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Abstract of the Thesis

Evaluation of the Robustness of Modified Covariance
Structure Test Statistics

by

Xiaoxiao Tong
Master of Science in Statistics

University of California, Los Angeles, 2012

Professor Frederic R Paik Schoenberg, Chair

Problems about whether a hypothesized covariance structure model is an appropriate

representation of the population covariance structure of multiple variables can be ad-

dressed using goodness-of-fit testing in structural equation modeling. Many test statis-

tics and their extensions have been developed for various specific conditions and some

of them have been extensively used in practice. However, their expected performances

might break down under violations of multivariate normality or su�ciently large sam-

ple sizes. This paper evaluates the robustness of four modified goodness-of-fit test

statistics TS B(new), TMV , TYB and TF in SEM. Monte Carlo simulation demonstrates

that the robustness of covariance structure statistics vary as a function of the correct-

ness of the model as well as distributional characteristics of observed data. Suggestions

for application of these modified test statistics are given after taking both the litera-

ture and current simulation result into account. A surprising result was the failure of

TMV , the Satorra-Bentler mean-scaled and variance-adjusted test statistic, to perform

correctly even asymptotically in one condition.

ii



The thesis of Xiaoxiao Tong is approved.

Peter M Bentler

Hongquan Xu

Nicolas Christou

Frederic R Paik Schoenberg, Committee Chair

University of California, Los Angeles

2012

iii



To my mother and father . . .

who teach me how to count as a start

iv



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Test Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Covariance Structure Analysis . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Mean Scaled and Moment Adjusted Test Statistics . . . . . . . . . . . . 5

2.3 Residual-Based Test Statistics . . . . . . . . . . . . . . . . . . . . . . 7

3 Simulation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Confirmatory Factor Analysis . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

v



List of Tables

3.1 Specified Distributions of Factors (µ = 0,�2 = 1) . . . . . . . . . . . . 13

4.1 Summary of Simulation Results for Condition 1 (Factors and errors are

independently distributed normal variates) . . . . . . . . . . . . . . . . 17

4.2 Summary of Simulation Results for Condition 2 (Factors and errors are

independently distributed non-normal variates) . . . . . . . . . . . . . 18

4.3 Summary of Simulation Results for Condition 3 (Factors and errors are

dependently distributed non-normal variates) . . . . . . . . . . . . . . 19

vii

Xiaoxiao


Xiaoxiao
Text Box



Acknowledgments

First and foremost, I would like to show my deepest gratitude to my supervisor, Pro-

fessor Peter M. Bentler, a respectable, knowledgable and responsible scholar, who has

provided me with valuable guidances in every stage of writing this thesis. Without his

instructions and help, I could not have completed this. His keen and vigorous academic

observation inspires me not only in this thesis but also in my future development.

I would like to express my sincere gratitude to other professors in the department

of statistics for all their kindness and help. They have taught me a lot during the past

year and brought me great insights into statistics. I would also like to thank Glenda

Jones, our lovely Student A↵airs O�cer, who has helped me out of many problems I

encountered during my graduate life at UCLA. Last but not least, I wish to thank my

parents, all my friends and classmates for their encouragement and support.

viii

Xiaoxiao
Text Box



CHAPTER 1

Introduction

Covariance structure analysis in structural equation modeling has been used exten-

sively in psychological, social and behavioral sciences. Goodness-of-fit test statistics

by which to assess the adequacy of hypothesized covariance structure models have been

studied over the decades, and their performances under various distributional conditions

across di↵erent sample sizes have been examined.

Classical goodness-of-fit testing is based on the assumption that the test statistics

employed are asymptotically chi-square distributed, but this property may not hold

when the factors and errors and hence the observed variables are nonnormally dis-

tributed. Even when the factors and errors are normally distributed in the population,

the performance of test statistics in small sample sizes may still be compromised (Hu,

Bentler and Kano, 1992; Curran, West, & Finch, 1996). For example, the most widely

utilized test statistic, the classical likelihood ratio statistic TML based on normal theory

maximum likelihood (ML) estimation, has been verified in many simulation studies to

yield quite distorted conclusions about model adequacy under violations of multivari-

ate normality. The well-known Satorra-Bentler’s (1994) scaled test statistics TS B, as

well the mean scaled and variance adjusted test statistics TMV were thus developed to

be robust to nonnormaity, and have been shown to perform well under such conditions

(Yuan and Bentler, 2010; Tong and Bentler, in press). These two test statistics are de-

rived from a linear combination of quadratic normal variates, whose coe�cients are

the eigenvalues of a product matrix involved in the calculations of model fitting. The

comparative performance of TS B and TMV is mainly a↵ected by these eigenvalues and
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their associated coe�cient of variation (Yuan and Bentler, 2010). Tong and Bentler

(in press) suggested to use TS B when little is known about about the distribution of ob-

served data, but preferably use TMV at a small or moderate sample sizes when normality

or asymptotic robustness assumptions hold. However, they also noted a failure of TMV

in one condition. A newly proposed extension to the normal theory statistic TML by

Lin and Bentler (2012), the mean scaled and skewness adjusted test statistic TMS , was

developed to improve its robustness under small sample sizes, but failed to perform

ideally as expected in a recent simulation study (Tong and Bentler, in press). It is sug-

gested that TMS could be considered when researchers want to be more conservative in

confirming the fit of a model, but with limitation to normally distributed data.

