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APPLIED WELFARE ARNALYSIS WITH QUANTAL CHOICE MODELS

By W. Michael Hanemann

1. Introduction
In recent years there has been considerable interest in econcmatric modeling
of discrete choices, and significant progress has been made in the statis-
tical formulation and estimation of such modeis.I However, the development
of a methodology for conducting applied welfare analysis in discrete choice
situations has proceeded more slowly. 7The issue was first raised in the
transportation mode cholice literature by Domencich and McFadden [§},
Williams [15], Daly and Zachary [4], and Ben Akiva and Lerman (1]. A con-
nection between this work and the conventional economic theory of consumer
demand wag recently established in an important paper by Small and Rosen {}%].
They demonstrate that the conventional techniques for measuring the welfare
effects of price or quality changes in a continucus choice setting can be
generalized to handle cases where discrete choices are involved. The purpose
cf thig paper is to extend their analysis, and to show how one can dispense
with some of their more stringent assumptions about the structure of

consumer preferences.

Small and Rosen (henceforth SR) discuss situations dmvolving both purely
qualitative choices and mixed qualitative-quantitative choices.z However,
when they apply their results to empirical econometric models they focus
primarily on logit and probit models, which pertain exclusively to qualita-
tive choices. Since logit and probit are widely used in many areas of
applied economics it g of great value to have practical procedures for
ascertaining their welfare implications. Accordingly this paper will focus
on these purely gualitative choices, termed "guantal choices' by MeFPadden

[111l.



In a binary quantal choice medel the dependent variable may be thought
of as dummy variable which takes the value 1 if one qualitative outcone
occurs and the value 0 if another occurs. The selection probabilities arve
given by
(1.1} T, = Pr {outcome 1 occurs}= ¥{w)

T, E Pr {outcome 2 occursl= 1 - F(w)

where F(*) is some function whose range is [0, 1}, and its argument takes
the form w = X'B where X is a vector of explanatory variables and B is a
vector of coefficients to be estimated. In the binary logit model, for
example, F(w) = (1 + ehw)hl. Daly and Zachary [4] have developed neceéSary

and sufficient conditions on the selection probability functioms (1.1}

in order for the underlving quantal choice model to be a random utility

~

maximization (RUM) model.3 In a RUM medel w takes the form w = Gl - Vv,

wvherae GI and 32 are functions of regressors and coefficients to be estimated.

The choice can be thought of as vesulting from a utility maximization
problem in which the agent’'s utility conditional on choice j is Gj =
Gj + gj, j=1, 2. Here, €1 and £, are jointly distributed random vari-

ables with E{ej} = 0, and the selection probability function in (1.1} can

be cast into the form: W }. By contrast, the gqualitative

= 4. > u
Pr {ul 2 u,

1

choice model considered by SR is an example of what might be called a

budget-constrained random utility maximization model. That is, it is a

RUM medel with the additional property that the ﬁj's satisfy the reguire-

ments to be conditjonal indirect utility functions. As explained below

this imposes certain restrictions on which variables can appear as arguments
of the ﬁj functions and on their functional structure.

Imagine a situation in which a consumer must choose between two mutually
exclusive dtems (courses of action) which differ with respect to their cost,

p., and "quality," qj. Let y denote the consumer's income and suppose that



the consumer's dndirect utility function conditional on the choice of act j

il

may be written Gj = Gj(pj, Qj, yy + €., 3 1, 2. By fitting a quantal

ek

choice model based on (1.1) with w = Gl - GZ’ cne can estimate the Gj
functions. Now suppose thas the quality of item 1 available te the consumer

. f . .
rises from to while g., p,, , and v remain constant. Can one employ
i 2 1 2 ‘

1
the fitted guantal choice medel to derive a monetary measure of the welfare
effects of this change? 8R discuss how this can be done under three assump-
tions about the structure of consumer preferences: (A) AIESSGI/Sy is
independent of Py and q;5 {B) the income effect from the gquality change is
approximately zero; and (C) 3%1/aql > 0 as p; » ©. For the logit model,

for example, SR use these assumptions to derive the following formula for

the compensating variation measure of the change in the consumer's welfare:

. 0 .
(1.2) oV =-~§\« In [(e¥) + e’2) /7 (o'} 4+ e'2)]
1

vhere %2 = 52 (pz, 9y ¥) and G; = Gl(pl, qf, y), £t =0, f.

Although this is a valuable result, in the empirical literature one can
find many applications of logit models which violate Assumptions A, B, or C.
Tor example, the specification
(1.3) Gj = oy - Bpj -+ Y4y + 5qj G =1, 27,
vhich leads to (l.1) with

(1.4) w = (o, - al) - B(p, - pl) + (Yz - Yz)y + 6(q2 - qi),

violates C, since Bﬁlfaql does not go to zero as Py goes to infinity,

Similarly, the specification

= l? 2)5

1.5 V. = a, - B.p. + yyp., + &g, (i
(1.5 5 5 BJPJ Yspj a4y

which leads to {1.1) with

.6 ro= {o, — O - B{p, - vy{p, - + E{g., -
violates both A and C.% How might one calculate the compensating variation

for a quality change in these casges? Does the welfare formula {1.2) still apply?



By exploiting the special structure of an indirect utility function
in a purely qualitative choice context, I show that Assumption € is not
needed in order to justify the formula (1.2), and is actuvally incompatible
with Assumptions A and B. T show that Assumption B implies 4, and is
crucial to the validity of SR's welfare formula. However, it implies that
the income variable does not appear in the guantal cheice prohabiliﬁy

formula (1.1)—i.e., w 2 ¥, - 62 is independent of y. Thus, any quantal

1
choice model which dincludes income as an explanatory variable must violate
Assumption B. I develop general welfare formulas which are applicable
whether or not Assumption B holds, and which reduce to SR's formula when
it does hold. These formulas cover both the compensating and the equiva-
lent variation welfare measures. Finally, I show how the welfare analy-
sis may be extended from budget-constrained RUM models to general RUM
models in which,. for example, the individual is choosing among risky actiouns
on the basis of von Neumann-Morgenstern expected utility maximization.

In deriving these resules, I follow rhe same basic strategy as SR.
They start with a purely deterministic choice situation similar to the
"standard” utility maximization modzl, except that there is an element of
discreteness in the consumer's choice. They establish the important result
that the basic duality results of continuous demand analysis carry ever to
the discrete case. They then switch over to the set-up of the cconometric
quantal choice litevature in which it 1s assumed that, although the consumer
has a fixed utilicy functien, some of its camponeﬁts are unchseyvable to the
econometric Investigator. This introduces an element of randomness Into
the consumer's utility and demand functions as they appear to the

investigator. SR analyze discrete choices in this context by taking the




expectation of certain relationships established in their analysis of the
purely deterministic case. In deriving my results I show that there are
some pitfalls in the transition from the deterministic to the random utility
setting and that some results from the former do not carry over to the
latter under the expectation operation.

