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activity and selectivity than Cr2O3 and Ga2O3. The find-
ings of this work provide the possibility for activation of 
metal oxides for catalytic reactions and the opportunity for 
the development of new type of catalytic systems utilizing 
partially reduced metal oxides.

Graphical Abstract 
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1  Introduction

Catalytic processes to produce value-added chemicals 
from light alkanes have attracted attention as a consider-
able amount of methane, ethane and propane is available 
from shale gas reservoirs in a cost-effective manner. The 
fact that propene, a product of dehydrogenation of propane, 
is used as feedstock for the production of valuable chemi-
cals, including polymers, oxygenates and other chemical 
intermediates, motivates the study of propane dehydroge-
nation [1]. The increasing worldwide demand for propene 
also spurs the development of techniques to convert pro-
pane to propene exclusively rather than the utilization of 

Abstract  Dehydrogenation of propane to propene is one 
of the important reactions for the production of higher-
value chemical intermediates. In the commercial processes, 
platinum- or chromium oxide-based catalysts have been 
used for catalytic propane dehydrogenation. Herein, we 
first report that bulk tungsten oxide can serve as the catalyst 
for propane dehydrogenation. Tungsten oxide is activated 
by hydrogen pretreatment and/or co-feeding of hydrogen. 
Its catalytic activity strongly depends on hydrogen pretreat-
ment time and partial pressure of hydrogen in the feed gas. 
The activation of tungsten oxide by hydrogen is attributed 
to reduction of the metal oxide and presence of multiva-
lent oxidation states. Comparison of the catalytic perfor-
mance of partially reduced WO3−x to other highly active 
metal oxides shows that WO3−x exhibits superior catalytic 
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conventional processes, yielding propene with low selec-
tivity [2, 3]. Several catalytic dehydrogenation installations 
for the selective production of propene are under construc-
tion or planned [1].

Catalytic dehydrogenation of propane to propene (C3H8 
↔ C3H6 + H2) is highly endothermic and thermodynami-
cally limited reaction. Hence, it requires high reaction tem-
perature above 550 °C to achieve propane conversion over 
50% at atmospheric pressure [1, 4]. Noble metals and metal 
oxides exhibit catalytic activity and selectivity for C–H 
bond activation for propane dehydrogenation. However, 
severe deactivation of catalysts occurs by coke deposition 
on the surface of active materials and sintering of active 
phases of catalysts under the high temperature conditions 
[5–7]. In the case of dehydrogenation over metal oxides, 
the loss of activity and selectivity also arises from the oxi-
dation state change of metal oxides during the reaction 
because both propane and hydrogen can act as reducing 
agents at the high temperatures [8, 9].

In spite of the fact that platinum- and chromium oxide-
based catalysts show excellent catalytic performance and 
they are currently used in industrial processes, there have 
been attempts to develop new catalysts for propane dehy-
drogenation due to a high cost of the noble metal Pt and 
environmental toxicity of Cr6+ species [10]. It has been 
reported that in addition to CrOx, various transition metal 
oxides, including GaOx, VOx, FeOx, InOx, ZrOx and ZnOx, 
are active for C–H bond activation of propane [1, 8, 11–20]. 
Previous study of propane dehydrogenation over ZrOx pro-
moted with La2O3 showed that the bulk metal oxide exhib-
its comparable catalytic activity to that of noble metal Pt 
[15]. Bulk Ga2O3 also showed a high propene selectivity 
of 95% while its activity was slightly lower than Cr2O3 for 
propane dehydrogenation at 500 °C [11]. These show that 
several metal oxides could be the promising catalysts for 
dehydrogenation of propane.

Recently, tungsten oxide is of great interest due to wide 
range of applications in heterogeneous catalysis, photo-
chemistry, and electrochemistry [21–24]. The nonstoichi-
ometry arising from oxygen vacancies and the presence 
of multivalent oxidation states often results in unique 
properties in catalysis [25, 26]. It has been shown that 
the bulk and supported tungsten oxides are catalytically 
active for dehydrogenation, hydrogenation and isomeri-
zation of hydrocarbons [25, 27, 28]. To the best of our 
knowledge, however, the catalytic properties of tungsten 
oxide for propane dehydrogenation have not been explored 
despite the fact that it is group VI transition metal oxide 
along with CrOx, utilized as industrial catalysts. In this 
work, we report that bulk tungsten oxide is highly active 
and selective for propane dehydrogenation when it is par-
tially reduced. Although fully oxidized bulk WO3 is inac-
tive under propane feed condition, co-feeding of H2 and/or 

H2 pretreatment activates the tungsten oxide. Its catalytic 
activity strongly depends on H2 pretreatment conditions 
and H2 partial pressure in the feed gas. The activation of 
tungsten oxide by H2 is attributed to partial reduction of the 
metal oxide and the oxidation state change. The partially 
reduced tungsten oxide, WO3−x, exhibits superior catalytic 
performance than those of Cr2O3 and Ga2O3, which are 
known as highly active metal oxides for propane dehydro-
genation. The findings of this work open up the possibility 
for activation of several metal oxides by reduction and offer 
the opportunity for the development of new type of cata-
lytic systems utilizing partially reduced metal oxides.

