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How to make an inclusive-fitness model
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Social behaviours are typically modelled using neighbour-modulated
fitness, which focuses on individuals having their fitness altered by neigh-
bours. However, these models are either interpreted using inclusive
fitness, which focuses on individuals altering the fitness of neighbours, or
not interpreted at all. This disconnect leads to interpretational mistakes
and obscures the adaptive significance of behaviour. We bridge this
gap by presenting a systematic methodology for constructing inclusive-
fitness models. We find a behaviour’s ‘inclusive-fitness effect’ by summing
primary and secondary deviations in reproductive value. Primary deviations
are the immediate result of a social interaction; for example, the cost and
benefit of an altruistic act. Secondary deviations are compensatory effects
that arise because the total reproductive value of the population is fixed;
for example, the increased competition that follows an altruistic act.
Compared to neighbour-modulated fitness methodologies, our approach is
often simpler and reveals the model’s inclusive-fitness narrative clearly.
We implement our methodology first in a homogeneous population, with
supplementary examples of help under synergy, help in a viscous popu-
lation and Creel’s paradox. We then implement our methodology in a
class-structured population, where the advantages of our approach are
most evident, with supplementary examples of altruism between age
classes, and sex-ratio evolution.
1. Introduction
Many biological traits are social, i.e. they have fitness consequences for other
individuals in addition to themselves. To study social behaviours theoretically,
we cannot get away with simply considering the fitness of the individual
expressing the trait. Instead, we need to construct a social evolution model,
which also considers the fitness of other affected individuals. Hamilton [1]
showed that there are two alternative ways to construct a social evolution
model. The first is the neighbour-modulated fitness approach (aka the direct fit-
ness approach), which counts up fitness effects on a recipient of the behaviours
of a number of actors (recipient-centric). The second is the inclusive-fitness
approach, which counts up the fitness effects arising from a focal individual
acting in an environment stripped of other social interactions (actor-centric).
Under a standard set of mathematical assumptions, the two approaches are
mathematically equivalent, in that they make the same predictions regarding
whether a given social behaviour will be favoured [1,2].

Inclusive fitness, as a modelling paradigm, can be difficult to use, as it departs
from the traditional population-genetics approach of counting up fitness effects
on a focal individual in its experienced environment (John Maynard Smith
called it ‘an absolute swine to calculate’; see [3]). This has additionally led to it
being characterized as less mathematically rigorous and fundamental than the
neighbour-modulated fitness approach [4–6]. Furthermore, Taylor & Frank [7]
introduced a systematic methodology for constructing neighbour-modulated fit-
ness models, which automatically accounts for all fitness effects. Taylor & Frank’s
paper revolutionized how social evolution models are constructed, as it allowed
modellers to make general (broadly applicable) models without the need for lots
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of model complexity [8,9]. There is no analogous systematic
methodology for inclusive fitness, which has led to claims
that inclusive-fitness models are more susceptible to mistakes
because fitness effects are more easily missed [10]. For these
reasons, neighbour-modulated fitness has emerged as the
preferred modelling approach.

However, there are at least two problems associated with
the neighbour-modulated fitness approach. First, by placing
focus on the recipient of a behaviour, neighbour-modulated
fitness misses the crux of most interesting problems in
social evolution. Consider altruism as an example: it is an
actor’s willingness to pay a cost to help another that is
surprising, whereas a recipient’s willingness to accept help
at the expense of another is not surprising at all. While we
can use neighbour-modulated fitness as a calculating tool
and rearrange our thinking to place focus on the actor [2,9],
the necessary rearrangements are not always straightforward.
The result is that the logic behind social behaviours carried
out by actors remains hidden.

The second problem is that neighbour-modulated fitness
is not something that can be optimized by individuals evol-
ving by natural selection (a maximand) [11,12]. Therefore,
even though the neighbour-modulated fitness approach can
tell us when a given social behaviour will be favoured, it
does not allow us to interpret the results of the model, in
terms of actors striving to maximize some quantity. Explain-
ing results in terms of individuals maximizing their fitness
has a long tradition in behavioural and evolutionary ecology
[13]. It is important because it allows us to understand adap-
tations, not just in terms of abstract selection pressures acting
on populations, but in terms of decisions made by the indi-
viduals who wield the adaptations [14–16]. Another way of
saying this is that explaining results in terms of individuals
maximizing their fitness allows us to understand not only
which traits are selected, but what they are selected for [17]?

The fundamental reason why neighbour-modulated fit-
ness does not qualify as a maximand is that an individual’s
neighbour-modulated fitness is affected by many indepen-
dently evolving individuals [11]. For example, an individual
can control who it helps but does not necessarily control
who it receives help from. Generally speaking, then, an indi-
vidual cannot maximize its own neighbour-modulated
fitness, because part of its neighbour-modulated fitness lies
outside of its control. A subsidiary reason why modern for-
mulations of neighbour-modulated fitness do not qualify as
maximands is that they make use of quantities that describe
populations, which are not knowable or controllable by
individuals. For instance, Taylor & Frank’s [7] neighbour-
modulated fitness methodology makes use of allele invasion
criteria. Other modern formulations of neighbour-modulated
fitness similarly make use of population-level quantities, such
as Rousset’s [18] use of allele fixation probabilities. A fitness
measure can only qualify as a maximand if it is solely based
on quantities that are under the control of individuals.

