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CRYSTALLOGRAPHY EDUCATION

Rietveld texture analysis from synchrotron diffraction images. II. Complex
multiphase materials and diamond anvil cell experiments
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Synchrotron X-ray diffraction images are increasingly used to characterize crystallographic preferred
orientation distributions (texture) of fine-grained polyphase materials. Diffraction images can be ana-
lyzed quantitatively with the Rietveld method as implemented in the software package Materials
Analysis Using Diffraction. Here we describe the analysis procedure for diffraction images collected
with high energy X-rays for a complex, multiphase shale, and for those collected in situ in diamond
anvil cells at high pressure and anisotropic stress. © 2014 International Centre for Diffraction Data.
[doi:10.1017/S0885715614000360]
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I. INTRODUCTION

In a companion paper (Lutterotti et al., 2014), we have
described the basic steps for texture analysis from synchrotron
diffraction images with the Rietveld method, using the
software Materials Analysis Using Diffraction (MAUD)
(Lutterotti et al., 1997). We assume that the reader is familiar
with this introductory paper. In subsequent discussions, we
will refer directly to sections in Lutterotti et al. (2014), e.g.
as “Part I.IV”. In this paper, we will discuss complexities
that arise for samples with many phases and samples with a
strong texture.

The first example here is sedimentary shale composed of
multiple types of minerals, with different volume fractions,
microstructures, and orientation distributions (ODs). The
second complex sample is ferropericlase (Mg,Fe)O, measured
in situ at ultrahigh pressure and anisotropic stress conditions
in a diamond anvil cell (DAC). We can provide only an
outline of analysis procedures, but the reader should keep in
mind that the Rietveld method and its implementation in
MAUD is very general and lends itself to many applications,
each of which requires slightly different approaches, modifi-
cations, and application of specific models. With the two
examples we try to introduce several of the capabilities of
MAUD that a user may consider for a particular sample,
including sample rotations, background models and symmetry
transformations. Step-by-step guides are provided as two
appendices, which can be freely downloaded along with the
corresponding data files from the internet (http://PD-journal.
htm).

II. SHALE AS AN EXAMPLE OF A COMPLEX

POLYPHASE MATERIAL

A. Diffraction experiment

Shale is a sedimentary rock and composed of a wide variety
of minerals. Sheet silicates comprise a large volume fraction of
shales and align preferentially parallel to the bedding plane
during sedimentation and compaction. Crystallographic pre-
ferred orientation (CPO) of phyllosilicates is of great interest,
because it is the primary cause of elastic anisotropy observed
during seismic prospecting of oil and gas deposits. Thus several
studies have focused on improving synchrotron X-ray tech-
niques to quantify textures and microstructures of shales (e.g.,
Wenk et al., 2008; Lutterotti et al., 2010; Kanitpanyacharoen
et al., 2011, 2012a; Vasin et al., 2013).

For this tutorial we use a sample of Kimmeridge shale
from the North Sea, UK (Hornby, 1998; Vasin et al., 2013).
The sample is a slab, 2 mm thick [Figure 1(a)]. It was
measured at the APS high-energy beamline ID-11-C during
the same session as the nickel coin discussed in the companion
paper (Lutterotti et al., 2014). The wavelength was 0.107 98
Å, and the beam size 0.5 × 0.5 mm. Therefore, the same
instrument parameters could be applied which were obtained
by refining the CeO2 standard (see Part I.III). However,
samples can shift, so here we will use a slightly different
approach as described in detail in Appendix I. This will illus-
trate the flexibility of MAUD in assigning sample and image
orientations relative to the MAUD coordinate system [Figure 1
(b)]. During X-ray exposure the sample was translated along
the horizontal axis from −2.5 to +2.5 mm to increase the
probed volume, and rotated around the horizontal axis
(Figure 1 in Lutterotti et al., 2014), from −45° to +45° in
15° increments (i.e., there are seven diffraction images) to
obtain adequate pole figure coverage. For the coin we used
YM as the rotation axis, here we will use ZM [Figure 1(b)].

a)Author to whom correspondence should be addressed. Electronic mail:
wenk@berkeley.edu
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The reason for the change in coordinate systems is that this
way the pole to the bedding plane of the shale is located in
the center of the pole figure and axial symmetry can be
imposed. Since the texture describes the preferred orientation
of crystals relative to sample coordinates, care must be taken
that this relationship is not lost during rotations.

Images were collected with a Perkin Elmer amorphous
silicon detector with dimensions of 2048 × 2048 pixels and
a pixel size of 200 × 200 µm. The detector was approximately
1850 mm from the sample. Figure 2(a) shows a diffraction
image with many Debye-rings from at least six major phases
at different 2θ angles. Several rings display strong intensity
variations due to preferred orientation.

B. Preliminary analysis for axial symmetry using one

image

Refining seven images simultaneously with a number of
low-symmetry phases is time-consuming [two-dimensional
(2D) diffraction images are integrated in angular azimuthal
increments, resulting in a total of several hundred patterns].
Thus it is more efficient to start with only one image measured
at w = 0° [coverage in Figure 1(b)]. Later, we will add the other
images in different datasets to complete the analysis [coverage
in Figure 1(c)]. The procedure with a single image is justified,
because shale textures have approximately axial (fiber) sym-
metry about the bedding plane normal (transverse isotropy).
By imposing this sample symmetry, complete pole figure cov-
erage is obtained with only one dataset. If the texture is not too

strong, one can initially assume a random orientation to
simplify the first refinement steps and introduce the texture
later with the additional images. In case of a very strong
texture, we have to work from the start with all images and
a complete texture model, but this is not the case for the
shale example.

We start from an instrument calibrated with the CeO2

standard and use the same procedure as for the coin analysis
(Part I.IV) to load and integrate the first image. Compared to
the coin, we do not rotate the image 90° counterclockwise
in ImageJ before processing, so that the horizontal axis is in
the center (ZM) for the shale sample; in this way the bedding
plane normal is in the center of the pole figure [see Figures 1(b)
and 1(c)]. Since the texture of shale is smoother than the coin
[see Figure 2(a)] we can employ a larger integration step of
10°; this reduces the total amount of data to analyze without
loss of information and with an increase in speed of the compu-
tation. Initially we restrict the refinement range to 2θ = 0.3–3.0°
since shale contains several low-symmetry phases with many
diffraction peaks that overlap at higher 2θ. Those peaks do not
provide much information for texture analysis. Restricting the
range greatly speeds up the computation. If necessary, the
range can be enlarged at the end of the refinement.

