-mining, it is not so obvious because maximizing discriminating power may
destroy patterns.

• How to cope with the high dimension of image data?
• How to support the integrated mining of structured and unstructured spatial data?
• Building domain-specific geographic theory into spatial data mining as a means of

"directing" the GKD process;
• Use of GKD in geographic research and decision support.  What do geographers want to

do that they couldn’t do before?

4.1.4 Breakout groups - Setting the GKD agenda
The discussion topic for the breakout groups was the major issues and questions that should be
discussed during the workshop.  The following agenda items emerged from this discussion:

1. GKD theoretical issues
• A general theory of data, information, knowledge for the geographic domain.
• Use of geographic concept hierarchies in GKD to handle the complexity and volume of

geographic data by starting at general levels with coarse spatial units and use a
refinement process as interested patterns are discovered. The major questions are: i) can
we develop or identify a widely supported spatial concept hierarchy for different
geographic domains, and; ii) can we develop a standard process for refining geographic
concept hierarchies?

• The use of existing geographic theory and domain knowledge to direct the GKD process,
for example, looking for interesting and unexpected patterns in the residuals between a
postulated geographic process model and the empirical data
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2. Representational issues
• Representation of spatial objects, including: i) maintaining the integrity of polygons and

other spatial objects (e.g., interpreting a list of coordinates as an integral unit representing
the polygon boundary); ii) decomposition of spatial objects into component entities; iii)
regular vs. non-regular representations; iv) disjoint vs. non-disjoint spatial objects, and;
v) spatial data indexing methods.

• Capturing the full range of geographic relationships among spatial objects, including
distance, direction, connectivity, possibly mitigated by attributed geographic space.

• Time in geographic knowledge discovery, including: i) mismatch between time as a
discrete, non-directional entity in databases and a continuous, unidirectional entity in the
real world; ii) different types of time, including seasonal, cyclic, multi-level/resolution;
iii) capturing attribute rates with respect to time; iv) time as process not just an attribute;
v) general shortcomings of the relational data model for modeling temporal data, and; vi)
different levels of granularity when recording temporal events.

• Imprecision and uncertainty in geographic concepts and data, including: i) fuzzy sets
versus probability as the formal model, and; ii) representing spatial data with different
levels of uncertainty and imprecision.

• Impact of converting spatial attributes to non-spatial attributes for mined results,
including loss of continuity information and the correlation among the spatial
dimensions.

• Developing spatial data models to support GKD, including: i) robust, effective and
efficient models at the conceptual, logical and physical levels, and; ii) resolving semantic
heterogeneity issues in geographic data

• Developing an effective design for spatial data warehouses, including developing
selection criteria for warehousing spatial data.

3. Analytical issues
• Frame independent spatial analysis, in particular, spatial data mining methods that are

not dependent on the map scale or spatial resolution of the data.
• Generalization operators for spatial objects, including abstraction operators, data

modeling techniques, logical/semantic operators and methods for dealing with the
modifiable areal unit problem (MAUP; in brief, statistical results being an artifact of
arbitrary spatial reporting units such as census tracts).

4. Application issues
• Human interaction/visualization in all stages of GKD.
• Determining benchmark GKD problems and applications both with respect to a testbed

for spatial data mining algorithms as well as illustrative applications where spatial data
mining generates novel results or decisions.
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4.2 Friday, March 19

4.2.1 Plenary III - Geocomputational tools and GKD
Presented by Mark Gahegan

GeoComputation has its origins in the 1970’s.  In the aftermath of the quantitative revolution,
computers were seen as the tools/slaves of the quantitative geographer. This involved lots of
messy FORTRAN code.  The 1980’s witnessed the GIS revolution. Geographers were forced to
adopt the poor representational and analysis capabilities of GIS.  In a sense, geographers became
the slaves of the computer. GeoComputation is a conscious effort to explore the middle ground
between geography and computer science from a doubly-informed perspective.  It is about not
compromising the geography, nor enforcing the use of unhelpful or simplistic representations. Its
goal is to enrich geography with a toolbox of useful computational methods. GeoComputation
attempts to enriching geography with a toolbox of useful computational methods.

Improvements in computing architecture & performance and progress in pattern recognition,
search, classification, and function approximation have enabled GeoComputation.  The former
enables previously intractable problems to be addressed via deterministic means.  The latter
provides sophisticated solutions for a range of non-deterministic problems: e.g. data mining,
knowledge discovery, inductive learning.  Other supporting developments include advances in
spatial statistics  (e.g. K & L functions to test for spatial clustering, adaptive spatial filters),
visualization methods for performing exploratory analysis and agent technology as an
implementation mechanism.

