
Lawrence Berkeley National Laboratory
LBL Publications

Title

A streaming multi-GPU implementation of image simulation algorithms for scanning
transmission electron microscopy

Permalink

https://escholarship.org/uc/item/7fn6r76h

Journal

Advanced Structural and Chemical Imaging, 3(1)

ISSN

2198-0926

Authors

Pryor, Alan
Ophus, Colin
Miao, Jianwei

Publication Date

2017-12-01

DOI

10.1186/s40679-017-0048-z

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7fn6r76h
https://escholarship.org
http://www.cdlib.org/

Pryor Jr. et al. Adv Struct Chem Imag (2017) 3:15
DOI 10.1186/s40679-017-0048-z

METHODOLOGY

A streaming multi-GPU implementation
of image simulation algorithms for scanning
transmission electron microscopy
Alan Pryor Jr.1*, Colin Ophus2 and Jianwei Miao1

Abstract

Simulation of atomic-resolution image formation in scanning transmission electron microscopy can require significant
computation times using traditional methods. A recently developed method, termed plane-wave reciprocal-space
interpolated scattering matrix (PRISM), demonstrates potential for significant acceleration of such simulations with
negligible loss of accuracy. Here, we present a software package called Prismatic for parallelized simulation of image
formation in scanning transmission electron microscopy (STEM) using both the PRISM and multislice methods. By
distributing the workload between multiple CUDA-enabled GPUs and multicore processors, accelerations as high as
1000 × for PRISM and 15 × for multislice are achieved relative to traditional multislice implementations using a single
4-GPU machine. We demonstrate a potentially important application of Prismatic, using it to compute images for
atomic electron tomography at sufficient speeds to include in the reconstruction pipeline. Prismatic is freely available
both as an open-source CUDA/C++ package with a graphical user interface and as a Python package, PyPrismatic.

Keywords: Scanning transmission electron microscopy, PRISM, Multislice, GPU, CUDA, Electron scattering, Imaging
simulation, High performance computing, Atomic electron tomography

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

Background
Scanning transmission electron microscopy (STEM) has
had a major impact on materials science [1, 2], espe-
cially for atomic-resolution imaging since the widespread
adoption of hardware aberration correction [3–5]. Many
large scale STEM experimental techniques are routinely
validated using imaging or diffraction simulations. Exam-
ples include electron ptychography [6], 3D atomic recon-
structions using dynamical scattering [7], high precision
surface atom position measurements on catalytic parti-
cles [8], de-noising routines [9], phase contrast imaging
with phase plates [10], new dynamical atomic contrast
models [11], atomic electron tomography (AET) [12–16],
and many others. The most commonly employed simu-
lation algorithm for STEM simulation is the multislice
algorithm introduced by Cowlie and Moodie [17]. This

method consists of two main steps. The first is calculation
of the projected potentials from all atoms into a series
of 2D slices. Second, the electron wave is initialized and
propagated through the sample. The multislice method
is straightforward to implement and is quite efficient for
plane-wave or single-probe diffraction simulations [18].

A large number of electron microscopy simulation
codes are available, summarized in Table 1. Most of
these codes use the multislice method, and many have
implemented parallel processing algorithms for both
central processing units (CPUs) and graphics process-
ing units (GPUs). Recently, some authors have begun
using hybrid CPU + GPU codes for multislice simula-
tion [40]. Multislice simulation relies heavily on the fast
Fourier transform (FFT) which can be computed using
heavily optimized packages for both CPUs [41] and
GPUs [42]. The other primary computational require-
ment of multislice calculations is large element-wise
matrix arithmetic, which GPUs are very well-suited
to perform [43]. Parallelization is important because
STEM experiments may record full probe images or

Open Access

*Correspondence: apryor6@gmail.com
1 Department of Physics and Astronomy and California NanoSystems
Institute, University of California at Los Angeles, Los Angeles, CA 90095,
USA
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40679-017-0048-z&domain=pdf

Page 2 of 14Pryor Jr. et al. Adv Struct Chem Imag (2017) 3:15

integrated values from thousands or even millions of
probe positions [10, 44]. Performing STEM simulations
on the same scale as these experiments are very chal-
lenging because in the conventional multislice algo-
rithm the propagation of each STEM probe through the
sample is computed separately. Furthermore, if addi-
tional simulation parameters are explored, the number
of required simulations can become even larger, requir-
ing very large computation times even using a modern,
parallelized implementation. To address this issue, we
introduced a new algorithm called PRISM which offers
a substantial speed increase for STEM image simula-
tions [39].

In this manuscript, we introduce a highly-optimized
multi-GPU simulation code that can perform both
multislice and PRISM simulations of extremely large
structures called Prismatic. We will briefly describe
the multislice and PRISM algorithms, and describe the
implementation details for our parallelized CPU and
CPU + GPU codes. We perform timing benchmarks
to compare both algorithms under a variety of condi-
tions. Finally, we demonstrate the utility of our new
code with typical use cases and compare with the pop-
ular packages computem and MULTEM [21, 33, 34].
Prismatic includes a graphical user interface (GUI) and
uses the cross-platform build system CMake [45]. All
of the source code is freely available. Throughout this
manuscript, we use the NVIDIA convention of refer-
ring to the CPU and GPU(s) as the host and device(s),
respectively.

Methods
Description of algorithms
A flow chart of the steps performed in Prismatic is given
in Fig. 1. Both multislice and PRISM share the same ini-
tial steps, where the sample is divided into slices which
are used to compute the projected potential from the
atomic scattering factors give in [21]. This step is shown
schematically in Fig. 1a, b, and is implemented by using
a precomputed lookup table for each atom type [10, 39].

Figure 1c–e show the steps in a multislice STEM sim-
ulation. First the complex electron wave � represent-
ing the initial converged probe is defined, typically as an
Airy disk function shown in Fig. 1c. This choice of probe
represents that of an idealized instrument with perfect,
aberration-free lenses. This probe is positioned at the
desired location on the sample surface in real space, as in
Fig. 1d. Next, this probe is propagated through the sam-
ple’s potential slices defined in Fig. 1b. This propagation
is achieved by alternating two steps. The first step is a
transmission through a given potential slice V 2D

p over the
real space coordinates −→r

where σ is the beam-sample interaction constant. Next,
the electron wave is propagated over the distance t to
the next sample potential slice, which is done in Fourier
space over the Fourier coordinates −→q

(1)ψp+1(
−→r) = ψp(

−→r) exp
[

iσV 2D
p

(−→r
)

]

,

(2)�p+1(
−→q) = �p(

−→q) exp(−iπ�|−→q |2t),

Table 1 A non-exhaustive list of electron microscopy simulation codes

Code(s) Author(s) Reference(s) Comments Links

xHREM Ishizuka [19, 20] HREM Simulation Suite

computem Kirkland [18, 21] CPU parallelized Computem Repo

EMS, JEMS Stadelmann [22, 23] JEMS website

MacTempas Kilaas [24] MacTempasX website

QSTEM Koch [25] QSTEM website

CTEMsoft De Graef [26] CTEMsoft repo

Web-EMAPS Zuo et al. [27] Deprecated Status page

STEM_CELL Carlino, Grillo et al. [28, 29] CPU parallelized STEM_CELL website

STEMSIM Rosenauer and Schowalter [30] STEMSIM webpage

MALTS Walton et al. [31] Lorentz TEM

Dr. Probe Barthel and Houben [32] Dr. Probe website

MULTEM Lobato and Van Dyck [33, 34] GPU par., many modes MULTEM repo

FDES Van den Broek et al. [35] Multi-GPU parallelized FDES repo

μSTEM D’Alfonso et al. [36, 37] GPU par., inelastic μSTEM website

STEMsalabim Oelerich et al. [38] CPU parallelized STEMsalabim website

Prismatic Pryor Jr. and Ophus [39], this work Multi-GPU streaming Prismatic website, repo