Figure 3 (bottom) displays the stack of experimental dif-
fraction patterns taken at each 10° increment in eta (η). The
pole figure coverage is shown in Figure 1(b) with the pole
to the bedding plane at ZM (w rotation axis).

We use a fourth-order polynomial background common
to all patterns (5 coefficients). However, we must also correct

Figure 1. (a) Slab of shale embedded in epoxy and mounted on a pin. (b) Pole figure coverage with a single image, bedding plane normal is in the center of the
pole figure. When fiber symmetry is imposed, each point covers a circle. (c) Coverage with seven images recorded at different sample rotations w around the ZM
axis.

Figure 2. 2D synchrotron diffraction images. (a) Kimmeridge shale with many phases, some with strong preferred orientation. (b) LaB6 standard used for the
DAC experiment, rather coarse-grained and with some impurities. (c) Radial diffraction DAC experiment on ferropericlase. Arrow points to a diffraction spot from
diamond. The compression direction is vertical.
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for small angle scattering from platelet-shaped phyllosilicate
nanoparticles, which is most visible in the diffraction image
at very low angles (2θ≈ 0.1–0.2°), near the beamstop
[Figure 2(a)]. Since these platelets are oriented, small angle
scattering displays azimuthal intensity variations. The broad
low-angle peak extends as elevated background to the first dif-
fraction peaks of phyllosilicates (2θ≈ 0.3–0.6°) (Figure 3). To
fit this peak, we use two symmetrical background peaks,
which are pseudo-Voigt functions that can be positioned arbi-
trarily in a dataset at any coordinates. The principal one is 2θ
[parameters are intensity, 2θ position, half-width at half-
maximum (HWHM) in 2θ, and the Gaussian content], but it
may span over η (adding a position, HWHM and Gaussian
content in η) as well as position angles (χ, w). Background
peaks are useful to model some well-defined bumps occurring
in images that do not belong to diffraction from a phase. For
details, see the tutorial in Appendix 1.

We limit the refinement to the five major phases: quartz,
pyrite, kaolinite, illite-mica, and illite-smectite. There are
minor phases such as feldspars with <5% volume and no sig-
nificant texture. Quartz and pyrite structures can be found in
the Crystallography Open Database (Gražulis et al., 2009)
or in the small database included with MAUD (structures.
mdb). We added the following structures to this tutorial: tricli-
nic kaolinite (Bish and Von Dreele, 1989), monoclinic
illite-mica (Gualtieri, 2000), and monoclinic illite-smectite
(Plançon et al., 1985). The corresponding Crystallographic
Information Files (.cif) are available in the on-line material
supplied with the tutorial. For monoclinic phases, the first
monoclinic setting has to be used to work with texture
(Matthies and Wenk, 2009). All texture models implemented
in MAUD have been written for the monoclinic “c-unique”
setting (i.e., α = β = 90° and γ≠ 90°); otherwise crystal sym-
metries are not imposed correctly in orientation space. In
MAUD one can change from one setting to another simply
by editing the phase and under the “General” tab, selecting
the desired setting in the “Space Group” drop-down list.
Lattice parameters and atomic positions are adjusted automati-
cally, for example, for the illite-mica phase changing from
MAUD settings of C2/c:b1 to C2/c:c1, which selects c for
the unique (twofold) axis. Note that the “1” at the end of the
space group symbol stands for the first origin and the setting

letter is after the colon. The provided .cif file for illite-smectite
is already in the first (c-unique) setting.

When multiple phases are entered, MAUD automatically
assigns to each added new phase the volume fraction equal to
1/(the total number of phases in the sample). In Rietveld pro-
grams, each phase has an assigned scale factor, and each scale
factor is optimized during the refinement. Then, from the
refined scale factors, the volume and weight fractions of the
phases are computed. In addition to volume fraction,
the scale factor contains information about the beam intensity
and other factors such as absorption, yet it is treated as a
unique parameter. If the phases are textured we need an
approach that models the sample correctly and uses phase frac-
tions, beam intensities, and absorption corrections (Lutterotti
et al., 2010), which all contribute to peak intensities and
thus may complicate intensity. In our final model, fitting to
data from all seven images, we will have a beam intensity par-
ameter for each image, but all patterns in each image have the
same beam intensity. Furthermore, we refine the phase frac-
tions for all phases minus one. MAUD imposes that the sum
of all phase fractions should be equal to 1 and enforces the
volume fraction of the unrefined phase to be the complement
to 1.

With a complex sample such as this shale, it is important
to provide reasonable initial estimates of phase volume frac-
tions. This avoids divergence of the solution in the initial
steps of the least-squares algorithm. Weight fractions are cal-
culated automatically by MAUD, using the provided atomic
structure and unit-cell parameters.

For texture, with the initial simplified model using only
one image, we need to impose the axial symmetry that
MAUD always imposes around the center of the pole figure
[Figures 1(b) and 1(c); for the MAUD angle convention and
transformations, see also Grässlin et al., 2013 and Figure 4
(a) in Part I].

After manually adjusting some parameters, such as
unit-cell parameters, beam intensity, and background to better
fit the experimental patterns (in the parameter list in the
MAUD main window, adjust numbers in column “Value”),
we start by refining some basic parameters. In the Rietveld
refinement procedure, it is always better to avoid refining
too many parameters at the beginning and to “guide” the pro-
gram to the solution. There are normally three major steps to
follow: (1) refine background parameters and intensities (scale
factors or in MAUD beam intensities and phase fractions); (2)
refinement of parameters connected to the peak positions
(unit-cell parameters and 2θ errors); and (3) refine microstruc-
tural parameters such as crystallite sizes and microstrain.
While doing subsequent refinements, one should not change
the setting for the refinement of previously refined parameters;
the goal is to slowly add additional parameters to the fit. When
do we refine texture-related parameters? If the texture is
smooth, or weak, it is done at the end (a fourth step), to
avoid refining texture instead of some other parameter that
could impose intensity variations (e.g., absorption).
However, if the texture is sufficiently strong we introduce
the texture refinement along with the refinement of intensities
in the first step, as long as diffraction peak positions are well
constrained. The crystal structure details (e.g., atomic pos-
itions and even lattice parameters) should be refined only if
necessary and only for phases with sufficient volume fractions
and visible peaks. Also, one should use only a single overall

Figure 3. Stack of diffraction patterns for Kimmeridge shale, w = 0° tilt
image. Experimental data at bottom and Rietveld fit on top. Some
diffraction for lines for illite-smectite (IS), illite-mica (IM), kaolinite (K),
quartz (Q) and pyrite (P) are labeled.
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atomic displacement parameter (B factor, which is sometimes
called temperature factor) by clicking on “Bound B factor”
button in the parameter list. When working at high-energy
X-rays and very low 2θ angles (available 2θ range is
restricted) the data are practically insensitive to B factors.
As in the case of the coin in Part I, we should refine the x
and y image centering errors as we cannot assure that the
CeO2 calibrant was in the center of the beam, whereas for
the shale the beam is inside the sample.