GeoComputation research challenges center on the knowledge gap between the theoretical
working of the tools and their successful application to geographical analysis.  These challenges
are conceptual (how can the tools be applied effectively to geographic problems?) and
methodological (sophisticated tools require sophisticated set-up and operation). Specific
challenges include:
• How can we ‘map’ the geographic problem successfully to the search space used by the

tools?
• How can we be certain that the tools examine all relevant portions of this space?
• How do we know when a good solution has been found, and can we report on statistical

reliability?
• How do we ‘mine’ the solutions to provide insight or knowledge of the underlying

geographic domain?  The solutions provided are often highly parameterized with little
obvious connection to the problem domain.

Classification tools provide illustrative examples of GeoComputational challenges and problems.
Classification is useful as a form of data reduction, as a mapping to a different phenomenological
domain and a means of recognizing and imposing structure.  Classification can be viewed as a
search of a hypothesis space defined from all possible classifiers.   The hypothesis space is
searched to locate the classifier that performs best.  In supervised classification, performance is
measured in terms of conflict with the training data.  In unsupervised classification, performance
is usually a function of cluster definition and separation.

Many of the newer analysis tools in computer vision / machine learning are types of classifiers
that are scalable and can handle highly dimensional, noisy, sparse and non-Gaussian data.  These
include neural networks (most types), decision trees, Bayesian networks for supervised learning
and k-means classifier and the self-organizing map for unsupervised learning.
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Perhaps the most difficult problem to overcome when configuring geographical classifiers is
generalization.  Generalization is a form a bias imposed by the analyst when formulating general
classes from the observed data.  High generalization occurs when the entire data space is
partitioned exhaustively into classes based on the training data (left half of figure below).  Low
generalization occurs when classes so not extend beyond the dataspaces occupied by the training
data (right half of figure below).  This conservative approach creates "gaps" between the learned
classes.

Figure 1: High versus low generalization in classification

While a trained inductive learning tool may contain knowledge, extracting this knowledge may be
difficult due to the challenges outlined above.  To meet these challenges, classification tools
require the following properties:

• Robustness, or tools that will converge, learn and report reliably
• Scalability to very large input vectors, hypothesis spaces and datasets
• Generalization methods that treat the "spaces" between classes appropriately
• Configuration of architecture, problem setup and control from the data and not the user
• Knowledge extraction techniques that determine the knowledge obtained by the inductive

learning technique

4.2.2 Panel: Research frontiers in geocomputation and GKD
Panel coordinator: John Roddick.  Panelists: David Bennett, Heikki Mannila, and Elizabeth
Wentz.

Lessons from KDD. Knowledge Discovery from Databases (KDD) is a strategy that does not
slice the analytical process into subproblems prematurely.  In other words, data mining is
equivalent to exploratory data analysis.  Data mining is also useful for decision support in applied
problems.

Data mining and KDD tools for aspatial data include descriptive statistics, rule discovery,
predictive modeling and probabilistic model.  The criteria for these methods include simplicity
(simple to use and produces easily understood results), soundness and robustness in a statistical
sense and scalability.  A challenge for GKD is a huge gap between the current, complex and non-
scalable spatial statistical techniques and the data mining requirements for simple, robust and
scalable techniques.
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Additional lessons from KDD include the following:
• Interpretability is important
• "Interestingness" varies from user to user
• Deriving rules and patterns from datasets requires effective browsing and querying

tools
• Techniques should recognize the difference between global models and local patterns
• Knowledge discovery should occur at multiple levels of analysis
• Data management is important
• Probabilistic modeling is useful
• Knowledge discovery cannot be automatic

Geocomputation and GKD.  There are different perspectives on the linkages between
geocomputation and GKD.  Two useful metaphors are the shell game and the big shovel.  The
shell game perspective views data mining as processing a “mountain” of dirty, "useless" oysters
to find a few precious pearls.  In other words, we can attempt to automate the analysis of a
mountain of geographical data to identify a few pearls of wisdom of geographic phenomena.
This suggests that information has a high initial value and can be returned from the discovery
process in near-final form.  Conversely, the big shovel perspective views GKD as processing a
“mountain” of low-grade material and transformation of this material into high-grade form.
Therefore, we should automate the transformation of a mountain of geographical data into a small
volume of information useful for the analysis.  This assumes that the information has a low initial
value and the product returned from mining process requires substantial value-added processing.

The latter perspective suggest that it is often necessary to apply a sequential set of complicated
transformation to produce database that contain spatial and attribute information in an consistent
and usable form. Methods for accomplishing this are common knowledge structures and
intelligent agents.  Intelligent agents can identify relevant databases and construct the sequence
and transformation needed to construct new datasets that satisfy the user's request.  These agents
use expert knowledge and stored knowledge structure about available geographic datasets,
different types of available transformation, data needs of specific geographic models,
preconditions for applying the transformation and performance characteristic of tools, data and
model.

GKD and GIS.  Geocomputation and GKD also implies a rethinking of our conceptualizations of
GIS.  Currently, analysis processes are different between geography and computer science since
GIS is viewed as a rigid sequential process rather than a flexible toolkit.  To fit data mining fit
into geographical analysis, we need a more flexible conceptualization of GIS.  A re-
conceptualization of GIS will dissolve the boxes around the traditional functions of data input,
data storage, data analysis and data reporting.  Instead, we should view GIS a tookit whose
techniques can be applied in a flexible manner tailored to the problem at hand.