The standard ‘fix’ to this problem of neighbour-modulated
fitness not being a maximand is to construct social evolution
models using neighbour-modulated fitness, but then to inter-
pret them post hoc using inclusive fitness [7,9,11,18]. Inclusive
fitness is a possible maximand because it may lie fully under
the control of an actor, meaning it is something that can be
optimized by individuals evolving by natural selection
[16,19,20]. However, no justification has been given for this
fix, either in general, or in many of the specific instances
where modellers have made use of it. An alternative and
possibly more desirable approach would be to use a solely
individual-centric inclusive fitness argument for modelling
as well as interpretation, or at least to supplement a neighbour-
modulated fitness argument with an inclusive fitness one that
obtains the same optimized trait value, thereby justifying a
maximization-based interpretation of results [21].

To bridge this gap between the analysis and interpretation
of social evolution models, we present a systematic method-
ology for constructing social evolution models that are
interpretable using maximands. To achieve this, our method-
ology articulates a fully individual-centric inclusive fitness
argument, solving the two issues that prevent contemporary
neighbour-modulated fitness formulations from being maxi-
mands (not fully individual-centric; influenced by multiple
individuals). By articulating an inclusive fitness methodology
that does not hinge on more basic neighbour-modulated fitness
arguments, we demonstrate that inclusive fitness is no less fun-
damental than its neighbour-modulated fitness counterpart
[21]. Our step-by-step approach tracks all relevant fitness
effects, and is both mathematically and notationally simpler
than modern neighbour-modulated fitness approaches, which
should alleviate worries about inclusive fitness formulations
being prone to errors, or difficult to implement [4,10]. In par-
ticular, our approach does not require differentiation, or any
advanced mathematics, rendering it more accessible to biol-
ogists without formal training in mathematics or population
genetics than neighbour-modulated fitness approaches.

On the one hand, our approach may be viewed as an
alternative to the neighbour-modulated fitness methodology.
One caveat to this perspective is that, unlike Taylor & Frank
[7], we do not provide a formal proof that models generated
with our approach will always lead to the same results as
their population-genetic counterparts (i.e. single-locus ESS
models). Our recommendation, then, is that whenever our
methodology is used to obtain optimized trait values, these
values should be checked against the optimized trait values
obtained with an equivalent Taylor–Frank model. If the opti-
mized trait values differ, it implies that a mistake has been
made when implementing one of the two methodologies.
On the other hand, our approach may be viewed, not as an
alternative per se, but as a companion to neighbour-modulated
fitness presentations. What we offer is a guide to extracting an
actor-centric narrative that captures the adaptive significance
of a behaviour or trait. This is the kind of valuable narrative
that is not immediately apparent when applying neighbour-
modulated fitness recipes. Taken together, our approach
and that of Taylor & Frank [7] allow traits to be understood
using ‘licenced anthopormorphism’, where the inclusive fit-
ness argument tells us how to understand traits in terms of
individuals maximizing their fitness for the trait (anthropo-
morphism), and the correspondence between optimized trait
values obtained using each approach provides the justification
(licence) for understanding traits in this way [22,23].

We structure the rest of the paper as follows. In §2, we out-
line the basic methodology for constructing inclusive fitness
models when the population is homogeneous. We motivate
our approach by drawing an analogy to sharing a pizza. In §3,
we extend the methodology so that it can be used when the
population is class-structured, i.e. subdivided into age classes,
size classes etc. In §4, we extend the methodology further, so
that it canbeusedwhenanactionhas consequences formultiple
individuals spanning across different classes and at different
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points in time. In §5, we provide further discussion of ourmeth-
odology, and its broader implications for social evolution
theory. In the electronic supplementary material we illustrate
our approach with numerous examples: help under synergy
(electronic supplementary material, appendix B); help in a
viscous population (electronic supplementary material, appen-
dix C); Creel’s paradox (electronic supplementary material,
appendix D); altruism between age classes (electronic
supplementary material, appendix F); sex-ratio evolution
(electronic supplementary material, appendix G).
rnal/rspb
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2. Homogeneous populations
(a) Sharing a pizza
Inclusive-fitness models are easier to understand if we first
think about pizza. Suppose we divide a pizza among some
number of competitors. We do so by giving larger slices to
those whose competitive ability is above average and smaller
slices to those competitive ability is below average. Specifi-
cally, if w is the average competitive ability and wi is the
competitive ability of individual i, then

ðfair share of pizzaÞ � wi

w
,

expresses the size of the slice we pass to i. If wi happens to be
equal to the average w, then (of course) the slice we give to i is
of average size. If, however, wi differs from the average by
some amount, say δwi, then the size of the slice given to i is

