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METHODOLOGY

A streaming multi-GPU implementation 
of image simulation algorithms for scanning 
transmission electron microscopy
Alan Pryor Jr.1*, Colin Ophus2 and Jianwei Miao1

Abstract 

Simulation of atomic-resolution image formation in scanning transmission electron microscopy can require significant 
computation times using traditional methods. A recently developed method, termed plane-wave reciprocal-space 
interpolated scattering matrix (PRISM), demonstrates potential for significant acceleration of such simulations with 
negligible loss of accuracy. Here, we present a software package called Prismatic for parallelized simulation of image 
formation in scanning transmission electron microscopy (STEM) using both the PRISM and multislice methods. By 
distributing the workload between multiple CUDA-enabled GPUs and multicore processors, accelerations as high as 
1000 × for PRISM and 15 × for multislice are achieved relative to traditional multislice implementations using a single 
4-GPU machine. We demonstrate a potentially important application of Prismatic, using it to compute images for 
atomic electron tomography at sufficient speeds to include in the reconstruction pipeline. Prismatic is freely available 
both as an open-source CUDA/C++ package with a graphical user interface and as a Python package, PyPrismatic.

Keywords: Scanning transmission electron microscopy, PRISM, Multislice, GPU, CUDA, Electron scattering, Imaging 
simulation, High performance computing, Atomic electron tomography
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Background
Scanning transmission electron microscopy (STEM) has 
had a major impact on materials science [1, 2], espe-
cially for atomic-resolution imaging since the widespread 
adoption of hardware aberration correction [3–5]. Many 
large scale STEM experimental techniques are routinely 
validated using imaging or diffraction simulations. Exam-
ples include electron ptychography [6], 3D atomic recon-
structions using dynamical scattering [7], high precision 
surface atom position measurements on catalytic parti-
cles [8], de-noising routines [9], phase contrast imaging 
with phase plates [10], new dynamical atomic contrast 
models [11], atomic electron tomography (AET) [12–16], 
and many others. The most commonly employed simu-
lation algorithm for STEM simulation is the multislice 
algorithm introduced by Cowlie and Moodie [17]. This 

method consists of two main steps. The first is calculation 
of the projected potentials from all atoms into a series 
of 2D slices. Second, the electron wave is initialized and 
propagated through the sample. The multislice method 
is straightforward to implement and is quite efficient for 
plane-wave or single-probe diffraction simulations [18].

A large number of electron microscopy simulation 
codes are available, summarized in Table  1. Most of 
these codes use the multislice method, and many have 
implemented parallel processing algorithms for both 
central processing units (CPUs) and graphics process-
ing units (GPUs). Recently, some authors have begun 
using hybrid CPU + GPU codes for multislice simula-
tion [40]. Multislice simulation relies heavily on the fast 
Fourier transform (FFT) which can be computed using 
heavily optimized packages for both CPUs [41] and 
GPUs [42]. The other primary computational require-
ment of multislice calculations is large element-wise 
matrix arithmetic, which GPUs are very well-suited 
to perform [43]. Parallelization is important because 
STEM experiments may record full probe images or 
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integrated values from thousands or even millions of 
probe positions [10, 44]. Performing STEM simulations 
on the same scale as these experiments are very chal-
lenging because in the conventional multislice algo-
rithm the propagation of each STEM probe through the 
sample is computed separately. Furthermore, if addi-
tional simulation parameters are explored, the number 
of required simulations can become even larger, requir-
ing very large computation times even using a modern, 
parallelized implementation. To address this issue, we 
introduced a new algorithm called PRISM which offers 
a substantial speed increase for STEM image simula-
tions [39].

In this manuscript, we introduce a highly-optimized 
multi-GPU simulation code that can perform both 
multislice and PRISM simulations of extremely large 
structures called Prismatic. We will briefly describe 
the multislice and PRISM algorithms, and describe the 
implementation details for our parallelized CPU and 
CPU + GPU codes. We perform timing benchmarks 
to compare both algorithms under a variety of condi-
tions. Finally, we demonstrate the utility of our new 
code with typical use cases and compare with the pop-
ular packages computem and MULTEM [21, 33, 34]. 
Prismatic includes a graphical user interface (GUI) and 
uses the cross-platform build system CMake [45]. All 
of the source code is freely available. Throughout this 
manuscript, we use the NVIDIA convention of refer-
ring to the CPU and GPU(s) as the host and device(s), 
respectively.

Methods
Description of algorithms
A flow chart of the steps performed in Prismatic is given 
in Fig. 1. Both multislice and PRISM share the same ini-
tial steps, where the sample is divided into slices which 
are used to compute the projected potential from the 
atomic scattering factors give in [21]. This step is shown 
schematically in Fig. 1a, b, and is implemented by using 
a precomputed lookup table for each atom type [10, 39].