Looking at Figure 3, diffraction peaks of kaolinite (K),
illite-mica (IM), and illite-smectite (IS) show strong
η-dependent intensity variations indicative of texture. The
intensities of the quartz (Q) and pyrite (P) diffraction peaks
are almost constant, except for several increased intensity
spots because of scattering from larger grains (e.g., P 111
peak). Thus, we only refined preferred orientations of the
three phyllosilicates but not of quartz and pyrite. We used
the E-WIMV model (Part I.IV) for the kaolinite and the illite-
mica with a rather large cell size of 10° in orientation, space
given the smooth character of the texture. In general, one
should not select a smaller cell size than the measured grid
in patterns (in this case it is defined mostly by 10° integration
sectors).

For illite-smectite with a well-defined orientation, we use
the so-called standard functions method to introduce this capa-
bility (Matthies et al., 1987 and implemented in MAUD by
Lutterotti et al., 2007). The advantage of this approach is
that we can describe preferred orientation with some well-
defined functions with only few parameters. MAUD
implements Gaussian or Lorentzian fiber components (having
a fiber symmetry character) and spherical components (also
Gaussian, Lorentzian, or mixed). For both types of com-
ponents, we refine their position in the orientation space,
width (in degrees), and Gaussian or Lorentzian character (a
single mixing parameter). For the position, the fiber com-
ponent is defined by the fiber axis orientation with respect to
the sample normal (azimuthal PhiY and polar angle ThetaY)
and the orientation axis in the unit cell (also two angles: the

azimuthal angle around the c-axis PhiH and the polar angle
starting from the c-axis ThetaH; see for analogy the angles
Φ and β in the appendix of Popa, 1992). Standard function tex-
ture corrections are very quick to compute and converge
rapidly. Another advantage of the standard functions is that
they can model very smooth or very strong textures up to epi-
taxial films, or even single-crystal-like patterns, depending on
the width of the component. We defined the fiber axis here
parallel to the bedding plane normal [corresponding azimuthal
and polar angles are equal to zero, Figure 1(c)]. For the crystal-
lographic texture orientation, we know that the h00 maximum
is in the center of the pole figure (monoclinic first setting) and
we set the azimuth PhiH to 90° and the polar angle ThetaH to
0°. In this case, we do not refine the orientation angles, as they
do not deviate from the imposed starting values, and only the
width and Gaussian/Lorentzian mixing parameter of the fiber
component will be refined.

The illite-smectite peaks are unusually broad and asym-
metric (Figure 4) because of turbostratic disorder, which is
typical of clay minerals. This kind of disorder can be described
with the Ufer single-layer model (Ufer et al., 2004). The
model is very effective in reproducing the asymmetric broad-
ening caused by the turbostratic disorder and can be coupled
with the texture analysis (Lutterotti et al., 2010). We only
need to define the faulting direction (h00) for the smectite
and the supercell dimension to approximate the disordered
structure. We choose ten times the a-axis (first monoclinic set-
ting) as a sufficient value to model the disorder.

In Figure 3 (top), we can see the resulting 2D plot after the
initial refinement with one image and the agreement with the
experiment is very good (Figure 3, bottom). Figure 4 shows
two individual patterns, one with scattering vectors parallel
to, and the other perpendicular to the bedding plane normal
and also good agreement for both is observed here. The tick-
marks at the bottom denote peaks belonging to each phase.
This is the quality that fit users should aim for. Table I lists
refined volume and weight fractions for the phases and
Table II gives information about the texture. Corresponding

Figure 4. Two diffraction patterns of Kimmeridge shale with scattering lattice planes parallel to bedding plane on top and perpendicular to it at bottom. Crosses
are measured data and line is Rietveld fit. Below the patterns is a list of contributing phases and their corresponding diffraction peak positions are marked with
ticks. Some diffraction peaks are labeled (IS, illite/smectite; IM, illite/muscovite; Q, quartz; P, pyrite).
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pole figures are shown in Figure 5(a) in equal-area projection.
Note that illite-mica has the strongest texture and
illite-smectite shows the broadest OD. The R-factors, which
measure the overall goodness of fit between the model and
experimental data, were: Rw = 12.5% and Rb = 8.9% for the

single image refinement. In general, R-factors smaller than
15% typically demonstrate a very good refinement.

C. Analysis without imposing texture symmetry

With this preliminary refinement, we can add the other six
diffraction images and proceed with the full analysis. In the
end we can also enlarge the refinement range.

With all the seven images rotated in 15° w increments
around ZM and integrated in 10° sectors around η, the pole
figure coverage is now as shown in Figure 1(c). With the larger
OD coverage we can analyze the full texture without imposing
sample symmetry and use E-WIMV, also for the
illite-smectite. In E-WIMV, the default in MAUD is to use
all the reflections in the computing range. Contrary to the clas-
sical WIMV and pole figure texture analysis, in Rietveld/
E-WIMV the pole figure value is weighted using the square
root of the theoretical integral intensity of the reflection
[Eq. (2) in Lutterotti et al., 2004]. In this case, if we use the
full range, the three textured phases have many overlapped
and very weak reflections, even up to 3° in 2θ. Weak over-
lapped reflections do not contribute significantly to the OD
and introduce noise. The texture analysis improves if such
reflections are not used, as long as there is no problem with
coverage. E-WIMV andWIMV have an option to reject reflec-
tions with either small intensities relative to the strongest

TABLE II. Texture information for phyllosilicates in shale after processing
in BEARTEX, pole densities in m.r.d., with and without imposed axial
symmetry of texture, and also using full 2θ range.