Page 3 of 14Pryor Jr. et al. Adv Struct Chem Imag (2017) 3:15

where � is the electron wavelength. These steps are
alternated until the electron probe has been propagated
through the entire sample. Next, the simulated output
is computed, which is typically a subset of the probe’s
intensity summed in Fourier space as shown in Fig. 1e.
For more details on the multislice method, we refer read-
ers to Kirkland [21]. The steps given in Fig. 1c–e are
repeated for the desired probe positions, typically a 2D
grid. Thus the simulation produces a 2D diffraction pat-
tern at each position in the 2D scan grid, resulting in a
4D output, the size of which can become considerable.
Many simulations only require counting the scattered
electrons within some angular range, and optionally each
of the 2D diffraction patterns can be integrated once azi-
muthally into radial bins representing the electrons scat-
tered between a corresponding inner and outer angle at a
given probe position, forming a 3D output. The 3D out-
put is conceptually the same as having a large number of
evenly-spaced virtual annular detectors. The 3D output
can be further integrated radially between some inner
and outer angle to produce a 2D output where a single
pixel value is recorded for each probe position represent-
ing the total number of electrons scattered between the
inner and outer virtual detector position, allowing forma-
tion of multiple simulated 2D images such a bright field
(BF), high-angle annular dark field (HAADF), etc. The
4D, 3D, and 2D outputs can be independently turned on/
off by the user.

The PRISM simulation method for STEM images
is outlined in Fig. 1f–k. This method exploits the fact
that an electron scattering simulation can be decom-
posed into an orthogonal basis set, as in the Bloch wave
method [21]. If we compute the electron scattering for
a set of plane waves that forms a complete basis, these
waves can each be multiplied by a complex scalar value
and summed to give a desired electron probe. A detailed
description of the PRISM algorithm is given in [39].

The first step of PRISM is to compute the sample poten-
tial slices as in Fig.1a, b. Next, a maximum input probe
semi-angle and an interpolation factor f is defined for the
simulation. Figure 1g shows how these two variables spec-
ify the plane wave calculations required for PRISM, where
every fth plane wave in both spatial dimensions inside the
maximum scattering angle is required. Each of these plane
waves must be propagated through the sample using the
multislice method given above, shown in Fig. 1h. Once all
of these plane waves have been propagated through the
sample, together they form the desired basis set we refer
to as the compact S-matrix. Next, we define the location
of all desired STEM probes. For each probe, a subset of all
plane waves is cut out around the maximum value of the
input STEM probe. The size length of the subset regions is
d/f, where d is the simulation cell length. The probe coef-
ficients for all plane waves are complex values that define
the center position of the STEM probe, and coherent
wave aberrations such as defocus or spherical aberration.

Fig. 1 Flow chart of STEM simulation algorithm steps. a All atoms are separated into slices at different positions along the beam direction, and b
atomic scattering factors are used to compute projected potential of each slice. c Multislice algorithm, where each converged probe is initialized, d
propagated through each of the sample slices defined in (b), and then e output either as images, or radially integrated detectors. f PRISM algorithm
where g converged probes are defined in coordinate system downsampled by factor f as a set of plane waves. h Each required plane wave is propa-
gated through the sample slices defined in (b). i Output probes are computed by cropping subset of plane waves multiplied by probe complex
coefficients, and j summed to form output probe, k which is then saved

Page 4 of 14Pryor Jr. et al. Adv Struct Chem Imag (2017) 3:15

Each STEM probe is computed by multiplying every plane
wave subset by the appropriate coefficient and summing
all wave subsets. This is equivalent to using Fourier inter-
polation to approximate the electron probe wavefunction.
In real space, this operation corresponds to cropping the
probe from the full field of view, and as long as this sub-
set region is large enough to encompass the vast major-
ity of the probe intensity, the error in this approximation
will be negligible [39]. Thus, the key insight in the PRISM
algorithm is that the real space probe decays to approxi-
mately zero rapidly and under many imaging simulation
conditions is oversampled. Finally, the output signal is
computed for all probes as above, giving a 2D, 3D or 4D
output array. As will be shown below, STEM simulations
using the PRISM method can be significantly faster than
using the multislice method.

Implementation details
Computational model
Wherever possible, parallelizable calculations in Pris-
matic are divided into individual tasks and performed
using a pool of CPU and GPU worker threads that asyn-
chronously consume the work on the host or the device,
respectively. We refer to a GPU worker thread as a host
thread that manages work dispatched to a single device
context. Whenever one of these worker threads is avail-
able, it queries a mutex-synchronized dispatcher that
returns a unique work ID or range of IDs. The corre-
sponding work is then consumed, and the dispatcher
required until no more work remains. This computational
model, depicted visually in Fig. 2, provides maximal load
balancing at essentially no cost, as workers are free to
independently obtain work as often as they become avail-
able. Therefore, machines with faster CPUs may observe
more work being performed on the host, and if multiple
GPU models are installed in the same system their rela-
tive performance is irrelevant to the efficiency of work
dispatch. The GPU workers complete most types of
tasks used by Prismatic well over an order of magnitude
faster than the CPU on modern hardware, and if a CPU
worker is dispatched one of the last pieces of work then
the entire program may be forced to unnecessarily wait
on the slower worker to complete. Therefore, an adjust-
able early stopping mechanism is provided for the CPU
workers.

GPU calculations in Prismatic are performed using
a fully asynchronous memory transfer and computa-
tional model driven by CUDA streams. By default, kernel
launches and calls to the CUDA runtime API for trans-
ferring memory occur on what is known as the default
stream and subsequently execute in order. This serializa-
tion does not fully utilize the hardware, as it is possible
to simultaneously perform a number of operations such

as memory transfer from the host to the device, memory
transfer from the device to the host, and kernel execution
concurrently. This level of concurrency can be achieved
using CUDA streams. Each CUDA stream represents
an independent queue of tasks using a single device that
execute internally in exact order, but that can be sched-
uled to run concurrently irrespective of other streams if
certain conditions are met. This streaming model com-
bined with the multithreaded work dispatch approach
described previously allow for concurrent two-way host/
device memory transfers and simultaneous data process-
ing. A snapshot of the output produced by the NVIDA
Visual Profiler for a single device context during a stream-
ing multislice simulation similar to those described later
in this work verifies that Prismatic is indeed capable of
such concurrency (Fig. 3).