Figure 1c–e show the steps in a multislice STEM sim-
ulation. First the complex electron wave � represent-
ing the initial converged probe is defined, typically as an 
Airy disk function shown in Fig. 1c. This choice of probe 
represents that of an idealized instrument with perfect, 
aberration-free lenses. This probe is positioned at the 
desired location on the sample surface in real space, as in 
Fig. 1d. Next, this probe is propagated through the sam-
ple’s potential slices defined in Fig. 1b. This propagation 
is achieved by alternating two steps. The first step is a 
transmission through a given potential slice V 2D

p  over the 
real space coordinates −→r

where σ is the beam-sample interaction constant. Next, 
the electron wave is propagated over the distance t to 
the next sample potential slice, which is done in Fourier 
space over the Fourier coordinates −→q

(1)ψp+1(
−→r ) = ψp(

−→r ) exp
[

iσV 2D
p

(−→r
)

]

,

(2)�p+1(
−→q ) = �p(

−→q ) exp(−iπ�|−→q |2t),

Table 1 A non-exhaustive list of electron microscopy simulation codes

Code(s) Author(s) Reference(s) Comments Links

xHREM Ishizuka [19, 20] HREM Simulation Suite

computem Kirkland [18, 21] CPU parallelized Computem Repo

EMS, JEMS Stadelmann [22, 23] JEMS website

MacTempas Kilaas [24] MacTempasX website

QSTEM Koch [25] QSTEM website

CTEMsoft De Graef [26] CTEMsoft repo

Web-EMAPS Zuo et al. [27] Deprecated Status page

STEM_CELL Carlino, Grillo et al. [28, 29] CPU parallelized STEM_CELL website

STEMSIM Rosenauer and Schowalter [30] STEMSIM webpage

MALTS Walton et al. [31] Lorentz TEM

Dr. Probe Barthel and Houben [32] Dr. Probe website

MULTEM Lobato and Van Dyck [33, 34] GPU par., many modes MULTEM repo

FDES Van den Broek et al. [35] Multi-GPU parallelized FDES repo

μSTEM D’Alfonso et al. [36, 37] GPU par., inelastic μSTEM website

STEMsalabim Oelerich et al. [38] CPU parallelized STEMsalabim website

Prismatic Pryor Jr. and Ophus [39], this work Multi-GPU streaming Prismatic website, repo
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where � is the electron wavelength. These steps are 
alternated until the electron probe has been propagated 
through the entire sample. Next, the simulated output 
is computed, which is typically a subset of the probe’s 
intensity summed in Fourier space as shown in Fig.  1e. 
For more details on the multislice method, we refer read-
ers to Kirkland [21]. The steps given in Fig.  1c–e are 
repeated for the desired probe positions, typically a 2D 
grid. Thus the simulation produces a 2D diffraction pat-
tern at each position in the 2D scan grid, resulting in a 
4D output, the size of which can become considerable. 
Many simulations only require counting the scattered 
electrons within some angular range, and optionally each 
of the 2D diffraction patterns can be integrated once azi-
muthally into radial bins representing the electrons scat-
tered between a corresponding inner and outer angle at a 
given probe position, forming a 3D output. The 3D out-
put is conceptually the same as having a large number of 
evenly-spaced virtual annular detectors. The 3D output 
can be further integrated radially between some inner 
and outer angle to produce a 2D output where a single 
pixel value is recorded for each probe position represent-
ing the total number of electrons scattered between the 
inner and outer virtual detector position, allowing forma-
tion of multiple simulated 2D images such a bright field 
(BF), high-angle annular dark field (HAADF), etc. The 
4D, 3D, and 2D outputs can be independently turned on/
off by the user.

The PRISM simulation method for STEM images 
is outlined in Fig.  1f–k. This method exploits the fact 
that an electron scattering simulation can be decom-
posed into an orthogonal basis set, as in the Bloch wave 
method [21]. If we compute the electron scattering for 
a set of plane waves that forms a complete basis, these 
waves can each be multiplied by a complex scalar value 
and summed to give a desired electron probe. A detailed 
description of the PRISM algorithm is given in [39].

The first step of PRISM is to compute the sample poten-
tial slices as in Fig.1a, b. Next, a maximum input probe 
semi-angle and an interpolation factor f is defined for the 
simulation. Figure 1g shows how these two variables spec-
ify the plane wave calculations required for PRISM, where 
every fth plane wave in both spatial dimensions inside the 
maximum scattering angle is required. Each of these plane 
waves must be propagated through the sample using the 
multislice method given above, shown in Fig. 1h. Once all 
of these plane waves have been propagated through the 
sample, together they form the desired basis set we refer 
to as the compact S-matrix. Next, we define the location 
of all desired STEM probes. For each probe, a subset of all 
plane waves is cut out around the maximum value of the 
input STEM probe. The size length of the subset regions is 
d/f, where d is the simulation cell length. The probe coef-
ficients for all plane waves are complex values that define 
the center position of the STEM probe, and coherent 
wave aberrations such as defocus or spherical aberration. 

Fig. 1 Flow chart of STEM simulation algorithm steps. a All atoms are separated into slices at different positions along the beam direction, and b 
atomic scattering factors are used to compute projected potential of each slice. c Multislice algorithm, where each converged probe is initialized, d 
propagated through each of the sample slices defined in (b), and then e output either as images, or radially integrated detectors. f PRISM algorithm 
where g converged probes are defined in coordinate system downsampled by factor f as a set of plane waves. h Each required plane wave is propa-
gated through the sample slices defined in (b). i Output probes are computed by cropping subset of plane waves multiplied by probe complex 
coefficients, and j summed to form output probe, k which is then saved
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Each STEM probe is computed by multiplying every plane 
wave subset by the appropriate coefficient and summing 
all wave subsets. This is equivalent to using Fourier inter-
polation to approximate the electron probe wavefunction. 
In real space, this operation corresponds to cropping the 
probe from the full field of view, and as long as this sub-
set region is large enough to encompass the vast major-
ity of the probe intensity, the error in this approximation 
will be negligible [39]. Thus, the key insight in the PRISM 
algorithm is that the real space probe decays to approxi-
mately zero rapidly and under many imaging simulation 
conditions is oversampled. Finally, the output signal is 
computed for all probes as above, giving a 2D, 3D or 4D 
output array. As will be shown below, STEM simulations 
using the PRISM method can be significantly faster than 
using the multislice method.