2 � Experimental

2.1 � Materials

Tungsten(VI) chloride (WCl6, >99.9%), Pluronic P123 
(Mn = ~5800, EO20PO70EO20, EO = ethylene oxide, 
PO = propylene oxide), chromium(III) nitrate nonahydrate 
(Cr(NO3)3·9H2O, >99%) and gallium(III) nitrate hydrate 
(Ga(NO3)3·xH2O, >99%) were purchased from Sigma-
Aldrich. All gases used in this study, propane, hydrogen, 
helium, nitrogen, argon (all ultra high purity, 99.999%) and 
air (extra dry), were supplied by Praxair.

2.2 � Material Synthesis

Tungsten oxide was synthesized via the soft-templating 
method utilizing self-assembly of P123 [29]. For typi-
cal synthesis, 2 g of P123 was dissolved in 20 ml ethanol 
and stirred overnight at room temperature. A metal precur-
sor solution was prepared separately by dissolving 4.0 g of 
tungsten (VI) chloride into 20 ml of ethanol. The tungsten 
precursor solution was slowly added to the solution con-
taining P123 and stirred for 5 h. Then, the mixed solution 
was poured into Petri dishes and the solvent was slowly 
evaporated at 40 °C for 2 days and at 60 °C for another 2 
days. The resulting sample was calcined in air at 400 °C for 
6 h, followed by 700 °C for 6 h. For the comparison of cat-
alytic performance, bulk Cr2O3 and Ga2O3 were prepared 
by thermal decomposition of Cr(NO3)3·9H2O at 700 °C 
for 6 h in air and Ga(NO3)3·xH2O at 750 °C for 3 h in air, 
respectively.

2.3 � Material Characterization

Structural characterization of tungsten oxide was per-
formed using a Philips CM200/FEG transmission elec-
tronic microscope (TEM) operated at 200  kV. The 
Brunauer–Emmett–Teller (BET) surface areas and pore 
volumes of metal oxides were measured via N2 (ultra high 
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purity, 99.999%) physisorption at 77  K using Autosorb-1 
(Quantachrome) analyzer. For temperature-programmed 
reduction (TPR), WO3 sample of 200  mg was pretreated 
under Ar flow at 120 °C for 1  h. After the pretreatment, 
the catalyst was heated from 100 to 800 °C with a heat-
ing rate of 5 °C/min under a mixed gas flow (50  ml/min) 
of 10  vol% H2 and 90  vol% Ar. The TPR profile was 
obtained by monitoring H2 consumption using a thermal 
conductivity detector. X-ray diffraction (XRD) patterns 
were obtained by a Siemens D500 diffractometer using 
Cu Kα radiation source (1.54  Å). Chemical characteriza-
tion of tungsten oxide was performed using a ultra-high 
vacuum (UHV) PHI 5400 X-ray photoelectron spectros-
copy (XPS) system with a non-monochromatic Al X-ray 
source (Kα = 1486.7 eV) operated at 350 W power. Survey 
XPS spectra were obtained with analyzer pass energy of 
178.5 eV and step size of 1 eV. High-resolution spectra of 
W 4 f were obtained with analyzer pass energy of 35 and 
0.05  eV energy steps. There was no charging effect dur-
ing the measurement of tungsten oxide samples. The peak 
fitting was performed using Casa XPS software. Binding 
energy values for the W 4f7/2 peak-shape were obtained 
from standard reference materials (commercial WO3, WO2 
and metallic W from Sigma–Aldrich) and compared to the 
values analyzed under similar spectrometer conditions in 
literature [26, 30]. The metal peak was detected at 30.0 eV 
and has an asymmetric peak shape with a full-width at 
half maximum (FWHM) of 1  eV. The surface species of 
W6+, W5+ and W4+ were fitted at 34.3 ± 0.2, 33.0 ± 0.2 and 
31.3 ± 0.1 eV, respectively. An additional component corre-
sponding to the W 5p3/2 peak was set at 7.5 eV above the W 
4f7/2 peak from metallic W. The W4f7/2–4f5/2 doublet sepa-
ration was 2.18  eV and peak area ratio was 4:3. Satellite 
peaks were set at 36.0 eV for metallic W and 40.0 eV for 
W6+ species, respectively.