An alternative approach to be applied under nonnormality is the classical asymp-

totically distribution free (ADF) method and its associated test statistic TADF proposed

by Browne (1984). It is theoretically elegant but empirically unsatisfactory. Unlike

the Satorra-Bentler scaled test statistics, which attempt to center the statistic so that

its mean will be closer to that of a chi-square variate, TADF is precisely distributed as

an asymptotic chi-square variate. However, unreasonably large sample sizes are re-

quired for ADF test statistic to exhibit such an advantage; otherwise it will break down

spectacularly (Hu, Bentler and Kano, 1992; Curran, West, & Finch, 1996). A rela-

tively unknown residual-based ADF test statistic TB derived by Browne (1984) can be

applied to any consistent estimators with no specific distribution assumptions of the

observed data. However, Yuan and Bentler (1998) showed that the residual-based ADF

test statistic, like the classical ADF statistic, requires a very large sample size to give re-

liable inference. The Yuan-Bentler residual-based test statistic TYB (Yuan and Bentler,

1998) was then developed to improve the performance of TB for small samples under

general distributional conditions, and has shown remarkably better performance under

such conditions (Bentler and Yuan, 1999). Another more radical modification of the

residual-based ADF statistic, the Yuan-Bentler residual-based F-statistic TF (Yuan and

Bentler, 1998), was designed to take sample size into account more adequately. Dif-
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ferent from the above test statistics, TF is evaluated by reference to an F-distribution

instead of a �2 distribution. Simulation studies have shown that the modified F-statistic

outperforms various test statistics with asymptotic �2 distribution at the smallest sam-

ple sizes (Bentler and Yuan, 1999), yet the test statistic has not been employed as much

as TML or the Satorra-Bentler scaled test statistic TS B in practice.

The purpose of this paper is to compare the robustness of several above modified

test statistics and address their relative applications. Since TML, TADF and TB have

been extensively studied and their performances are easy to break down conditionally,

this paper will focus on the relatively unknown test statistics TMV , TYB and TF . Since

TS B has been reported to perform stably and ideally under various conditions, it is

selected as a benchmark in the following study. The performances of four goodness-

of-fit test statistics, namely TS B, TMV , TYB and TF , are evaluated under violations of

normality across various sample sizes. Their powers are examined under a correct

structural model as well as under a misspecified model. Tong and Bentler (in press)

found out that a simple modification to TS B for the case of sample size smaller than

degrees of freedom, TS B(New), performed better than the standard version of the scaled

statistic in each of the conditions studied. Hence, TS B will be replaced by TS B(New)

when the degrees of freedom exceeds sample size in the following study. Headrick’s

(2002; Headrick & Swailowsky, 1999) relatively unstudied methodology for generating

nonnormal data is used due to its ability to generate a wider range of skew and kurtosis

as well as control higher order moments than the more standard Fleishman (1978) and

Vale and Maurelli (1983) procedure. The test statistics are briefly reviewed in Chapter

2, and empirical performances of these test statistics will be studied in Chapter 3 and 4.
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CHAPTER 2

Test Statistics

2.1 Covariance Structure Analysis

Suppose X = (X1, X2, · · · , Xp) is a stochastic p-vector of observed variables with pop-

ulation covariance matrix ⌃. Let Xi = (xi1, xi2, · · · , xip) i = 1, 2, · · · ,N = n + 1 be

a sample from X with sample covariance matrix S , an unbiased estimator of ⌃. Co-

variance structure analysis techniques test the hypothesis that ⌃, can be expressed as

a matrix valued function, ⌃(✓), of a q�dimensional parameter vector ✓ at some value

✓0. This can be written as H0 : ⌃ = ⌃(✓0). The goodness-of-fit test statistics used in

covariance structure analysis are generally formulated as a function of the discrepancy

of the sample covariance matrix, S , from the structured covariance matrix based on a

specified model, ⌃(✓). Assume F(S ,⌃(✓)) is a scalar valued discrepancy function of

S from ⌃(✓), then parameter estimates are obtained by minimizing F(S ,⌃(✓)). Many

goodness-of-fit test statistics can be expressed as T = c(N � 1)F̂, where F̂ is the min-

imum of F(S ,⌃(✓)), N is the number of samples, and c is a scaling factor. When the

model assumptions hold, the test statistics are generally distributed as an asymptotic �2

with p(p + 1)/2 � q degrees of freedom, where p is the number of variables and q is

the number of free parameters. The residual-based test statistics do not take the usual

form, but are computed based on the distribution of the residuals (S � ⌃(✓̂)), where ✓̂ is

the value of ✓ that minimizes the discrepancy function F(S ,⌃(✓)). These test statistics

do not require specific distributions to have an asymptotic �2 distribution, or a related