GKD in geographic research.  A question for geographers is "What do geographers want to do
now that they couldn’t do before?"  Computational biology provides a useful analogue.
Computational biologists have approached computer scientists and said: "We have this kind of
data. We would like to find out xx (unspecified)."  Can geographers form similar, useful
questions?
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At present, it appears that the geography can perform classification and visualization for simple
phenomena.  The geography community apparently cannot:

• Analyze moving patterns (single or pair)
• Visualize dynamic spatial pattern (moving rates in space through time)
• Detailed analysis of urban landuse dynamics
• Analyze interaction patterns at a detailed level of spatio-temporal resolution
• Handle high dimensionality in large-scale analyses
• Characterize uncertainty in geographic patterns
• Analyze space-time changes in rates and processes

Desirable properties of geocomputational techniques for GKD.  Geocomputational techniques
should have certain properties to be appropriate for GKD.  These properties include:

• Simple, sound, scalable types of rules and patterns discovery techniques
• Multiple concepts of distance
• Efficient spatial database querying
• Incorporating geographic domain knowledge
• Easily interpreted

4.2.3 Panel - GKD and domain-specific research
Panel coordinator: Monica Wachowicz.  Panelists: Kathleen Hornsby, Myke Gluck, Duane
Marble.

Differences between data retrieval, information retrieval and geographic information retrieval.
Data retrieval (DR) is deterministic and involves ‘trivial’ exact match or SQL-type retrieval.
Information retrieval (IR) is indeterminate and open-ended.  Examples include retrieving general
information on the future Asian market for widgets, seeking patterns in data and exploratory data
analysis (EDA).  Multimedia resources require a rethinking of IR, including issues of algorithm
development to match users' queries with available information, interpretability of results, query
formulation methods and new performance criteria.  Geographic information retrieval (GIR)
involves indeterminate and open-ended queries from georeferenced data.  These data are
increasingly in multimedia form.

Supporting GIR requires improvements in metadata, retrieval performance measures and
interactive multimedia tools.  Metadata should describe how information could meet users'
information needs rather than just address transfer or interoperability issues.  Metadata should
also be at the micro-level (associated with data entities rather than the entire database or thematic
layer) to support integrated retrieval across heterogeneous databases.  New retrieval success
measures should reflect a redefinition of the retrieval problem from measuring the number of
query matches to the facilitating the ability to "get close and look around" with feedback based on
relevance of found items.  Finally, the user should have multiple, interactive tools that can
support integrated retrieval from heterogeneous multimedia databases.

Constructing knowledge from spatio-temporal data. Constructing knowledge from multivariate
spatio-temporal data involves the following processes.  First is geographic visualization (GVis)
techniques that support human capabilities for visual thinking through human-computer
interaction and interactive data manipulation.  Second is a knowledge discovery process involving
an iterative process that relies heavily on the analyst's background knowledge.  This is closely
related to exploratory data analysis.  Third are geographic information systems with domain-
specific spatial representations.  Issues here include query languages for data and metadata and
data interoperability.
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A possible technique for exploring spatio-temporal data is seriation.  "Seriation" refers to the
process of putting objects into a series.  This is a univariate scaling method that dates from the
1890’s.  Seriation can serve as an EDA tool for spatio-temporal in matrix form.  The user can
interactively permute, reorder or manipulate icons that reflect data values in the matrix cells.
This can allow a type of interactive, visual principal components analysis.  Augmented seriation
techniques can handle multimedia data and simultaneous display of the data in map form in a
manner similar to Monmonier’s "geographical brushing" technique.

Shifting Granularities.  Working with spatio-temporal data raises issues of shifting granularities.
Distinct from map scale or spatial resolution, shifting granularities captures the world is perceived
at different grain sizes or granules.  Shifting granularities enables people to translate the
complexities of the real world into simpler representations.  Shifting to a more detailed view is
also a common user requirement in geographic information systems and geographic analysis.  It
is important for making meaningful interpretations, effective decision-making, prediction or
forecasting and historical views of spatio-temporal data.

There are two orthogonal perspectives on granularity.  First is the granularity of objects.  This
relates to the complexity of objects. Object granularity allows the analyst to refine the view of
objects.  The analyst can reveal additional details about an object or coarsen the view of objects
with the effect that the object might disappear all together.  The second perspective is granularity
of time.  This relates to tracing objects over time.  The analyst can expand the sequence of objects
and events over time.  The analyst can also collapse a sequence of events over time to a few
events.

What do we need to accomplish GKD over shifting granularities?  First, we need to identify
knowledge rules and constraints for reasoning over objects and time independent of a particular
domain.  Second, we need to identify the operations that allow shifts in granularity.  We should
also think about extensions to this basic model, e.g., combinations of operations to capture
complex granularity shifts.