Implementation details
Computational model
Wherever possible, parallelizable calculations in Pris-
matic are divided into individual tasks and performed 
using a pool of CPU and GPU worker threads that asyn-
chronously consume the work on the host or the device, 
respectively. We refer to a GPU worker thread as a host 
thread that manages work dispatched to a single device 
context. Whenever one of these worker threads is avail-
able, it queries a mutex-synchronized dispatcher that 
returns a unique work ID or range of IDs. The corre-
sponding work is then consumed, and the dispatcher 
required until no more work remains. This computational 
model, depicted visually in Fig. 2, provides maximal load 
balancing at essentially no cost, as workers are free to 
independently obtain work as often as they become avail-
able. Therefore, machines with faster CPUs may observe 
more work being performed on the host, and if multiple 
GPU models are installed in the same system their rela-
tive performance is irrelevant to the efficiency of work 
dispatch. The GPU workers complete most types of 
tasks used by Prismatic well over an order of magnitude 
faster than the CPU on modern hardware, and if a CPU 
worker is dispatched one of the last pieces of work then 
the entire program may be forced to unnecessarily wait 
on the slower worker to complete. Therefore, an adjust-
able early stopping mechanism is provided for the CPU 
workers.

GPU calculations in Prismatic are performed using 
a fully asynchronous memory transfer and computa-
tional model driven by CUDA streams. By default, kernel 
launches and calls to the CUDA runtime API for trans-
ferring memory occur on what is known as the default 
stream and subsequently execute in order. This serializa-
tion does not fully utilize the hardware, as it is possible 
to simultaneously perform a number of operations such 

as memory transfer from the host to the device, memory 
transfer from the device to the host, and kernel execution 
concurrently. This level of concurrency can be achieved 
using CUDA streams. Each CUDA stream represents 
an independent queue of tasks using a single device that 
execute internally in exact order, but that can be sched-
uled to run concurrently irrespective of other streams if 
certain conditions are met. This streaming model com-
bined with the multithreaded work dispatch approach 
described previously allow for concurrent two-way host/
device memory transfers and simultaneous data process-
ing. A snapshot of the output produced by the NVIDA 
Visual Profiler for a single device context during a stream-
ing multislice simulation similar to those described later 
in this work verifies that Prismatic is indeed capable of 
such concurrency (Fig. 3).

To achieve maximum overlap of work, each CUDA-
enabled routine in Prismatic begins with an initializa-
tion phase where relevant data on the host-side is copied 
into page-locked (also called “pinned”) memory, which 
provides faster transfer times to the device and is neces-
sary for asynchronous memory copying as the system can 
bypass internal staging steps that would be necessary for 
pageable memory [46]. CUDA streams and data buffers 
are then allocated on each device and copied to asynchro-
nously. Read-only memory is allocated once per device, 
and read/write memory is allocated once per stream. It 
is important to perform all memory allocations initially, 
as any later calls to cudaMalloc will implicitly force syn-
chronization of the streams. Once the initialization phase 
is over, a host thread is spawned for each unique CUDA 
stream and begins to consume work.

stluseRdetelpmoCkroWgniniameR
CPU Pool

GPU 0

GPU 1

worker thread 0
worker thread 1
worker thread 2
worker thread 3

worker stream 0
worker stream 1
worker stream 2
worker stream 3

worker stream 0
worker stream 1
worker stream 2
worker stream 3

work
dispatcher

}
}

}
}

Fig. 2 Visualization of the computation model used repeatedly in the 
Prismatic software package, whereby a pool of GPU and CPU workers 
are assigned batches of work by querying a synchronized work dis-
patcher. Once the assignment is complete, the worker requests more 
work until no more exists. All workers record completed simulation 
outputs in parallel
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Calculation of the projected potentials
Both PRISM and multislice require dividing the atomic 
coordinates into thin slices and computing the projected 
potential for each. The calculation details are described 
by Kirkland and require evaluation of modified Bessel 
functions of the second kind, which are computationally 
expensive [21]. This barrier is overcome by precomputing 
the result for each unique atomic species and assembling 
a lookup table. Each projected potential is calculated on 
an 8 × supersampled grid, integrated, and cached. Cur-
rently, this grid is defined as a regularly spaced rectangu-
lar grid, but in future releases additional grid selections 
may become available. The sample volume is then divided 
into slices, and the projected potential for each slice is 
computed on separate CPU threads using the cached 
potentials. In principle, this step could be GPU acceler-
ated, but even for a large sample with several hundred 
thousand atoms the computation time is on the order of 
seconds and is considered negligible.

PRISM probe simulations
Following calculation of the projected potential, the 
next step of PRISM is to compute the compact S-matrix. 
Each plane wave component is repeatedly transmitted 
and propagated through each slice of the potential until 
it has passed through the entire sample, at which point 
the complex-valued output wave is stored in real space 
to form a single layer of the compact S-matrix. This 
step of PRISM is highly analogous to multislice except 
whereas multislice requires propagating/transmitting the 
entire probe simultaneously, in PRISM each initial Fou-
rier component is propagated/transmitted individually. 

The advantage is that in PRISM this calculation must 
only be performed once per Fourier component for the 
entire calculation, while in multislice it must be repeated 
entirely at every probe position. Thus, in many sample 
geometries the PRISM algorithm can significantly out-
perform multislice despite the overhead of the S-matrix 
calculation [39].