F distribution.
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2.2 Mean Scaled and Moment Adjusted Test Statistics

The discrepancy function F(S ,⌃(✓)) typically takes the form of normal-theory maximum-

likelihood (ML) discrepancy function

FML(✓) = log |⌃(✓)| + tr(S⌃�1(✓)) � log |S | � p (2.1)

and the generalized least squares function

FGLS (✓) = (s � �(✓))0Vn(s � �(✓)) (2.2)

where p is the number of observed variables. Let vech(·) be an operator which trans-

forms a symmetric matrix into a vector by stacking the nonduplicated elements of the

matrix, s = vech(S ),�(✓) = vech[⌃(✓)]. Then s and �(✓) are p⇤ = p(p + 1)/2 dimen-

sional vectors. Under general conditions it follows from the multivariate central limit

theorem (Anderson, 2003) that

p
n(s � �(✓))

d! N(0,�) (2.3)

where � is the asymptotic covariance matrix of s. Typical elements of � are given by

�i j,kl = �i jkl � �i j�kl (2.4)

where the multivariate product moment for four variables zi, z j, zk and zl is defined as

�i jkl = E(zi � µi)(z j � µ j)(zk � µk)(zl � µl) (2.5)

and �i j is the usual sample covariance. Let �̇(✓) = @�(✓)/@✓ denote the p⇤ ⇥q Jacobian

matrix. Then there exists a full column rank p⇤ ⇥ (p⇤ � q) matrix �̇c(✓) whose columns

are orthogonal to those of �̇(✓). To ensure that the model is identified at ✓̂, we assume

that �̇(✓) has full rank in a neighborhood of ✓̂, and denote �̇ = �̇(✓̂). Under multivariate

normality, let W = 2�1D0p(⌃�1 ⌦ ⌃�1)Dp, where Dp is a p2 ⇥ p⇤ duplication matrix

(Magnus and Neudecker, 1988) and

U = W �W�̇(�̇0W�̇)�1�̇0W (2.6)
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Then the goodness-of-fit chi-square statistic is given as:

TML = nF̂ML (2.7)

where F̂ML is the minimum of (2.1) evaluated at the maximum likelihood estimate of

parameters. Under the assumption of multivariate normality and the null hypothesis,

TML has a �2 distribution with degrees of freedom d = p⇤ � q. This also holds asymp-

totically under specific nonnormal conditions (see e.g., Savalei, 2008). For example, in

a confirmatory factor analysis, when all factors are independently distributed and the

elements of the covariance matrices of common factors are free parameters, TML can be

insensitive to violations of the normality assumption. More generally, the distribution

of TML can be characterized by a linear combination of independent chi-square variates,

each with one degree of freedom:

TML
d!

dX

i=1

�iz2
i (2.8)

where zi ⇠ N(0, 1) independently and �i are the non-zero eigenvalues of U�. Since

E[
dX

i=1

�iz2
i ] =

dX

i=1

�i = trace(U�) (2.9)

Satorra and Bentler (1988) proposed a scaled chi-square statistic:

TS B = TML/k (2.10)

where k = trace(U�)/d is a scaling constant that corrects TML so that the sampling

distribution of TS B at least matches the first moment of the nominal chi-square distribu-

tion. The scaling constant k is an estimate of the average of the nonzero eigenvalues of

U�, and U� should be replaced by their consistent estimators Û and �̂ for calculation.

For normal theory based maximum likelihood estimation, a consistent estimator of � is

given by S Y , the sample covariance matrix of Yi = vech[(Xi � X̄)(Xi � X̄)0]. However,

when the sample size is smaller than the degrees of freedom (N < d), (2.10) is not the

correct formula since there will not be d nonzero eigenvalues. Hence, when N < d,
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Tong and Bentler (in press) proposed the use of k = trace(U�)/N instead. This new

Satorra-Bentler scaled chi-square statistic is thus given by:

TS B(New) = TML/k (2.11)

where k = trace(U�)/min(d,N), and TS B(New) is referred to a �2 distribution with

min(d,N) degrees of freedom. A more sophisticated correction, the Satorra-Bentler

mean scaled and variance adjusted statistic is given as:

TMV = vTML/trace(U�) (2.12)

where v = [trace(U�)]2/trace[(U�)2]. TMV involves both scaling the mean and a Sait-

terwarthe second moment adjustment of the degrees of freedom (Saitterwarthe, 1941),

and the new reference distribution is a central �2 with degrees of freedom v. The newly

proposed mean scaled and skewness adjusted statistic by Lin and Bentler (2012) is

defined as:

TMS = v⇤TML/trace(U�) (2.13)

where v⇤ = trace[(U�)2]3/trace[(U�)3]2 is a function of the skewness of TML. In

addition to scaling the mean as in TS B and TMV , TMS adjusts the degrees of freedom

such that asymptotically, the quadratic form of T as in (2.8) has the same skewness with

a new reference distribution �2(v⇤). Simulation study by Tong and Bentler (in press)

on TMS indicates that TMS may downwardly overcorrect TML and cannot be trusted

in model testing when data is non normally distributed. The potential of TMS under

multivariate normality in small samples needs to be further studied.