To achieve maximum overlap of work, each CUDA-
enabled routine in Prismatic begins with an initializa-
tion phase where relevant data on the host-side is copied
into page-locked (also called “pinned”) memory, which
provides faster transfer times to the device and is neces-
sary for asynchronous memory copying as the system can
bypass internal staging steps that would be necessary for
pageable memory [46]. CUDA streams and data buffers
are then allocated on each device and copied to asynchro-
nously. Read-only memory is allocated once per device,
and read/write memory is allocated once per stream. It
is important to perform all memory allocations initially,
as any later calls to cudaMalloc will implicitly force syn-
chronization of the streams. Once the initialization phase
is over, a host thread is spawned for each unique CUDA
stream and begins to consume work.

stluseRdetelpmoCkroWgniniameR
CPU Pool

GPU 0

GPU 1

worker thread 0
worker thread 1
worker thread 2
worker thread 3

worker stream 0
worker stream 1
worker stream 2
worker stream 3

worker stream 0
worker stream 1
worker stream 2
worker stream 3

work
dispatcher

}
}

}
}

Fig. 2 Visualization of the computation model used repeatedly in the
Prismatic software package, whereby a pool of GPU and CPU workers
are assigned batches of work by querying a synchronized work dis-
patcher. Once the assignment is complete, the worker requests more
work until no more exists. All workers record completed simulation
outputs in parallel

Page 5 of 14Pryor Jr. et al. Adv Struct Chem Imag (2017) 3:15

Calculation of the projected potentials
Both PRISM and multislice require dividing the atomic
coordinates into thin slices and computing the projected
potential for each. The calculation details are described
by Kirkland and require evaluation of modified Bessel
functions of the second kind, which are computationally
expensive [21]. This barrier is overcome by precomputing
the result for each unique atomic species and assembling
a lookup table. Each projected potential is calculated on
an 8 × supersampled grid, integrated, and cached. Cur-
rently, this grid is defined as a regularly spaced rectangu-
lar grid, but in future releases additional grid selections
may become available. The sample volume is then divided
into slices, and the projected potential for each slice is
computed on separate CPU threads using the cached
potentials. In principle, this step could be GPU acceler-
ated, but even for a large sample with several hundred
thousand atoms the computation time is on the order of
seconds and is considered negligible.

PRISM probe simulations
Following calculation of the projected potential, the
next step of PRISM is to compute the compact S-matrix.
Each plane wave component is repeatedly transmitted
and propagated through each slice of the potential until
it has passed through the entire sample, at which point
the complex-valued output wave is stored in real space
to form a single layer of the compact S-matrix. This
step of PRISM is highly analogous to multislice except
whereas multislice requires propagating/transmitting the
entire probe simultaneously, in PRISM each initial Fou-
rier component is propagated/transmitted individually.

The advantage is that in PRISM this calculation must
only be performed once per Fourier component for the
entire calculation, while in multislice it must be repeated
entirely at every probe position. Thus, in many sample
geometries the PRISM algorithm can significantly out-
perform multislice despite the overhead of the S-matrix
calculation [39].

The propagation step requires a convolution operation
which can be performed efficiently through use of the
FFT. Our implementation uses the popular FFTW and
cuFFT libraries for the CPU and GPU implementations,
respectively [41, 42]. Both of these libraries support batch
FFTs, whereby multiple Fourier transforms of the same
size can be computed simultaneously. This allows for
reuse of intermediate twiddle factors, resulting in a faster
overall computation than performing individual trans-
forms one-by-one at the expense of requiring a larger
block of memory to hold the multiple arrays. Prismatic
uses this batch FFT method with both PRISM and multi-
slice, and thus each worker thread will actually propagate
a number of plane waves or probes simultaneously. This
number, called the batch_size, may be tuned by the user
to potentially enhance performance at the cost of using
additional memory, but sensible defaults are provided.

In the final step of PRISM, a 2D output is produced
for each probe position by applying coefficients, one for
each plane wave, to the elements of the compact S-matrix
and summing along the dimension corresponding to the
different plane waves. These coefficients correspond to
Fourier phase shifts that scale and translate each plane
wave to the relevant location on the sample in real space.
The phase coefficients, which are different for each
plane wave but constant for a given probe position, are
precomputed and stored in global memory. Each thread-
block on the device first reads the coefficients from global
memory into shared memory, where they can be reused
throughout the lifetime of the threadblock. Components
of the compact S-matrix for a given output wave posi-
tion are then read from global memory, multiplied by the
relevant coefficient, and stored in fast shared memory,
where the remaining summation is performed. This par-
allel sum-reduction is performed using a number of well-
established optimization techniques including reading
multiple global values per thread, loop unrolling through
template specialization, and foregoing of synchronization
primitives when the calculation has been reduced to the
single-warp level [47]. Once the real space exit-wave has
been computed, the modulus squared of its FFT yields
the calculation result at the detector plane.

Multislice probe simulations
The implementation of multislice is fairly straight-
forward. The initial probe is translated to the probe

GPU Activities Over Time

Stream 1

Stream 2

Stream 3

Stream 4

Stream 5

Stream 1

Stream 2

Stream 3

Stream 4

Stream 5

5 ms0 ms 10 ms 15 ms

Prismatic Kernel cuFFT

cudaMemcpy

cudaMemcpy

cudaMemcpy

TFFucTFFuc

8.2 ms8.1 ms 8.3 ms 8.4 ms 8.5 ms

a

b

Fig. 3 a Sample profile of the GPU activities on a single NVIDIA
GTX 1070 during a multislice simulation in streaming mode with b
enlarged inset containing a window where computation is occurring
on streams #1 and #5 while three separate arrays are simultaneously
being copied on streams #2–4

Page 6 of 14Pryor Jr. et al. Adv Struct Chem Imag (2017) 3:15

position of interest, and then is alternately transmitted
and propagated through the sample. In practice, this is
accomplished by alternating forward and inverse Fourier
transforms with an element-wise complex multiplication
in between each with either the transmission or propa-
gation functions. Upon propagation through the entire
sample, the squared intensity of the Fourier transform of
the exit-wave provides the final result of the calculation at
the detector plane for that probe position. For additional
speed, the FFTs of many probes are computed simultane-
ously in batch mode. Thus in practice batch_size probes
are transmitted, followed by a batch FFT, then propa-
gated, followed by a batch inverse FFT, etc.

Streaming data for very large simulations
The preferred way to perform PRISM and multislice
simulations is to transfer large data structures such as
the projected potential array or the compact S-matrix to
each GPU only once, where they can then be read from
repeatedly over the course of the calculation. However,
this requires that the arrays fit into limited GPU memory.
For simulations that are too large, we have implemented
an asynchronous streaming version of both PRISM and
multislice. Instead of allocating and transferring a single
read-only copy of large arrays, buffers are allocated to
each stream large enough to hold only the relevant sub-
set of the data for the current step in the calculation, and
the job itself triggers asynchronous streaming of the data
it requires for the next step. For example, in the stream-
ing implementation of multislice, each stream possesses
a buffer to hold a single slice of the potential array and
after transmission through that slice, the transfer of the
next slice is requested. The use of asynchronous memory
copies and CUDA streams permits the partial hiding of
memory transfer latencies behind computation (Fig. 3).
Periodically, an individual stream must wait on data
transfer before it can continue, but if another stream is
ready to perform work the device is effectively kept busy.
Doing so is critical for performance, as the amount of
time needed to transfer data can become significant rela-
tive to the total calculation. By default, Prismatic uses an
automatic setting to determine whether to use the single-
transfer or streaming memory model whereby the input
parameters are used to estimate how much memory will
be consumed on the device, and if this estimate is too
large compared with the available device memory then
streaming mode is used. This estimation is conservative
and is intended for convenience, but users can also forci-
bly set either memory mode.

Launch configuration
All CUDA kernels are accompanied by a launch con-
figuration that determines how the calculation will be

carried out [46]. The launch configuration specifies the
amount of shared memory needed, on which CUDA
stream to execute the computation, and defines a 3D grid
of threadblocks, each of which contains a 3D arrange-
ment of CUDA threads. It is this arrangement of threads
and threadblocks that must be managed in software to
perform the overall calculation. The choice of launch
configuration can have a significant impact on the over-
all performance of a CUDA application as certain GPU
resources, such as shared memory, are limited. If too
many resources are consumed by individual thread-
blocks, the total number of blocks that run concurrently
can be negatively affected, reducing overall concurrency.
This complexity of CUDA cannot be overlooked in a
performance-critical application, and we found that the
speed difference in a suboptimal and well-tuned launch
configuration could be as much as 2–3 x.