Thig paper is organized as follows. The purely qualitative determinis—
tic choice model is introduced and analyzed in Section 2, In Section 3 1
turn to the random utility setting and explain the concepts of the RUM and
buéget—QOnstrained RUM quantal choice models. The similarities with the
deteyministic utility model are explored., The concepts of the compensating
and equivalent variation welfare measures are defined, and general formulas
for calculating them are presented. In Section 4 these formulas are
applied to the standard logit and probit models, discussed by SR, and also
to the generalized logit and probit wodels recently introduced by McFadden
and by Hausman and Nise.s The results in this Section provide a Ffully
operational procedure for conducting welfare evaluations in the coantext
of these quantal choice models., The conclusions are summarized in
Section 3.

2. eterministic Qualitative Choice

The deterministic choice model assumed by SR is as follows., A

consumer has a twice differentiable, quasi-concave, increasing utility

function u defined over the commodities x and z, where z 1s taken as

1’ Xz!

the numeraire. In addition, the consumer's utility depends on the gquality
ef the non~numeraire goods, which is taken as exogenous; with no loss of
geneyality this may be represented by the scalars 9 and Gy - The consumer

chooses Xys Fos and z s0 ag to maximize

(2.1) u = H(X}, Xz: ql’ q2’ z)

i
i
i
i




subject to the budget and noa-negativity constraints
(2.2) Py% +~p2x2 +z =y

(2.3) x 2> 0.

1! XZ!
SR make a useful distinction between three different ways in which an

element of discreteness can be introduced into this "standard"™ utility

model., One possibility is that nonconcavities in the utility function
(2.1) lead te a corner sclution in which one of the relations in (2.3)
holds as an equality. A second case is where the two non-numeraire goods
are for some reason mutually exclusive in consumption.é This leads to
the imposition of an additional constraint on the wvwtility maximization

problem:

(2.4) X{Xy = 0.

A third case is where, perhaps because of theilr size, the non-numeraire

goods are purchased only in discrete units. This can be represented by

the constraints

{(2.5) x, =%, or 0, (GG =1, 2)
J 1

where §1 and §2 are fixed numbers; the units of measurement for goods 1

and 2 could be chosen so that ﬁl == %2 u 1.7 In their analysis of detep~

ministic choice SR focus primarily on the model consisting of {2.1)-{2.4),

although they emphasize that their results also apply to the other cases.

By contrast, the purely qualitative choice implied by the logit and probit

models corresponds to the utility model (2.1)-(2.5). Accordingly, T will

focus here on the latter model.8

The starting point for the analysis of the deterministic qualitative
choice model (2.1)-(2.5) is the concept of a conditional indirect utility %
function. Conditional on the choice of good i, the consumer's utiliry is é

ﬁj, ji=1, 2, where g




(2.6) B 7w, 0, g, 9y, ¥ - p1§l>

il

’*-12 = U(O, Kz! ql 3 q2’ y - pzxz)‘f
SR make the further assumption, termed "weak complementarity" by Maler [13],
that the guality of good J does not matter unless good j is actually being
consuned :
(2.7 BUE/SQZ k2 3“2/aq1 = Q.
Becauge of this aséumption one can write

2.8 u, = v, (p., 49, (3 =1, 2).
(2.8) P FALIEIR PRI OE ,
The unconditional indirect utility function, which measures the utilicy
actually achieved by the consumer when confrented with the given prices,
qualitiecs, and income, is

(2.9) u = V(Py»> Pys Gys Gys ¥) Fmax{ug, u,l

~

u

Hi

61“1 + {1 - &

where Gi(pl’ Pos dys Gys y) dis a discrete choice index for the direct

1) 2
utilicy waxwimization problem; i.e., 6lis i if good 1 is preferred over
good 2 given (pl, Pys 45 Gp, v), and 0 otherwise.

Dual to the wvtility maximization problem is a cost minimization problem
which yields a pair of conditional expenditure functions and an unconditional
expenditure function. Under the assumption of (2.7) the conditional expendi-
ture functicns may be written
{2.10) Ej = Ej(pj, qj, u), (3 =1, 23,
and the unconditional expenditure function is defined by
(2.11) e = e(pl, Pys Qs Qs U) F min { e ez}

P A L ~
= -4 1... ) -,
Gpept =008
c . s .
where élipl, Pos Qys Gys u) is a compensated discrete cholce index for the
cost minimigation problem. The unconditional expenditure and indirect

utility functions are used to deflince monetary measures of the welfare effects

of price and quality changes. For example, suppose that the quality of



0
good 1 available to the consumer changes from q, to qi, while the qualicy

of good 2, prices, and income stay constant at (qz, Pys Po» v}. SR define

the compensating variation for this change by

(2.12) ev = e(p}, Pys Q§, Gy W) - e(pys Py q?, Ay %),

vhere uo = v(pi, Pys q?, Gys v). Because of the following identity

(2.13) e(pys Pys dy» 99 V(ppy Pys 955 G55 V) T Y

an alternative (implicit) delinition of the compensating variation is

(2.14) v{(p;s Pys qf, 4ys ¥+ ev) = vipy, Py q?, Gy ¥

As in the continuous case, a goal of the analysis is to relate cv

to areaé under ordinary or compensated demand fupctions., The direct utility
maximization problem yields a pair of conditional ordinaiy demand functions
for goods 1 and 2, as well as a pair of unconditional ordinary demand func-
tions. Let §j(pj, qj, y) denote the conditional ordinary demand function
for good i3 the unconditional demand function may be written

(2.15) %(Pys Pys Qs Gps YD) = G4(pys Py dps s y)ﬁj(pj, 450 ¥

&

it

1, 2),
Similarly, the cost minimization problem yields a pair of conditional

. ~C . e
compensated demand functions, xj(p_, g., wy, 3 =1, 2, and a pair of uncon-

J

ditional compensated demand functions which may be written

(2.16) K (1s Py G5 Gy W 7 855 Py s ay WERS Ay, W),

(G =1, 2),
S® point out that, because the utility function (2.1} is well-behaved
when viewed ag a function of only %y and z or iy and z, the conditional
indirect utility and ordinary demand functions are continuously differ-
entiable and satisfy Rov's Identity. Similarly, the conditional expen-—

diture and compensated demand functions are continuvously differentiable

and satisfy Shephard's Lemma, By contrast, the unconditional indirect



utility and expenditure functiens ave nondifferentiable, and the uncon-

diticonal demand functions are discontinuous. SR's important result is

that, despite this, these unconditicnal functions also satisfy Roy's Identity

and Shephard's Lezma:g -
ViP5 Pys Gy 9pe /e,

(2*’17) Xj(p}.’ pzs Cil: qz: Y) = -
a'V(Pls pz! qlx Q2> Y)/ay

. (3 =1, 23,

(2.18)  xT(ys Py )5 dps W) = 00Dy, Bys aps Gy, W/ 3, G =1, 2.
These two relations are the key to establighing a link between the compensating
variation, cv, and areas under demand curves.