The propagation step requires a convolution operation 
which can be performed efficiently through use of the 
FFT. Our implementation uses the popular FFTW and 
cuFFT libraries for the CPU and GPU implementations, 
respectively [41, 42]. Both of these libraries support batch 
FFTs, whereby multiple Fourier transforms of the same 
size can be computed simultaneously. This allows for 
reuse of intermediate twiddle factors, resulting in a faster 
overall computation than performing individual trans-
forms one-by-one at the expense of requiring a larger 
block of memory to hold the multiple arrays. Prismatic 
uses this batch FFT method with both PRISM and multi-
slice, and thus each worker thread will actually propagate 
a number of plane waves or probes simultaneously. This 
number, called the batch_size, may be tuned by the user 
to potentially enhance performance at the cost of using 
additional memory, but sensible defaults are provided.

In the final step of PRISM, a 2D output is produced 
for each probe position by applying coefficients, one for 
each plane wave, to the elements of the compact S-matrix 
and summing along the dimension corresponding to the 
different plane waves. These coefficients correspond to 
Fourier phase shifts that scale and translate each plane 
wave to the relevant location on the sample in real space. 
The phase coefficients, which are different for each 
plane wave but constant for a given probe position, are 
precomputed and stored in global memory. Each thread-
block on the device first reads the coefficients from global 
memory into shared memory, where they can be reused 
throughout the lifetime of the threadblock. Components 
of the compact S-matrix for a given output wave posi-
tion are then read from global memory, multiplied by the 
relevant coefficient, and stored in fast shared memory, 
where the remaining summation is performed. This par-
allel sum-reduction is performed using a number of well-
established optimization techniques including reading 
multiple global values per thread, loop unrolling through 
template specialization, and foregoing of synchronization 
primitives when the calculation has been reduced to the 
single-warp level [47]. Once the real space exit-wave has 
been computed, the modulus squared of its FFT yields 
the calculation result at the detector plane.

Multislice probe simulations
The implementation of multislice is fairly straight-
forward. The initial probe is translated to the probe 

GPU Activities Over Time

Stream 1

Stream 2

Stream 3

Stream 4

Stream 5

Stream 1

Stream 2

Stream 3

Stream 4

Stream 5

5 ms0 ms 10 ms 15 ms

Prismatic Kernel cuFFT

cudaMemcpy

cudaMemcpy

cudaMemcpy

TFFucTFFuc

8.2 ms8.1 ms 8.3 ms 8.4 ms 8.5 ms

a

b

Fig. 3 a Sample profile of the GPU activities on a single NVIDIA 
GTX 1070 during a multislice simulation in streaming mode with b 
enlarged inset containing a window where computation is occurring 
on streams #1 and #5 while three separate arrays are simultaneously 
being copied on streams #2–4



Page 6 of 14Pryor Jr. et al. Adv Struct Chem Imag  (2017) 3:15 

position of interest, and then is alternately transmitted 
and propagated through the sample. In practice, this is 
accomplished by alternating forward and inverse Fourier 
transforms with an element-wise complex multiplication 
in between each with either the transmission or propa-
gation functions. Upon propagation through the entire 
sample, the squared intensity of the Fourier transform of 
the exit-wave provides the final result of the calculation at 
the detector plane for that probe position. For additional 
speed, the FFTs of many probes are computed simultane-
ously in batch mode. Thus in practice batch_size probes 
are transmitted, followed by a batch FFT, then propa-
gated, followed by a batch inverse FFT, etc.

Streaming data for very large simulations
The preferred way to perform PRISM and multislice 
simulations is to transfer large data structures such as 
the projected potential array or the compact S-matrix to 
each GPU only once, where they can then be read from 
repeatedly over the course of the calculation. However, 
this requires that the arrays fit into limited GPU memory. 
For simulations that are too large, we have implemented 
an asynchronous streaming version of both PRISM and 
multislice. Instead of allocating and transferring a single 
read-only copy of large arrays, buffers are allocated to 
each stream large enough to hold only the relevant sub-
set of the data for the current step in the calculation, and 
the job itself triggers asynchronous streaming of the data 
it requires for the next step. For example, in the stream-
ing implementation of multislice, each stream possesses 
a buffer to hold a single slice of the potential array and 
after transmission through that slice, the transfer of the 
next slice is requested. The use of asynchronous memory 
copies and CUDA streams permits the partial hiding of 
memory transfer latencies behind computation (Fig.  3). 
Periodically, an individual stream must wait on data 
transfer before it can continue, but if another stream is 
ready to perform work the device is effectively kept busy. 
Doing so is critical for performance, as the amount of 
time needed to transfer data can become significant rela-
tive to the total calculation. By default, Prismatic uses an 
automatic setting to determine whether to use the single-
transfer or streaming memory model whereby the input 
parameters are used to estimate how much memory will 
be consumed on the device, and if this estimate is too 
large compared with the available device memory then 
streaming mode is used. This estimation is conservative 
and is intended for convenience, but users can also forci-
bly set either memory mode.