2.3 Residual-Based Test Statistics

The original residual-based test statistics TB developed by Browne (1982, 1984) en-

joys a theoretical advantage: if the sample size is large enough, its distribution is fully

known. As denoted above, the statistic is defined as following for the estimate ✓̂:

TB(✓̂) = nê0�̇c(✓̂)[�̇0c(✓̂)S Y�̇c(✓̂)]�1�̇0c(✓̂)ê (2.14)

7



where ê = s � �(✓̂) is the discrepancy between the data and the model estimated by

any consistent estimator. TB(✓̂) is asymptotically distributed as the �2 distribution with

(p⇤ � q) degrees of freedom, regardless of the distributional characteristics of observed

variables as well the estimation method employed. It is also worth noticing that the

value of TB(✓̂) does not depend on the choice of �̇c(✓̂), even though the orthogonal

complement matrix �̇c(✓) is not unique. ML estimator will be used for TB in this paper.

Since TB requires extremely large sample size to be reliable, Yuan and Bentler (1998)

proposed the modified residual-based test statistics TYB. The idea originated from re-

gression literature, where the cross-products of model residuals are used for estimating

asymptotic covariances and standard errors (Bentler and Yuan, 1999). For a consistent

estimate ✓̂, � can be estimated, except for S Y , through the following decomposition:

�̂ =
1
n

NX

i=1

[Yi � �(✓̂)][Yi � �(✓̂)]0 = S Y +
N
n

[Ȳ � �(✓̂)][Ȳ � �(✓̂)]0 (2.15)

Replacing S Y in (2.14) by �̂, the Yuan-Bentler residual-based statistic is given by:

TYB(✓̂) = TB(✓̂)/[1 + NTB(✓̂)/n2)] (2.16)

TYB also asymptotically follows the �2 distribution with (p⇤�q) degrees of freedom. But

as TYB(✓̂) < TB(✓̂) for any consistent estimate ✓̂, the problem of over rejection with TB is

expected to be improved by TYB. Simulation study by Fouladi (2000) has shown that the

Yuan-Bentler residual-based test statistics dramatically outperforms other distribution-

free test statistics in covariance structure analysis, but is considered to be consistently

conservative when compared with the almost equally powerful Satorra-Bentler scaled

test statistic. No current studies have compared the performance of TYB and TMV under

violations of normality, and this will be covered in the following sections. Inspired by

the well-known Hotelling’s T 2 statistic, Yuan and Bentler (1998) further proposed to

use the Hotelling’s T 2 distribution to approximate that of TB instead of a chi-square.

This leads to the Yuan-Bentler residual-based F-statistic:

TF(✓̂) = [N � (p⇤ � q)]TB(✓̂)/[n(p⇤ � q)] (2.17)

8



which is referred to an F-distribution with degrees of freedom (p⇤ � q,N � (p⇤ � q)).

TF is also asymptotically equivalent with TB, but its performance is very likely to di↵er

from that of TB for finite samples. One common limitation of the above residual-based

test statistics TB, TYB and TF is that they all require a sample size as large as p⇤ � q+ 1.

This is due to the fact that the p⇤ � q square matrix [�̇0c(✓̂)S Y�̇c(✓̂)] has to be invertible

in order to compute TB, and consequently TYB and TF .

In Section 3 and 4, four goodness-of-fit test statistics, the Satorra-Bentler scaled test

statistic TS B, the Satorra-Bentler mean scaled and variance adjusted test statistic TMV ,

the Yuan-Bentler residual-based test statistic TYB and the Yuan-Bentler residual-based

F-statistic TF , are examined under violations of multivariate normality across small to

large sample sizes through Monte Carlo simulations. Their performances are judged by

the statistical mean, variance (standard error), Type I error control and empirical power

in rejecting a misspecified model.

9



CHAPTER 3

Simulation Method

3.1 Confirmatory Factor Analysis

The confirmatory factor model is specified as

X = ⇤⌘ + ✏ (3.1)

where X is a vector of observed indicators that depends on ⇤, a common factor load-

ing matrix, ⌘ is a vector of latent factor scores (common factors) and ✏ is a vector of

unique errors (unique factors). Typically, we assume that ⌘ is normally distributed and

uncorrelated with ✏. Hence, the restricted covariance structure of X is:

⌃(✓) = ⇤�⇤T +  (3.2)

where � is the covariance matrix of the latent factors and  is a diagonal matrix of

variances of errors. Since the observed indicators are a function of parameters in the

factor analytic model, nonnormality in observed indicators is an implied consequences

of nonnormality in the distributions of factors and errors.