2.4 � Catalytic Measurements

The catalytic performance of tungsten oxide for pro-
pane dehydrogenation was evaluated in a tubular fixed-
bed quartz reactor with 5  mm inner diameter. Typically, 
200 mg of catalyst diluted with 400 mg quartz chips (total 
bed height 3.5  cm) was placed in the middle of the reac-
tor and supported by a porous quartz frit inside the reactor. 
The catalyst was pelletized and sieved to yield 150–250 μm 
grain size before mixing with quartz chips of the same 
grain size.

In this study the total flow rate of feed gas was 50 ml/
min and it was balanced with He. The flow rate of each 
gas was regulated using calibrated mass-flow controllers 
(Bronkhorst). The temperature was controlled using a type-
K thermocouple positioned at the top of the catalytic bed 
inside of the quartz reactor and a PID controller. To avoid 

reaction of the thermocouple with feed gas, the thermocou-
ple was shielded by quartz sheath. Prior to propane dehy-
drogenation reaction, the loaded catalyst was preheated 
to 650 °C with a heating rate of 10 °C/min for 85 min in a 
stream of He and then pretreated by H2 (5 ml/min) or air 
(O2, 5  ml/min) at 650 °C. After pretreatment, the reactor 
was cooled down to 600 °C while purging the reactor with 
He for 20 min. The propane dehydrogenation reaction was 
run with a flow of 4 ml/min of propane, corresponding to 
WHSV = 2.4 h−1, under atmospheric pressure. A blank test 
showed that the conversion of propane at 600 °C by thermal 
cracking is <1%. In catalytic test conversion of propane 
ranged between 2 and 10%.

The reactant and products were analyzed using an on-
line gas chromatograph (SRI GC 8610 C) equipped with a 
flame ionization detector (FID) and a thermal conductivity 
detector (TCD). All data were collected from 21 min with 
6 min interval after steady-state is established. The propane 
conversion (XC

3
H

8
), product selectivity (Si) and surface area 

normalized activity were calculated as follows:

where nC
3
H

8
 is the number of moles of propane, ni is the 

number of moles of C1–C3 products (CH4, C2H4, C2H6 or 
C3H6), ai is the number of carbon atoms in the correspond-
ing product, FC

3
H

8
 is the moles of propane fed per second, 

SA is BET surface area measured by N2 adsorption, respec-
tively. In the calculations, the conversion of propane to 
coke was not taken into account because the carbon balance 
was within ±3% deviation during the measurement.

3 � Results

3.1 � Characterizations of Fresh Samples

All samples for propane dehydrogenation were first prepared 
by calcining as-synthesized tungsten oxide in air at 400 °C 
for 6  h, followed by 700 °C for 6  h. The morphology, spe-
cific surface area, porosity, structure and oxidation state of 
the fresh samples were characterized by TEM, N2 adsorp-
tion–desorption, XRD and XPS analysis. In this study a soft-
templating approach utilizing the self-assembled supramo-
lecular structure of organic surfactant was attempted to obtain 
a mesoporous structure with high surface area. However, the 
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TEM image of the tungsten oxide sample calcined under 
air atmosphere shows no porous structure (Fig. 1a). The N2 
adsorption–desorption isotherm also exhibits the curves 
similar to those of nonporous materials (Fig. SI. 1). The low 
BET area of 6.3 m2/g and pore volume of 0.082 cm3/g of the 
sample confirm that utilizing the organic surfactant, P123, is 
not suitable for the preparation of mesoporous tungsten oxide 
for high-temperature reactions. The high-resolution (HR) 
TEM image of the prepared tungsten oxide shows interplanar 
distance of 3.1 Å, attributed to (11

−

2) plane of WO3 crystal 
structure (Fig. 1d). The corresponding fast Fourier transform 
(FFT) pattern is shown in the inset. The XRD diffractogram 
of the tungsten oxide sample in Fig. 2a reveals the diffraction 
peaks assigned to a monoclinic phase of WO3 crystal (JCPDS 
Card No. 24–0747). The W 4f XPS spectra obtained from 
the WO3 sample exhibit two sharp peaks at 34.3 eV (W 4f7/2) 
and 36.5 eV (W 4f5/2) and one broad satellite peak at 40.4 eV 
(Fig.  3a). These binding energies of W 4  f doublet peaks 
reveal that surface species of tungsten are in the state of W6+ 
[26]. This was also confirmed by comparing the W 4f XPS 
spectra of our sample with those obtained from commercial 
WO3 sample (Sigma-Aldrich, Figure SI. 2), in which each 
peak exhibits nearly the same binding energies of 34.2 eV (W 
4f7/2), 36.4 eV (W 4f5/2) and 40.5 eV (satellite WO3 feature).