In the reduction step of PRISM, there are several com-
peting factors that must be considered when choosing a
launch configuration. The first of these is the threadblock
size. The compact S-matrix is arranged in memory such
that the fastest changing dimension, considered to be
the x-axis, lies along the direction of the different plane
waves. Therefore to maximize memory coalescence,
threadblocks are chosen to be as large as possible in the
x-direction. Usually the result will be threadblocks that
are effectively 1D, with BlockSizey and BlockSizez equal
to one; however, in cases where very few plane waves
need to be computed, the blocks may be extended in y
and z to prevent underutilization of the device. To per-
form the reduction, two arrays of shared memory are
used. The first is dynamically sized and contains as many
elements as there are plane waves. This array is used to
cache the phase shift coefficients to prevent unnecessary
reads from global memory, which are slow. The second
array has BlockSizex * BlockSizey * BlockSizez elements
and is where the actual reduction is performed. Each
block of threads steps through the array of phase shifts
once and reads them into shared memory. Then the block
contiguously steps through the elements of the compact
S-matrix for a different exit-wave position at each y and
z index, reading values from global memory, multiply-
ing them by the associated coefficient, and accumulating
them in the second shared memory array. Once all of the
plane waves have been accessed, the remaining reduc-
tion occurs quickly as all remaining operations occur in
fast shared memory. Each block of threads will repeat
this process for many exit-wave positions which allows
efficient reuse of the phase coefficients from shared
memory. The parallel reduction is performed by repeat-
edly splitting each array in half and adding one half to the
other until only one value remains. Consequently, if the
launch configuration specifies too many threads along

Page 7 of 14Pryor Jr. et al. Adv Struct Chem Imag (2017) 3:15

the x-direction, then many of them will become idle as
the reduction proceeds, which wastes work. Conversely,
choosing BlockSizex to be too small is problematic for
shared memory usage, as the amount of shared memory
per block for the phase coefficients is constant regard-
less of the block size. In this case, the amount of shared
memory available will rapidly become the limiting factor
to the achievable occupancy. A suitably balanced block
size produces the best results.

The second critical component of the launch configura-
tion is the number of blocks to launch. Each block glob-
ally reads the phase coefficients once and then reuses
them, which favors using fewer blocks and having each
compute more exit-wave positions. However, if too few
blocks are launched, the device may not reach full occu-
pancy. The theoretically optimal solution would be to
launch the minimal amount of blocks needed to saturate
the device and no more.

Considering these many factors, Prismatic uses the
following heuristic to choose a good launch configura-
tion. At runtime, the properties of the available devices
are queried, which includes the maximum number of
threads per threadblock, the total amount of shared
memory, and the total number of streaming multiproces-
sors. BlockSizex is chosen to be either the largest power of
two smaller than the number of plane waves or the maxi-
mum number of threads per block, whichever is smaller.
The total number of threadblocks that can run concur-
rently on a single streaming multiprocessor is then esti-
mated using BlockSizex, the limiting number of threads
per block, and the limiting number of threadblocks per
streaming multiprocessor. The total number of thread-
blocks across the entire device is then estimated as this
number times the total number of streaming multipro-
cessors, and then the grid dimensions of the launch con-
figuration are set to create three times this many blocks,
where the factor of three is a fudge factor that we found
produces better results.

Benchmarks
Algorithm comparison
A total of four primary algorithms are implemented
Prismatic, as there are optimized CPU and GPU imple-
mentations of both PRISM and multislice simulation. To
visualize the performance of the different algorithms,
we performed a number of benchmarking simulations
spanning a range of sample thicknesses, sizes, and with
varying degrees of sampling. Using the average density of
amorphous carbon, an atomic model corresponding to a
100 × 100 × 100 Å carbon cell was constructed and used
for image simulation with various settings for slice thick-
ness and pixel sampling. The results of this analysis are
summarized in Fig. 4. These benchmarks are plotted as

a function of the maximum scattering angle qmax, which
varies inversely to the pixel size.

The difference in computation time t shown in Fig. 4
between traditional CPU multislice and GPU PRISM is
stark, approximately four orders of magnitude for the
“fast” setting where f = 16, and still more than a fac-
tor of 500 for the more accurate case of f = 4. For both
PRISM and multislice, the addition of GPU acceleration
increases speed by at least an order of magnitude. Note
that as the thickness of the slices is decreased, the rela-
tive gap between PRISM and multislice grows, as probe
calculation in PRISM does not require additional propa-
gation through the sample. We have also fit curves of the
form

where A and B are prefactors and n is the asymptotic
power law for high scattering angles. We observed that
most of the simulation types approximately approach
n = 2, which is unsurprising for both PRISM and mul-
tislice. The limiting operation in PRISM is matrix-scalar
multiplication, which depends on the array size and var-
ies as qmax

2. For multislice, the computation is a combi-
nation of multiplication operations and FFTs, and the
theoretical O(n log n) scaling of the latter is only slightly
larger than 2, and thus the trendline is an approximate
lower bound. The only cases that fall significantly outside
the n = 2 regime were the multislice GPU simulations
with the largest slice separation (20 Å) and the “fast”
PRISM GPU simulations where f = 16. These calcula-
tions are sufficiently fast that the relatively small over-
head required to compute the projected potential slices,
allocate data, etc., is actually a significant portion of the
calculation, resulting in apparent scaling better than
qmax

2. For the f = 16 PRISM case, we observed approxi-
mately qmax

0.6 scaling, which translates into sub-milli-
second calculation times per probe even with small pixel
sizes and slice thicknesses.

To avoid unnecessarily long computation times for the
many simulations, particularly multislice, different num-
bers of probe positions were calculated for each algo-
rithm, and thus we report the benchmark as time per
probe. Provided enough probe positions are calculated
to obviate overhead of computing the projected potential
and setting up the remainder of the calculation, there is
a linear relationship between the number of probe posi-
tions calculated and the calculation time for all of the
algorithms, and computing more probes will not change
the time per probe significantly. Here, this overhead
is only on the order of 10 s or fewer, and the reported
results were obtained by computing 128 × 128 probes
for PRISM CPU and multislice CPU, 512 × 512 for multi-
slice GPU, and 2048 × 2048 for PRISM GPU. All of these

(3)t = A+ B qmax
n,

Page 8 of 14Pryor Jr. et al. Adv Struct Chem Imag (2017) 3:15

calculations used the single-transfer memory implemen-
tations and were run on compute nodes with dual Intel
Xeon E5-2650 processors, four Tesla K20 GPUs, and
64GB RAM from the VULCAN cluster within the Law-
rence Berkeley National Laboratory Supercluster.

Hardware scaling
Modern high performance computing is dominated by
parallelization. At the time of this writing, virtually all
desktop CPUs contain at least four cores, and high end
server CPUs can have as many as twenty or more [48].
Even mobile phones have begun to routinely ship with
multicore processors [49]. In addition to powerful CPUs,
GPUs, and other types of coprocessors such as the Xeon
Phi [50] can be used to accelerate parallel algorithms. It,
therefore, is becoming increasingly important to write

parallel software that fully utilizes the available comput-
ing resources.

To demonstrate how the algorithms implemented in
Prismatic scale with hardware, we performed the fol-
lowing simulation. Simulated images of a 100 × 100 ×
100 Å amorphous carbon cell were produced with both
PRISM and multislice using 5 Å thick slices, pixel size 0.1
Å, 20 mrad probe convergence semi-angle, and 80 keV
electrons. This simulation was repeated using varying
numbers of CPU threads and GPUs. As before, a vary-
ing number of probes were computed for each algorithm,
specifically 2048 × 2048 for GPU PRISM, 512 × 512 for
CPU PRISM and GPU multislice, and 64 × 64 for CPU
multislice. This simulation utilized the same 4-GPU
VULCAN nodes described previously. The results of this
simulation are summarized in Fig. 5.