In this study, a confirmatory factor model with 15 observed variables and 3 com-

mon factors is used to generate a model-based simulation. A simple structure of ⇤ is

used where each set of five observed variables load onto a single factor with loadings

of � = (0.7, 0.7, 0.75, 0.8, 0.8) respectively, as shown in (3.3). Under each condition,

the common and unique factors are generated using Headrick’s fifth-order transforma-

tion (Headrick, 2002), and then the 15 observed variables are generated by a linear

10



combination of these factors.

⇤T =

0
BBBBBBBBBBBBBBBB@

� 0 0

0 � 0

0 0 �

1
CCCCCCCCCCCCCCCCA

(3.3)

After generation of the population covariance matrix ⌃, random samples of a given

size from the population are taken. In each sample, the parameters of the model are

estimated and the above four test statistics are computed by calling EQS using the

REQS function in R (Mair, Wu, & Bentler, 2010) and specifying METHOD = ML,

ROBUST in EQS. In estimation, the factor loading of the last indicator of each factor

is fixed for identification at 0.8, and all the remaining nonzero parameters are free to

be estimated. In this case, p⇤ = 15 ⇥ 16/2 = 120, q = 33 (free parameters include

12 coe�cients, 15 variances of the unique factors, 3 variances of the common factors

and 3 corresponding covariances) and thus the degrees of freedom d = p⇤ � q = 87.

The behavior of TS B, TMV , TYB and TF are observed at sample sizes of 50, 100, 250,

500, 1,000, 2,500 and 5,000. Particularly, when N = 50 < d = 87, the behavior

of TS B(New) is also observed while TYB and TF can not be computed as indicated in

Section 2.3. At each sample size, 1,500 replications are drawn from the population. A

statistical summary of the mean value and standard error of T under the confirmatory

factor analysis model across the 1,500 replications, and the empirical rejection rate

(Type I Error) at significance levels of ↵ = 0.05 on the basis of the assumed �2 or F

distribution, are reported in Tables 4.1- 4.3. An ideal type I error rate should approach

5% rejection of the null hypothesis, with a deviation of less than 2[(.05)(.95)/1500]0.5 =

.01125, resulting in an acceptable 95% confidence interval [0.0387, 0.0613].

To measure the empirical power of these test statistics, a misspecified model with

an additional path from ⌘1 to y6 is used for hypothesis testing. The loading of this path

is fixed at 0.8 in estimation. The observed variables are still generated under the correct

model, but are then analyzed under the incorrectly specified model. The empirical

power, reported in the fourth row for each cell in Tables 4.1- 4.3, is defined as the

11



proportion of rejections of the null hypothesis for convergent simulated trials. A high

rejection rate typically implies ideal performance of the test statistic, but this is not the

case when simultaneously a high type I error rate exists (e.g., larger than 0.0613).

3.2 Data Generation

Three di↵erent conditions of distributions of factors and errors are simulated to exam-

ine the robustness of the above test statistics, and are identical to those used in Tong

and Bentler (in press). In Condition 1, both common and unique factors are identically

independently distributed as N(0, 1), resulting in a multivariate normal distribution of

the observed variables. This Condition is designed to perform as a benchmark to see

whether these test statistics can behave as expected at least under multivariate normal-

ity.

Condition 2 is designed to be consistent with asymptotic robustness theory, where

the common and unique factors are independently generated nonnormal distributions.

The common factors are correlated with specified first six moments and intercorrela-

tions as in Table 3.1, while the unique factors are independent with arbitrarily chosen

first six moments. As noted in Tong and Bentler (in press), TML performs at least as well

as TS B under Conditions 1 and 2, and gives a slightly better Type I error rate at small

and moderate sample sizes. Furthermore, their simulation study has shown that under

the first two conditions, TMV significantly outperforms TML and TS B at small and mod-

erate sample sizes, in terms of the frequency of rejecting the null hypothesis under the

correct model. Therefore, Condition 2 is kept in this paper to evaluate the performances

of residual-based test statistic under the asymptotic robustness theory.

In Condition 3, based on the distributions in Condition 2, the factors and error

variates are divided by a random variable Z = [�2(5)]1/2/
p

3 that is distributed inde-

pendently of the original factors and errors. This division results in the dependence of

factors and errors, even though they remain uncorrelated. Because of the dependence,

12



asymptotic robustness of normal-theory statistics is not to be expected under Condi-

tion 3. This is designed to examine the robustness of the test statistics under general

violations of multivariate normality. Under the model ⌃(✓), the degrees of freedom is

Table 3.1: Specified Distributions of Factors (µ = 0,�2 = 1)

Skew Kurtosis Fifth Sixth Correlations

⌘1 0 -1 0 28 1.0 0.3 0.4

⌘2 1 2 4 24 1.0 0.5

⌘3 2 6 24 120 1.0

d = p⇤ � q = 87. According to asymptotic robustness theory, we expect the normal-

theory based test statistics to be valid for nonnormal data in Condition 2, in addition to

the standard normal data in Condition 1. Regardless of the three types of distributions

and conditions considered, the anticipated means of TS B, TMV and TYB are 87 since they

are asymptotically distributed as the �2 with degrees of freedom 87. Particularly, when