3.2 � Catalytic Performance for Propane 
Dehydrogenation

3.2.1 � Activation of Tungsten Oxide by Co‑feeding of H2

The catalytic performance of the prepared WO3 samples 
for propane dehydrogenation was studied at 600 °C with 

increasing H2/C3H8 ratio in feed gas; H2/C3H8 = 0, 0.5, 
1 and 2. Before the reaction, the WO3 samples were pre-
treated at 650 °C for 1 h under air flow as described above. 
Figure  4a, b show specific activity normalized by BET 
surface area of the sample and selectivity towards C3H6, 

Fig. 1   TEM images and 
HR-TEM images (inset the 
corresponding FFT pattern) of 
tungsten oxide samples a and d 
before propane dehydrogenation 
reaction, b and e after reaction 
with C3H8, c and f after reaction 
with a gas mixture of C3H8 and 
H2 (H2/C3H8 = 1). The reaction 
with C3H8 in the absence of H2 
leads to no noticeable morpho-
logical changes. Co-feeding of 
C3H8 and H2 results in aggrega-
tion of tungsten oxide particles. 
Reaction conditions: 0.2 g of 
catalyst, 50 ml/min of total flow 
rate, pretreatment with 50 vol% 
air at 650 °C for 1 h, propane 
dehydrogenation at 600 °C 
under atmospheric pressure for 
12 h, WHSVpropane = 2.4 h−1

Fig. 2   XRD patterns of tungsten oxide samples a before propane 
dehydrogenation reaction b after reaction with C3H8 c after reaction 
with C3H8 and H2 (H2/C3H8 = 1). Following the reaction with C3H8, 
the spent catalyst shows the similar XRD pattern to the fresh WO3 
catalyst. Co-feeding of H2 and C3H8 leads to the structural change 
from WO3 to WO2. Reaction conditions: 0.2 g of catalyst, 50 ml/min 
of total flow rate, pretreatment with 50 vol% air at 650 °C for 1 h, pro-
pane dehydrogenation at 600 °C under atmospheric pressure for 12 h, 
WHSVpropane = 2.4 h− 1
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respectively. When propane is only present in the feed gas, 
the WO3 catalyst exhibits negligible activity and low C3H6 
selectivity arising from thermal cracking of propane. Co-
feeding of H2 and propane, however, results in a remarkable 
increase of activity and selectivity during the initial period 

of reaction, activating the catalyst. The increase of H2/C3H8 
ratio in the feed gas from 0.5 to 1 to 2 leads to higher activ-
ity although it results in rapid activation and deactivation of 
the catalyst. At the feed ratios of H2/C3H8 = 0.5 and 1, the 
C3H6 selectivity of the activated tungsten oxide is quite sta-
ble, showing ~90% selectivity. However, an excess of H2 in 
the feed (H2/C3H8 = 2) leads to a lower C3H6 selectivity of 
~84% and it decreases further after a time of the stream of 
~300 min. The decrease of selectivity is mainly attributed 
to the increase of methane (CH4) production.

In order to elucidate the influence of co-feeding of H2 
on the activation of the catalysts for propane dehydrogena-
tion, the morphology, bulk structure and the oxidation state 
of spent samples were analyzed by TEM, XRD and XPS. 
After 12 h reaction with propane in the absence of H2 (H2/
C3H8 = 0) at 600 °C, no noticeable morphological changes 
were observed in TEM images (Fig.  1b). The spent cata-
lyst shows the similar XRD pattern to that of the fresh sam-
ple before the reaction (Fig. 2b). The fact that spent sam-
ple has a lattice spacing of 3.8  Å corresponding to (002) 
interplanar distance of WO3 supports the XRD results 
(Fig.  1e). The binding energies of W 4f and the atomic 
ratio of O/W ≈ 3 measured from the spent catalyst indicate 
the existence of only W6+ species on the surface (Fig. 3b). 
This is confirmed by the observation that the spent catalyst 
showed the same pale-yellow color as the fresh sample. 
These results clearly demonstrate that the fully oxidized 
WO3 undergoes no structural and chemical changes under 
propane flow at 600 °C and the WO3 sample is inactive for 
propane dehydrogenation.