GKD from spatial interaction data.  A rich and under-analyzed data source that is directly of
concern to geographers is spatial interaction data.  Spatial interaction data is often recorded as
flows between origin and destinations and are often published as origin/destination matrices.
While analyzing flow matrices is a long-standing concern in geography, existing techniques are
overwhelmed by the huge sizes of the matrices being published by entities such as the United
States Bureau of Transportation Statistics, real-time data being collected through intelligent
transportation systems and operational data being collected by utility companies.  Visualization
and browsing tools could discover the hidden knowledge within these rich flow matrices.

Some flow-related research questions that could be addressed better through GKD techniques
include:

• Characterizing regional economies and interregional economic relationships at a
global-scale

• Understanding the relationships between migration, demographics and
socioeconomic characteristics at detailed levels of spatio-temporal resolution

• Understanding and predicting congestion propagation within urban transportation
networks

• Capturing n-order cascade effects among flows (e.g., flow from A to B creating
second-order flows from B to C, B to D, etc)
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4.2.4 Breakout groups - New tools for a geospatial data-rich environment
The focus of the discussions in the breakout groups was developing new analytical and
computational tools for spatial analysis in data-rich environments.  The following issues were
raised:

1. Theoretical issues
• Is it possible to formulate a common framework for geocomputational techniques in

GKD?
• Is it possible to formulate a categorization/taxonomy for GKD problems?
• What are the new questions that geographers (and others) would like to answer?

2. Framework and interoperability issues
• Interoperability, not standardization, between databases is required to support integrated

spatial data mining and information retrieval across heterogeneous, multimedia
databases.

• While technical interoperability can be achieved, semantic interpretability is more
difficult

3. Requirements for new techniques, including techniques for:
• Spatial summarization
• Spatial/spatio-temporal data capture
• Content-based retrieval
• Exploring flows, including: i) flows within transportation networks, and; ii) the

relationship between flows and other geographic phenomena.
• Exploring spatio-temporal relationships and patterns
• Methods for users to easily extract information from multimedia systems

4. Need for GKD case studies
• Generate examples to show the special nature of spatial data
• What spatial data mining problems can and cannot be accomplished with tradition data

mining techniques?
• Create an online library or website to store the data mining software and research

together.

5. User-orientation and user interface issues
• Conceptually simple models are required to make GKD accessible to researchers with

varying degrees of technical training
• Methods for users to easily extract meaningful information and recognize patterns

derived from GKD while avoiding “information overload.”  This could include: i) a
language to indicate the interest and relevance of retrieved information; ii) methods for
helping users to distinguish important information, and; iii) user-supplied constraints for
reducing search spaces.

6. Database issues
• Well-indexed databases may better than metadata
• A more accessible database user inference machine.  This can provide a first-cut

information retrieval filter for the user
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4.3 Saturday, March 20

4.3.1 Plenary IV - Geospatial data and data warehousing
Presented by Yvan Bedard.

A data warehouse (DW) is a read-only enterprise-oriented, integrated, time-variant and non-
volatile collection of data imported form heterogeneous source and stored at different levels of
granularity to support decision-making.  The DW is the basis for building the data rich
environment used for knowledge discovery.  DWs allow processing the heterogeneous data in the
form of a seemingly homogeneous dataset.  DWs also facilitate the efficient exploration of very
large databases, but often in aggregated and summarized form.

A DW supports online analytical process (OLAP) but not online transaction processing (OLTP).
OLTP systems are oriented toward the entering, storing, updating, integrating, checking, securing
and simple querying of data.  Normalized relational DB and most GIS application are examples
of OLTP.

A DW is also not equivalent to a legacy database system.  Some contrasts:

Legacy DW
Built for transaction Built for analysis decision
Original source Copy or read-only data
Detailed data Aggregated/summary data
Application-oriented Enterprise-oriented
Current data only Current & historic data
Normalized data structure Denormalized, redundant data

    structure
Run on DBMS, GIS, web servers, CAD Run on super-RDBMS, and

multidimensional-DBMS

A DW can also be both physical and virtual:

Physical DW Virtual DW
Persistent data No persistent data
A priori integration On the fly integration
Full data integration Integrate as required
Require warehouse specific DBMS Require no DW specific DBMS
Fast response Slow response
OK for large DB Not for large DB

A DW must also be distinguished from datamarts (DM).  A DM is a localized and more
aggregated implementation of a subset of the data in a DW.  Some contrasts:
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DW DM
Built for analysis Built for high-level analysis
Aggregated or summarized data Highly aggregated or summarized data
Enterprise-oriented Subject-oriented
Denormalized redundant data Highly denormalized redundant data
Large DB Smaller DB

DW should be build on top of existing systems instead of reengineering the entire database
system.  Supporting OLAP requires an efficient data structure (a highly denormalized and
redundant multidimensional-type of structure) and an efficient indexing method.  Since it is
quasi-impossible to optimize a single system to satisfy both transaction-oriented and analysis-
oriented operations, most DW designs are tiered systems that attempt that are a trade-off between
both classes of operations.  DW architectures include:

• Corporate architectures with a centralized integrated DW that receives cleaned data
from heterogeneous, legacy OLTP systems and allows access from distributed clients

• Three-tier architectures with DMs between the centralized DW and the clients
• Multi-tiered architectures with a detailed DW and an aggregated DW, DMs and

clients

Experience indicates that 80% of the KDD effort goes to building the DW.