Launch configuration
All CUDA kernels are accompanied by a launch con-
figuration that determines how the calculation will be 

carried out [46]. The launch configuration specifies the 
amount of shared memory needed, on which CUDA 
stream to execute the computation, and defines a 3D grid 
of threadblocks, each of which contains a 3D arrange-
ment of CUDA threads. It is this arrangement of threads 
and threadblocks that must be managed in software to 
perform the overall calculation. The choice of launch 
configuration can have a significant impact on the over-
all performance of a CUDA application as certain GPU 
resources, such as shared memory, are limited. If too 
many resources are consumed by individual thread-
blocks, the total number of blocks that run concurrently 
can be negatively affected, reducing overall concurrency. 
This complexity of CUDA cannot be overlooked in a 
performance-critical application, and we found that the 
speed difference in a suboptimal and well-tuned launch 
configuration could be as much as 2–3 x.

In the reduction step of PRISM, there are several com-
peting factors that must be considered when choosing a 
launch configuration. The first of these is the threadblock 
size. The compact S-matrix is arranged in memory such 
that the fastest changing dimension, considered to be 
the x-axis, lies along the direction of the different plane 
waves. Therefore to maximize memory coalescence, 
threadblocks are chosen to be as large as possible in the  
x-direction. Usually the result will be threadblocks that 
are effectively 1D, with BlockSizey and BlockSizez equal 
to one; however, in cases where very few plane waves 
need to be computed, the blocks may be extended in y 
and z to prevent underutilization of the device. To per-
form the reduction, two arrays of shared memory are 
used. The first is dynamically sized and contains as many 
elements as there are plane waves. This array is used to 
cache the phase shift coefficients to prevent unnecessary 
reads from global memory, which are slow. The second 
array has BlockSizex * BlockSizey * BlockSizez elements 
and is where the actual reduction is performed. Each 
block of threads steps through the array of phase shifts 
once and reads them into shared memory. Then the block 
contiguously steps through the elements of the compact 
S-matrix for a different exit-wave position at each y and 
z index, reading values from global memory, multiply-
ing them by the associated coefficient, and accumulating 
them in the second shared memory array. Once all of the 
plane waves have been accessed, the remaining reduc-
tion occurs quickly as all remaining operations occur in 
fast shared memory. Each block of threads will repeat 
this process for many exit-wave positions which allows 
efficient reuse of the phase coefficients from shared 
memory. The parallel reduction is performed by repeat-
edly splitting each array in half and adding one half to the 
other until only one value remains. Consequently, if the 
launch configuration specifies too many threads along 
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the x-direction, then many of them will become idle as 
the reduction proceeds, which wastes work. Conversely, 
choosing BlockSizex to be too small is problematic for 
shared memory usage, as the amount of shared memory 
per block for the phase coefficients is constant regard-
less of the block size. In this case, the amount of shared 
memory available will rapidly become the limiting factor 
to the achievable occupancy. A suitably balanced block 
size produces the best results.

The second critical component of the launch configura-
tion is the number of blocks to launch. Each block glob-
ally reads the phase coefficients once and then reuses 
them, which favors using fewer blocks and having each 
compute more exit-wave positions. However, if too few 
blocks are launched, the device may not reach full occu-
pancy. The theoretically optimal solution would be to 
launch the minimal amount of blocks needed to saturate 
the device and no more.

Considering these many factors, Prismatic uses the 
following heuristic to choose a good launch configura-
tion. At runtime, the properties of the available devices 
are queried, which includes the maximum number of 
threads per threadblock, the total amount of shared 
memory, and the total number of streaming multiproces-
sors. BlockSizex is chosen to be either the largest power of 
two smaller than the number of plane waves or the maxi-
mum number of threads per block, whichever is smaller. 
The total number of threadblocks that can run concur-
rently on a single streaming multiprocessor is then esti-
mated using BlockSizex, the limiting number of threads 
per block, and the limiting number of threadblocks per 
streaming multiprocessor. The total number of thread-
blocks across the entire device is then estimated as this 
number times the total number of streaming multipro-
cessors, and then the grid dimensions of the launch con-
figuration are set to create three times this many blocks, 
where the factor of three is a fudge factor that we found 
produces better results.

Benchmarks
Algorithm comparison
A total of four primary algorithms are implemented 
Prismatic, as there are optimized CPU and GPU imple-
mentations of both PRISM and multislice simulation. To 
visualize the performance of the different algorithms, 
we performed a number of benchmarking simulations 
spanning a range of sample thicknesses, sizes, and with 
varying degrees of sampling. Using the average density of 
amorphous carbon, an atomic model corresponding to a 
100 × 100 × 100 Å carbon cell was constructed and used 
for image simulation with various settings for slice thick-
ness and pixel sampling. The results of this analysis are 
summarized in Fig.  4. These benchmarks are plotted as 

a function of the maximum scattering angle qmax, which 
varies inversely to the pixel size.

The difference in computation time t shown in Fig.  4 
between traditional CPU multislice and GPU PRISM is 
stark, approximately four orders of magnitude for the 
“fast” setting where f = 16, and still more than a fac-
tor of 500 for the more accurate case of f = 4. For both 
PRISM and multislice, the addition of GPU acceleration 
increases speed by at least an order of magnitude. Note 
that as the thickness of the slices is decreased, the rela-
tive gap between PRISM and multislice grows, as probe 
calculation in PRISM does not require additional propa-
gation through the sample. We have also fit curves of the 
form

where A and B are prefactors and n is the asymptotic 
power law for high scattering angles. We observed that 
most of the simulation types approximately approach 
n = 2, which is unsurprising for both PRISM and mul-
tislice. The limiting operation in PRISM is matrix-scalar 
multiplication, which depends on the array size and var-
ies as qmax

2. For multislice, the computation is a combi-
nation of multiplication operations and FFTs, and the 
theoretical O(n log n) scaling of the latter is only slightly 
larger than 2, and thus the trendline is an approximate 
lower bound. The only cases that fall significantly outside 
the n = 2 regime were the multislice GPU simulations 
with the largest slice separation (20 Å) and the “fast” 
PRISM GPU simulations where f = 16. These calcula-
tions are sufficiently fast that the relatively small over-
head required to compute the projected potential slices, 
allocate data, etc., is actually a significant portion of the 
calculation, resulting in apparent scaling better than 
qmax

2. For the f = 16 PRISM case, we observed approxi-
mately qmax

0.6 scaling, which translates into sub-milli-
second calculation times per probe even with small pixel 
sizes and slice thicknesses.