ðfair share of pizzaÞ � 1þ dwi

w

� �
:

With this in mind, we understand δwi/w as the factor
by which i’s share of the pizza differs from the average.
Importantly, if we give i a larger-than-average (resp. smaller-
than-average) slice, then we must also give some number
of its competitors a smaller-than-average (resp. larger-than-
average) slice. Stated differently, i’s residual share of the
pizza, represented by δwi/w, must somehow be exactly com-
pensated by the residual shares of its competitors. The kind of
compensation that evidently occurs in contests over pizza is
universal and (more to the point) is a central feature of our
approach to inclusive-fitness modelling. With our approach,
however, it is reproductive value, rather than pizza, that is
shared among competitors (figure 1). The reproductive
value of an individual refers to the expected fraction of the
gene pool in the distant future that has descended from this
individual; it captures an individual’s evolutionary success.
Like a pizza, the total reproductive value of all individuals
in the population is fixed: genes must have descended from
ancestors carried by some individual, and no one individual
can be ancestor to more than 100% of some future gene pool.

To make our approach work, we must assume that all devi-
ations from the average competitive ability, δwi, are very small.
This assumption allows us to proceed as if only one individ-
ual—the ‘focal actor’—expresses (or will ever express) the trait
at a level that differs from the average. Thus, we can cast the
focal actor as an innovator who ‘decides’ to express its trait in
a way that deviates from the norm. Although the true conse-
quences of the actor’s decision may be numerous and
complicated, small deviations also mean that we can evaluate
each consequence in isolation. So, if the focal actor (individual
i) alters its fair share (henceforth, ‘normal’ share) of
reproductive value as well as the share belonging to one of its
neighbours (individual j), small deviations mean we can
approximate the changes as δwi/w and δwj/w, respectively.
(b) Method
We suppose an actor i changes its normal share of the total
reproductive value of the population by a multiplicative
factor δwi/w, where w represents the normal competitive abil-
ity in the population. As an immediate result of the actor’s
behaviour, we suppose some individual in the population,
indexed by j, has its normal share of the total reproductive
value altered. We use δwj/w to represent the factor by which
recipient j has its normal share of reproductive value changed.

Multiplicative factors δwi/w and δwj/w are weighted by
measures of genetic similarity. For the moment, we measure
genetic similarity using probabilities of identity by descent.
Let Rij be the probability that an allele drawn randomly
from i is identical by descent to one drawn randomly from
j, i.e. they descended from a common ancestor without
mutation. Let Rii be the probability that two alleles chosen
randomly with replacement from i are identical by descent,
so that Rii = 1 for haploids and Rii = (1 + f )/2 for diploids,
where f is the inbreeding coefficient. With those measures
of genetic similarity in hand, we define the primary
inclusive-fitness effect of the actor’s behaviour as

Rii
dwi

w
þ Rij

dwj

w
: ð2:1Þ

The term δwi/w can be understood as a direct change in i’s suc-
cess, realized through i itself and its offspring (i.e. i’s descendant
kin) [1,24–26]. Often δwj/w is understood as an indirect change
in i’s success as it is realized through i’s non-descendant kin
[1,24–26]. Sometimes, though, j may actually be the average
member of some group of individuals that includes i, as
would be the case, say, in a public-goods dilemma. In those
instances δwj/w combines direct and indirect effects.

The primary change in reproductive value due to the
actor’s behaviour (line (2.1)) results in a compensatory
change elsewhere in the population. Following Grafen [14],
we suppose that individual k experiences the compensation
that occurs, but, like individual j, kmay be a randomly selected
member of some group. We now define the secondary
inclusive-fitness effect as

�Rik
dwi

w
þ dwj

w

� �
: ð2:2Þ

This expression describes the ‘knock-on’ inclusive fitness effect
of the actor’s deviant trait. The leading minus sign reminds us
that the change in equation (2.2) is in a direction that is opposite
the change expressed in equation (2.1). Thus, total change in
reproductive value that arises immediately is exactly balanced.

The overall effect of an actor’s decision on its inclusive fit-
ness is given by the sum of the primary and secondary effects
given above. In other words,

Rii
dwi

w
þ Rij

dwj

w
� Rik

dwi

w
þ dwj

w

� �
, ð2:3Þ

gives the net effect of the actor’s decision to deviate from the
norm. With an eye to simplifying line (2.3), we define