Although many talk about GKD, a true geographic data warehouse (GDW) does not exist at
present.   GDWs present some unique challenges, particularly with respect to geographic data
integration.  Geographic data compatibility issues include:

• Identification differences (i.e., the geographic feature identified in the "real world")
• Difference in data formats
• Semantic difference (name vs. meaning)
• Domain differences
• Differences in measurement units, geometries, resolution and reference systems
• Differences in accuracy and precision

Possible solutions include cleaning, scrubbing and integrating tools oriented for geographic data,
geographic data standards and interoperability protocols.

Another challenge for data integration for GDWs is temporal incompatibility.  Temporal
inconsistencies can exist between and within datasets.  An example is database schema evolution
in which definition of geographic object and attributes.  New object geometry can also develop
because of remeasurement in the real world.  Although similar problems exist with mainstream
DWs, these problems can be exacerbated when working with geographic data.

GDW research and development challenges include the following:
• Better methods and tools to feed the GDW
• Better use and management of metadata
• Better technique to manage very large databases
• Design new tools specifically for GKD, including spatial OLAP techniques
• Develop working prototypes as a proof-of-concept
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4.3.2 Panel - Application problems and requirements
Panel coordinator: Brian Lees. Panelists: Brian Lees, Steve Smyth and Doug Flewelling.

What are the GKD research and application questions?  The fundamental tenet in industry is
profit, specifically, the cost of an enterprise must not exceed realizable returns. The knowledge
should be unexpected, useful and cost-effective.  The latter criterion can strongly affect the
research questions asked in application contexts.

The following diagram provides a conceptual model that illustrates the KD process and compares
it to the "classic" research approach. The diagram suggests the central role of domain theory in
data mining.

Example application: Weather and climate data.  Weather and climate data has interesting
properties that make it a compelling challenge for spatial data mining.  Weather is a volatile
(sometime dangerous) phenomenon that has universal interest both casually and for economic and
market decisions.   Weather datasets are very large and of moderate dimensionality (typically
consisting of the following attributes: ID, location, time, pressure (at multiple
elevations) wind speed, wind direction, humidity, precipitation,
snowfall).  Weather datsets can also be unstructured (e.g., imagery).

Problem

Conceptual
Model

Database  Data Warehouse

Pattern
matching (data
mining,
visualization)

Prediction to
user

Prediction to
user

Process model
(mathematical,
computational)

Classic approach Knowledge discovery
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Weather forecasting can be the result of modeling or based on historical records.  The former
mode requires a form of hypothesis testing based on the accuracy of forecasted weather variables.
The latter requires a type of "similarity measure" based on the synoptic qualities of the historical
record.  This is traditionally a human-centered process based on the intuition and experience of
the forecaster.  Tools that can support knowledge discovery from historical weather data include
visualization, summarization and generalization/abstraction.

Example application: Individual trajectories in space and time.  GIS is going mobile.  GIS can
provide the basis for mobile locational information provision to individuals through cell phones,
personal digital assistants or other hand-held devices.  Mobile GIS-based information services
can enhance the awareness of a person’s locality (e.g., where am I?  What are the road conditions
ahead?  What is the best route?).  They can also help satisfy needs and wants (e.g., Send help!
Where can I get food, fuel, money, etc.?)  Mobile GIS services can also facilitate social
interactions by dynamically locating and scheduling meetings among individuals.

There is a large potential market for these services.  The technology for mobile GIS is becoming
rapidly available through breakthroughs in miniaturization, exponentially increasing processing
power and improvements in wireless connectivity.  Social trends are also leading towards greater
acceptance and use of mobile GIS.  These include greater acceptance of E-commerce, integration
of web-based information and interaction into lifestyles, increases in personal mobility, greater
amounts of time spent travelling and the increasing decentralization of organizations.  Types of
businesses interest in mobile GIS include advertising, "yellow page"-type directory providers,
system and application manufacturing, portable geographic content and service providers.

In exchange for information, mobile GIS providers will require users to accept tracking of their
virtual and physical activities in space and time.   This will generate an ongoing flow of data
describing properties of location and travel in the course of human activities. This tracking data
flow can be analyzed for information on the planning and execution of human activities.
Information can also be fed back to humans who can use it to support desired activities and needs.
This will require resolving some difficult privacy issues before these data collection methods are
full accepted.