Max
axial

Min
axial

Max no
symm

Min no
symm

Max
full
range

Min
full
range

Kaolinite 001 6.84 0.22 5.14 0.31 4.44 0.15
Illite-mica 100 8.50 0.12 7.78 0.25 9.73 0.21
Illite-smectite
100

3.83 0.39 3.70 0.30 3.22 0.32

TABLE I. Phase volume and weight fractions of minerals in shale (in %), with and without imposed axial symmetry of texture, and also using full 2θ range.

Vol. axial Wt. axial Vol. no symm Wt. no symm Vol. full range Wt. full range

Kaolinite 9.9(2) 9.1(2) 8.7(1) 8.1(1) 11.8(1) 10.8(1)
Illite-mica 29.8(5) 29.7(5) 32.5(2) 32.9(2) 27.0(1) 27.0(1)
Illite-smectite 24.5(7) 22.8(6) 31.8(2) 29.7(2) 32.6(2) 31.7(2)
Quartz 30.6(5) 29.1(5) 22.9(1) 21.9(1) 24.7(1) 23.5(1)
Pyrite 5.2(5) 9.3(8) 4.1(1) 7.4(1) 3.9(1) 7.0(1)

TABLE III. Texture information for ferropericlase at 39.6 GPa; pole
densities of different pole figures and inverse pole figure (IPF) in m.r.d.
Numbers in parentheses are after exporting the ODF to BEARTEX.

Max Min Max no symm Min no symm

100 2.64 (2.74) 0.67 (0.73) 2.57 0.55
110 1.12 (1.26) 0.75 (0.86) 1.47 0.59
111 1.12 (1.26) 0.51 (0.53) 1.55 0.44
IPF 3.19 (2.74) 0.51 (0.53)

Figure 5. Pole figures of basal planes of kaolinite, illite-mica and illite-smectite for Kimmeridge shale after exporting the ODs fromMAUD and processing them
with BEARTEX. (a) Derived from a single image, imposing fiber symmetry. (b) Result for seven images without imposing symmetry. The corresponding pole
figure coverage is shown in Figure 1(c). Equal area projection on the bedding plane, contours in multiples of a random distribution.
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reflection or d-spacings lower than a threshold value. In the
present analysis, we use these options and avoid reflections
with intensity <2% of the strongest reflection and with
d-spacings smaller than 1.5 Å.

Figure 6 shows the final fit to all seven diffraction images
with a cumulative plot of all patterns for the dataset w = 0° and
a 2θ range 0.4–7.8°. At low angles kaolinite, illite-mica and
illite-smectite peaks dominate the pattern, whereas at high
angles quartz and pyrite dominate. In a case like this, it is
important to check the B factors. Wrong B factors for the pyr-
ite/quartz and the other low angle phases may lead to angular-
dependent errors that will greatly affect the phase fractions
between the “low angle” and “high angle” phases.

Pole figures of phyllosilicates, corresponding to those in
Figure 5(a), but without imposing symmetry, are shown in
Figure 5(b). Note that these pole figures look slightly different
from what the reader might see in MAUD. This is because
the OD data have been exported from MAUD and were
replotted in the software BEARTEX (Wenk et al., 1998),
in order to alleviate artifacts from the cell structure by
smoothing and plotting all pole figures on the same scale. In
Figure 7, we also show pole figures (100) of kaolinite and
(010) of illite-mica and illite-smectite that display a peripheral
circle.

In this tutorial presentation, we have started with a single
image and imposed axial symmetry, then progressed to many
images with no symmetry. This was done to progress from a
simple to a more complex analysis. In reality one may want
to progress the opposite way: first, with many images, verify-
ing sample symmetry; second, performing necessary sample
rotations to bring sample symmetry axes to coincidence with
MAUD coordinates, and finally imposing symmetry with
one image (for axial symmetry) or several images for more
complex sample symmetries.

Pole figure coverage is an important issue, particularly for
phases with low crystal symmetry. Shales have very special
textures with a maximum pole density corresponding to
sheet silicate platelets lying in the bedding plane (Figure 5).
This maximum has been well sampled with the present cover-
age [Figure 1(c)]. However, directions in the bedding plane
and particularly in the XM direction have minimal coverage
(Figure 7). The pole figures in Figure 5(b) show minor devi-
ations from axial symmetry, particularly an elongation of the
pole figure maxima in the vertical direction for (001) in kao-
linite and (100) in illite-mica and illite-smectite. This distor-
tion extends into the blind region of coverage [Figure 1(c)]
and may be an artifact. This is further supported by the fact
that the maximum pole densities are higher if the axial

Figure 6. Cumulative plot for all patterns of the w = 0 image at the end of refinement cycles with seven images, full 2θ range. Dots are experimental data and line
is Rietveld fit. Some diffraction peaks are labeled (IS, illite/smectite; IM, illite/muscovite; Q, quartz; P, pyrite).

Figure 7. Pole figures 100 of kaolinite and 010 of illite-mica and illite-smectite for Kimmeridge shale without imposing sample symmetry. The corresponding
pole figure coverage is shown in Figure 1(c). Equal area projection on the bedding plane, contours in multiples of a random distribution.
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symmetry is imposed (Table II). Only additional measure-
ments with rotations around other sample axes and combining
the data could refine the preferred orientation pattern, but this
goes beyond the purpose of this tutorial. One may also want to
use a different sample geometry, such as a cylinder instead of
a slab, and rotate it from w =−90° to w = +90°, collecting 13
images.

Phase volume fractions for Kimmeridge shale without
imposing sample symmetry are compared in Table I with
results for axial symmetry. They are very similar. For the
Kimmeridge shale, the final Rietveld Rw factor is 10.9% (Rb

= 8.2%) for the refinement in the 2θ range up to 3°. A few
peaks are missing from the calculated diffraction pattern,
some are too intense, and some have wrong shapes (e.g.,
Figures 3 and 4). The missing peaks are mostly because of a
feldspar phase that could be entered into the refinement, but
we opt to not do so. Anisotropic crystallite shapes and micro-
strains could also be imposed for phyllosilicates. We have used
a CeO2 powder to refine instrumental parameters (Part I), but
CeO2 has no diffraction peaks at 2θ < 2°. Thus the function
describing the instrumental part of diffraction peak broadening
(especially the asymmetry) is poorly constrained for this shale
with diffraction peaks down to 2θ≈ 0.5°. Parts of the instru-
mental peak shape function (the asymmetry) can be refined,
as has been done for the full range analysis (see Figure 6).
The final Rw for the refinement of the full range and all
seven images was reduced from the one image refinement to
10.3% (Rb = 7.4%), which is a very good value, given the num-
ber of patterns and complexity of the phases.