r ¼ Rij � Rik

Rii � Rik
, ð2:4Þ
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Figure 1. Calculating the inclusive fitness effect. A pizza represents the total reproductive value for a population. Alice (the focal individual) behaves in a way that
changes the hunger (competitive ability) of herself and others (recipients), as shown by the red arrows in the (i) panels. Consequently, Alice and the other recipients
get a share of pizza (ii) that differs from their normal (fair) share (i) by the proportion given in the red text in (ii) ( primary changes in reproductive value). The
remaining individuals get whatever pizza is left (ii), and this differs from their normal (fair) share (i) by the proportion given in the blue text in (ii) (compensatory
changes in reproductive value). Alice’s behaviour is selected if the inclusive fitness effect is positive. (a) In homogeneous populations (all individuals like the same
type of pizza), pizza is allocated on the basis of hunger (competitive ability). (b,c) In class-structured populations (individuals like different types of pizza), the pizza
is split into segments with different toppings, and each individual in the population eats only one pizza topping. In general, there may be differences in the size of
each segment (reproductive value ascribable to each class; the c terms) and the number of individuals who like each topping (number of individuals in each class;
the u terms). Pizza is allocated on the basis of hunger (competitive ability) relative to the average hunger of the other individuals who eat that topping. We used:
(a) wAlice = 1.6, wBob = 0.2, wCarol = 1.2; (b) upepperoni = 2, umushroom = 2, wAlice = 1.4, wBob = 0.6, wCarol = 0.5, wDave = 1.5; (c) upepperoni = 3, umushroom = 2,
wAlice = 0.3, wBob = 1.2, wCarol = 1.5, wDave = 0.4, wEdith = 1.6.
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as the relatedness between the actor i and recipient j (see
[27]), from the actor’s perspective. As an aside, our definition
of r matches a geometric definition presented elsewhere [28],
but we arrive at this definition by considering compensation
(see electronic supplementary material, appendix A). It also
makes it clear why some authors emphasize that competition
between relatives must be considered whenever kin-selection
is invoked, and not only when dispersal patterns keep related
individuals together [25].

We now restate line (2.3) as

(Rii � Rik)
dwi

w
þ r

dwj

w

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

inclusive�fitness effect

: ð2:5Þ
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Without loss of generality the leading term in the previous
line is positive (or, at least, non-negative), and so the
second term tells us whether the actor’s decision to deviate
from the norm has increased or decreased its inclusive fitness.
We call this second term the ‘inclusive-fitness effect’ owing to
the deviant act carried out by the actor. If the inclusive-fitness
effect is positive, then the actor’s deviation increases its
inclusive fitness and is, therefore, favoured by selection. Con-
versely, if the inclusive-fitness effect is negative then the
actor’s deviation decreases its inclusive fitness and is, there-
fore, disfavoured by selection. If the inclusive-fitness effect
is zero, then the trait in question is at evolutionary equili-
brium. The condition for the actor’s deviation to be
favoured by selection—obtained by setting the inclusive-
fitness effect to be greater than zero—is equivalent to
‘Hamilton’s Rule’ [1,29].

To summarize, formulating a model for the inclusive-fit-
ness effect of changing a trait requires three things: (i) the
identity of the actor (i), the recipient ( j) and the individual
who will compensate for changes in reproductive value (k);
(ii) the primary effects of the actor’s behaviour, expressed as
proportional changes to an individual’s share of total repro-
ductive value (δwi/w and δwj/w); (iii) the coefficient of
consanguinity normally found between i and itself (Rii),
between i and j (Rij) and between i and k (Rik). We use the
third item in this list to formulate relatedness as r, which
then weights primary effect δwj/w in the standard way.
Our use of the term ‘normally’ in the third item signals that
it is enough to use estimates that assume no deviant actions
have taken place.

A word of caution for those looking to use equation (2.5)
to classify social behaviours is appropriate here. Social beha-
viours are often classified according to direct and indirect
fitness effects [1,26]. Mutually beneficial behaviours are
those that are beneficial to the actor (positive direct fitness
effect) and beneficial to non-actor recipients (positive indirect
fitness effect). Spiteful behaviours are costly to both the actor
and non-actor recipients (negative direct and indirect fitness
effects). Altruistic behaviours are costly to the actor but ben-
eficial to non-actor recipients. Selfish behaviours are
beneficial to the actor but costly to non-actor recipients.
Equation (2.5) may not separate indirect effects from direct
ones in a way that allows the trait in question to be classified
accurately. Readers interested in determining whether a
given trait is altruistic, spiteful etc. may have to look in
greater detail at the net effects on individuals captured in
both primary and secondary changes [30].

In the electronic supplementary material, we illustrate
how to use the methodology for homogeneous populations
with three examples: help under synergy (electronic
supplementary material, appendix B); help in a viscous popu-
lation (electronic supplementary material, appendix C);
and Creel’s paradox (electronic supplementary material,
appendix D). The reader who is interested in more than just
an overview of our approach should review those examples
before proceeding.
3. Class structure
Two individuals can have the same genotype at a particular
locus, yet be qualitatively different. In these cases, we say
that the individuals belong to different classes. Those classes
could be female/male, large/medium/small, young/old, etc.
To model these class-structured populations, we must modify
the model-building steps presented earlier.