N < d, the expected mean of TS B(New) is corrected to N. The predicted mean of TF is

[N � (p⇤ � q)]/[N � (p⇤ � q) � 2], which will vary across all sample sizes and approach

1 with increasing sample sizes.
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CHAPTER 4

Results and Analysis

The simulation results under each condition are reported in Table 4.1 - 4.3, one table per

condition. The columns of each table give the sample size used for a particular set of

1,500 replications from the population. At each sample size, a sample was drawn, and

each of the four modified test statistics shown in the rows of the table was computed; the

process was replicated 1,500 times. Then the resulting T statistics were used to compute

(a) the mean of the 1,500 statistics, (b) the standard deviation of the 1,500 statistics, (c)

the frequency of rejecting the null hypothesis at the 0.05 level under the correct model,

i.e., the type I error, and (d) the frequency of rejecting the null hypothesis at the 0.05

level under the incorrect (misspecified) model, i.e, the empirical power. These are the

four entries in each cell of each table.

Condition 1 in Table 4.1 is the baseline condition in which the factors and errors, and

hence the observed variables, are multivariate normally distributed. Asymptotically,

TS B and TYB yield a mean test statistic T of about 87, and the standard deviation is

around 13.19. TS B seems to approach the mean of 87 a little faster than TYB, while

TYB shows a relatively smaller deviation than that of TS B across all sample sizes except

for 5,000. Both the mean and the standard deviation of TMV increase as the sample

size get larger, but still shows an overcorrection to the standard �2 distribution with a

degree of 87 at the largest sample size. The mean of TF converges to 1 as sample size

gets larger as predicted. An ideal type I error rate, as indicated in previous chapter,

should stay within 95% confidence interval [0.0387, 0.0613]. TS B and TYB yield ideal

type I error rates at a sample size as small as 500, followed by TMV at 1,000, and TF
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when the sample size reaches 2,500. Under small sample sizes, TMV outperforms the

others, followed by TS B. While TYB tends to accept the null hypothesis too readily at

small samples, TF rejects the correct model too frequently. Both TYB and TF are not

applicable in the case N < d, and thus they can not be trusted at small samples. Under

moderate and large sample sizes, TYB and TS B perform almost on par, followed by TMV ,

while TF still frequently rejects the model except for the largest samples. The empirical

power of all the test statistics reaches almost 100% when sample size is as large as 500.

At smaller sample sizes, TS B performs best in rejecting the misspecified model, while

TMV loses its advantage. TYB and TF accept the wrong model too frequently and yield

very low rejection rates at small sample sizes. A closer examination of the type I error

rate and the corresponding empirical power reveals a contradiction, and this indicates

that any test statistic with an ideal type I error rate is not necessarily reliable unless it is

empirically powerful in rejecting a wrong model.

Condition 2 is designed to be consistent with asymptotic robustness theory. As

we can see from Table 4.2, the behavior of the four test statistics is very similar to

that in Condition 1. All four test statistics exhibit robustness to some extent. TS B

and TYB behave like a �2 variate with 87 degrees of freedom asymptotically, while TMV

approaches this limit quite slowly. In terms of type I error control, TMV still outperforms

the other statistics at small samples, but even TMV does not yield quite ideal type I error.

Under moderate and large sample sizes over 500, both TS B and TYB perform stably

well, followed by TMV and TF . The performance of TF , even though it still rejects the

correct model too often, has slightly improved compared to that under Condition 1.

The behavior of TYB and TF are expected to vary little across three di↵erent Conditions

since they should not depend on any specific distributions of the observed variables.

The empirical power repeats the pattern we have observed in Condition 1, with TS B

performing the best, followed by TMV , while TYB and TF still performing badly under

small and moderate sample sizes.

Condition 3 simulated a situation when the asymptotic robustness of normal-theory
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based test statistic is no longer valid. As expected, TS B, TYB and TF demonstrate their

robustness under multivariate nonnormality. TMV completely breaks down in this case

and tends to always accept the null hypothesis. Its outstanding performance at small

samples in previous conditions disappears in this case. Under the smallest sample size,

TS B is the only test statistic to be applied in this study. When sample size reaches 100,

TF gives a very promising type I error rate, but a second thought on its empirical power,

which is only 0.074, will likely lead us nowhere but to trust TS B again. Under moderate

sample sizes, TS B still performs the best, followed by TF and TYB; however, TF enjoys

an advantage over TS B and TYB in terms of the empirical power. Under large samples,

TYB demonstrates its excellent robustness, followed by TF and TS B. TF tends to slightly

over reject while TS B tends to under reject the null hypothesis, however we should not

jump into a hasty conclusion in one simulation study.