Although SR's analysis primarily focuses on the qualitrative—quantitative
choice model (2.1)-(2.4), the results (2.17) and (2.18) also apply to the
purely qualitative choice model (2.1} - (2.5} considered here. The main
significance of the extra constraint (2.5) is that it imposes additional
restrictions on the functional form of the conditional demand, expenditure,

and indirect utility functions. Thus the conditional ordinary and compen-—

~ - ~C - 10
sated functions coincide and are constant: p., q. vy = x? L. €. oy,
ed fu e const x50y, Y} 3(?3 95 u) j

Moreover, from (2.6) and (2.7}, the conditional indirect utility and
expenditure functions take the special form

2.19 v.{p., 9., = h.(q. - p.%.), i o= 1, 2
( ) 3(?3 4y V) 3(q3, Y = Pyxg) (3 s 2),

2.20 & (p., q., u) = g.(q. + pLx, (3 =1, 2),
( ) 3(PJ, 4> ) gj(qj, ul PyXss j s 2)

vhere gj(-) is the inverse of hj{~) with respect to its second argument.
The special structure of (2.19) and (2.20) does not apply to the utility
model (2.1)-(2.4}).

This special structure has some implications for the three assumptions
about the consumer’s preferences which SR invoke in deriving their welfare
formula. These assumptions are:

ASSUMPTION A:  The condifional manginal wilidity of Lncome.

BGj{pj, a5 )/ 9y L% approximately independent of P ayd aj -



Ja)

ASSUMPTION B: The discrete goeds ane sufficlendly unimpostant that
Lncome effects from qualify changes ane negligible; L.e., fhe compensated
demand function {2.16) 43 adequately approximated by Lhe crdinery demand
function (2.15).

ASSUMPTION O Bﬁj(pj, q.

3

From (2.19) it can be seen thar, for the purely qualitative choice

fag, + 0 a8 p, » =,
s ¥ iy Pj

model considered here, Assumption A dimplies that the conditional indirect
utility functions may be approximated by

(2.21a) Gj(pj, 4y yi = hj(qj}* - in’j% VY, G =1, D,
where Yj 1s a positive constant.l} This in turn implies that the direct
utility function (2.1) may be approzximated by

(2.21b) u(xl, X Gys Uy z) = h(xl, Xg5 qqs qz) + Gylz + (1 - G)Yzz

for some function h{*}, where @ = 1 1if Xy > 0 and © = 0 otherwise.

Tf Assumption B is taken as an approximate restriction on the structure
of the consurer's preferences, it is shown in the Appendix to imply that the
copditional and unconditional utility functions have the same form as in
{(2.21a, b) with the added restriction that Yy = Yys i.e.,

(2.222a) Vi (pys 90 ¥) = Bya) = ypgx, Fyy, (G =1, 23,
{2.22L) u(xl, X5 Qys 9gs z) = h(xl, %5 47> qz) + vz,
In this case the income variable cancels out of the utility difference Gl - 52.
Finally, it can be seen from (2.21a) and (Z.22a) that Assumptions A and B each
preclude Assumption €, since they imply that Bﬁj/aqj is independent of pj.
However, this is of no conscquence because it will be shown in the following
section that Assumption C is actually vunecessary for the devivation of SR's
welfare formula.

3. Random Utility Qualirative Choilce

A randonm utility model arvises when one assumes that, although the

PR



i1

consumer's wtility function is deterministic for him, it contains some
components which are unchservable to the econometric investigator and

are treated by the investigator as random variables., As in the determin-
istic case dilscussed above, the starting peint for the analysis is the
concept of the consumer's utility conditional on the choice of good
(action) 3, ﬁjx In the random utility context this is a fixed number

for the consumer, but because his preferences are incompletely observed
it is a random variable for the econometric investigator. Tts mean,

E{ﬁj} » will be denoted by §j' The situation may then be represented as

(3.1) i, = v, + €., Gg=1, 2),

N 1 J

where €, and 62 are fixed constants {functions) fer the consumer

1
representing the unobservable component of his preferences, but are treated
by the investigator as jointly distributed random variables. Their joint
density function will be denoted by fg(el, ez), and thelr joint edf by

13 Although the consumer knows for

F (¢ ; constructi L Fo= 0,
e( 1 52}, by construction E{e:j}

sure which good {action) maximizes his utility, the econometric investigat-
or does not know this because of the unobservable component of the consum-

er's preferences. Thus the utility maximization discrete choice index 51,

which equals 1 if the copsumer selects good 1 and 0 otherwise, is a randon

variable for the investigator with mean,E{GI} = Mys given by
(3.2) ﬂl(vl, vz) = Pr{ui z_uz}
== E']}(v1 - VE)
e, -~ £ ig devrived from

where Fﬁ(.)’ the c¢df of the random variable m 9 i

fE(') by change of variable.
The model consisting of (3.1) and (3.2), with no restrictions on the
arguments or functional structure of %l and ﬁé,is known as a random utility

maximization (RUM) quantal choice model. Its properties have been analyzed



i2

by Daly and Zachary [4], Williams [15], and Ben Akiva and Lerman [1}.
.These authors impose the additional assumption

ASSUMPTTION D: The distribution £ (eqs €,) L8 Andependent of (Gl, Gz),
which will be invoked at several points below. If one adds to (3.1} and
{(3.2) the reguirement that Gj be a Eﬁﬁéiﬁéﬂﬁil.iﬂﬁiﬁﬂiﬁAgﬁiliﬁﬁ.EHESEEEE
_ one obtains what might be called a budget-constrained RIM quantal choice
model. Such a model is generated by converting the deterministic utility
model (2.1)-(2.5) to a random utility setting. In place of (2.1} it would
be natural to postulate the wrility function
(3.3 u = u(xl, %o 4y 4y z} +~@€1 + (1 - 9)62
where O is 1 if x, ¢ and O ot‘net‘m‘nse‘1[4 As in (3.1} the terms El and 62
represent components of the comsuner's utility function which are
perceived as random variables by the econometric investigator. The consumer
maximizes (3.3)—which is nonstochastic for him-—subject to the same
consiraints as before:
{3.4a) Py¥y +pyx, bz =y
(3.4b) z >0

(3.4¢) XX, = 0

i

1, 2).

i

(3.4d) % or 0, (j

3 i
I also eontinue to assume that
(3.4¢) Aulx;, 0, 4y, 9y ¥ ~ Pyxy) G + (1 - ©)e,1/9q, = 0

afuf0, Kys Qps Ups ¥ 7 pZXE) + @El +7(1 - @)Ezllaql = 0.
The budget-constrained RIM quantal choice model comsists of (3.3) and
(3.4) together with a particular specification of the pdf £€(al, Ez}a By

applying (3.40-d) to (3.3) one obtains the gquantal choice probability formula

(3.2) with



13

{3.5) Vl s U(Xls a, qls C}Q: ¥y - plxl
v, = ul0, X5, Gps Gy, ¥ Py¥,) .
By virtue of (3.4¢) this can be simplified to