We suppose the actor i is in class X and its actions affect
recipient j in class Y. We use cX and cY to represent the frac-
tions of total reproductive value earmarked for individuals in
class X and class Y, respectively. Returning to the pizza ana-
logy, cX might be the fraction of the pizza reserved for those
who like pepperoni, and cY might be the fraction reserved for
those who like mushrooms (figure 1b,c). Given uX and uY to
represent the number of individuals in class X and class Y,
respectively, we recognize cX/uX and cY/uY as a normal
share of reproductive value within class X and class Y,
respectively. Alternatively, cX/uX is the share of the pizza
given to the average pepperoni-lover, and cY/uY is the
share given to the average mushroom-lover.

For the class-structured population, we describe the
primary effect as

Rii
cX
uX

dwX,i

wX
þ Rij

cY
uY

dwY,j

wY
: ð3:1Þ

Compensation in a class-structured population happens
within each class, analogously to how altering the size of
the pizza slice given to a pepperoni-lover affects only other
pepperoni-lovers (this holds even when there is competition
among classes; see the example in electronic supplementary
material, appendix E). Thus, the secondary effect is

� Rik
cX
uX

dwi,X

wX
� Rim

cY
uY

dwY,j

wY
, ð3:2Þ

where individual k is now the average member of class X
who compensates for the actor’s change in competitive abil-
ity, and individual m is the average member of class Y who
compensates for the recipient’s change in competitive ability.
We calculate relatedness in a class-structured population as

r ¼ Rij � Rim

Rii � Rik
, ð3:3Þ

and so we arrive at

(Rii � Rik)
cX
uX

dwX,i

wX
þ r

cY
uY

dwY,j

wY

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

inclusive-fitness effect

: ð3:4Þ

The sign of the second term in the previous line tells us when
the actor’s deviation increases its inclusive fitness and when
its deviation decreases its inclusive fitness.

To formulate a model for the inclusive-fitness effect of
changing a trait in a class-structured population we need to
know the items previously listed, alongside another three
things: (i) the fraction of total reproductive value normally
allocated to each class (cX and cY); (ii) the number (or relative
number) of individuals normally found in each class (uX and
uY); and (iii) the coefficient of consanguinity normally
observed between i and individual k from class X (Rik), and
between i and individual m from class Y (Rim). Again, we
use the term ‘normally’ to signal that we use estimates that
assume no deviant behaviour has taken place.

We typically need a model for the normal demographics
of a class-structured population before formulating a kin-
selection model for evolution therein. The asymptotic
behaviour of the demographic model gives us the information
we need to make sensible statements about cX and uX, as seen
in the examples in the electronic supplementary material,



royalsocietypublishing.org/journal/rspb
Proc.

6
appendix F&G. The total reproductive value of a class cX is cal-
culated as the probability that the ancestor of a random gene in
the distant future resides in a class X individual today [31,32].
In some cases, the cX/uX weights are set equal to one another
and authors proceed with appropriate caution. For example,
they might emphasize that fitness payoffs received by individ-
uals are uncorrelated with the class to which they belong [33].
In rare instances, the expression cX/ux can be viewed as a
parameter in a so-called ‘open’ model [34].

In the electronic supplementary material, we illustrate how
to use the methodology for class-structured populations with
an example of altruism between age classes (electronic sup-
plementary material, appendix F). As before, we encourage
the reader who is interested in more than just an overview of
our approach to review this example before proceeding.
R.Soc.B
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4. Further extensions
Our approach is easily generalized to include the possibility
that recipients occur in different classes, say Y1 and Y2.
Combining primary and secondary effects leads us to

(Rii � Rik)
cX
uX

dwX,i

wX
þ (Rij1 � Rim1 )

cY1

uY1

dwY1,j1

wY1

þ (Rij2 � Rim2 )
cY2

uY2

dwY2,j2

wY2

,

ð4:1Þ

where individual m1 compensates for class-Y1 recipient j1,
and individual m2 compensates for class-Y2 recipient,
j2. Using r1 ¼ ðRij1 � Rim1Þ=ðRii � RikÞ along with r2 =
ðRij2 � Rim2Þ=ðRii � RikÞ, we obtain

cX
uX

dwX,i

wX
þ r1

cY1

uY1

dwY1,j1

wY1

þ r2
cY2

uY2

dwY2,j2

wY2

ð4:2Þ

as the inclusive-fitness effect. Further generalization to more
than two classes is obvious.

One might wonder how the inclusive-fitness effect is for-
mulated when actors belong to different classes. We neglect
generalization in this direction because we assume that an
actor knows the class to which it belongs and expresses the
deviant trait only when it belongs to class i. In other
words, we assume that the allele that underlies deviant
actor behaviour is expressed conditional on membership in
class i.