However, the catalyst reacted with the feed gas mix-
ture of C3H8 and H2 (H2/C3H8 = 1) shows agglomeration 
of tungsten oxide particles (Fig. 1c). The HR-TEM image 
exhibits the interplanar distances of 3.5 Å, corresponding 

Fig. 3   Fitted W 4f XPS spectra of tungsten oxide samples a before 
propane dehydrogenation reaction b after reaction with C3H8 c after 
reaction with C3H8 and H2 (H2/C3H8 = 1). When a fresh WO3 sam-
ple is reacted with C3H8 without H2, there is no change in the oxida-
tion state, showing W6+. Co-feeding of H2 and C3H8 results in partial 
reduction of the sample during the reaction, exhibiting W6+, W5+, 
W4+ and W0. Reaction conditions: 0.2  g of catalyst, 50  ml/min of 
total flow rate, pretreatment with 50 vol% air at 650 °C for 1 h, pro-
pane dehydrogenation at 600 °C under atmospheric pressure for 12 h, 
WHSVpropane = 2.4 h−1

Fig. 4   a Specific activity and b C3H6 selectivity as a function of time 
of stream under different feed conditions (C3H8 only, H2/C3H8 = 0.5, 1 
and 2). Tungsten oxide exhibits negligible activity and low selectivity 
when it is reacted with C3H8. The catalyst is activated by co-feeding 

of H2 and C3H8. Reaction conditions: 0.2 g of catalyst, 50 ml/min of 
total flow rate, pretreatment with 50 vol% air at 650 °C for 1 h, pro-
pane dehydrogenation at 600 °C under atmospheric pressure for 12 h, 
WHSVpropane = 2.4 h−1
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to the (1̄10) plane of WO2 (Fig. 1f). As shown in Fig. 2c, 
the structural change from WO3 to WO2 during the reac-
tion is also observed in the XRD diffractogram, where the 
peaks at 2θ = 25.8°, 36.6° and 52.8° are assigned to mon-
oclinic WO2 phase (JCPDS Card No. 05-0431). Moreo-
ver, the W 4f XPS spectrum of the spent catalyst clearly 
reveals new peaks at lower binding energies (Fig.  3c). 
This shows that W6+ species on the surface of the WO3 
sample were reduced to W5+, W4+ and W0, correspond-
ing to 33.1, 31.3 and 30.0  eV for W 4f7/2, respectively. 
As a consequence of this partial reduction under the flow 
of gas mixture with H2/C3H8 = 1, the surface atomic O/W 
ratio of the spent catalyst decreased from 3 to 2.42. It is 
noteworthy that no peaks corresponding to WO3 phase 
were visible in the XRD patterns whereas a considerable 
amount of W6+ species was observed in XPS spectrum. 
This discrepancy arises from re-oxidation of the partially 
reduced tungsten oxide surface by air exposure while 
preparing sample for XPS analysis [27]. It should also 
be noted that the color of the sample was changed from 

pale yellow to deep blue after the propane dehydrogena-
tion reaction. These observations clearly indicate that the 
activation of tungsten oxide during the propane dehydro-
genation as shown in Fig. 4 is attributed to the reduction 
of the catalyst by the gas mixtures of H2 and C3H8.

3.2.2 � Activation of Tungsten Oxide by H2 Pretreatment

The influence of reduction on the catalytic performance 
of tungsten oxide for propane dehydrogenation was fur-
ther studied by varying pretreatment conditions. TPR 
profile showed that a fresh WO3 sample starts to be 
reduced at ~650 °C by H2 (Fig. SI. 3). For a compari-
son of catalytic properties of fully oxidized WO3 and 
reduced sample, fresh WO3 catalysts were pretreated 
under the flow of H2 or air for 1h at 650 °C and then, 
purged by He while cooling down the reactor to a reac-
tion temperature of 600 °C. Figure  5a, b show specific 
activity and C3H6 selectivity of the pretreated tungsten 
oxides under the flow of a gas mixture with H2/C3H8 = 1. 
For air-pretreated catalyst, an induction period (~50 min) 

Fig. 5   a Specific activity and b C3H6 selectivity as a function of time 
of stream under different pretreatment conditions (air or H2 pretreat-
ment for 1 h) c initial specific activity and d initial C3H6 selectivity 
at TOS = 21  min under different pretreatment conditions. Tungsten 
oxide is activated by H2 pretreatment and the initial activity strongly 

depends on the duration of H2 pretreatment. Reaction conditions: 
0.2  g of catalyst, 50  ml/min of total flow rate, pretreatment with 
50 vol% of air or 10 vol% of H2 at 650 °C, propane dehydrogenation 
with C3H8 and H2 at 600 °C under atmospheric pressure, H2/C3H8 = 1, 
WHSVpropane = 2.4 h−1
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is required to exhibit catalytic activity. However, the for-
mation of propene and high selectivity of ~90% are read-
ily observable after H2 pretreatment. Under the flow of 
the gas mixture of C3H8 and H2, the H2-pretreated cat-
alyst is further activated up to 105  min and then starts 
to be deactivated. These imply that partially reduced 
tungsten oxide, WO3−x, shows higher activity and selec-
tivity than fully oxidized WO3 and the catalytic perfor-
mance depends on the degree of reduction of tungsten 
oxide. The effect of reduction on the intrinsic catalytic 
performance of tungsten oxide was also investigated by 
varying the duration of H2 pretreatment (Fig. 5c, d and 
Figure SI. 4). The results show that the initial activ-
ity of the tungsten oxide noticeably increases up to 3 h 
pretreatment and then decreases after a longer pretreat-
ment of 5 h. However, all catalysts exhibit similar C3H6 
selectivity between 90 and 93%, showing that the initial 
selectivity is not affected by the H2 pretreatment time 
(Fig. 5d).