To avoid unnecessarily long computation times for the 
many simulations, particularly multislice, different num-
bers of probe positions were calculated for each algo-
rithm, and thus we report the benchmark as time per 
probe. Provided enough probe positions are calculated 
to obviate overhead of computing the projected potential 
and setting up the remainder of the calculation, there is 
a linear relationship between the number of probe posi-
tions calculated and the calculation time for all of the 
algorithms, and computing more probes will not change 
the time per probe significantly. Here, this overhead 
is only on the order of 10 s or fewer, and the reported 
results were obtained by computing 128 × 128 probes 
for PRISM CPU and multislice CPU, 512 × 512 for multi-
slice GPU, and 2048 × 2048 for PRISM GPU. All of these 

(3)t = A+ B qmax
n,
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calculations used the single-transfer memory implemen-
tations and were run on compute nodes with dual Intel 
Xeon E5-2650 processors, four Tesla K20 GPUs, and 
64GB RAM from the VULCAN cluster within the Law-
rence Berkeley National Laboratory Supercluster.

Hardware scaling
Modern high performance computing is dominated by 
parallelization. At the time of this writing, virtually all 
desktop CPUs contain at least four cores, and high end 
server CPUs can have as many as twenty or more [48]. 
Even mobile phones have begun to routinely ship with 
multicore processors [49]. In addition to powerful CPUs, 
GPUs, and other types of coprocessors such as the Xeon 
Phi [50] can be used to accelerate parallel algorithms. It, 
therefore, is becoming increasingly important to write 

parallel software that fully utilizes the available comput-
ing resources.

To demonstrate how the algorithms implemented in 
Prismatic scale with hardware, we performed the fol-
lowing simulation. Simulated images of a 100 × 100 × 
100 Å amorphous carbon cell were produced with both 
PRISM and multislice using 5 Å thick slices, pixel size 0.1 
Å, 20 mrad probe convergence semi-angle, and 80 keV 
electrons. This simulation was repeated using varying 
numbers of CPU threads and GPUs. As before, a vary-
ing number of probes were computed for each algorithm, 
specifically 2048 × 2048 for GPU PRISM, 512 × 512 for 
CPU PRISM and GPU multislice, and 64 × 64 for CPU 
multislice. This simulation utilized the same 4-GPU 
VULCAN nodes described previously. The results of this 
simulation are summarized in Fig. 5.

Fig. 4 Comparison of the CPU/GPU implementations of the PRISM and multislice algorithms described in this work. A 100 × 100 × 100 Å amor-
phous carbon cell was divided slices of varying thickness and sampled with progressively smaller pixels in real space corresponding to digitized 
probes of array size 256 × 256, 512 × 512, 1024 × 1024, and 2048 × 2048, respectively. Two different PRISM simulations are shown, a more accurate 
case where the interpolation factor f = 4 (left), and a faster case with f = 16 (right). The multislice simulation is the same for both columns. Power 
laws were fit of the form A+ B qmax

n where possible. The asymptotic power laws for higher scattering angles are shown on the right of each curve
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The ideal behavior for the CPU-only codes would be to 
scale as 1/x with the number of CPU cores utilized such 
that doubling the number of cores also approximately 
doubles the calculation speed. Provided that the number 
of CPU threads spawned is not greater than the number 
of cores, the number of CPU threads can effectively be 
considered the number of CPU cores utilized, and this 
benchmark indicates that both CPU-only PRISM and 
multislice possess close to ideal scaling behavior with 
number of CPU cores available.

The addition of a single GPU improves both algorithms 
by approximately a factor of 8 in this case, but in general, 
the relative improvement varies depending on the qual-
ity and number of the CPUs vs GPUs. The addition of a 
second GPU improves the calculation speed by a further 
factor of 1.8–1.9 with 14 threads, and doubling the num-
ber of GPUs to four total improves again by a similar fac-
tor. The reason that this factor is less than two is because 
the CPU is doing a nontrivial amount of work alongside 
the GPU. This claim is supported by the observation that 
when only using two threads the relative performance 
increase is almost exactly a factor of two when doubling 
the number of GPUs. We conclude that our implemen-
tations of both algorithms scale very well with available 
hardware, and potential users should be confident that 
investing in additional hardware, particularly GPUs, will 
benefit them accordingly.

Data streaming/single‑transfer benchmark
For both PRISM and multislice, Prismatic implements 
two different memory models, a single-transfer method 
where all data is copied to the GPU a single time before 
the main computation begins and a streaming mode 
where asynchronous copying of the required data is 
triggered across multiple CUDA streams as it is needed 
throughout the computation. Streaming mode reduces 
the peak memory required on the device at the cost of 
redundant copies; however, the computational cost of 
this extra copying can be reduced by hiding the transfer 
latency behind compute kernels and other copies (Fig. 3).