In some cases, two distinct individuals in the same class
Y, say j and ℓ, are affected by the actor’s deviant behaviour.
Generalization of the method to this case is also obvious,
but the application is more complicated when j and ℓ are
affected by the actor’s decision at different points in time.
Suppose the actor’s decision affects individual j first and indi-
vidual ℓ, later. To emphasize the order, we decorate
quantities associated with ℓ with prime; for instance individ-
ual m compensates for j and individual m0 compensates for ℓ.
Combining primary and secondary effects gives us

cX
uX

dwX,i

wX
þ r

cY
uY

dwY,j

wY
þ r0

cY
uY

dw0
Y,‘

w0
Y

ð4:3Þ

as the inclusive-fitness effect, where r = (Rij−Rim)/(Rii−Rik)
and r0 = (Riℓ−Rim0)/(Rii−Rik). Further generalization to
more than two recipients in the same class, or to multiple
recipients in each of several classes, is obvious.

We extend our pizza analogy to capture line (4.3) by ima-
gining that an individual’s competitive ability is actually the
product of, say, how aggressive it is (wj) and how hungry
it is (wj

0 ). A meek and hungry individual, for example, may
be as competitive as a belligerent sated one. Because our
method assumes that deviations are small, for the purposes
of evaluating the actor’s influence on j’s aggression (δwj), we
assume that aggression alone determines how the pizza is
shared; for the purposes of evaluating the actor’s influence
on j’s hunger (δwj

0 ), we assume that hunger alone determines
how the pizza is shared. While the analogy, here, imagines
that the same individual j = ℓ is affected in two distinct
ways, in general j need not be the same as ℓ, which leads to
the formulation in line (4.3).

We illustrate the application of equation (4.3) in appendix
G of the electronic supplementary material. In that appendix,
we focus on the evolution of the sex ratio. While sex-ratio evol-
ution in group-structured populations has provided some of
the strongest support for Hamilton’s theory, it is often difficult
to model without a systematic methodology (see p. 143 of
[9]; [35]). Indeed, before systematic approaches to kin-selection
modelling were available, discussions about the mechanisms
of sex-ratio evolution were routinely marked by controversy
[36,37]. Applying our method to the study of sex-ratio evol-
ution, therefore, is an important litmus test: a set of steps
that purport to be a method of kin-selection modelling must
cope with the challenge of sex-ratio evolution. As we show
in electronic supplementary material, appendix G, our
approach builds an argument that is less cumbersome than
the one used in neighbour-modulated fitness models.

Our approach to deriving the inclusive-fitness effect for
sex-ratio problems communicates a prediction in a way that
is less technical than earlier inclusive-fitness formulations.
In particular, we are not concerned with the population-gen-
etic details that appear elsewhere [32,38,39] when developing
a prediction. Of course, we are indebted to previous authors,
as their painstaking work has allowed us to focus on a more
intuitive approach to modelling.
5. Discussion
We have articulated a systematic methodology for construct-
ing inclusive-fitness models (for a summary, see box 1).

Our methodology examines whether a given deviant be-
haviour will be favoured. We assume that the deviant
behaviour is only slightly different from the behaviour exhib-
ited by the incumbent population (δ-weak selection), which
means that the deviant behaviour will be favoured if it
increases the inclusive fitness of the actor (is associated
with a positive inclusive-fitness effect) [40]. We assume that
the total reproductive value of the population is fixed
[16,41]. The inclusive-fitness effect is then obtained by
summing the primary (immediate) and secondary (compen-
satory) changes in reproductive value experienced by each
individual as a consequence of the focal actor’s deviant be-
haviour, where each of these changes in reproductive value
is weighted by the coefficient of consanguinity between the
actor and the affected individual. Additionally, we show
how the inclusive-fitness effect can be obtained more
simply by subsuming several coefficients of consanguinity
into a single relatedness parameter that incorporates density
dependence [27,28,39,42–44]. Optimized trait values are
obtained as the trait values from which slight behavioural
deviations are disfavoured [45].



Box 1. Steps in making an inclusive-fitness model.

Those interested in building an inclusive-fitness model will benefit by working through the three steps below before attempt-
ing to use equations (2.5), (3.4), (4.2) and (4.3). The steps below will also be helpful to those who have already constructed a
model using the neighbour-modulated fitness approach [7] but are looking to uncover an inclusive-fitness narrative that
matches their model assumptions.

1. Establish the life-history details and demography of the model organism. At this stage, it is helpful to ask several questions:
when does birth happen? When does death occur? Who competes with whom? Who mates with whom? Is the
population structured in any way? Do individuals migrate from one location to another? If so, then when does this
migration occur? You need only focus on what happens ‘normally,’ that is, when all individuals of the same class (same
age, sex, size etc.) behave in exactly the same manner. Where applicable, you should have enough information at this
stage to calculate quantities like cX and uX, as well as relatedness (see electronic supplementary material, appendices).

2. Identify the point in time when the primary social interaction occurs, and establish the immediate fitness consequences for actor and
recipient. The primary social interaction represents the first deviation from what ‘normally’ occurs in the population. For
instance, an actor, in a population that is normally selfish, might decrease its ability to compete for reproductive value by
C × 100% to increase that of a recipient by B × 100%. Alternatively, an actor who would normally produce equal numbers
of daughters and sons might, instead, convert a son into a daughter, effectively erasing the existence of one recipient and
spawning another. Establishing exactly when the primary fitness changes felt by actor and recipient, respectively, take
place is important as the timing determines secondary changes (Step 3).