Fig. 4 Comparison of the CPU/GPU implementations of the PRISM and multislice algorithms described in this work. A 100 × 100 × 100 Å amor-
phous carbon cell was divided slices of varying thickness and sampled with progressively smaller pixels in real space corresponding to digitized
probes of array size 256 × 256, 512 × 512, 1024 × 1024, and 2048 × 2048, respectively. Two different PRISM simulations are shown, a more accurate
case where the interpolation factor f = 4 (left), and a faster case with f = 16 (right). The multislice simulation is the same for both columns. Power
laws were fit of the form A+ B qmax

n where possible. The asymptotic power laws for higher scattering angles are shown on the right of each curve

Page 9 of 14Pryor Jr. et al. Adv Struct Chem Imag (2017) 3:15

The ideal behavior for the CPU-only codes would be to
scale as 1/x with the number of CPU cores utilized such
that doubling the number of cores also approximately
doubles the calculation speed. Provided that the number
of CPU threads spawned is not greater than the number
of cores, the number of CPU threads can effectively be
considered the number of CPU cores utilized, and this
benchmark indicates that both CPU-only PRISM and
multislice possess close to ideal scaling behavior with
number of CPU cores available.

The addition of a single GPU improves both algorithms
by approximately a factor of 8 in this case, but in general,
the relative improvement varies depending on the qual-
ity and number of the CPUs vs GPUs. The addition of a
second GPU improves the calculation speed by a further
factor of 1.8–1.9 with 14 threads, and doubling the num-
ber of GPUs to four total improves again by a similar fac-
tor. The reason that this factor is less than two is because
the CPU is doing a nontrivial amount of work alongside
the GPU. This claim is supported by the observation that
when only using two threads the relative performance
increase is almost exactly a factor of two when doubling
the number of GPUs. We conclude that our implemen-
tations of both algorithms scale very well with available
hardware, and potential users should be confident that
investing in additional hardware, particularly GPUs, will
benefit them accordingly.

Data streaming/single‑transfer benchmark
For both PRISM and multislice, Prismatic implements
two different memory models, a single-transfer method
where all data is copied to the GPU a single time before
the main computation begins and a streaming mode
where asynchronous copying of the required data is
triggered across multiple CUDA streams as it is needed
throughout the computation. Streaming mode reduces
the peak memory required on the device at the cost of
redundant copies; however, the computational cost of
this extra copying can be reduced by hiding the transfer
latency behind compute kernels and other copies (Fig. 3).

To compare the implementations of these two memory
models in Prismatic, a number of amorphous carbon
cells of increasing sizes were used as input to simula-
tions using 80 keV electrons, 20 mrad probe convergence
semi-angle, 0.1 Å pixel size, 4 Å slice thickness, and 0.4
Å probe steps. Across a range of simulation cell sizes,
the computation time of the streaming vs. single-trans-
fer versions of each code are extremely similar while the
peak memory may be reduced by an order of magnitude
or more (Fig. 6). For the streaming calculations, memory
copy operations may become significant relative to the
computational work (Fig. 3); however, this can be allevi-
ated by achieving multi-stream concurrency.

Comparison to existing methods
All previous benchmarks in this work have measured the
speed of the various algorithms included in Prismatic
against each other; however, relative metrics are largely
meaningless without an external reference both in terms
of overall speed and resulting image quality. To this end,
we also performed STEM simulations of significant size
and compare the results produced by the algorithms in

Fig. 5 Comparison of the implementations of multislice and PRISM
for varying combinations of CPU threads and GPUs. The simulation
was performed on a 100 × 100 × 100 Å amorphous carbon cell with
5 Å thick slices, 0.1 Å pixel size, and 20 mrad probe convergence
semi-angle. All simulations were performed on compute nodes with
dual Intel Xeon E5-2650 processors, four Tesla K20 GPUs, and 64 GB
RAM. Calculation time of rightmost data point is labeled for all curves

Fig. 6 Comparison of a relative performance and b peak memory
consumption for single-transfer and streaming implementations of
PRISM and multislice

Page 10 of 14Pryor Jr. et al. Adv Struct Chem Imag (2017) 3:15

Prismatic, the popular CPU package computem, and a
newer GPU multislice code, MULTEM. [18, 21, 33, 34].

We have chosen a simulation cell typical of those used
in structural atomic-resolution STEM studies, a complex
Ruddlesden–Popper (RP) layered oxide. The RP struc-
ture we used contains nine pseudocubic unit cells of
perovskite strontium titanate structure, with two stack-
ing defects every 4.5 1 × 1 cells that modify the composi-
tion and atomic coordinates. The atomic coordinates of
this cell were refined using density functional theory and
were used for very large scale STEM image simulations
[51]. This 9 × 1 × 1 unit cell was tiled 3 × 27 × 27 times
resulting in final sample approximately 10.5 nm cubed
with more than 850,000 atoms.

Simulations were performed with multislice as imple-
mented in computem (specifically using the autostem
module), multislice in MULTEM, multislice in Pris-
matic, and the PRISM method with f values of 4, 8, 12,
and 16 using 80 keV electrons, 1520 × 1536 pixel sam-
pling, 20 mrad probe convergence semi-angle, and 5 Å
thick potential slices. All simulations used Kirkland’s
method for calculating the projected potential. A total of
512 × 512 evenly-spaced probes were computed for each
simulation, and a total of 64 frozen phonon configura-
tions were averaged to produce the final images, which
are summarized in Fig. 7. The Prismatic and MULTEM
simulations were run on the VULCAN GPU nodes while
computem simulations utilized better VULCAN CPU
nodes with dual Intel Xeon E5-2670v2 CPUs and 64 GB
RAM.

The mean computation time per frozen phonon for the
computem simulations were 18.2 h resulting in a total
computation time of 48.5 days. The acceleration made
with GPU usage in MULTEM may seem to be fairly mod-
est, but this is mostly due to the nature of the hardware
and deserves some clarification. The version of MULTEM
available at the time of this writing only can utilize one
GPU and does not simultaneously use the CPU. On a
quad-core desktop workstation, one may expect a single
GPU to calculate FFTs somewhere between 4 and 10 ×
faster than on the CPU, but the server nodes used for
these simulations possess up to 20 cores, which some-
what closes the gap between the two hardware types. On
a workstation, one would expect MULTEM to perform
better relative to computem. We note that this is through
no fault of computem, which is itself a well-optimized
code. It simply runs without the benefit of GPU accelera-
tion. MULTEM is an ongoing project and provides addi-
tional flexibility such as alternate methods of computing
the projected potential, and our intention is not to dis-
count the value of these other simulation packages based
purely on performance metrics.

As described previously, Prismatic is capable of utiliz-
ing multiple GPUs and CPU cores simultaneously, and
the use of Prismatic CPU + GPU multislice code here
provides an acceleration of about 11 × relative to com-
putem, reducing the computation from 7 weeks to just
over 4 days. The PRISM f = 4 simulation is almost
indistinguishable from the multislice results, and gives a
13 × speed-up over our GPU multislice simulation. For
the f = 8 PRISM simulation an additional 6 × improve-
ment is achieved, requiring just over an hour of computa-
tion time with very similar resulting image quality. The
f = 12 and f = 16 PRISM results show moderate and
substantial intensity deviations from the ideal result,
respectively, but require just tens of seconds per frozen
phonon configuration. The intensity differences may be
quantitatively visualized in the line scans on the right col-
umn of Fig. 7. The total difference in acceleration from
CPU multislice to the fastest PRISM simulation shown in
Fig. 7 is over three orders of magnitude. The importance
of choosing a suitable value for the PRISM interpolation
factor is evident by the artifacts introduced for f = 12
and f = 16 where the real space probe is cropped too
heavily. The Prismatic GUI provides an interactive way
to compute individual probes with PRISM and multi-
slice to tune the parameters before running a full calcula-
tion. Ultimately, the user’s purpose dictates what balance
of speed and accuracy is appropriate, but the important
point is that calculations that previously required days or
weeks on a computer cluster may now be performed on a
single workstation in a fraction of the time.