The enormous amount of space-time trajectory data that will be generated through mobile GIS
creates tremendous opportunities for data mining techniques to discover knowledge about
individuals' activities in time and space.  In addition to data mining and visualization techniques,
there will also be a need for "alloying" or integrating additional information (such as socio-
economic characteristics) to manufacture information.  A significant challenge is to build a
supporting spatio-temporal framework.  Also, there may be a need to modify our current data
warehouse configurations to handle events such as potential data overflow.

4.3.3 Breakout groups - GKD research and application frontiers
The discussion that emerged from these breakout groups focused mostly on specific
representation issues, technical issues and application questions at the frontiers of GKD research

1. Representational issues
• Levels of granularity for representing spatio-temporal process and spatial objects

Discovering Geographic Knowledge in Data Rich Environments

An NCGIA Varenius Specialist Meeting Kirkland, WA; 18-20 March, 1999



58

• Containerization and encapsulation in tracking space-time trajectories, including when
you can stop tracking a space-time trajectory (i.e., when does a pattern become
noticeable)?

• Logical and physical structures for representing flows
• Object emergence in dynamic environments, i.e., when does an "object" emerge from a

dynamic field?

2. Techniques
• More appropriate query languages and optimization techniques to support GKD
• Constraint-based data mining, in particular, domain knowledge-based constraints
• Developing an ontology of data mining tasks
• Extraction and mining rules vs. mining data
• Visualization methods and decomposition of visual patterns
• Geographic domain knowledge required to make sense of discovered rules

3. Example domain-specific questions for GKD
• Relationships between individual activity patterns and urban fabric at detailed level of

spatio-temporal resolution
• Relationships between individual activity patterns and aggregate flows in transportation

systems
• Relationships between individual activity patterns in physical, virtual and hybrid spaces
• Interactions between urbanization and the physical environment at micro and macro

scales
• Inferring geographic processes from changes in geographic patterns
• Associating spatio-economic behavior at a micro-level to macro-level spatio-economic

dynamics
• Spatio-temporal patterns in interacting objects

4.3.4 Synthesis
(Harvey Miller, Jiawei Han and Max Egenhofer).  Several transcendental, cross-cutting issues in
GKD emerged during the three-day workshop.  These issues are:

1. What are the new questions for geographic research?  A fundamental question for the
geographic and related research communities is “What questions do we want to answer that
we could not answer previously?”  These communities need to form well-structured (but
possibly open-ended questions) in order to guide the computer science and related
communities in their tool and algorithm development

2. Better spatio-temporal representations in GKD.  Current GKD techniques use very simple
representations of geographic objects and geographic relationships, for example, point objects
and Euclidean distances.  Other geographic objects (including lines, polygons and more
complex objects) and geographic relationships (including non-Euclidean distances, direction,
connectivity, attributed geographic space such as terrain and constrained interaction
structures such as networks) should be captured by GKD techniques.  Time needs to be more
completely integrated into geographic representations and relationships.  This includes a full
range of conceptual, logical and physical models of spatio-temporal objects.   Finally, we
need to capture multiple representations (in particular, robust geographic concept hierarchies)
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and granularities in spatio-temporal representation in order to manage the complexity of
GKD.

3. GKD using richer geographic data types.  Geographic datasets are rapidly moving beyond the
well-structured vector and raster formats to include semi-structured and unstructured data, in
particular, georeferenced multimedia.  GKD techniques should be developed that can handle
these heterogeneous datasets.

4. User interfaces for GKD.  GKD needs to move beyond the technically-oriented researcher to
the broader geographic and related research communities.  This requires interfaces and tools
that can aid these diverse researchers in the GKD process.  These interfaces and tools will
likely be based on useful metaphors that can guide the search for geographic knowledge and
make sense of discovered geographic knowledge.

5. Proof of concepts and benchmarking problems for GKD.  There is a strong need for some
“examples” or “test cases” to illustrate the usefulness of GKD.  This includes a demonstration
of GKD techniques leading to new, unexpected knowledge in key geographic research
domains.  Also important is benchmarking to determine the effects of varying data quality on
discovering geographic knowledge.  A related issue is research and demonstration projects
that illustrate the usefulness of GKD techniques in forecasting and decision support for the
public and private sectors.

6. Building discovered geographic knowledge into GIS.  Current GIS software uses simple
representations of geographic knowledge.  Discovered geographic knowledge should be
integrated into GIS, possibly through inductive geographic databases or online analytical
processing (OLAP)-based GIS interfaces.

• Developing and supporting geographic data warehouses. A glaring omission from current
research in GKD techniques is the development and supporting infrastructure for geographic
data warehouses (GDW).  To date, a true GDW does not exist.  This is alarming since data
warehouses are central to the knowledge discovery process.  Creating true GDWs requires
solving issues in geographic and temporal data compatibility, including differences in
semantics, referencing systems, geometry, accuracy and precision.  Supporting GDWs may
also require restructuring of transaction-oriented databases systems Supporting GDWs may
also require restructuring of transaction-oriented databases systems, particularly for flow and
interaction data.
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5 SEED GRANT PROPOSALS
The Project Varenius Executive Committee, based on the recommendations of the GKD
workshop co-leaders and steering committee, funded two seed grant proposals that were
submitted after the completion of the workshop.