3. Identify all points in time, following the primary interaction, at which those involved in the primary interaction compete for reproductive
value. Compensation takes place at these points in time. If a primary player’s ability to compete for reproductive value was
reduced (e.g. because it made an altruistic donation to another), then its competitor(s) at this time will benefit. Conversely, if
a primary player’s ability to compete for reproductive value was improved (e.g. because it received an altruistic donation),
then its competitor(s) at this time will be disadvantaged. You should establish the ‘normal’ competitive ability of all
competitors at the (potentially various) points in time you identify. At this stage, it is also helpful to ask questions about the
scale at which competition occurs: are individuals competing with individuals chosen at random from the population
(global scale)? Alternatively, is competition occurring only among individuals found in the same neighbourhood (local
scale)? The scale at which this competition occurs determines the relatedness between the actor and the individuals who
make up for, or are displaced by, primary players in the scramble for reproductive value.
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Our assumption of small behavioural deviations (δ-weak
selection) is commonly taken in social evolution models [7]. It
is justified empirically by the observation that the vast
majority of traits are controlled by many mutations of small
effect [46]. Fisher’s [31] geometric model explains why
traits tend to evolve to be governed by mutations of small
effect. Fisher examined a population that is displaced from
an optimum in multi-dimensional phenotype space, and
allowed to return to the optimum through random gene sub-
stitutions. Fisher [31] found that very small mutations have a
50% chance of bringing the population towards the optimum,
but the larger the size of the mutation, the greater the chance
of overshooting in some dimension, and the lower the result-
ing chance of bringing the population towards the optimum.
Overshooting is particularly likely when the population lies
close to the optimum, as is the case for adaptive (optimized)
behaviours [31,45]. The upshot is that most mutations that fix
in a population differ only slightly from the mutations that
they displaced, especially for adaptive behaviours, which
are the main focus of behavioural and evolutionary ecology
[31,45,47]. Consequently, behavioural deviations tend to be
small for traits of interest.

One important consequence of our assumption of small
behavioural deviations (δ-weak selection) is that it generates
additivity in fitness effects. In other words, under δ-weak
selection, whenever two deviant individuals interact, multi-
plicative effects on reproductive value are approximated by
zero [40]. Consequently, the effect that a deviant individual
(actor) has on the reproductive value of other individuals
(recipients) is uninfluenced by the genotypes of the recipi-
ents. This means that the inclusive-fitness effect associated
with a deviant behaviour is solely a property of the individ-
ual exhibiting the behaviour (actor control). With actor
control, the condition for a given behaviour to be favoured
is the same as the condition for an actor to increase its inclus-
ive fitness for the behaviour, which means the evolved
behaviour can be interpreted as an adaptive ‘choice’ made
by individuals to improve their inclusive fitness for the be-
haviour [11,16,19]. Therefore, the assumption of small
behavioural deviations is essential for applying the maxi-
mand-based approach of behavioural and evolutionary
ecology to social evolution problems.

It is worth considering where we would be left if we did
not assume small behavioural deviations (δ-weak selection).
First, multiplicative effects on reproductive value would not
in general be approximated by zero (non-additivity), meaning
the ‘inclusive-fitness effect’ associated with a deviant behav-
iour would not solely be a property of the individual
exhibiting the behaviour, as it would depend on the genotypes
of the recipients of the behaviour (lack of full actor control).
Without actor control, the condition for a given behaviour to
be favoured would involve requirements about the genotypes
of recipients, meaning satisfaction of the condition would not
necessarily imply that the actor is improving its own inclusive
fitness for the behaviour. This precludes a familiar maximand-
based interpretation of the results. These points are true of
inclusive fitness in a broad sense—not just the formulation
of it in our methodology [16,19,20,48].
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The inability of inclusive fitness to handle large behav-
ioural deviations, with their non-additively combining
fitness effects, is usually reported as a limitation of inclus-
ive-fitness theory, with the implication being that inclusive-
fitness theory would be a better and more encompassing
theory if it could handle such cases [47,48]. However, it
may be a red herring to even want to apply inclusive fitness
in many of these cases, because the condition for the deviant
behaviour to be favoured will depend on what multiple
individuals (agents) are doing, not just one (frequency depen-
dence). Therefore, we should not expect non-additively
combining traits to evolve according to a function that is
solely ascribable to one individual, such as inclusive fitness.
Instead, the evolved trait value will reflect the coevolution of
multiple agents at cross-purposes, where each individual may
strive to maximize some personal function, but where the
pulls and pushes of the coevolutionary process are unlikely to
lead to the outright maximization of any one personal function.