[

3.6 o= h.(q,, ¥V — T t= 1, 2),
(3.6) vy l}(q3 Y - p.X.), {3 )

E.
33
where hj(') is dincreasing in both its arguments. HMoreover, if Assumptions
4 or B are invoked, then (3.6) takes the forms given by the right-hand sides
of (2.21a) and (2.22a), respectively. Thus, whercas the RUM guantal choice
model consists of (3.1) and (3.2), the budget-constrained RUM model consists
of (3.1), (3.2), and (3.6).15

Once the consumer has made an optimal cheice his utility is
o= max{al, Gz}e In the context of a budget-constrained RUM model this is
the unconditional indirect utility functien. In that case there is addition-
al structure on the functional form of v from (3.6); to signify this I will
write v = V’(pl, Pys Ays Gy v). Although v is deterministic for the
consumer, it is a random variable for the econometric investigator, wich
cdf Fv(u) = Fe(u - 31, u - 52). Thus, rather than knowing the consumer's
true utility, the investigator knows its probability distribution function
Fv(u) whose parameters he estimates from the quantal choice probability
formula {3.2). In these circumstances it would be natural for the investi-

16
gator to focusg on the mean of this distribution, E{v} = V, where

oo {7-1“ {;2 "i" El
(3.7) v=J (¥, +e)) f e}, €,)de,de;

+ j 7 f, (VZ + Ez)ifg(ﬁl, £z)d32<ial

~ i~ i~ .
2 Uyl F E{uzluz > ul}

By differentiating (3.7) Daly and Zachary [4] have shown that, for any RUM

which satisfies Agsumption D,



In the context of the budget-constrained RUM, application of the chain rule

to {3.8) yields:

(3.9&1) _a_yﬂ(pl,pza qz; q2’ }?)____ T, ____‘ij_ = -1, - J 7. . (_} e E., 2}
3Py i 3, 30y 7
4 J
ov, .
(3.95) _B.Y.,(pl$ pZ’ ql’ qZ’ }?):ﬁ. I (53 =1, 2)
3q, i °q,
d ]
v v
3V (pys Pys Gy Qos YD L 1 2 .
(3.9c¢) 3y 1 2 1 2 nl 5y + (1 - wl) §§_

Similarly, the consumer's unconditional ordinary demand function for
good i, Xj’ iz a random variable for the investigator given by x, = éij
where Gj is the random utility maximizotion discrete choice index. Its

mean, E{xj} Z X,, is given by

!
(3.10) xj = njszj . G =1, 2.

An intevesting implication of (3.9) and (3.10) is that Roy's Identity,
(2.9), does not generally hold in the budget-constrained RUM model when

the random variables are replaced by their ewpectations:

aV/dp,
{(3.11) Xj # §§7§§_ .
It can be seen from (3.9¢) that Roy's Identity holds only when 331/8y =
HGZZSy, which corresponds to the case of Assumption B. This special case
is further discussed below.
Welfare Lvaluations
As in the deterministic qualitative cholece moedel, the uncenditional
indirect utility function is an iImportant tool for applied welfare analvsis.

ince v 18 W < i WOl s 1 [ rame JELIATra UAL1I0ONS
S o Tanao l, it &y ld bf gty l t f JEL SR ]f Gvaf ‘i ons

in terms of its eypectation, V. Suppose that ql changes from q? to 495>

while Pys Pys 4y and y do not change. A compensating varintion measure



15

of the effect of this change on the consumer's welfare appropriate to the
RUM context would be the quantity CV defined by 18
(3.12) V(p,s by b, g y + V) = V(p,, P <, a, .
‘ 17 Fgr mpr e 1 vzt e
€V is the amount of money that one would have to give the consumer after
the quality change in order to render him as well off as he was before the
change where, because the consumer's preferences are partially unobservable,
the welfare comparison is based on the observer's expectation of his
utility. By analogy with the standard welfare analysis of price changes,
an alternative measure of the welfare effect of the quality change in RUM
context would be the egquivalent variation, EV, defined by
(3.13) V(pys Py Ghs a4y ¥) = Vi, P a2, a,, ¥ - EV).
i* Y2 i 1* ¥ 2 n2e
EV is the amount of money that one would have to give the consumer before
the quality change in order to induce him to forego it. Since, by (3.9c),
oV/oy > 0, it follows that sign (CV) = sign (EV). However, unless V()
is quasilinear in y, CV # EV.
An alternative way to define welfare measures is by working with
expenditure functienas. However, this is a little more complicated inm the
random utility case than in the deterministic utility case. The conditional

expenditure function corresponding to (3.6), denoted gjs is given by

B

(3.14) e, = gj(qj, u-£,) +p . {i 1, 2

X,
3 J 3]

where gj(') is the inverse of hj(‘) in {3.6) with respect to its second
argument.lg The unconditional expenditure function is
(3.15) e(P;» Pys Gy» Gy» U} = mln{e], ez}.

In the random utility context e and e are all random variables; the

1“2

mean of the latter, E{e! © E, is given by
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(3.16) E(pl, Pys Gys Gps uy = E{el|el f‘ez} +- E{ez lg, < &}

2 1
o K
= {*m {ﬂaigi(qi, u-e,) +Fp¥ M (8, e,)de, de)
© w
+ f{n jK [g,(a,, u = €)) + p,%,0f (), €,)de, de;

wvhere € = u - h2[q2’ gl(ql, TR El) o4 plil - pZEZ].

By analogy with (2.12) it would be natural to define the compensating
variation for the change in qualiry from,q? ta qf in terms of the expected
unconditional expenditure function,CV™, as

O

. . £ 0 0
(3.17&) v = E{pla pZ’ q]; Qza A4 ) e E(pl’ PZ, qi’ qzn v
where VD = V(pl’ Py, qf, a5 y). Similarly one might define the equivalent
variation, EV7, by

WP f f 0 f
(3‘175} EV - E(?l) pzs q1, qza v ) - E(plz Pz? qla q23 v )
where Vf = V(pl, Py» qi, qz, v). However, unlike the situation in the

deterministic utility model, the welfare measures defined in terms of the

expected indirect utility function do not necessarily coincide with those
defined in terms of the expected expenditure function; i.e., CV # CV” and
EV # EV”, This arises because the deterministic utility identity (2.12)

does not generally carry over to the budget-constrained RUM model when

random variables are replaced by their expectations: on substituting (3.7)
into (3.16) one finds that in general
(3.18) E(pys Pyr s g VP Pys Gy s ¥)) 7 Y-
It also follows from this that ¢V and EV” cannot be expressed as differ-
ences between the consumer's actual income, v, and the expected income
which would leave him eqgually well off before or after the gquality change,
using the investigator's expectation of his utility level.