5.1 Ontologies for Spatial Data Mining and Geographic Knowledge Discovery in Large
Multimedia Spatial Datasets  

Principal Investigators: Jonathan Raper and Myke Gluck

The purpose for requesting this Varenius seed grant is to provide travel and support for the development
of a grant proposal to NSF, Bureau of Labor Statistics, EU Fifth Framework research funding in the
Information Society Technologies Programme (open to US collaborators), or other funding agencies
interested in spatial data mining and spatial content-based retrieval.  The full proposal would fund
collaboration between Dr. Myke Gluck of Florida State University, an information scientist, and Jonathan
Raper of City University, London, a geographer and GIS expert, to develop metaphors, ontologies, and
practical interfaces to assist researchers in selecting methods and interpreting results of geographic
knowledge discovery in large spatial multimedia datasets.

The Varenius specialists meeting entitled Discovering Geographic Knowledge in Data-Rich
Environments held in Seattle developed a rich research agenda that included several components aligned
with parts of our previous individual work and bode well for our collaboration.  A major issue in the
agenda is the need to address the meaningfulness of spatial data mining and in content-based retrieval
activities.  That is, algorithms and methods are important but how best to use them and under what
scenarios they are most useful are rarely clear. In some sense methods such as clustering or association
techniques are answers in search of questions.  Related to the issue of meaningfulness is the ability to set
thresholds and establish useful benchmarks for data mining/content-based retrieval.  The computer
scientists and statisticians have left the parameterization or threshold settings to the user to declare but
few users know a priori what are significant thresholds to set. Thus, the computer scientists reframe the
data mining/content-based retrieval problem from finding a method to establishing a threshold or set of
weights.  Such reframing unfortunately does little for the user of the methods who has expertise in the
data but not in the methods or those who have expertise in the methods but little experience in the content
domain.

Each of us have separately investigated geographic information retrieval, exploratory data analysis and
spatial data mining with multimedia (e.g. Raper 1996).  We have found that numerical data must be
augmented with other related data such as video and cartographic displays to assist mining tasks to expose
meaningful patterns.  For example, Gluck et al (1999; Gluck and McCraw, 1997) have used seriation as a
mining technique augmented by interactive data visualization and cartographic displays.  He is now also
pursuing further augmentation with sonification to seek patterns in data that are significant in geographic
information retrieval and spatial data mining.  He has also begun to explore the role of interface
paradigms, interface metaphors, ontologies and meta-ontologies to support data mining.

By contrast Raper has focused on the development of spatial hypermedia databases with hypertext link
structures capable of content based querying (Raper and Livingstone 1995). In the Virtual Field Course
project he has been exploring the possibility of computed hyperlinks between multimedia spatial
resources using spatial criteria. He has also explored the use of spatial intelligent agents to reason about
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computable spatial representations stored on networks to improve searching in spatial digital libraries.
Recent work has explored the use of virtual environments as interfaces to knowledge exploration.

For the full proposal the research will focus on the deep ontological and epistemological aspects of
discovering geographic knowledge; however, we also intend to design interfaces and/or build systems to
make manifest the application of these constructs to real world problems.   Studies of users interacting
with such systems would be integral to our developing deeper understanding of the role the user may play
in data mining/content-based retrieval.  Most systems provide tools with little guidance for users to
employ.  We believe discovering geographic knowledge is a process and although it may vary among
individuals there are general epistemological, ontological, and cognitive sets of structures that can and
must be embedded in systems to assist users.  We also believe that spatial data mining and content-based
geographic information retrieval have much in common, and that understanding how users seek
geographic information impacts how they conceptualize the discovery of geographic knowledge.

Our research will center on observing, cataloging, and organizing these user processes. These processes
can then be translated into meta statements on geographic conjunctions and/or patterns which can then be
converted into computable statements capable of being used to mine/retrieve data in spatial databases.
Raper is part of the Virtual Field Course project which has developed a software architecture where
geographic information processing software components can communicate with rich metadata servers
(see http://www.geog.le.ac.uk/vfc/) permitting the development of prototype tools to capture processes
and instantiate meta statements usable for mining/content-based retrieval. Gluck runs a usability testing
laboratory that can rapidly test and study how real users interact with systems and data
(http://www.fsu.edu/~lis/usability/index.html).

A major issue of the research agenda that summarized the Specialists meeting was the need for
benchmarks or case studies that illustrate the data mining/content-based retrieval procedures, tools, and
effectiveness.  As part of the proposal to the funding agencies we would include applications of the
developed system in diverse domains such as risk assessment, commodity flows, and digital spatial
libraries.  As part of the seed grant we would create a rapid prototype to illustrate the central theoretical
issues and some tentative solutions to be incorporated into the proposal to funding agencies.  We will
target funding initiatives such as the Information Ecology call of the EU Information Society
Technologies Programme (see http://www.cordis.lu/ist/fetuie.htm).