III. DAC IN RADIAL DIFFRACTION GEOMETRY

A. Experiment

Rietveld texture analysis of synchrotron diffraction images
can be applied to study in situ deformation at high pressures
with a DAC in radial diffraction geometry (rDAC) (e.g.,
Merkel et al., 2002; Wenk et al., 2006). This proves to be an
important method to determine deformation mechanisms at
ultrahigh pressures, as in the deep Earth (e.g., Miyagi et al.,
2010) to explain observed seismic anisotropy in the lower man-
tle and inner core, and to study crystal orientation changes
during phase transformations (e.g., Miyagi et al., 2008;
Kaercher et al., 2012; Kanitpanyacharoen et al., 2012b). The
method can also be applied to analyze data from multi-anvil
experiments such as D-DIA (e.g., Wenk et al., 2005, 2013).

The geometry of a typical rDAC deformation experiment is
shown in Figures 8(a) and 8(b). Diamonds not only impose
pressure, but also deviatoric stress that deforms crystals in the
aggregate. The diamond cell is set up in radial rather than
axial geometry, i.e. the X-ray beam passes through the sample
perpendicular to the compression direction [Figure 8(b)] so that
the diffraction image records reflections from lattice planes
oriented from parallel to perpendicular to compression
[Figure 2(c)]. Preferred orientation is expressed in the azimuthal
intensity variations, similar to the images of the shale [Figure 2
(a)]. Many DAC experiments, not concerned with stress and
texture, use axial geometry, where the X-ray passes through
the diamonds and parallel to the compression direction.

rDAC experiments have been performed at room tempera-
ture to pressures as high as 200 GPa on iron (Wenk et al.,
2000) and 185 GPa on MgSiO3 post-perovskite (Miyagi

et al., 2010). More recently texture measurements have been
made in the rDAC on ferropericlase (Mg,Fe)O at 2273 K
and ≈ 65 GPa, using a combination of resistive and laser heat-
ing (Miyagi et al., 2013).

Contrary to the coin and shale experiments, we must take
into account changes with pressure, and particularly the macro-
scopic stress field, which imposes anisotropic elastic distortions
of the lattice. As an example we use ferropericlase (magnesio-
wuestite), which has been previously investigated with rDAC
experiments (e.g., Merkel et al., 2002; Kunz et al., 2007; Lin
et al., 2009; Kaercher et al., 2012). This particular sample
(Mg0.75Fe0.25)O has been described by Kunz et al. (2007).

The rDAC experiment was performed at the high-pressure
beamline 12.2.2. of the Advanced Light Source at Lawrence
Berkeley National Laboratory. Ferropericlase powder was
loaded into a boron-kapton gasket. The initial sample diameter
was 80 µm with a starting thickness of 50 µm. The sample was
compressed in an rDAC, using diamond anvils with 300 µm
diameter culets [Figure 8(c)]. Diffraction images were
recorded with a Mar345 image plate detector, with dimensions
of 3450 × 3450 and a pixel size of 100 × 100 µm, positioned
approximately 285 mm from the sample with an X-ray wave-
length of 0.495 94 Å.

There are two immediate complications. First, the beam
passes not just through the sample, but also through a gasket,
which is needed to maintain pressure. Thus there are additional
diffraction lines from the gasket material, especially at low
angles [Figure 2(c)]. Gaskets for radial DAC experiments
must be made of materials that scatter as little as possible. At
lower pressures, amorphous boron (<100 GPa) has been used,
while at higher pressure, cubic boron nitride or beryllium
have been used. For beryllium, which scatters more, it is advan-
tageous to tilt the cell to have minimum beam interference. If
the cell is tilted significantly, the tilt needs to be accounted
for by entering the appropriate sample rotation angles in
MAUD. Bright diffraction spots from the diamond may also
appear in the diffraction pattern. In fact, the large spot on the
left side of Figure 2(c) (arrow) is because of diamond. This
effect can be minimized by slightly rotating or tilting the
DAC. Intense spots can also be masked in image processing.

A second complication is imposed anisotropic elastic
strain. Lattice plane spacings are smaller in the compression
direction and larger perpendicular to the compression axis.
Thus, the Debye rings appear not as circles but as ellipses.
The resulting sinusoidal variations of the diffraction peak pos-
itions with azimuthal angle are best seen with remapped coor-
dinates, as unrolled images [Figure 9(a), bottom].

Ideally the rDAC data analysis should be performed
immediately during the DAC experiment, at least through
the basic steps. This is necessary, for example to refine lattice
parameters and be able to estimate pressure from the equation
of state. Thus parameter files with general information should
be set up in advance.

B. Initial setup

1. Instrument calibration
Before analyzing the ferropericlase diffraction pattern,

instrument parameters have to be refined with a reference
sample. In this case LaB6 was used, adopting the NIST-
certified unit-cell parameter a = 4.156 89 Å [Figure 2(b)]. As
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with CeO2, the unit-cell parameter and the wavelength are kept
fixed, while detector centering, tilts and distance from the
sample are refined. See Appendix 2 for a step-by-step guide
for calibrating instrument parameters in MAUD. The
MAUD procedure has been used for the detector calibration
and subsequent analysis with the ferropericlase in order to sep-
arate the effects on the Debye rings because of detector misa-
lignment from the applied stresses. For the refinement of
instrument parameters, we did not use any asymmetry in the
Caglioti parameters as the measured diffraction peaks are far
from the image center and thus do not show any broadening
asymmetry. Also, in this case there is no η-angle-dependent
diffraction peak broadening.

During the refinement of the LaB6 standard provided by
ALS, we noted additional peaks due to sample contamination,
of which some peaks are very small and can simply be neg-
lected. One peak at 2θ≈ 15.78° is significant and therefore,
we excluded the region 2θ 15.5–16° from the analysis. An
additional complication arises from the coarse nature of the
standard with respect to the small beam size, causing some

intense “spots” originating from diffraction from a few very
large grains [Figure 2(b)]. In general, it would be advisable
not to use such a coarse-grained impure standard or to be
able to spin the sample to avoid graininess problems. We
used a so-called Le Bail refinement (Le Bail et al., 1988)
but permitting different values of the intensities/structure fac-
tors for each pattern. In MAUD a Le Bail structure factor
extraction is done with the restriction that different patterns
(same instrument) share the same structure factors. Here we
want to allow the variation of peak intensity with azimuthal
angle. This is done in MAUD using the texture model
“Arbitrary Texture”, where intensity variations are neither
bound to an OD, nor to a crystal structure.