In conclusion, there is no simple winner in this study. TS B, TYB and TF all show

strong robustness across the three conditions simulated, TMV also demonstrate obvious

advantage under certain conditions. For practical applications, following suggestions

are proposed. When we have little information about the distributional characteristics of

the observed data, it may be beneficial to examine TS B, TYB and TF simultaneously for

hypothesis testing. Particularly, when the sample size is small or moderate, TS B should

be more reliable; and when the sample size is large enough, 1,000 for instance, TYB

and TF are more likely to give a reliable inference. However, when we have su�cient

confidence in the assumptions of normality or asymptotic robustness with a small or

moderate size of observations, TMV is highly recommended as an addition to TS B.
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Table 4.1: Summary of Simulation Results for Condition 1 (Factors and errors are

independently distributed normal variates)

Sample Size

Test Statistics 50 100 250 500 1,000 2,500 5,000

SB scaled

Mean 61.58 96.179 90.306 87.944 88.656 87.969 86.983

SD 9.441 14.439 13.628 13.279 13.006 13.251 12.879

Type I Error 0.261 0.173 0.092 0.053 0.054 0.058 0.047

Empirical Power 0.44 0.577 0.915 1.00 1.00 1.00 1.00

MV

Mean 30.221 42.08 59.397 69.763 78.441 83.593 84.768

SD 4.801 6.196 8.642 10.245 11.314 12.496 12.503

Type I Error 0.069 0.043 0.039 0.036 0.043 0.053 0.042

Empirical Power 0.177 0.316 0.837 1.00 1.00 1.00 1.00

YBRES

Mean NA 87.054 90.88 89.247 89.487 88.107 87.216

SD NA 4.128 10.799 12.513 12.735 13.057 12.903

Type I Error NA 0.00 0.045 0.053 0.061 0.057 0.049

Empirical Power NA 0.00 0.439 0.976 1.00 1.00 1.00

YBRESF

Mean NA 1.395 1.094 1.04 1.035 1.014 1.003

SD NA 0.691 0.208 0.179 0.162 0.156 0.1512

Type I Error NA 0.098 0.111 0.074 0.071 0.061 0.049

Empirical Power NA 0.157 0.626 0.987 1.00 1.00 1.00
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Table 4.2: Summary of Simulation Results for Condition 2 (Factors and errors are

independently distributed non-normal variates)

Sample Size

Test Statistics 50 100 250 500 1,000 2,500 5,000

SB scaled/new

Mean 61.44 95.768 90.247 88.906 87.475 87.575 86.991

SD 9.40 14.492 13.262 13.337 13.251 13.727 12.818

Type I Error 0.272 0.167 0.075 0.063 0.048 0.061 0.043

Empirical Power 0.435 0.595 0.91 1.00 1.00 1.00 1.00

MV

Mean 25.832 35.454 51.883 64.214 73.184 81.139 83.646

SD 5.104 6.335 8.065 9.868 10.994 12.638 12.726

Type I Error 0.038 0.029 0.038 0.034 0.042 0.053 0.037

Empirical Power 0.126 0.241 0.815 1.00 1.00 1.00 1.00

YBRES

Mean NA 86.297 90.297 89.548 88.23 88.048 87.243

SD NA 3.952 10.227 12.189 12.650 13.472 12.821

Type I Error NA 0.00 0.034 0.049 0.049 0.067 0.047

Empirical Power NA 0.00 0.558 0.992 1.00 1.00 1.00

YBRESF

Mean NA 1.358 1.081 1.044 1.019 1.014 1.003

SD NA 0.644 0.196 0.174 0.161 0.161 0.15

Type I Error NA 0.08 0.093 0.066 0.058 0.068 0.048

Empirical Power NA 0.125 0.755 0.996 1.00 1.00 1.00
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Table 4.3: Summary of Simulation Results for Condition 3 (Factors and errors are

dependently distributed non-normal variates)

Sample Size

Test Statistics 50 100 250 500 1,000 2,500 5,000

SB scaled/new

Mean 63.69 97.765 90.584 88.562 86.669 86.62 87.027

SD 8.858 14.729 12.338 13.748 12.152 12.312 12.802

Type I Error 0.312 0.174 0.066 0.052 0.043 0.043 0.045

Empirical Power 0.461 0.432 0.579 0.842 0.977 0.997 0.999

MV

Mean 13.322 14.335 17.013 20.106 23.681 29.506 35.712

SD 5.114 6.268 8.647 10.734 12.546 15.605 17.753

Type I Error 0.013 0.005 0.002 0.002 0.003 0.003 0.01

Empirical Power 0.021 0.026 0.097 0.358 0.772 0.951 0.981

YBRES

Mean NA 86.663 89.928 89.954 88.743 88.506 88.079

SD NA 3.883 9.473 11.254 11.647 12.080 12.825

Type I Error NA 0.00 0.018 0.033 0.054 0.047 0.05

Empirical Power NA 0.00 0.294 0.913 1.00 1.00 1.00

YBRESF

Mean NA 1.301 1.072 1.049 1.025 1.019 1.013

SD NA 0.571 0.179 0.165 0.148 0.144 0.145

Type I Error NA 0.061 0.069 0.057 0.061 0.053 0.053

Empirical Power NA 0.074 0.529 0.946 1.00 1.00 1.00
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CHAPTER 5