Furthermore, during the Specialists meeting Gluck and Raper began a dialogue addressing how we might
empower users to effectively and efficiently employ multiple data mining/content-based retrieval methods
in one tool. Such a system would provide a range of current techniques as well as be extensible to
incorporate additional methods as they are developed. The result would be a system with multiple
methods selected sequentially or in parallel by the users to rapidly try various methods. The system would
ease the cumbersomeness of tool selection, invocation, and inform users of each methods limitations.
Rapid multimedia visualization of data results and mechanisms to store and replay the history of user
actions would, we believe, greatly add to the willingness of users to explore data and to enhance their
ability to communicate their results to colleagues and to a broader audience (policy makers, managers,
etc.).

5.2 Multi-Scale Tools for Modeling Flows in Geographic Databases

Principal Investigator: Eric D. Kolaczyk
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Project Description. One of the primary agenda items that emerged from the recent Varenius
workshop on “Discovering Geographic Knowledge in Data Rich Environments” was the
importance of flows to the study of current and anticipated questions in geography, and the need
for tools by which to elicit relevant information on flows from geographic databases.  In addition,
there arose from a number of discussions at the workshop a consensus as to the importance of
multi-scale contexts and tools in aiding database users to extract information in a step-wise
fashion, of an increasingly localized and detailed nature at each iteration.  The PI proposes to
conduct preliminary work adapting certain recently developed partition-based, multi-scale
statistical models to the analysis of flow data.  The work throughout is to be carried out in
collaboration with two members of Boston University’s Department of Geography, Professors
Sucharita Gopal and Ray Dezzani.  Funding is requested to help in providing summer support for
one Research Assistant to work with the PI on this project.

It is anticipated that this initial investigation will proceed in two stages, the first involving model
development and the second focusing on implementation and testing of the resulting methods.
Throughout these two stages we plan to use as our geographical context and preliminary test case
a problem in transportation analysis, as described below.  In the first stage of model development,
the PI’s recent work on hierarchical, partition-based multi-scale models (e.g., Kolaczyk 1999),
originally done in the context of standard time series and image analysis problems, will be
extended to accommodate the unique nature and indexing of flow data, with its spatially complex
“start-point/end-point” structure.  These models use factorizations of statistical likelihoods to
effectively de-couple the information in the data at a given location across various scales.  These
factorizations result from a hierarchically defined set of  underlying partitionings of the dataspace
(which could encode relevant geographic information, in the case of flows), and are crucial in
producing tools that are not only mathematically tractable but computationally feasible as well.
This latter point is of central importance for the second stage of this project, in which a prototype
software implementation of the relevant modeling framework will be carried out.  In analogy to
the preceding methodology of Kolaczyk (1999), the resulting tools will allow for adaptive
response to user queries regarding flow data, in a manner that is sensitive to both spatial and scale
variations.

The particular geographical focus accompanying the above-described work is a problem of trip-
generation estimation, in which data are collected at two specific scales.  Conventional
transportation planning analysis models begin with a predetermined traffic analysis zone (TAZ)
system.  Trip generation data is available at the TAZ scale. Additionally, census block data is
often sampled at a larger scale than the TAZ data, and yet this data is often used to infer
household trip generation behavior.  The dataset consists of  the 1994/95 METRO survey of
Portland, Oregon and census data relating to the same region.  The proposed framework will be
used to predict traffic flows in a meaningful manner across a range of aggregations, incorporating
information from census data.

Relation to Varenius Research Initiative and Expected Impact.  The work proposed herein speaks
simultaneously to two of the research initiatives that emerged from the Varenius workshop on
“Discovering Geographic Knowledge in Data Rich Environments”:  (1) the need for tools in
modeling and extracting information from flows in geographic databases, and (2) the potential of
multi-scale database tools to improve the ability of users to “zoom in” on knowledge of interest,
proceeding from coarse levels of detail to finer levels.  Due to the prevalence of flows in
problems across the geographical information sciences, the developments proposed herein have
the potential for a broad-based impact.  At the same time, however, the resulting tools are likely
to integrate smoothly with existing and future knowledge discovery systems.  For example, the
use of hierarchical partition-based structures is a natural way of summarizing information in
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many settings, and its use in the proposed modeling strategy to create multi-scale structures
parallels recent trends in the use of multi-scale contexts in the spatial database literature (e.g.,
Rigaux and Scholl, 1995).

The above described project will serve as the first collaborative venture between the PI and
members of Boston University’s Department of Geography, and it is anticipated that the results of
this project would provide the foundation for a more detailed grant proposal(s), with relevance to
agencies ranging from the National Science Foundation, to the Bureau of Transportation, to the
Environmental Projection Agency.
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