Therefore, we shouldn’t generally expect to find single-
actor maximization principles in non-additive scenarios (for
an alternative perspective see [49]). Non-additive scenarios
involve multiple actors, so we suggest that they be analysed
with approaches that simultaneously consider multiple
agents, like game theory. However, we re-iterate that the
empirical observation that the vast majority of traits are con-
trolled by many mutations of small effect, explained by
Fisher’s geometric model, gives us reason to think that genu-
inely non-additive scenarios will be rare. Even apparently
large behavioural differences (such as those often found
between reproductives and helpers in animals) may be
governed by small-effect genes dictating a probability of
exhibiting one behaviour or another [20,31,45,48].

We have articulated a set of steps for constructing inclus-
ive-fitness models, but we are certainly not the first to
develop an approach to inclusive-fitnessmodelling. Previous
work has clearly demonstrated that Hamilton’s [1] ideas
extend to sexual populations, class-structured popula-
tions and populations experiencing random demographic
fluctuations [32,50–52]. This previous work is based on
neighbour-modulated fitness versions of the Price equation
[53] or other population-genetic formulations, and so is natu-
rally recipient-centred. It is not surprising, then, that the
predominant step-by-step approach to building kin-selection
models, outlined by Taylor & Frank [7], has adopted a similar
recipient-centred perspective. While there is nothing incor-
rect about formulating a model in a recipient-centred way
before re-organizing calculations to create an actor-centred
narrative, doing so in an algorithmic manner is more compli-
cated. Moreover, the focus placed on the recipient-centred
approach tacitly suggests it is themore fundamental perspec-
tive. The emphasis we place on the actor, here, shows that
inclusive-fitness can stand alone. In light of Taylor et al.’s
[2] finding that recipient-centred accounting and actor-
centred accounting often lead to the same predictions, it is
not surprising that a step-by-step approach for the latter
exists. That said, the ideas found in Taylor et al. [2], and
elsewhere [9,14,27,42,54], fall short of a practicable,
general-purpose method.

The methodologies presented here and by Taylor & Frank
[7] predict optimized trait values, and to achieve this while
keeping things as simple as possible, they sacrifice an account
of how genotype frequencies change over generations. An
implication of this is that, in general, the methodologies
provided here and by Taylor & Frank [7] cannot: (i) identify
stable genetic polymorphisms; (ii) track the evolution of
exact statistical associations between alleles; or (iii) examine
evolutionary stability, which is necessary in order to
distinguish between evolutionarily stable strategies and
branching points [55]. To obtain these kinds of insights, we
would need to make more assumptions about genetic archi-
tecture, which would mean that the conclusions are likely
to hold less generally. Systematic methodologies for con-
structing such detailed models in social evolution have
been developed [56].

Foundational work in population genetics has found that
the ‘inclusive-fitness effect’ of a given strategy successfully
predicts allele frequency change [18,32,38,39,56]. This has
two implications for our approach to inclusive-fitness model-
ling. First, it supports our decision to focus entirely on
individual-level quantities like the ‘inclusive fitness effect’
of a given strategy, while keeping the underlying genetics
implicit. In other words, it means we can be confident that
our approach will not generate predictions that disagree
with approaches based on population genetics. Second, by
demonstrating that the ‘inclusive fitness effect’ of a given
strategy is improved by natural selection, it strongly implies
(implicitly) that an individual’s inclusive fitness for the strat-
egy will be continually increased and ultimately maximized.
This complements work explicitly linking gene frequency
change to individual inclusive fitness maximization, in
model settings that are general in different ways, sacrificing
either dynamic sufficiency [19] or some behavioural
flexibility on behalf of the actors [16,20].

Our approach relies on the fact that the total reproductive
value of the population is fixed. While this fact has been
recognized numerous times, it has not been used to drive a
more general approach to inclusive-fitness modelling
[27,42,54,57,58]. The attention we give to the fixed nature of
total reproductive value is, equivalently, attention given to
reproductive value as a relative measure of success. In this
way, we are also motivated by foundational work showing
that relative reproductive value is maximized by natural
selection in a wide class of models [16,41,59–62].

Finally, our methodology will predict the same optimized
trait values as Taylor & Frank [7] under a standard set of
mathematical assumptions, and shares many of the advan-
tages of Taylor & Frank’s [7] approach. For instance, the
methodologies presented here and by Taylor & Frank [7]
provide systematic ways to count up fitness effects on one
individual (either an actor or recipient), eliminating the risk
of ‘double counting’ fitness effects. Double counting is a
common cause of error in informal reasoning about social
evolution [63]. Additionally, our methodology has the advan-
tages over Taylor & Frank [7] of: (i) being a fully actor-centric
argument, justifying interpretation in terms of individual fit-
ness maximization; (ii) not requiring a full fitness function,
which means it can sometimes work with fewer assumptions,
and streamline the mathematical argument, as shown by our
sex ratio example in electronic supplementary material,
appendix G; (iii) requiring no differentiation or complex
mathematics. Admittedly, some readers may not be moved
enough by the advantages we list to abandon recipient-
centred approaches altogether. For those readers, we wish
to emphasize that our approach will still prove useful for
uncovering the inclusive-fitness narrative hidden in the
neighbour-modulated fitness equations.
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