To understand the influences of H2 pretreatment, the 
TEM, XRD and XPS results obtained from 2.5 to 5  h 
H2-pretreated tungsten oxide samples were compared to 
fresh WO3 sample. Both H2-pretreated samples exhibit 
severe aggregation of tungsten oxide particles (Fig.  6a, 
b). The XRD patterns demonstrate that they are reduced 
during the H2 pretreatment (Fig. 6c, d). The sample pre-
treated by H2 for 2.5 h exhibits apparent peaks assigned 
to monoclinic WO2 phase (JCPDS Card No. 05-0431) 
and small peaks corresponding to the crystalline cubic 
phase of metallic W (JCPDS Card No. 04-0806). The 
formation of the metallic W phase is clearly evidenced 
for the sample pretreated for 5 h. This observation shows 
that WO3 is reduced further by longer H2 pretreatment 
time. The W 4f XPS spectra for the H2-pretreated sam-
ples reveal the oxidation state change from W6+ to mul-
tiple oxidation states including W6+ (34.2  eV), W5+ 
(33.0 eV), W4+ (31.2 eV) and W0 (29.6 eV) (Fig. 6e, f). 
Therefore, the high activity of the tungsten oxide cata-
lyst pretreated by H2 for 2.5  h results from the partial 
reduction of tungsten oxide and its multivalent oxidation 
states. A clear difference between the tungsten oxide 
catalysts reduced for 2.5 and 5 h is the atomic composi-
tions of surface W0 species. Although the composition 
of W0 species is 8% for the sample pretreated for 2.5 h, 
it increases up to 26% after 5 h H2 reduction (Table 1). 
The existence of metallic W is observed in the HR-TEM 
image, in which the sample has a lattice spacing (2.3 Å) 
corresponding to (110) plane of the cubic metallic W 
(inset in Fig. 6b). Considering a drop of catalytic activ-
ity after 5 h H2 pretreatment in Fig. 5c, a negative effect 
by the over-reduction is attributed to the formation of 
metallic tungsten phases on the surface.

3.2.3 � Catalytic Performance of Partially Reduced 
Tungsten Oxide

For the evaluation of the catalytic performance, the cat-
alytic activity and the selectivity of partially reduced 

Fig. 6   TEM images (inset high-resolution TEM images) of tungsten 
oxide samples pretreated with H2 for a 2.5 h and b 5 h. XRD patterns 
tungsten oxide samples pretreated with H2 for c 2.5 h and d 5 h. Fit-
ted W 4f XPS spectra of tungsten oxide samples pretreated with H2 
for e 2.5 h and f 5 h. These show that a fresh WO3 sample is partially 
reduced by H2 pretreatment, exhibiting multiple oxidation state of 
W6+, W5+, W4+ and W0. Longer pretreatment time leads to a higher 
concentration of metallic W. Reaction conditions: 0.2  g of catalyst, 
50 ml/min of total flow rate, pretreatment with 10 vol% H2 at 650 °C
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tungsten oxide, WO3−x, were compared to those of other 
highly active bulk metal oxides such as Cr2O3 and Ga2O3 
(Fig. 7a, b and Figure SI. 5a, b). The catalytic tests for all 
metal oxides were conducted at 600 °C under the feed of 
C3H8 in the absence of H2. As shown in Fig. 5, pretreat-
ment conditions affect the catalytic performance of metal 
oxides. Therefore, the samples of WO3 and Cr2O3 were 
pretreated in air or H2 before propane dehydrogenation to 
find out optimal pretreatment conditions for each metal 
oxide. In the case of Ga2O3, it was only pretreated in air 
because reduction of the metal oxide by H2 can lead to 
the formation of volatile or liquid phases under the reac-
tion condition. As expected, partially reduced WO3−x 
showed higher activity and selectivity than fully oxidized 
WO3. In contrast, Cr2O3 exhibited better catalytic perfor-
mance when it was air-pretreated. It is noteworthy that 
higher activity of air-pretreated Cr2O3 is attributed to the 
fact that Cr6+ species plays a role as the precursor to pro-
duce the most active surface species [9]. The easy reduc-
ibility of Cr2O3 and therefore, the total loss of Cr6+ spe-
cies by H2 pretreatment appears to result in lower activity. 
The comparison of the catalytic performance of three 
metal oxides after the optimal pretreatment is shown in 