To compare the implementations of these two memory 
models in Prismatic, a number of amorphous carbon 
cells of increasing sizes were used as input to simula-
tions using 80 keV electrons, 20 mrad probe convergence 
semi-angle, 0.1 Å pixel size, 4 Å slice thickness, and 0.4 
Å probe steps. Across a range of simulation cell sizes, 
the computation time of the streaming vs. single-trans-
fer versions of each code are extremely similar while the 
peak memory may be reduced by an order of magnitude 
or more (Fig. 6). For the streaming calculations, memory 
copy operations may become significant relative to the 
computational work (Fig. 3); however, this can be allevi-
ated by achieving multi-stream concurrency.

Comparison to existing methods
All previous benchmarks in this work have measured the 
speed of the various algorithms included in Prismatic 
against each other; however, relative metrics are largely 
meaningless without an external reference both in terms 
of overall speed and resulting image quality. To this end, 
we also performed STEM simulations of significant size 
and compare the results produced by the algorithms in 

Fig. 5 Comparison of the implementations of multislice and PRISM 
for varying combinations of CPU threads and GPUs. The simulation 
was performed on a 100 × 100 × 100 Å amorphous carbon cell with 
5 Å thick slices, 0.1 Å pixel size, and 20 mrad probe convergence 
semi-angle. All simulations were performed on compute nodes with 
dual Intel Xeon E5-2650 processors, four Tesla K20 GPUs, and 64 GB 
RAM. Calculation time of rightmost data point is labeled for all curves

Fig. 6 Comparison of a relative performance and b peak memory 
consumption for single-transfer and streaming implementations of 
PRISM and multislice
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Prismatic, the popular CPU package computem, and a 
newer GPU multislice code, MULTEM. [18, 21, 33, 34].

We have chosen a simulation cell typical of those used 
in structural atomic-resolution STEM studies, a complex 
Ruddlesden–Popper (RP) layered oxide. The RP struc-
ture we used contains nine pseudocubic unit cells of 
perovskite strontium titanate structure, with two stack-
ing defects every 4.5 1 × 1 cells that modify the composi-
tion and atomic coordinates. The atomic coordinates of 
this cell were refined using density functional theory and 
were used for very large scale STEM image simulations 
[51]. This 9 × 1 × 1 unit cell was tiled 3 × 27 × 27 times 
resulting in final sample approximately 10.5 nm cubed 
with more than 850,000 atoms.

Simulations were performed with multislice as imple-
mented in computem (specifically using the autostem 
module), multislice in MULTEM, multislice in Pris-
matic, and the PRISM method with f values of 4, 8, 12, 
and 16 using 80 keV electrons, 1520 × 1536 pixel sam-
pling, 20 mrad probe convergence semi-angle, and 5 Å 
thick potential slices. All simulations used Kirkland’s 
method for calculating the projected potential. A total of 
512 × 512 evenly-spaced probes were computed for each 
simulation, and a total of 64 frozen phonon configura-
tions were averaged to produce the final images, which 
are summarized in Fig.  7. The Prismatic and MULTEM 
simulations were run on the VULCAN GPU nodes while 
computem simulations utilized better VULCAN CPU 
nodes with dual Intel Xeon E5-2670v2 CPUs and 64 GB 
RAM.

The mean computation time per frozen phonon for the 
computem simulations were 18.2 h resulting in a total 
computation time of 48.5 days. The acceleration made 
with GPU usage in MULTEM may seem to be fairly mod-
est, but this is mostly due to the nature of the hardware 
and deserves some clarification. The version of MULTEM 
available at the time of this writing only can utilize one 
GPU and does not simultaneously use the CPU. On a 
quad-core desktop workstation, one may expect a single 
GPU to calculate FFTs somewhere between 4 and 10 × 
faster than on the CPU, but the server nodes used for 
these simulations possess up to 20 cores, which some-
what closes the gap between the two hardware types. On 
a workstation, one would expect MULTEM to perform 
better relative to computem. We note that this is through 
no fault of computem, which is itself a well-optimized 
code. It simply runs without the benefit of GPU accelera-
tion. MULTEM is an ongoing project and provides addi-
tional flexibility such as alternate methods of computing 
the projected potential, and our intention is not to dis-
count the value of these other simulation packages based 
purely on performance metrics.

As described previously, Prismatic is capable of utiliz-
ing multiple GPUs and CPU cores simultaneously, and 
the use of Prismatic CPU + GPU multislice code here 
provides an acceleration of about 11 × relative to com-
putem, reducing the computation from 7  weeks to just 
over 4 days. The PRISM f = 4 simulation is almost 
indistinguishable from the multislice results, and gives a 
13 × speed-up over our GPU multislice simulation. For 
the f = 8 PRISM simulation an additional 6 × improve-
ment is achieved, requiring just over an hour of computa-
tion time with very similar resulting image quality. The 
f = 12 and f = 16 PRISM results show moderate and 
substantial intensity deviations from the ideal result, 
respectively, but require just tens of seconds per frozen 
phonon configuration. The intensity differences may be 
quantitatively visualized in the line scans on the right col-
umn of Fig.  7. The total difference in acceleration from 
CPU multislice to the fastest PRISM simulation shown in 
Fig. 7 is over three orders of magnitude. The importance 
of choosing a suitable value for the PRISM interpolation 
factor is evident by the artifacts introduced for f = 12 
and f = 16 where the real space probe is cropped too 
heavily. The Prismatic GUI provides an interactive way 
to compute individual probes with PRISM and multi-
slice to tune the parameters before running a full calcula-
tion. Ultimately, the user’s purpose dictates what balance 
of speed and accuracy is appropriate, but the important 
point is that calculations that previously required days or 
weeks on a computer cluster may now be performed on a 
single workstation in a fraction of the time.