Application to atomic electron tomography
One potentially important application of STEM image
simulations is AET experiments. One of the ADF-STEM
images from an atomic-resolution tilt series of a FePt
nanoparticle [14] is shown in Fig. 8a, with the corre-
sponding linear projection from the 3D reconstruction
shown in Fig. 8b. In this study and others, we have used
multislice simulations to validate the tomographic recon-
structions and estimate both the position and chemical
identification errors [13, 14]. One such multislice simu-
lation is given in Fig. 8c. This simulation was performed
at 300 kV using a 30 mrad STEM probe, with a simula-
tion pixel size of 0.0619 Å and a spacing between adja-
cent probes of 0.3725 Å. The image results shown are for
16 frozen phonon configurations using a 41–159 mrad
annular dark field detector. This experimental dataset
includes some postprocessing and was obtained freely
online [14].

The 3D reconstruction algorithm we have used, termed
GENeralized Fourier Iterative REconstruction (GEN-
FIRE), assumes that the projection images are linearly
related to the potential of the reconstruction [14, 52].

Page 11 of 14Pryor Jr. et al. Adv Struct Chem Imag (2017) 3:15

Fig. 7 Comparison of simulation results produced by a computem, b MULTEM, and c–g Prismatic. The sample is composed of 27 × 27 × 27
pseudocubic perovskite unit cells, and images were simulated using 80 keV electrons, a 20 mrad probe convergence semi-angle, 0 Å defocus, and
1520 × 1536 pixel sampling for the probe and projected potential. A total of 512 × 512 probe positions were computed and the final images are
an average over 64 frozen phonon configurations. Separate PRISM simulations were performed with interpolation factors 4, 8, 12, and 16. Line scans
corresponding to the positions of the red/blue arrows are shown in the right-hand column. As the various simulations produce results with differ-
ing absolute intensity scales, all images were scaled to have the same mean intensity as Prismatic multislice

Page 12 of 14Pryor Jr. et al. Adv Struct Chem Imag (2017) 3:15

This assumption was sufficient for atomic-resolution
tomographic reconstruction, but the measured intensity
has some non-linear dependence on the atomic poten-
tials, due to effects such as exponential decrease of elec-
trons in the unscattered STEM probe, channeling effects
along atomic columns, coherent diffraction at low scat-
tering angles, and other related effects [11, 53–58]. These
effects can be seen in the differences between the images
shown in Fig. 8b, c. The multislice simulation image
shows sharper atomic columns, likely due to the chan-
neling effect along atomic columns that are aligned close
to the beam direction [55]. Additionally, there are mean
intensity differences between the center part of the par-
ticle (thickest region) and the regions closed to the sur-
faces in projection (thinnest regions). Including these
dynamical scattering effects in the reconstruction algo-
rithm would increase the accuracy of the reconstruction.

However, Fig. 8h shows that the computation time for
the multislice simulation is prohibitively high. Even using
the Prismatic GPU code, each frozen phonon configu-
ration for multislice require almost 7 h. Using 16 con-
figurations and simulating all 65 projection angles would
require months of simulation time, or massively paral-
lel simulation on a super cluster. An alternative is to use
the PRISM algorithm for the image simulations, shown
in Fig. 8d, e and f for interpolation factors of f = 8, 16
and 32, respectively. Figure 8g shows the relative errors
of Fig. 8b–f, where the error is defined by the root-mean-
square of the intensity difference with the experimental
image in Fig. 8a, divided by the root-mean-square of the
experimental image. Unsurprisingly, the linear projection
shows the lowest error since it was calculated directly
from the 3D reconstruction built using the experimental

data. The multislice and PRISM f = 8 and f = 16 simu-
lations show essentially the same errors within the noise
level of the experiment. The PRISM f = 32 has a higher
error, and obvious image artifacts are visible in Fig. 8f.
Thus, we conclude that using an interpolation factor
f = 16 produces an image of sufficient accuracy. This
calculation required only 90 s per frozen phonon calcula-
tion, and therefore computing 16 configurations for all 65
tilt angles would require only 26 h. One could therefore
imagine integrating this simulation routine into the final
few tomography reconstruction iterations to account for
dynamical scattering effects and to improve the recon-
struction quality.

Conclusions
We have presented Prismatic, an asynchronous, stream-
ing multi-GPU implementation of the PRISM and mul-
tislice algorithms for image formation in scanning
transmission electron microscopy. Both multislice and
PRISM algorithms were described in detail as well as our
approach to implementing them in a parallel framework.
Our benchmarks demonstrate that this software may be
used to simulate STEM images up to several orders of
magnitude faster than using traditional methods, allow-
ing users to simulate complex systems on a GPU worksta-
tion without the need for a computer cluster. Prismatic
is freely available as an open-source C++/CUDA pack-
age with a graphical interface that contains convenience
features such as allowing users to interactively view the
projected potential slices, compute/compare individual
probe positions with both PRISM and multislice, and
dynamically adjust positions of virtual detectors. A com-
mand line interface and a Python package, PyPrismatic,

0

0.1

0.2

0.3

10
2

10
3

10
4

R
M

S
 D

iff
er

en
ce

fro

m
 E

xp
er

im
en

t
C

al
cu

la
tio

n
Ti

m
e

pe
r

Fr
oz

en
 P

ho
no

n
[s

]

linear
projection

multislice PRISM
ƒ = 16ƒ = 8 ƒ = 32

a experiment

PRISM, ƒ = 8

linear projection

PRISM, ƒ = 16

multislice

PRISM, ƒ = 32

2 nm

b c

g

d e f
h

Fig. 8 Images from one projection of an atomic electron tomography tilt series of a FePt nanoparticle [14], from a experiment, b linear projection
of the reconstruction, c multislice simulation, and d–f PRISM simulations for f = 8, 16, and 32, respectively. g Relative root-mean-square error of the
images in (b–f) relative to (a). h Calculation times per frozen phonon configuration for (c–f). All simulations performed with Prismatic

Page 13 of 14Pryor Jr. et al. Adv Struct Chem Imag (2017) 3:15

are also available. We have demonstrated one potential
application of the Prismatic code, using it to compute
STEM images to improve the accuracy in atomic electron
tomography. We hope that the speed of this code as well
as the convenience of the user interface will have signifi-
cant impact for users in the EM community.

Authors’ contributions
AP designed the software, implemented the CUDA/C++ versions of PRISM
and multislice, programmed the graphical user interface and command line
interface, and performed the simulations in this paper. CO conceived of the
PRISM algorithm, and wrote the original MATLAB implementations. AP and CO
wrote the manuscript. JM advised the project. All authors commented on the
manuscript. All authors read and approved the final manuscript.

Author details
1 Department of Physics and Astronomy and California NanoSystems Institute,
University of California at Los Angeles, Los Angeles, CA 90095, USA. 2 National
Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley
National Laboratory, Berkeley, CA 94720, USA.