Because of this, the welfare measures OV and EV seem to possess a

more intuitive and appealing interpretation than the welfare measures
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CV” and EV'. Accordingly, I would recommend that one employ CV and EV
for welfare evaluations in the budget-constrained RUM model. In order
to calculate them one needs to obtain an explicit formula for V(pl, Pos
dys G v}, which can be derived by evaluating (3.7) directly or by inte-
grating (3.8). Closed form expressions for V in some common quantal choice
models are provided in the next section. Given this formula, one would
solve (3.12) or (3.13) for CV or EV. Since these are in general nonlinear
equations, one would have to employ numerical techniques such as Newton's
method or its variants. But as a practical matter this method of welfare
analysis is entirely feasible.

An dmportant simplification can be'obtained in the special case where
the consumer's preferences satisfy Assumption B—i.e., the right-hand side
of (3.6) takes the special form given in (Z2.22a):

(3‘19) .G.' = hj(qj) - ‘ij;{ + YY: (j = 1: 2)‘

k| 3
This assumption is invoked by SR; I will shoew that neo other assumption—
including C—is required in order to derive their welfare formula. For the
budget~constrainad RUM model consisting of (3.1), (3.2), and (3.19), the
quantal choice probabilities take the form
(3.20) M= Fplh (q)) - hy(q,) - v(p &) - pyE )1
Denote the argument of Fn(') by w. The expected value of the indirect
utility function is given by

+ = z - - ro-b

hz(qz) - Yp2x2 + Yy + 82}}

#

Yy + E{max{hiiql) - Y X, + ey,

ho(a,) = vpy%, + 52}}

&5 .
- R W] _ - 4 -~
vy + [ [T IhyGa) - oyp R 4 e (5, €)) dejdey

T L)

799- Sz
+ [ﬁb Lﬁ {hz(qz) - szﬁz + Czlfe(al, 32) dezdei



(3.

On substituting {3.21) into the definitions (3.12) and (3.13), one finds that

(3.

Iin

to

is

18

25‘) :“: '\{y + I(I)IB p29 qll qz)"

“ !z‘z._:l_ s 0 o £
22) CV = EV = = [T(p;, pys Gy 9y) = TPy Pys 4] 9]

i

this case one can obtain the welfare measures directly without having

solve a nonlinear equation. Since the term in square brackets in (3.22)

0 £
equal to [V(plg Por 9ys Gy vy - V(pl, Pos dps Qs ¥}}, one can also
20

write: £
oV = EV = = fql Ei-ijl dq
ST v 9 1
v qﬁ Bv} qz
1
~f

(3.

av -~
O Zhoa
Y I~e v v1

v, 3

~f

V.
23) S { Y n G, T8
' Y “Y~g t10717 Y20

where §§ = %l(pi, q;, v), t = 0, f. This is the form in which SR present

their welfare formula {14, equation (5.5)1.

1t should also be noted that {3.19) cowmbined with (3.16) implies

i

E(piﬁ ?25 "—115 CI23 U) E{Inln{{-\{plxl - hi(ql) + X 61}/'\{ 3

[yp, %, = h,(q,) +u - ezl/y}}

u 1 , -z _
; + - E{ml&{]?lhl hy(qp) - €,

it

Yp,%, ~ h,(q,) - 62}}

u |

L]

4 - -
(3“2") ‘\{ T(pl’ p25 qll qz)

Y

On comparing (3.21) and (3.24) one observes that the inequality in (3.18) is

removed and that €V = CV7 = EV = EV™. It must be emphasized that the coin-

cldence of all four welfare measures is a dirvect consequence of Assumption B.

It does not occur, for example, under the weaker Assuumption A.
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It has been shown that under the ‘no income effectg”

Assumption B
there is a single welfare measure which can be evaluated without resort
to the seclution of nonlinear eguations. However, the practical signifi-
cance of this result should not be exaggerated. Assumption B imposes
strong restrictions on the structure of the consumer's preferences and,
consequently, on the formula for the quantal chodice probabilities. As
can be seen from (3.20), it precludes moedels in which the consumer's
income appears as a variable in the gquantal choice probability formula.
This rules out many of the empirical quantal choice models which have
appeared in the literature. The point to be emphasized is that one can
still conduct welfare evaluations with budget-constrained RUM choice models
which do not satisfy this assumption. As long as one has an explicit
formula for ?('), the welfaye measures CV and EV can always be obtained
by solving (3.12) or (3.13).

It should also be emphasized that a similar approach to welfare
analysis can be employed when one has a RUM quantal choice wmodel which
does not satisfy (3.6)—i.e., when the conditional indirect utility
function (3.1) is some general function of Income and other variables.zz
As an example, suppose that one is dealing with choices among actions with
uncertain consequences and Gj is a von Neumann-Morgenstern expected utility
function. An individual has wealth y and a utility of wealth function
whose nonstochastic component is denoted by P{y). The individual must
choose between two actions vhose consequences depend on the state of the
world, 5523 Asgociated with act j is a vector of state probabilities,

OS¢ ), and a vector of monetarv consequences, z, = (z,
.*«J (]1) ’SS)’H B b q » _] (jl’

e ey zjs)h Conditional on the choice of act i the individual's utility is

P
(U]
jan]
(4]

S
oo

i

fp. +z, Y+e, TV, +e,, o= 1, 2).
Pig ¥ v+ z) j 5 5 (3 )

7
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Using this definition of Gl and Gz, the probability that the individual
selects act 1 1s given by (3.2). The individual's unconditional utility
(i.e., after making the optimal choice} is v = max {ﬁl, Ez}. This is a

random variable for the econometric investigator with a mean, V(pl, 92,

z Zys v), given by the right-hand side of (3.7). Now suppose, for

1?
example, that the state probabilities change from (p?, pg) to (pi, pg).
By analogy with (3.12) and (3.13), the compensating and equivalent varia-
tion measures of the effect of this change on the individual's welfare are
defined by
(3.26) V(pf, pg, Zys 2y, ¥y +CV) = V(p?, pg, Zis 295 ¥)
and
(3.21) (oL, Py 2)s 2p0 v ) = VG0, 0, 2, 2y v - ED)
An application of this methodology to the valuation of changes in mortality
probabilities on the basis of private cholces among risky actions is
presented in {71].
4. Econometric Applications