Application to atomic electron tomography
One potentially important application of STEM image 
simulations is AET experiments. One of the ADF-STEM 
images from an atomic-resolution tilt series of a FePt 
nanoparticle [14] is shown in Fig.  8a, with the corre-
sponding linear projection from the 3D reconstruction 
shown in Fig. 8b. In this study and others, we have used 
multislice simulations to validate the tomographic recon-
structions and estimate both the position and chemical 
identification errors [13, 14]. One such multislice simu-
lation is given in Fig. 8c. This simulation was performed 
at 300 kV using a 30 mrad STEM probe, with a simula-
tion pixel size of 0.0619 Å and a spacing between adja-
cent probes of 0.3725 Å. The image results shown are for 
16 frozen phonon configurations using a 41–159 mrad 
annular dark field detector. This experimental dataset 
includes some postprocessing and was obtained freely 
online [14].

The 3D reconstruction algorithm we have used, termed 
GENeralized Fourier Iterative REconstruction (GEN-
FIRE), assumes that the projection images are linearly 
related to the potential of the reconstruction [14, 52]. 
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Fig. 7 Comparison of simulation results produced by a computem, b MULTEM, and c–g Prismatic. The sample is composed of 27 × 27 × 27 
pseudocubic perovskite unit cells, and images were simulated using 80 keV electrons, a 20 mrad probe convergence semi-angle, 0 Å defocus, and 
1520 × 1536 pixel sampling for the probe and projected potential. A total of 512 × 512 probe positions were computed and the final images are 
an average over 64 frozen phonon configurations. Separate PRISM simulations were performed with interpolation factors 4, 8, 12, and 16. Line scans 
corresponding to the positions of the red/blue arrows are shown in the right-hand column. As the various simulations produce results with differ-
ing absolute intensity scales, all images were scaled to have the same mean intensity as Prismatic multislice
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This assumption was sufficient for atomic-resolution 
tomographic reconstruction, but the measured intensity 
has some non-linear dependence on the atomic poten-
tials, due to effects such as exponential decrease of elec-
trons in the unscattered STEM probe, channeling effects 
along atomic columns, coherent diffraction at low scat-
tering angles, and other related effects [11, 53–58]. These 
effects can be seen in the differences between the images 
shown in Fig.  8b, c. The multislice simulation image 
shows sharper atomic columns, likely due to the chan-
neling effect along atomic columns that are aligned close 
to the beam direction [55]. Additionally, there are mean 
intensity differences between the center part of the par-
ticle (thickest region) and the regions closed to the sur-
faces in projection (thinnest regions). Including these 
dynamical scattering effects in the reconstruction algo-
rithm would increase the accuracy of the reconstruction.

However, Fig. 8h shows that the computation time for 
the multislice simulation is prohibitively high. Even using 
the Prismatic GPU code, each frozen phonon configu-
ration for multislice require almost 7 h. Using 16 con-
figurations and simulating all 65 projection angles would 
require months of simulation time, or massively paral-
lel simulation on a super cluster. An alternative is to use 
the PRISM algorithm for the image simulations, shown 
in Fig.  8d, e and f for interpolation factors of f = 8, 16 
and 32, respectively. Figure  8g shows the relative errors 
of Fig. 8b–f, where the error is defined by the root-mean-
square of the intensity difference with the experimental 
image in Fig. 8a, divided by the root-mean-square of the 
experimental image. Unsurprisingly, the linear projection 
shows the lowest error since it was calculated directly 
from the 3D reconstruction built using the experimental 

data. The multislice and PRISM f = 8 and f = 16 simu-
lations show essentially the same errors within the noise 
level of the experiment. The PRISM f = 32 has a higher 
error, and obvious image artifacts are visible in Fig.  8f. 
Thus, we conclude that using an interpolation factor 
f = 16 produces an image of sufficient accuracy. This 
calculation required only 90 s per frozen phonon calcula-
tion, and therefore computing 16 configurations for all 65 
tilt angles would require only 26 h. One could therefore 
imagine integrating this simulation routine into the final 
few tomography reconstruction iterations to account for 
dynamical scattering effects and to improve the recon-
struction quality.

Conclusions
We have presented Prismatic, an asynchronous, stream-
ing multi-GPU implementation of the PRISM and mul-
tislice algorithms for image formation in scanning 
transmission electron microscopy. Both multislice and 
PRISM algorithms were described in detail as well as our 
approach to implementing them in a parallel framework. 
Our benchmarks demonstrate that this software may be 
used to simulate STEM images up to several orders of 
magnitude faster than using traditional methods, allow-
ing users to simulate complex systems on a GPU worksta-
tion without the need for a computer cluster. Prismatic 
is freely available as an open-source C++/CUDA pack-
age with a graphical interface that contains convenience 
features such as allowing users to interactively view the 
projected potential slices, compute/compare individual 
probe positions with both PRISM and multislice, and 
dynamically adjust positions of virtual detectors. A com-
mand line interface and a Python package, PyPrismatic, 
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are also available. We have demonstrated one potential 
application of the Prismatic code, using it to compute 
STEM images to improve the accuracy in atomic electron 
tomography. We hope that the speed of this code as well 
as the convenience of the user interface will have signifi-
cant impact for users in the EM community.
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