Next we start processing the ferropericlase DAC image.
Because of the anvil cell geometry, we cannot tilt the sample,
and the number of Debye rings and their extension is limited.
Since stresses are of interest and with the small angular range,
it is important to have a very good detector calibration to cor-
rectly separate the effect of the detector misalignment from the
anisotropic stress on the sample.

Figure 8. (a, b) Schematic sketch illustrating the geometry of deformation experiments in a DAC in radial diffraction geometry. (c) Actual diamond culets
compressing a sample contained by a gasket. (d) Pole figure coverage for the ferropericlase DAC experiment (equal area projection, upper hemisphere).
A gap is visible where one pattern is disabled because of the beam stop blocking diffracted X-rays. Direction of incident X-ray beam is shown by arrow. (e)
Experimental pole figure data for three reflections.
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We use the instrument calibration values obtained by the
LaB6 refinement and process the DAC image as described in
Part I. We integrated the image in 5° sectors to generate 72 pat-
terns. This smaller integration step is essential in this case,
because the texture is strong and significant peak shifts
occur due to anisotropic stress. If the integration step is too
large, the variations of diffraction peak positions and intensi-
ties can not be accounted for properly. We choose a compu-
tation range from 6° to 24° in 2θ in order to include the four
prominent diffraction peaks (111), (200), (220), and (311) of
ferropericlase (Figure 9) and to exclude diffractions from gas-
ket material. In Figure 9(a) (bottom), there is a sharp spot at
2θ≈ 23.8°. This is a diffraction spot from the diamond anvil
[Figure 2(b), arrow]. However, since it is not too intense, we
do not need to exclude this from the diffraction pattern as it
does not significantly affect the refinement. In other cases, if
spots from the diamond anvils influence the results, then
regions containing diffraction from the anvils should be dis-
abled. A test, by running refinement both including and
excluding the pattern with the single-crystal spot, can be
done to check for its influence. Spots can also be eliminated
from the diffraction images by image preprocessing (e.g., in
ImageJ).

The waviness of the diffraction lines [Figure 9(a), bottom]
is not due to a centering or tilting error of the detector, but to
the deviatoric part of the applied stress, i.e. the difference

between the compression along the main compression axis
of the anvil cell (indicated by arrow: larger 2θ, smaller d)
and the transverse direction. Fitting of this effect will be dis-
cussed below.

Setting up the background in rDAC experiments can be
difficult, because of scattering and absorption from gaskets
and DAC [Figure 2(c)]. In this case, it is best to use an
interpolated background (independent for each pattern). A
first positioning of interpolation points is done automatically
using an algorithm described by Sonneveld and Visser
(1975) and selecting only the starting interval between
points and the number of iterations of the algorithm optimiz-
ing the background points’ position. After the automatic
positioning by the routine, the number and positions of the
points can be adjusted manually, but in the case of many
patterns this may be time consuming as it must be done
for each pattern. The use of the algorithm and the presence
of patterns with different angular ranges cause a possibility
of a different choice of interpolation points for each pattern.
A perfect position of the interpolation points is not so critical
in MAUD because the interpolation is performed not on the
raw experimental data, but on the residual after the intensity
diffracted by all phases has been calculated and subtracted
from the experimental pattern. Nevertheless, it is advan-
tageous not to have interpolation points at positions of
strong reflections.

For the refinement we used a periclase phase (MgO,
cubic, Fm-3m) and substitute 25% Fe atoms for Mg to
reach the correct ferropericlase composition. The calculated
pattern [Figure 9(a), top] differs significantly from the
experimental DAC patterns [Figure 9(a), bottom]. This is
the result of the high-pressure condition (39.6 GPa) that
shrinks the cell (a parameter) and enlarges peak positions
2θ. Thus the lattice parameter has to be adjusted manually
before the refinement.

With only one image and four diffraction peaks, the cov-
erage is largely insufficient to refine the OD without imposing
sample symmetry. But in this DAC experiment texture should
have axial symmetry around the compression direction.
Before imposing axial symmetry we have to make sure that
the compression direction (symmetry axis) is indeed in the
center of the MAUD pole figure. We set the ZM axis of our
sample coincident with the compression axis by setting the
χ angle (of the sample) value to 90° [Figure 1(b) for the
MAUD angle conventions, see also Grässlin et al., 2013].
The coverage (after this rotation) is shown in Figure 8(d).
The “Sample→ Sample position→ Sample orientation”
angles are sometimes refined, if data are sufficient (not poss-
ible in this case).

Note that poles to diffracting lattice planes are not perpen-
dicular to the incident X-ray beam but deviate by θ (Bragg’s
law). This was barely noticeable for the coin (Part I,
Figure 4) and for shale [Figure 1(c)], because diffraction
angles were very small. In the MAUD “Texture plot” the cov-
erage corresponds to the θ angle of the selected hkl in the list.
Thus, in the standard rDAC geometry, lattice planes that are
aligned perpendicular to the compression axis B [Figure 8
(d)] do not diffract. Figure 8(e) shows the actual
“Experimental intensity” distributions for three hkls, illustrat-
ing the slightly different coverage, depending on θ. In some
cases, one may want to tilt the DAC to obtain an optimal cov-
erage pattern.

Figure 9. Measured (bottom) and calculated (top) diffraction patterns for
ferropericlase; (a) at the beginning of the refinement. Lattice parameters are
wrong and there is no texture or anisotropic stress in the model. Also note
the black diffraction spot from diamond at 2θ = 23.5°. (b) At the end of the
refinement there is an excellent match in position, width and intensity. The
compression direction σ is indicated by the black arrow in (a) (larger 2θ
angle corresponding to smaller d-spacing).
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C. Stress models

1. Macrostress
Lattice strain is due to the imposed anisotropic elastic

stress and the elastic properties of the crystal. It is exhibited
as sinusoidal oscillations in peak position with azimuth
[Figure 9(b), bottom].