The purpose of this section is to record the formulas for V{+) arising
from several common econometric quantal choice medels. With the aid of
these formulas one can set up and solve the equations defining the compen—
sating and equivalent variation measures of the welfare effects of any
change in the variables influencing the individuzl's choice. VYor the sake
of greater generality, in this section I will deal with multinomial quantal
choices rather than the binary choices considered above, Conceptually
these welfare measures presupposSe that the guantal choice model is either a
RIM medel or a budget-constrained RUM model. In the general multinomial

case there are W alternative outcomes. Jfet u, =V, + €., § =1, . . ., N,

3 ] 3’

where E(aj} = and Vv, is some function of variables and coefficients to be
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estimated. In a multinomial RUM medel the jth outcome ocecurs if
ﬁj = max{ﬁl, C e, ﬁN}, and the probability that this happens, ﬁj, takes
the form

s

(4.1) ﬁj = Fj(Gl - vj, e e e, U, - V., V. A

where Fj(ﬁ) is a joint distribution function of dimension (N -~ 1). Let
FE(El, e e e EN) be the joint distribution function of (61, o e ey EN).
The interpretation of (4,1) is that Fi(') ig the joint distribution function

of the (N -~ 1) differences nk = - €., k# 3, derived from FE(') by

£ .
k i
change of variable.z4 Hence in a RUM model the quantal choice probabilities

depend on a set of (N ~ 1) differences, v, - Gj’ k# 3. In a multinomial

k
budget-~constrained RUM model there is the additicnal constraint that the
V.'s have the form of (3.6). Below I will give formulas for V = F{max
{GI’ o e ey EN}} without specifying anything more about the Gj's. Given
the formula for V, the compensating and equivalent variations are obtained
by solving equations such as {(3.12) and {(3.13), or (3.26) and (3.27).
Multinomial Logit Models

In the generalized multinomial logit model, introduced by McFadden {E%},
the random terms (El, e ey EN) are jointly distributed according to the
generalized extreme value distribution; i.e.,
(4.2) F (e, - - o B = exp [-Ge 01, . . ., e Ny
where G(tl’ e e ey tN) is an arbitrary non-negative linear homogenous

function. Let its partial derivative with respect to the jth argument be

denoted by Gj(tl, e e e, tN). MeFadden shows that

i 1
edo (el, .. ., el (i %)

&
pot
v

(4.3) T, =




¥

and

~ —

v v_
(4.4) V= 1n G(e 1, v e .y, & N) + 0.5722... (Fuler's constant).

The special case wherc G{tl’ e e tN} = E?tj and Gj = } iz the gtandard

multinomial logit model, described in [10].
Ml tinomial Probit Modeds
In multinomial probit models FE(El, e e s EN) is a pultivariate normal

. . , . . 2 .
distribution with some covariance matrix 5 = {o e ¢ }. Hence, the function
ik

Fj{*} in (4.1) dis an (N - 1) dimensional wultivariate normal distribution

function with zero mean and a covariance matrix {I whose typical element is

w o, = Gze-e- + 02 - ngkg. - nglgj. In the standard multinomial probit

K1 3%3 EkE1 i
model the elements of I are fixed constants independent of the ijs. There-
fore, the model satisfies Assumptiocn D.25 In the generalized probit wmodel,

introduced by Hauvsman and Wigse [9], this assumption is relaxed. As an

example, consider the following random coefficient budget-constrained RUM

model.
(4.5} ﬁj = (G + &)qj +(y + Yy - pj) U, G=1, .« .0,
where & and ¥ are fixed constants and o, ¥, Ul’ ¢+ ey U are independently

2
-Ys

. . . . . 2
distributed normal random variables with zero means and variances Cys O

GZ s b ey Uz . Collecting all the random terms together, (4.5) can be

Yy Uy
written
4.6 4. = [agq. + Yy - p)} + laq. + - p.) + U,
(4.6) uy { 4 Yy PJ)} [ a9y vy pj) J}
= v, +e,.
J |
Hence,
2 2 2 2 2
g q, + 0 - P, + ¢ i =k
a9 Yéy p}) by h|
2
4
(4.7) T ¢ = .
ik

2 2 .
N ;- 7 am
Ged3% T Oy m PG R, Ak
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In this case, Assumption D does not hold and the relations in (3.8) and (3.9)
do not apply. Nevertheless, the indirect wtility function is still a well-
defined concept, and its mean, V, is still given by the multinomial
generalization of (3.7).

It can be seen from (4.6) that the generalized probit model differs from
the standard probit model through its specification of the elements of the
covariance matrix L. In order to cover both models at the same time, I
wiil present a single formula for V, defined in terms of a general marrix I.
Now, V is the mean of the maximum of N dependent, nonidentically distributed

~

random normal variables, ﬁl’ R As explained in Clark {2], except

N’
for the case where N = Z, an exact closed-form expression for V does not
exist, and one must resort to an approximation. Let ¢(+) be the standard
univariate normal pdf, and ¢(*) the corresponding cdf. Define ui =

max{ﬁl, e e, ﬁi} and vV, = E{ui}. For N =2, the bivariate standard or

generalized probit model, the exact formula for V2 is

(4.7) v, = vlé(kz) + vzé(—hz) + &zé(lz)
where
P
a, ;[02 + o2 - 20 17
15 €25, €18

}\ = (vl - Vz)!’az.
For N = 3, the trivariate probit model, Clark's approximation for VB is

(4.8) Vy® GB@(AB} + VZQ(“AB) + 83¢(A3)

2 2 2 .
= {3 4 .
82’3 e €, + (JEEEQ ﬁgzeg)i (Az}
P w? 2 "2 2 2 A " -
— 3 — - ] "I" I 5
82 v nggz + (v1 + Gglgl Vo 06282)6‘(k2) + (v1 vz)azéi}z)

v

]



24

A fuller account of Clark's approximation is given in the Appendix, together
with the genera&.recursion,formulas.26 Given these, one can set up the
equations analogous to (3.12) and (3.13), or (3.26) and (3.27), and solve
them for the compensating and equivalent variations, CV and EV.27 Obvious-—
1y an iterative solution procedure is required and, while still feasible,
it would become tedicus if N were large. However, most of the probit appli-
cations which have appeared in the literature are for cases where N < 3.

5. Conclusion
The results of the preceding two sections provide a fully operational
procedure for conducting welfare evaluations on the basis of econometrically
estimated guantal choice models. The procedure can be employed as long as
the guantal choice model is a RUM model——i.e., the quantal choice proba-
bility formulas are recognized as being functions of utility differences
of the form Gl - Gj’ 52 - Gj, . v v, as in (3.2) or (4.1). From the fitred
model one can obtain estimates of the coefficients of the Gj functions and
the ﬁaramaters of the density function fg(ﬁl, e ey EN)’ usually up to
some normalization ceonvention. With this information one can evaluate the
expected unconditional indirect utility function using either the general
formula (3.7) or, in the case of logit or probit models, the specific for-
mulas given in Section 4. Then one can set up and solve the equations such
as (3.12) or {3.13)} which define the compensating and equivalent variation
measures of the welfare effects of some change in the variables appearing
in the quantal choice model. Unless the model satisfies Assumptions B and
D, the solution of ﬁhese equations will generally require iﬁezative numeric—
al techniques. With current computer software, this should not be a serious
ohstacle.