Acknowledgements
We kindly thank Yongsoo Yang for his help using computem and with the
FePt simulations, and Ivan Lobato for his help using MULTEM. This work was
supported by STROBE: A National Science Foundation Science & Technology
Center under Grant No. DMR 1548924, the Office of Basic Energy Sciences of
the US DOE (DE-SC0010378), and the NSF DMREF program (DMR-1437263).
The computations were supported by a User Project at the Molecular Foundry
using its compute cluster (VULCAN), managed by the High Performance Com-
puting Services Group, at Lawrence Berkeley National Laboratory (LBNL).

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The Prismatic source code, installers, and documentation with tutorials are
freely available at http://www.prism-em.com.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
This work was supported by STROBE: A National Science Foundation Science
& Technology Center under Grant No. DMR 1548924, the Office of Basic
Energy Sciences of the US DOE (DE-SC0010378), and the NSF DMREF program
(DMR-1437263). Work at the Molecular Foundry was supported by the Office
of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 6 July 2017 Accepted: 13 October 2017

References
 1. Crewe, A.V.: Scanning transmission electron microscopy. J. Microsc.

100(3), 247–259 (1974)
 2. Nellist, P.D.: Scanning transmission electron microscopy, pp. 65–132.

Springer, New York (2007)

 3. Batson, P., Dellby, N., Krivanek, O.: Sub-ångstrom resolution using aberra-
tion corrected electron optics. Nature 418(6898), 617–620 (2002)

 4. Muller, D.A.: Structure and bonding at the atomic scale by scanning
transmission electron microscopy. Nat. Mater. 8(4), 263–270 (2009)

 5. Pennycook, S.J.: The impact of stem aberration correction on mate-
rials science. Ultramicroscopy. 180, 22–33 (2017). doi:10.1016/j.
ultramic.2017.03.020

 6. Pelz, P.M., Qiu, W.X., Bücker, R., Kassier, G., Miller, R.: Low-dose cryo electron
ptychography via non-convex bayesian optimization. arXiv preprint
arXiv:1702.05732 (2017)

 7. Van den Broek, W., Koch, C.T.: Method for retrieval of the three-dimen-
sional object potential by inversion of dynamical electron scattering.
Phys. Rev. Lett. 109(24), 245502 (2012)

 8. Yankovich, A.B., Berkels, B., Dahmen, W., Binev, P., Sanchez, S.I., Bradley, S.A.,
Li, A., Szlufarska, I., Voyles, P.M.: Picometre-precision analysis of scanning
transmission electron microscopy images of platinum nanocatalysts. Nat.
Commun. 5, 4155 (2014)

 9. Mevenkamp, N., Binev, P., Dahmen, W., Voyles, P.M., Yankovich, A.B., Berkels,
B.: Poisson noise removal from high-resolution stem images based on
periodic block matching. Adv. Struct. Chem. Imaging. 1(1), 3 (2015)

 10. Ophus, C., Ciston, J., Pierce, J., Harvey, T.R., Chess, J., McMorran, B.J.,
Czarnik, C., Rose, H.H., Ercius, P.: Efficient linear phase contrast in scanning
transmission electron microscopy with matched illumination and detec-
tor interferometry. Nat. Commun. 7 (2016). doi:10.1038/ncomms10719

 11. van den Bos, K.H., De Backer, A., Martinez, G.T., Winckelmans, N., Bals, S.,
Nellist, P.D., Van Aert, S.: Unscrambling mixed elements using high angle
annular dark field scanning transmission electron microscopy. Phys. Rev.
Lett. 116(24), 246101 (2016)

 12. Miao, J., Ercius, P., Billinge, S.J.L.: Atomic electron tomography: 3D struc-
tures without crystals. Science 353(6306), 2157–2157 (2016). doi:10.1126/
science.aaf2157

 13. Xu, R., Chen, C.-C., Wu, L., Scott, M., Theis, W., Ophus, C., Bartels, M., Yang,
Y., Ramezani-Dakhel, H., Sawaya, M.R.: Three-dimensional coordinates
of individual atoms in materials revealed by electron tomography. Nat.
Mater. 14(11), 1099–1103 (2015)

 14. Yang, Y., Chen, C.-C., Scott, M., Ophus, C., Xu, R., Pryor, A., Wu, L., Sun, F.,
Theis, W., Zhou, J.: Deciphering chemical order/disorder and material
properties at the single-atom level. Nature 542(7639), 75–79 (2017)

 15. Scott, M.C., Chen, C.C., Mecklenburg, M., Zhu, C., Xu, R., Ercius, P., Dahmen,
U., Regan, B.C., Miao, J.: Electron tomography at 2.4-angstrom resolution.
Nature 483(7390), 444–447 (2012). doi:10.1038/nature10934

 16. Chen, C.-C., Zhu, C., White, E.R., Chiu, C.-Y., Scott, M.C., Regan, B.C., Marks,
L.D., Huang, Y., Miao, J.: Three-dimensional imaging of dislocations in
a nanoparticle at atomic resolution. Nature 496(7443), 74–77 (2013).
doi:10.1038/nature12009

 17. Cowley, J.M., Moodie, A.F.: The scattering of electrons by atoms and
crystals. I. A new theoretical approach. Acta Crystallogr. 10(10), 609–619
(1957)

 18. Kirkland, E.J., Loane, R.F., Silcox, J.: Simulation of annular dark field stem
images using a modified multislice method. Ultramicroscopy 23(1),
77–96 (1987)

 19. Ishizuka, K., Uyeda, N.: A new theoretical and practical approach to the
multislice method. Acta Crystallogr. Sect. A Cryst. Phys. Diffr Theor. Gen.
Crystallogr. 33(5), 740–749 (1977)

 20. Ishizuka, K.: A practical approach for stem image simulation based on the
FFT multislice method. Ultramicroscopy. 90(2), 71–83 (2002)

 21. Kirkland, E.J.: Advanced computing in electron microscopy, Second edi-
tion. Springer, New York (2010)

 22. Stadelmann, P.: Ems-a software package for electron diffraction analysis
and hrem image simulation in materials science. Ultramicroscopy 21(2),
131–145 (1987)

 23. Stadelmann, P.: Image analysis and simulation software in transmission
electron microscopy. Microsc. Microanal. 9(S03), 60–61 (2003)

 24. Kilaas, R.: MacTempas a program for simulating high resolution TEM
images and diffraction patterns. http://www.totalresolution.com/

 25. Koch, C.T.: Determination of core structure periodicity and point defect
density along dislocations. Arizona State University (2002). http://adsabs.
harvard.edu/abs/2002PhDT........50K

 26. De Graef, M.: Introduction to conventional transmission electron micros-
copy. Cambridge University Press, New York (2003)

http://www.prism-em.com
http://dx.doi.org/10.1016/j.ultramic.2017.03.020
http://dx.doi.org/10.1016/j.ultramic.2017.03.020
http://arxiv.org/abs/1702.05732
http://dx.doi.org/10.1038/ncomms10719
http://dx.doi.org/10.1126/science.aaf2157
http://dx.doi.org/10.1126/science.aaf2157
http://dx.doi.org/10.1038/nature10934
http://dx.doi.org/10.1038/nature12009
http://www.totalresolution.com/
http://adsabs.harvard.edu/abs/2002PhDT........50K
http://adsabs.harvard.edu/abs/2002PhDT........50K

Page 14 of 14Pryor Jr. et al. Adv Struct Chem Imag (2017) 3:15

 27. Zuo, J., Mabon, J.: Web-based electron microscopy application software:
Web-emaps. Microsc. Microanal. 10(S02), 1000 (2004)

 28. Carlino, E., Grillo, V., Palazzari, P.: Accurate and fast multislice simulations of
haadf image contrast by parallel computing. Microsc. Semicond. Mater.
2007, 177–180 (2008)