There are four models in MAUD that can be used to fit
lattice strains, resulting in diffraction peak shifts. Two are
“stress models” that convert macroscopic stress tensor com-
ponents to lattice strains and then are used to compute reflec-
tion positions, using the provided elastic properties of the
material. The other two models fit lattice strain distributions
and leave it up to the user to calculate stresses in the end.

In axial compression experiments in the DAC, the anvils
impose both hydrostatic stresses (pressure) and deviatoric
stresses. The symmetric stress tensor σij can be separated
into hydrostatic σp and deviatoric Dij stress components
such that:

sij =
sp 0 0

0 sp 0

0 0 sp

⎡
⎢⎣

⎤
⎥⎦+

−t/3 0 0

0 −t/3 0

0 0 2t/3

⎡
⎢⎣

⎤
⎥⎦

= sp + Dij,

(1)

where t is the axial stress component and provides lower
bounds for the yield strength of the material (Singh, 1993;
Singh et al., 1998). Thus, during the refinement of the stresses,
the deviatoric stresses should be constrained such that σ11 =
σ22 and σ33 =−2σ11, where σ33 is the largest principal stress
in the compression direction and is negative (corresponding
to compression), according to the conventions in MAUD
(component 33 of the stress is along the ZM axis of the sample
or in the center of the pole figure). For the analysis described
here, only deviatoric stresses will be fit with the stress model.
Hydrostatic stresses are accounted for by refining unit cell
parameters, which in turn can be converted to pressure by
utilizing an appropriate equation of state (see below). The
reason for treating these separately is that deviatoric stresses
will be calculated assuming a linear stress–strain relationship,
which is only applicable for small strains. The volume
changes of the unit cell due to pressure effects are significantly
larger than those due to deviatoric stress, and it is best to use
an equation of state that properly accounts for the nonlinearity
of stress–strain dependence at larger compressions. On
the other hand, for the analysis of the residual stresses, e.g.,
in engineering materials, where stress tensor components
values are often within a 0.5 GPa range, it is appropriate
to keep initial lattice parameters fixed. One should then only
fit either stress or strain values (depending on the model
of choice).

The four models in MAUD to fit stress–strain are: (1) a
triaxial elastic stress, isotropic elastic material, sin2ψ method
(Noyan and Cohen, 1987); (2) the moment pole stress
(Matthies, 1996 and Matthies et al., 2001); (3) WSODF
(Popa and Balzar, 2001); and (4) the radial diffraction in the
DAC (Singh, 1993 and Singh et al., 1998). Of these four
models only the second and the fourth are appropriate for
the type of analysis we want to do in this case. The first one
does not take into account the texture and anisotropy of the
sample and can be considered as a simplified version of

the second, more complete model. The third one is used to
extract a strain ODF, but here we are interested in finding
both the hydrostatic and deviatoric parts of the pressure. It
also requires much more orientational data than we have
measured, as it needs to extract an entire strain ODF (with
many coefficients) for each component of the strain tensor.
In the following, we briefly describe how methods two and
four work.

2. Moment pole stress
This model requires the elastic tensor (Cij), corrected for

pressure (and temperature, if necessary), for the material of
interest. It is the most sophisticated model of the four and cal-
culates diffraction elastic constants for each diffraction peak of
the material, taking preferred orientation into account. It is
able to use different micromechanical models similar to
those used for calculating bulk polycrystal properties (e.g.,
Voigt, Reuss, Hill, GEO). The only difference is that for cal-
culation of diffraction elastic constants, crystal properties
should be averaged, using “moments” of OD or pole figures
(corresponding values weighted by sine or cosine values of
certain angles).

3. Radial diffraction in the DAC
This model is not a true “stress” model like the previous

one. While the other models are more general and can be
applied to more complicated deformation geometries,
“Radial Diffraction in the DAC” can only be applied in the
case of axial compression. This model fits a Q(hkl) factor to
each diffraction peak based on peak displacement and the
angle to the principal stress axis. The main advantage of this
model is that it allows the user to fit lattice strains for each
peak separately, but retaining the mean cell parameter for
the hydrostatic pressure computation, whereas previous
models imply that all the displacements of diffraction peaks
correspond to one macrostress tensor, or they are restricted
by crystal symmetry. The “Triaxial Stress Isotropic E” and
“Moment Pole Stress” models may fail if plastic anisotropy
of the material is high. In the case of ferropericlase, some
peaks exhibit much higher lattice strains than other peaks,
and these two models may not be able to provide a satisfactory
fit to the data.

4. Correcting Young’s modulus and Poisson ratio or Cij

to pressure
As mentioned above, using the “Moment Pole Stress” or

any stress fitting model (that requires the stiffness tensor or
modulus), the elastic moduli must be corrected for pressure.
Elastic moduli are pressure-dependent and often become lar-
ger as pressure increases or may display critical behavior
near phase transitions. To correct elastic moduli for pressure,
one will need an appropriate equation of state for the sample
and a set of elastic moduli either calculated or experimentally
determined for a range of pressures for the material. If the
experiment is also at high temperature, one will need to correct
for this as well. In addition, one must account for possible ani-
sotropic thermal expansion of the sample.

The easiest way to correct the elastic moduli is to create a
spreadsheet that uses an equation of state, such as a third-order
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Birch–Murnaghan equation of state, to calculate pressure from
the fitted unit-cell parameters. Next, plot each elastic coeffi-
cient (e.g., C11, C22, C33, C12, etc. or Young’s modulus and
Poisson’s ratio) versus pressure. Once this is done, calculate
a best-fit line to each of the elastic constants and determine
the equation describing the pressure dependence for each
constant. This will allow one to extrapolate or interpolate
elastic moduli to any reasonable pressure [for (Mg0.9Fe0.1)O
see Marquardt et al., 2009]. Often a linear extrapolation is suf-
ficient. Then one uses the pressure calculated from the
unit-cell parameters to determine the appropriate value of
the elastic moduli using the equations for the best-fit lines.
One may need to perform several iterations of this before
the unit cell parameter and stress values stabilize. The pressure
should be calculated from the unit-cell parameter, correcting
the elastic moduli to the pressure, inputting the corrected elas-
tic moduli, and running the refinement. After doing this, one
may notice that the unit cell parameter has changed. If so,
the previous procedure should be repeated until the unit-cell
parameter (and the corresponding pressure value) converge
to a stable value.

Using the “Radial Diffraction in the DAC” model we can
avoid such an iterative procedure and get directly the cell

parameter as well as deviatoric strain and calculate the
pressure from the equation of state.