The emphasis throughout this paper has been on the welfare theory of an
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individual consumer. An implicatién is that the welfare measures described
above must be calculated separately for each consumer. The problems of
estimating quantal choice models from aggregate choice data and developing
welfare inferences on the basis of aggregate utility functions have not
been addressed here. ﬁy approach presupposes that the quantal choice model
is estimated from disaggregated micro data and that all the individuals in
the sample have the same preferences—i.e., the nonstochastic component

of their preferences is represented by the same utility function, and the
random elements are governed by the same probability law. In fact, these
conditions are met by virtually a2ll of the empirical quantal choice models
which have appeared in the literature. Hence, the technique of welfare

analysis described here should be widely applicable.

Univensity of California, Benkeley
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APPERDIX

Ao 1. Implications of Assumption B
Here T prove that the consumer's preferences must have the form given
in {2.2Z2a, b) if Assumption B helds. Without loss of generality I assume

rhat §1 = §2 = 1. Congider the unconditional ordinary demand function for

good 1. As a function of Py> for given values of (pz, 45 9y v), it

may be written in the form

(A.1)
1 4if Py SApf
x}(plﬂ pz! CEI: q?! Y) =
' ’ 0 otherwise

* == % PR
where p¥ = py(p,, 4y 4,, ¥) 1s defined by
(A-?j) U(}., 03 qlﬂ q2) y - pi‘) = U(Os 1) (11; ?2’ Yy - pz)'

Suppose that the actual price of good 1 is p?. By virtue of (A.2), one can

write
P = 0 - %
(A.3) py = py - C

where C*% is defined by
(A.4) u(l, 0, q;s 9,5 ¥ p? +C5) = u(0, 1, qp5 495 ¥ = Py) -

The consumer's actual utility is w0 = v(pg, Pys 9ys Gyo v). Given

(pz, Ays Gys uo), the consumer's unconditional compensated demand function
for good 1, as a function of Py may be written

(A.5) 1 if p

< ok
p = P

i

c 0O
Xl(pz’ Pyr 9y Gys ) =
0 otherwise

i

0
here pEE w3 ; A
where pf p} (pz, 4y G5 U ) is defined by
g Hk O - -~ G
el(l‘l s qls u ) 92{?2: qzs u }
or, equivalently, by

-}, G -1, 0
RO u O == + 1u 11

-1 . . o -
where u (ulxl, Xos Gys qz) is the inverse of u(“l’ Xor Q55 Gys z) with
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respect to its last argument.
1t follows from (A.1) and (A.5) that the ordinary and compensated

demand functions coincide if and only if pf = pf*, This occurs automati-
cally when p? > p?, since then u% = w0, 1, Gys 9ps ¥ T p2>ﬁ and

-1, 0 _
u (u !03 19 qia qz) =3y - Pz“
In this cage, (A.6) becomes

-1, 0 ,

(w1, 0, qp, 9y) =y - p§E

or
(A.7) u(gg 1, ql’ qzx Yy - ?2) = u(l, 0O, ql’ QZ, ¥ - P?*)-
Comparison with (A.2Z) shows that p? = p?*. Accordingly, 1 will focus on
the nontyivial case where p? < p?. In this case uO = u{l, 0, Gys Gys ¥ - p?)

and, in general, pf # p¥*: hence Assumption B has substantive content. S8ince

-1, 0 0
1 (u 11, 0, qlg q2) = yl - Pli

{A.6) may be written

. -1, .0
‘pi{nﬂpz"}‘ﬂ (u !0, 1, qlg Q2)hy+pl

(A.S) o pij — C:&*:!
where
_— _ S
(A.9)  C¥r =y -py ~u (w0, 1, g5, g

It follows from {A.3) and {(A.8) that p? = pi* if and only if Ck = CFk,
Manipulation of (A.9) yields
~1, O
u (u loy 1, qlﬁ qz} Yo pz - C*%
or
10y u(l, © - = o, 1 ~ p- CEE)
i * > qiy q2: ¥ pl u ] 3 qli q2) Yy pz .
From (A.4) and (A.10), ¢* = C¥%% independently of (pz, Uys 9o vy only if

the utility function has the quasilinear form given in (2.22a, b).



A, 2. SR's Derndivation of the Welfare Foamula
SR derive the welfare formula (3.23) by a different voute from that
followed in the text. Their starting point is (2.18). Integrating this
from pj to o and then differentiating with respect to qj, taking note of
{(2.7), vields

(A.11) e ] fm c ) .
e EE e T z. s d . (3 = 1 Z).
aq 3. . }'(pl’ pzs ql qzo u) P. »

qj qj pj J N

Applying Assumptions A and B to {A.11), substituting from (2.13), and
invoking Roy's Identity yields, for j = 1,

I [78, (pys Pys dys Qs V) Eﬁi RN
qu AI Bql P, 1M1 P2 17 72 Bpl

(A.12) dp

1

I1f one now switches to a random utility setting and substitutes expectations
for the random terms in (A.12), which is a valid operation under Assumption B,
one obtains

3B _ 1 3 vy

da, A, dq, &1 M (Vg ¥y) 3, apy

) B%{” N BGI
{A.13) “'I;[ ﬂl(vl’ Vz)ggaf‘ -Gy, VZ) 55; 1,

where Gf’= Gl (o, Pys ¥). SR then apply Assumption C to (A.13) to eliminate

the first term inside the scuare brackets, yielding

ov
1 ~ . 1.

Integration of (A.14) from qg to q§ yields the welfare formula (3.23).
However, Assumption C is not required in order to pass from (A.13) to (A.14)}.
This is because in the budget-constrained RUM quantal choice model, since

ng/épj <0,

lim ﬁi{vl(pl, ql: Y); Vz(pzp QES Y}) = {,
p-)»oo

1
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Hence the first term inside the square brackets in (A.13) vanishes even
without Assumption C.
A3, Clark’s Approxamation

Let Gi’ u,, and u, be normally distributed random variables with

2 3

~ ~ ~ ) 2 2 .
means vl, Vas and v32 variances GE e GE e and GE - and covariances
) 5 > 171 272 33
a o . Then u¥ = maxiu,, u,} is itself normally dis-
08182, ela . and €2€3 h 5 cx{ul, uz} not it 11y dis
3

tributed, but the exact feormula for its mean, Vz, is given in (4.7), and
. 2 s . . ~
the exact formulas for its variance, 82, and for its covariance with Ugs

82 3> are given in (4.8) — these formulas are taken from [2]. Clark's
]

procedure is to approximate the joint distribution of uﬁ and §3 by a bivar-—
R . \ ; . - . 2 2
iate normal distribution with means V2 and vy, variances 82 and GE e and
33
2 .
covariance S2 30 and then to apply the preceding results to obtain the
1]

moments of ug = max{ug, GB} = max{ﬁl, 62’ 53}& The procedure is applied

recusively to obtain the approximate moments of u§ ={max u§“1, ﬁl} =

u,.}. The general recusion formulas are, for i = 2, ..., N,

max{iv R 1
{ 19 2 N

Vi = Viwl @(Ai) vy, @(—Ki) + ai$(ki)
where a? = S? + 02 - 28? .
i i-1 £.£, i-1, 1
ivi
Ay = Oy -V Ay

2 LI 2 2 . * o .
Here S, , E{(uiwi Vi g } and 8 i 1. 4" E{uiml AR ACH Vi)} are

1,

computed from the formulas

2 _ 2 2 2 2 o

Sp7 Way ¥ 8 e+ Gy rog D9 T vidaethy)
and

2 2 2 2

315 T O e, T {q1~1, gc,a.)@<ki)‘
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FOOTNOTES

EA valuable summary of this work is provided by McFadden [11].