Fig.  7a, b. The partially reduced WO3−x, obtained by 
2.5 h H2 pretreatment, has more than three times higher 
initial activity than air-pretreated Cr2O3 and Ga2O3. The 
WO3−x sample also exhibits superior C3H6 selectivity of 
~96% than other metal oxides for the propane dehydroge-
nation at 600 °C. A rapid deactivation of metal oxide cat-
alysts during propane dehydrogenation requires frequent 
regeneration of the catalysts. In the commercial Catofin 
process, CrOx/Al2O3 catalyst is typically regenerated 
after 12 min of dehydrogenation at 575 °C. Although the 
partially reduced WO3−x catalyst shows high activity and 
selectivity during the reaction at 600 °C, fast deactivation 
is still observed as shown in Figure SI. 5a.

The influence of pre-reduction on the activity and 
selectivity was further studied by repeating propane 
dehydrogenation for 1 h (Fig. 8a, b). The fresh WO3 sam-
ple was pre-reduced at 650 °C for 2.5 h for the 1st cycle 
of reaction. After the propane dehydrogenation reaction, 
the catalyst was regenerated under air flow at 650 °C 
for 20  min, followed by over-reduced with H2 for 3.5  h 
on purpose. During several reaction cycles (2nd–12th 
cycles), the initial activity and the selectivity of WO3−x 
gradually decrease, exhibiting deactivation. However, 
shorter pretreatment, 3 h H2 pretreatment, results in bet-
ter the catalytic performance as shown for the 13th–16th 
cycles. Although a further shorter pre-reduction for 2.5 h 
leads to the lower activity and the selectivity as measured 
in the 17th cycle, the catalytic efficiency is recovered to 
the pervious values after 3 h pretreatment. This suggests 
that there is an optimal chemical state to obtain the best 
catalytic performance and it can be achieved by control-
ling the H2 pretreatment time. It is also noteworthy that 
despite its deactivation during the repeated cycles, the 

Table 1   Surface composition of W species measured by XPS analy-
sis

Catalyst W6+ (%) W5+ (%) W4+ (%) Metal-
lic W 
(%)

Fresh sample 100 0 0 0
2.5 h H2-pretreated sample 26 21 45 8
5 h H2-pretreated sample 26 16 32 26

Fig. 7   a Initial specific activity and b C3H6 selectivity of air or 
H2-pretreated WO3, Cr2O3 and Ga2O3 at TOS = 21 min. The partially 
reduced tungsten oxide shows superior catalytic activity and selectiv-
ity than other highly active metal oxides, Cr2O3 and Ga2O3. Reaction 
conditions: 0.2  g of catalyst, 50  ml/min of total flow rate, pretreat-

ment with 10 vol% H2 for WO3 (2.5 h) and Cr2O3 (1 h) or pretreat-
ment with 50 vol% air for WO3 (1 h), Cr2O3 (1 h) and Ga2O3 (1 h) 
at 650 °C, propane dehydrogenation with only C3H8 at 600 °C under 
atmospheric pressure, WHSVpropane = 2.4 h−1
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activity and selectivity of WO3−x catalyst at 18 cycle are 
still higher than those of fresh Cr2O3 and Ga2O3 catalysts.

4 � Discussion

A key observation of this work is that the reduction of bulk 
WO3 by co-feeding of H2 and/or H2 pretreatment activates 
the tungsten oxide catalyst for propane dehydrogenation 
although fully oxidized WO3 is inactive. Moreover, the par-
tially reduced WO3−x shows superior catalytic performance 
than bulk Cr2O3 and Ga2O3, reported as highly active cata-
lysts for propane dehydrogenation. These observations raise 
fundamental questions about the characteristics of WO3−x 
governing its catalytic activity and the specific active sites 
for propane dehydrogenation. A directly observable change 
arising from reduction by H2 in the pretreatment step or 
during the reaction with gas mixtures of C3H8 and H2 is a 
variation of the oxidation state of the tungsten oxide cata-
lysts. The influence of oxidation state on alkane dehydro-
genation over metal oxides has been extensively studied 
for chromium oxide [9, 31–33]. It has been suggested that 
Cr3+ cation is the most active for dehydrogenation reactions 
among Cr6+, Cr5+, Cr3+ and Cr2+ surface species [33, 34]. 
Also, a close relationship between oxidation state of metal 
ion and activity has been observed in dehydrogenation over 
supported VOx, in which V3+ ion showed higher active than 
V5+ and V4+ species [20]. Indeed, our results obtained from 
catalytic measurement and XPS analysis confirm that the 
activity and selectivity of tungsten oxide are influenced by 
its oxidation state. Although the presence of only W6+ spe-
cies on the surface of tungsten oxide leads to no activity 

and poor selectivity, the evolution of multivalent oxida-
tion state results in high catalytic performance for propane 
dehydrogenation. In repeated cycles the variation of oxida-
tion state of WO3−x also determines its catalytic efficiency 
as shown in Fig.  8. Therefore, we expect that oxidation 
state of tungsten oxide is a factor governing its catalytic 
activity for propane dehydrogenation.