D. Refinement

In this case, the refinement is quite complex involving
strong texture and high stresses with limited data. We need
to guide the refinement and accurately choose the parameters
to refine. We try as much as possible to avoid refining
unnecessary parameters. In summary, the refinement involves
the following steps (see also Appendix 2):

• Beam intensity and backgrounds. We refine only beam
intensity as we use an interpolated background.

• Cell parameters. Ferropericlase is cubic, so we need to
refine only the unit-cell parameter a.

• Texture. As seen in Figure 10 the texture is fairly strong,
thus we refine the texture early. With the E-WIMV method,
we obtain first an OD without any sample symmetry to
check and validate our hypothesis of imposing an axial sym-
metry [Figure 10(a)]. The pole figures look fairly symmetri-
cal, even though only a single image with four diffraction
peaks was recorded [Figure 8(d)]. This is because of the

Figure 10. Texture information for ferropericlase at 39.6 GPa represented as pole figures (a, b) and inverse pole figures (c). (a) Pole figures without imposing
sample symmetry. (b) Pole figures imposing fiber symmetry. (c) Inverse pole figure of the compression direction plotted by BEARTEX. Equal area projection,
contours in multiples of a random distribution.
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high cubic crystal symmetry that imposes constraints due to
equivalent poles [three for (100), six for (110), and four for
(111)]. For lower crystal symmetry, this would be much less
complete. Once we verify that the texture and sample orien-
tation is compatible with axial symmetry, we impose “fiber”
sample symmetry [Figure 10(b)]. This greatly improves the
effective pole figure coverage.

• Crystallite size and r.m.s. microstrain. Here we assume iso-
tropic crystallite size and microstrain, which results in two
refinable parameters. As mentioned earlier, with the coarse-
grained LaB6 standard, it was difficult to refine an accurate
instrumental peak broadening. Thus obtained parameter
values should be viewed as only qualitative.

• Stress models. For “Moment pole stress” we start with
the elastic tensor values for ferropericlase at atmospheric
pressure with C11 = C22 =C33 = 279.5 GPa, C12 =C13 =
C23= 102.2 GPa, C44 =C55 =C66 = 142 GPa, with all
others equal to zero (Marquardt et al., 2009) and we refine
only the σ11 macrostress value. As an alternative for the
“Radial Diffraction in the DAC” model, we refine Q(hkl)
factors of each diffraction peak in the refinement range
(four parameters).

• Beam center. If reflection positions are not fitting well with
the stress model and one still observes variations of peak
position with angle η, refine the detector center errors (two
parameters, x and y), since it may have changed during
DAC positioning. In our case, it was not necessary.

• Tilt of the DAC cell. If there is evidence that the compression
direction is tilted (not in this case), then we need to correct
for this. In the “Radial Diffraction in the DAC” model, it is
accomplished by refining the “Alpha” and “Beta” angles for
a better fit. In the other stress-based models, the only option
is to refine the sample orientation angles that define the coor-
dinate system.

• Heterogeneities of strain in the DAC cell. In the “Plot 2D”
display one may observe asymmetry in the texture between
the lower and the upper half of the measured patterns dis-
play, while refined patterns demonstrate perfect symmetry.
This may be due to heterogeneities of the sample in the
DAC, e.g. some grains in the periphery of the cell are sub-
jected to lower pressures and deviatoric stress. To accommo-
date this, one can use for the last refinement cycle only one
half of the diffraction image. However, if only half the
Debye ring is used, one should be sure to fix beam center
and tilt parameters. Since axial symmetry of texture and
stress state is imposed, the entire diffraction image is not
needed to derive a reasonably accurate OD.

At the end of the analysis the refined cell parameter is
3.9866(1) Å and the corresponding volume is ≈ 63.36 Å3.
For radial diffraction the lattice parameter represents the strain
resulting from the hydrostatic (pressure) component of the
stress tensor. The derived pressure is ≈ 39.6 GPa and the
final elastic tensor is C11 =C22 = C33≈ 624.4 GPa, C12 =
C13 = C23≈ 171.1 GPa, and C44 = C55 =C66≈ 175.3 GPa;
the deviatoric macrostress σ11 component is ≈1.80(1) GPa.
To calculate the equivalent t value in Eq. (1) we multiply by
3 this value to obtain 5.4 GPa.

In this analysis, we have been mainly concerned with pre-
ferred orientation, which, for axially symmetric textures, is
conveniently displayed as inverse pole figures that represent
the probability of the fiber axis relative to crystal coordinates.

Figure 10(c) is the inverse pole figure of the compression
direction after processing with BEARTEX. The texture is
moderate, with a pole density maximum of ≈ 2.65 multiples
of a random distribution, located close to 001 [Figure 10(d)],
as previously observed (e.g., Merkel et al., 2002; Kunz et al.,
2007; Lin et al., 2009; Kaercher et al., 2012). Quantitative tex-
ture information for the two models is summarized in Table III.

IV. CONCLUSIONS

Synchrotron X-rays provide a powerful method for quanti-
tative texture analysis of materials. Depending on sample size,
beam size and wavelength, small (<100 µm3) to large volumes
(>200 mm3) can be analyzed, and different sample equipment
can be used to impose different conditions on the sample (e.g.,
high pressure, high temperature, anisotropic stress). Compared
to neutron diffraction, electron backscatter diffraction or pole-
figure goniometry, data acquisition is fast, but data analysis is
non-trivial. For complex polyphase materials (such as the
shale sample) a careful manual procedure is necessary.
Further complications arise for high-pressure experiments,
where anisotropic stresses need to be accounted for. MAUD
incorporates a set of methods able to account for preferred
orientations, anisotropic stresses and microstructural charac-
teristics of material. Here we provided only a brief overview
of these and simplified step-by-step procedures that give gen-
eral directions for the analysis, while highlighting some poss-
ible complications. Knowledge of the instrument, sample, and
experimental setup is necessary to adjust these procedures to
each specific case and obtain convincing results.

SUPPLEMENTARY MATERIALS

The supplementary material for this article can be found at
http://www.journals.cambridge.org/PDJ

Supplementary Material Available from the Online
Version.

Appendix 1. Step-by-step procedure for analysis of poly-
mineralic shale.

Appendix 2. Step-by-step procedure for analysis of ferro-
periclase in diamond anvil cell.
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