2An example of a purely qualirative choice would be which of N
metually exclusive items to select: an example of a mixed qualitative-
guantitative choice would be which of N mutually exclusive items to select
and how much of the selected item to consume.

3Da1y and Zachary actually deal with multiple gqualitative choices but,
following the example of SR, I will mainly focus on binary qualitative choices
in order to simplify the exposition. The extension to multipie qualitative
choices is straightforward. With minor changes I will use the same notation
as BR,

4An example of a logit model consisting of (1.1) and (1.6) can be found
in [6].

SSee [12] and [9].

6AS an example, SR suggest housing which can be purchased in either a
rental or an owner mode but not both,

7SR sugpest college degrees as an example: a person typically has
gither one BA degree or no degree, but not several BA degrees.

SSOme random utility models corresponding to the first two cases,
involving qualitative-quantitative choices, are presented in [8] togetﬁer
with a methodology for applied welfare analysis. A deterministic discrete
choice model similar to that studied here is analyzed by Maler (13,
pp. 131-136). In Maler's model there is only one non-numeraire good and
therefore, the constraint (2.4) is omitted; his wodel corresponds to (2.1)-
(2.3) and (2.5). SR {14, fn. 16] note an error in part of Mialer's analysis.

9

SR prove that v{*} and e{*) are always continuous and right- and left-

differentiable.
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1ORecall that in some contexts it would be natural to impose the
normalization that ﬁj = 1.
1By contrast, for the qualitative-~quantitative cholice model (2.1)-

(2.4}, Assumption A implies only that Gj(pj, g
12

g0 ¥ = ‘hj(pjg a) + AL
More correctly, there exists an increasing transformation T(*) such
that T(Gj) and T{u) are approximated by the right-hand sides of (2.21a)
and (2.21b) respectively. The same qualification also applies to (2.22a, b).
131n logit models fe(-) is taken to be a multivariate extreme value pdf;
in probit medels it is a multivariate normal pdf.
laThis formulation of a random utility function is suggested by SR for
a qualitative-quantitative choice setting as opposed to the purely qualitative
choice considered here— i.e., for a model where constraints (3.4a)}~-(3.4c)
are imposed, but not (3.4d). 1Imn that.context, this formulation is unsatis-
factory because it implies that the unobservable elements of the consumer's
preferences affect only his qualitative choice and not his quantitative choice:
by Roy's ldentity, the conditional ordinary demand functions are nonstochastic
from the point of view of the econometric investigator. I find this iwmplausible.
In [8] I comsider random utility qualitative-quantitative choice models
based on a different formulation of the random utility function which imply
that both the quantitative and the qualitative choices are random for the
investigator.

Sln their analysis of random utility discrete choice econometric
models SR formulate the nonstochastic component of the conditicnal indirect
utility function as
(3.6a) '53. = ¢(y) + kbj(?ja Ay s ¥} (3 =1, 2)

vhere ¢{+*) is an arbitrary increasing function. This is not generally valid

for a purely gualitative choice model; £{(+) and $j(-) must be such that they



37

can be cast in the form of (3.6), which imposes some restrictions on their

functional forms.

lﬁAt one point in their discussion [14, text above eq. (5.6)] SR seem
to imply that V = “1§1 + (1 - ﬁl)GZ. (3.7} shows that this is an incorrect
formula,

17

Proof: (3.7) may be written as
= j’w >~ ~ d Iw ~ ~
Vo= wl(vl, Voo El’ 52) 51 + _mapz(vl, Vo e}, ez)del .

Thus, Bv/e%, = [(0y,/0%))de; + [ (30,/3%)de, , where

9, V-V, tE,

,.é%..; = [ £ (e)s €)de, + (§+edf (e, ¥ - ¥, +€)
and

8@2

aﬁl = (Vl + El)f (El, vy v, + 51).
Hence,

A V-V, + £y _

"5‘;; = I_oo f_oo fﬁ(gl’ 82)d€2d€1 =My

1BFor the general case where prices and quality all change from

(p?, pg, q?, qg) to (pg, pg, qi, qg) the compensating and equivalent varia-

tions would be defined by

. £ £ f f oy 00 0 O
(3.127)  V(py, Pys 9p» Qys ¥+ CV) = VP, Pys 95 995 Y)
£ £ f 0 0 _0

(3.137)  V(pys Pys qps ys ¥) = V(py, Pys 45 95 ¥ — EV)L

In the text I focus mainly on the case where only 4 changes because this

is discussed by SR.

Igcf. (2.20).

zg?ha second step follows by making a change of wariable; the thizd

step fellows from (3.8). Note that Assuwpticn C is not employved in deriving

this result; the reason why it appears in SR's derivation is explained in
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the Appendix, However, Assumption D is implicitly dinvoked in the deriva~

tionr of both (3.21) and (3.23).

2 R .
li\éote that, although v does not appear as a variable in the guantal

choice probability fermula, the marginal utility of income, ¥, c¢an still be
recovered because 1t is the coefficient of the price difference which does

appear in quantal choice probability formula.

ZZThe quantal choice models defined by (1.1) and (1.4) or (1.6) would

fall dinte this category.
23

State dependent preferences can be dntroduced by writing the

nonstochastic utility of wealth function as $s(y).

ZAWhen N = 2 one obtains the formula given in (3.2).

2SThis is also true of the generalized logit model based on {(4.2}.

26The accuracy of Clark's approximation has been investigated by

Daganzo and others; it is sald to be reasonably satisfactory even when

N >3 [3, pp. 55-58].

27Far the generalized probit model (4.3) the formula for V can be

slightly simplified. Define $j = &qj - ?pj. Then

Vg = ¥y + Elvax ¢ + ¢ .,{I\N*PE;N}}E‘?y+@

N N

1 -

where the formula for ﬁ is obtained from (4.7) or (4.8) by substituting

N

¥, for v,. Note that, because £ depeuds on vy, ¥, is not independent of V.

k| ] N