The complexity arising from the presence of multi-
valent W cations on the surface hampers the identifica-
tion of specific active sites of partially reduced WO3−x 
for propane dehydrogenation. However, similar activa-
tion of tungsten oxides by H2 reduction has been reported 
for isomerization reactions, which involve dehydrogena-
tion as the first reaction step [27, 35]. It was suggested 
that dehydrogenative properties of WO3−x are attributed 
to W4+ cations with free electrons [27]. Our XPS result 
for the highly active tungsten oxide, pretreated for 2.5 h, 
also shows that W4+ species has the highest concentra-
tion of 45% among the surface W species (Table  1). 
Therefore, we suggest that W4+ species is the most likely 
active site for the propane dehydrogenation. However, 
the possibility cannot be ruled out that other W cations 
or the interfaces between various W species are active 
for propane dehydrogenation. Recently, it was observed 
that slightly reduced WO3−x with W6+ and W5+ cations 
exhibits improved catalytic activity compared to fully 
oxidized WO3 with only W6+ cation for hydrogenation of 
cyclohexane [25]. This implies that the catalytic proper-
ties, responsible for hydrogenation and dehydrogenation, 
also arise from W5+ species or the interface between W6+ 
and W5+ cations. The presence of a considerable amount 
of metallic tungsten species has a negative effect on the 

Fig. 8   a Initial specific activity and b initial C3H6 selectivity at 
TOS = 21  min over 18 H2 pretreatment—propane dehydrogena-
tion—air regeneration cycles. Initially tungsten oxide sample was 
pretreated with 10 vol% H2 at 650 °C for 2.5 h (black). After the 1st 
reaction, the regenerated sample was pretreated with H2 at 650 °C 
for 3.5 h (red), 3 h (blue) and 2.5 h (green), respectively. Varying H2 

pretreatment duration and therefore, controlling the oxidation state of 
tungsten oxide affects catalytic activity and selectivity. Reaction con-
ditions: 0.2 g of catalyst, 50 ml/min of total flow rate, propane dehy-
drogenation with only C3H8 at 600 °C under atmospheric pressure, 
WHSVpropane = 2.4 h−1, regeneration with 50 vol% air at 650 °C for 
20 min
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activity for propane dehydrogenation as shown for 5  h 
pretreated sample in Fig. 5c. However, it should be noted 
that W0 species can often contribute to dehydrogena-
tion of saturated hydrocarbon [36]. It was shown that the 
reduced WO3−x with W6+, W5+, W4+ and a small amount 
of W0 species reveals higher conversion and selectivity 
towards dehydrogenation reaction than those with only 
W6+, W5+ and W4+ cations [27]. Indeed, the tungsten 
oxide pretreated by H2 for 2.5 h exhibits excellent cata-
lytic performance for propane dehydrogenation although 
it includes 8% of W0 species. This implies that the metal-
oxide interfaces between metallic tungsten and tungsten 
oxides may play an important role in the dehydrogenation 
of propane.

The nature of active sites, oxidation state and the cat-
alytic properties of tungsten oxide mentioned above are 
closely inter-correlated. Therefore, further careful experi-
ments are needed for deep understanding of the superior 
activity of partially reduced WO3−x for propane dehydro-
genation. It is also interesting to see whether the modifi-
cation of catalytic characteristics by control of oxidation 
state can be applied to other metal oxides. We are con-
ducting experiments to understand the influence of those 
properties and exploring the control of the catalytic per-
formance to propane dehydrogenation by using oxidizing 
and reducing agents.

5 � Conclusions

Fully oxidized bulk tungsten oxide, WO3, is inactive for 
propane dehydrogenation. However, tungsten oxide can 
be activated by H2 pretreatment and/or co-feeding of H2 
during the reaction. The reduction and oxidation state 
change of the tungsten oxide in the H2 environment were 
confirmed by HR-TEM, XRD and XPS. The catalytic 
activity of the WO3−x catalysts strongly depends on the 
H2 reduction conditions. After the H2 pretreatment, the 
partially reduced WO3−x shows superior catalytic activ-
ity and selectivity than those of other highly active metal 
oxides, Cr2O3 and Ga2O3.
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