 29. Grillo, V., Rotunno, E.: STEM_CELL: a software tool for electron microscopy:
part I-simulations. Ultramicroscopy. 125, 97–111 (2013)

 30. Rosenauer, A., Schowalter, M.: Stemsim—new software tool for simula-
tion of stem haadf z-contrast imaging. Microsc. Semicond. Mater. 2007,
170–172 (2008)

 31. Walton, S.K., Zeissler, K., Branford, W.R., Felton, S.: Malts: a tool to simulate
lorentz transmission electron microscopy from micromagnetic simula-
tions. IEEE Trans. Magn. 49(8), 4795–4800 (2013)

 32. Bar-Sadan, M., Barthel, J., Shtrikman, H., Houben, L.: Direct imaging of sin-
gle au atoms within gaas nanowires. Nano Lett. 12(5), 2352–2356 (2012)

 33. Lobato, I., Van Dyck, D.: Multem: a new multislice program to perform
accurate and fast electron diffraction and imaging simulations using
graphics processing units with cuda. Ultramicroscopy. 156, 9–17 (2015)

 34. Lobato, I., Van Aert, S., Verbeeck, J.: Progress and new advances in simulat-
ing electron microscopy datasets using multem. Ultramicroscopy. 168,
17–27 (2016)

 35. Van den Broek, W., Jiang, X., Koch, C.: FDES, a GPU-based multislice
algorithm with increased efficiency of the computation of the projected
potential. Ultramicroscopy. 158, 89–97 (2015)

 36. Cosgriff, E., D’Alfonso, A., Allen, L., Findlay, S., Kirkland, A., Nellist, P.: Three-
dimensional imaging in double aberration-corrected scanning confocal
electron microscopy, part I: elastic scattering. Ultramicroscopy. 108(12),
1558–1566 (2008)

 37. Forbes, B., Martin, A., Findlay, S., D’alfonso, A., Allen, L.: Quantum mechani-
cal model for phonon excitation in electron diffraction and imaging
using a born-oppenheimer approximation. Phys. Rev. B. 82(10), 104103
(2010)

 38. Oelerich, J.O., Duschek, L., Belz, J., Beyer, A., Baranovskii, S.D., Volz, K.:
Stemsalabim: a high-performance computing cluster friendly code for
scanning transmission electron microscopy image simulations of thin
specimens. Ultramicroscopy. 177, 91–96 (2017)

 39. Ophus, C.: A fast image simulation algorithm for scanning transmission
electron microscopy. Adv. Struct. Chem. Imaging. 3(1), 13 (2017)

 40. Yao, Y., Ge, B., Shen, X., Wang, Y., Yu, R.: Stem image simulation with hybrid
cpu/gpu programming. Ultramicroscopy. 166, 1–8 (2016)

 41. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proc.
IEEE. 93(2), 216–231 (2005)

 42. NVIDIA: cuFFT. https://developer.nvidia.com/cufft
 43. Volkov, V., Demmel, J.W.: Benchmarking gpus to tune dense linear alge-

bra. In: High Performance Computing, Networking, Storage and Analysis,
2008. SC 2008. International Conference For, pp. 1–11 (2008)

 44. Yang, H., Rutte, R., Jones, L., Simson, M., Sagawa, R., Ryll, H., Huth, M., Pen-
nycook, T., Green, M., Soltau, H.: Simultaneous atomic-resolution electron
ptychography and z-contrast imaging of light and heavy elements in
complex nanostructures. Nat. Commun. 7, 12532 (2016)

 45. Martin, K., Hoffman, B.: Mastering CMake: a cross-platform build system.
Kitware, New York (2010)

 46. NVIDIA: CUDA C Programming Guide. http://docs.nvidia.com/cuda/
cuda-c-programming-guide/

 47. Harris, M.: “Optimizing parallel reduction in CUDA”. Presentation included
in the CUDA Toolkit released by NVIDIA. http://developer.download.
nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/
doc/reduction.pdf (2007)

 48. Intel: E5-4669v4. https://ark.intel.com/products/93805/
Intel-Xeon-Processor-E5-4669-v4-55M-Cache-2_20-GHz

 49. Sakran, N., Yuffe, M., Mehalel, M., Doweck, J., Knoll, E., Kovacs, A.: The
implementation of the 65nm dual-core 64b merom processor. In: Solid-
State Circuits Conference, 2007. ISSCC 2007. Digest of Technical Papers.
IEEE International, pp. 106–590 (2007)

 50. Jeffers, J., Reinders, J.: Intel Xeon Phi coprocessor high performance
programming, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco
(2013)

 51. Stone, G., Ophus, C., Birol, T., Ciston, J., Lee, C.-H., Wang, K., Fennie, C.J., Sch-
lom, D.G., Alem, N., Gopalan, V.: Atomic scale imaging of competing polar
states in a Ruddlesden-Popper layered oxide. Nat. Commun. 7 (2016)

 52. Pryor, A., Yang, Y., Rana, A., Gallagher-Jones, M., Zhou, J., Lo, Y.H., Melinte,
G., Chiu, W., Rodriguez, J.A., Miao, J.: GENFIRE: a generalized Fourier itera-
tive reconstruction algorithm for high-resolution 3D imaging. Sci. Rep.
7(1), 10409 (2017)

 53. Muller, D.A., Nakagawa, N., Ohtomo, A., Grazul, J.L., Hwang, H.Y.: Atomic-
scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3.
Nature 430(7000), 657–661 (2004)

 54. LeBeau, J.M., Findlay, S.D., Allen, L.J., Stemmer, S.: Quantitative atomic
resolution scanning transmission electron microscopy. Phys. Rev. Lett.
100(20), 206101 (2008)

 55. Findlay, S., Shibata, N., Sawada, H., Okunishi, E., Kondo, Y., Ikuhara, Y.:
Dynamics of annular bright field imaging in scanning transmission elec-
tron microscopy. Ultramicroscopy. 110(7), 903–923 (2010)

 56. Kourkoutis, L.F., Parker, M., Vaithyanathan, V., Schlom, D., Muller, D.: Direct
measurement of electron channeling in a crystal using scanning trans-
mission electron microscopy. Phys. Rev. B. 84(7), 075485 (2011)

 57. Woehl, T., Keller, R.: Dark-field image contrast in transmission scanning
electron microscopy: effects of substrate thickness and detector collec-
tion angle. Ultramicroscopy. 171, 166–176 (2016)

 58. Cui, J., Yao, Y., Wang, Y., Shen, X., Yu, R.: The origin of atomic displacements
in HAADF images of the tilted specimen. arXiv preprint arXiv:1704.07524
(2017)

https://developer.nvidia.com/cufft
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86%5fwebsite/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86%5fwebsite/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86%5fwebsite/projects/reduction/doc/reduction.pdf
https://ark.intel.com/products/93805/Intel-Xeon-Processor-E5-4669-v4-55M-Cache-2%5f20-GHz
https://ark.intel.com/products/93805/Intel-Xeon-Processor-E5-4669-v4-55M-Cache-2%5f20-GHz
http://arxiv.org/abs/1704.07524

	A streaming multi-GPU implementation of image simulation algorithms for scanning transmission electron microscopy
	Abstract
	Background
	Methods
	Description of algorithms

	Implementation details
	Computational model
	Calculation of the projected potentials
	PRISM probe simulations
	Multislice probe simulations
	Streaming data for very large simulations
	Launch configuration

	Benchmarks
	Algorithm comparison
	Hardware scaling
	Data streamingsingle-transfer benchmark
	Comparison to existing methods

	Application to atomic electron tomography
	Conclusions
	Authors’ contributions
	References