Discussion

The behavior of four modified goodness-of-fit test statistics was evaluated through a

Monte Carlo study. The well-known and extensively applied test statistic Satorra-

Bentler scaled test statistic was used as a benchmark, which has been considered to

work quite reliably under a wide variety of conditions (e.g., Hu et al., 1992; Curran et

al., 1996). A relatively unknown mean scaled and variance adjusted test statistic TMV

was shown to outperform TS B under certain conditions, but also to break down com-

pletely in one condition. In fact this was the only statistic to not perform adequately

at N = 5, 000. Although the failure of TMV has been observed previously (Tong and

Bentler, in press), a theoretical explanation is unclear. As we can see from equations

(2.9) - (2.12), the comparative performance of TS B and TMV will mainly be a↵ected by

the eigenvalues of the product matrix U�. This problem has been addressed by Yuan

and Bentler (2010). They evaluated the type I error and mean-square error of TMV and

TS B under di↵erent coe�cients of variation in the eigenvalues of U�, and found that

TMV will perform better than TS B when the disparity of eigenvalues is large. This might

lead to the situations we observed at small and moderate sample size under Condition

1 and 2. However, as Yuan and Bentler (2010) noted, it is currently not easy to test the

level of disparity of the eigenvalues (measured by coe�cient of variation). It is also not

clear how such a disparity could explain the good performance of TS B and bad perfor-

mance of TMV . There seems to be no e↵ective way of determining which test statistic

should be applied given any datasets under a specified model, although TS B never fails

completely and thus will be preferred over TMV due to empirical simulation results.
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The Yuan-Bentler residual-based test statistic and the extended F-statistic demon-

strated promising robustness under three conditions simulated in Section 3. Bentler

and Yuan (1999) examined the relative performance of TS B, TYB and TF under small

samples, and the result can be confirmed at sample size of 50 and 100 in this study

as well. They found that TS B break down with small sample sizes between 60 to 120

under various conditions, whether the assumptions of multivariate normality is violated

or not. TYB essentially always accepts the true model when it should be at least occa-

sionally rejecting this model by chance, and this problem was also observed at sample

size of 100 under all three conditions in this paper. TF statistic performed remarkably

well at all small sample sizes in their simulations, although it had some over rejec-

tions under conditions of normality. As observed again in this paper, TF continued to

outperform TS B and TYB at small sample size; but TMV performed even better under

multivariate normality and asymptotic robustness conditions. Another problem worth

noticing is that they focused on evaluating the rejection rates under correct model and

didn’t address the empirical power of these test statistics. This problem is addressed in

this paper, and as shown in Section 4, the empirical power of TYB is attenuated greater

than that of TF at small and moderate sample sizes across all conditions. Since a good

statistic possess the property of a controllable type I error while achieving a maximum

power, TF may not be exactly ideal for general hypothesis testing under small samples

as Bentler and Yuan (1999) proposed. It is known that power decreases with increas-

ing kurtosis (Foldnes, Olsson, & Foss, 2012; Foss, Jöreskog, & Olsson, 2011; Olsson,

Foss, & Troye, 2003), so some lack of power can be expected. Thus, a more suitable

test statistic for small samples under general distributions remains to be developed in

the future.

It is clear in this study that TS B and TYB have tail behavior consistent with the asymp-

totic chi-square distribution under three conditions. TMV approaches the �2 distribution

much slower but still gives satisfactory rejection rates under specific conditions. The

tail behavior of TF shows characteristics of F distributions under all conditions, but
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with no fixed standard since its distribution depends on sample size. These indicate

that at su�cient large sample sizes, all but TMV could be used for hypothesis testings

under general distribution of observed variables. However, as Yuan and Bentler (1998)

pointed out, when sample sizes are greater than 200, the statistic TS B gives very good

and reliable performances on the condition that all the eigenvalues of U� are equal

or nearly equal; otherwise it tends to perform worse as sample sizes increase. This

problem has not been observed in this paper, but we should certainly take that into con-

sideration before giving any general suggestions. Based on this simulation study alone,

the suggestions are already given at the end of Section 4.

The most worthwhile theoretical issues to be considered in the future are the fol-

lowing: 1. Develop a robust test statistic with controllable type I error rate as well

maximum empirical power at very small sample sizes, especially when the sample

sizes are smaller than the degrees of freedom; 2. Develop a direct way to compute the

coe�cient of variation of the eigenvalues of U� in order to determine which of TS B and

TMV should be employed; 3. Modify TF to a larger extent so that it will be equipped

with more empirical power at small samples. Success at this would also solve the first

point.
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