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Robust quantum state transfer (QST) is an indispensable ingredient in scalable quantum informa-
tion processing. Here we present an experimentally feasible scheme for robust QST via topologically
protected edge states in superconducting circuits. Using superconducting X-mon qubits with tun-
able couplings, the generalized Su-Schrieffer-Heeger models with topological magnon bands can be
constructed. A novel entanglement-dependent topological Thouless pumping can be directly ob-
served in this system. More importantly, we show that single-qubit states and entanglement can
be robustly transferred with high fidelity in the presence of qubit-coupling imperfection, which is
a hallmark of topological protection. This approach is experimentally applicable to a variety of
quantum systems.

To realize large-scale quantum information processing,
quantum states need to be coherently transferred be-
tween distant nodes in a quantum network [1–3]. Several
techniques have been proposed to implement robust QST
in various physical systems, such as photon pulse shaping
of atoms coupled optical cavity [4, 5], transfer via spin
chains and spin-wave engineering [6–10], frequency con-
version via optomechanical interface [11], and quantum
error correction [12, 13]. However, the inevitable exis-
tence of environmental noise and parameter imperfection
can strongly limit the fidelity of QST.

Topological phenomena, rooted in the global prop-
erty of topological matters, provide a natural protection
against perturbation and disorder [14, 15]. Non-abelian
anyons generated in topological materials assisted with
braiding operations have been intensively explored for
topological quantum computing [16, 17]. The topologi-
cally protected Hall conductance is insensitive to disorder
in the electronic systems [18, 19]. Moreover, topologi-
cally protected edge states can be used for robust elec-
tronic and photonic transport [20, 21]. Recently, topo-
logical properties have been employed for QST via chiral
spin liquids, which relies on the realization of controllable
coupling between qubits and the spin liquids and is chal-
lenging to implement [22]. Therefore, it would be highly
desirable to have a topologically protected QST that can
be implemented in practical qubit systems.

Here we present an experimentally feasible mechanism
for the robust QST via the topological edge states in
superconducting circuits [23]. By connecting supercon-
ducting X-mon qubits into a one-dimensional chain with

tunable couplings [24, 25], the generalized Su-Schrieffer-
Heeger (SSH) type of qubit chains [26, 27] can be con-
structed, which support topological magnon bands fea-
tured by topological winding numbers or Chern numbers.
We find that entanglement-related dynamical topological
phenomena can be used to directly measure the topologi-
cal invariants of the magnon bands. In contrast to recent
experiments on topological properties in superconducting
circuits [28–33], which focus on the parameter space of
the qubits and resonators, our study aims at the intrin-
sic topological properties of the magnon bands. More im-
portantly, we show that an adiabatic QST of single-qubit
states and entanglement can be realized via topological
edge states. Using a numerical simulation, we demon-
strate that the QST is topologically protected by the fi-
nite energy gap between the bulk and the edge states and
the transfer fidelities have a plateau at the value of unity
in the presence of qubit-coupling imperfection, which is a
hallmark of topologically protected processes. This pro-
tocol only requires tunable coupling between the qubits
and can be implemented in various qubit systems, such
as trapped ions [34–36], cold atoms [37, 38], nitrogen va-
cancy centers [39], electronic spins [40] and optomechan-
ical systems [41]. Our result can hence lead to future
studies of scalable quantum networks with topologically
protected quantum channels.

Generalized SSH-type qubit chains and topological

magnon bands.– The generic setup for robust QST of
single- or two-qubit states is illustrated in Fig. 1(a). This
protocol is applicable to various qubit systems with tun-
able coupling, but for concreteness, here we focus on
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FIG. 1. (a) The transfer of unknown single-qubit or entangled
states from the qubits inside the left box to the qubits inside
the right box through the intermediate qubit chain. Each
circle represents a qubit. (b) The implementation of the qubit
chain with superconducting X-mon qubits. The qubits Qx

and Qx+1 are inductively coupled by the tunable coupler CP
with coupling strength Jx.

superconducting qubit chain. Adjacent qubits are cou-
pled inductively via a tunable Josephson junction cou-
pler shown in Fig. 1(b). The coupling strength Jx can
be tuned smoothly by varying the current in the coupler.
This setup has been realized in recent experiments on
superconducting X-mon qubits [24, 25]. The correspond-
ing Hamiltonian is Ĥ =

∑

x Jxσ̂
+
x σ̂

−

x+1 +H.c. with σ̂+
x =

|e〉x〈g| for the qubit at site x. Assume that the frequen-
cies of all qubits are the same and omit the qubit frequen-
cies from the Hamiltonian. Let Jx = g0+g1 cosϕx, where
g0,1 are the coupling constants and ϕx = 2πx/p+ θ with
p being the number of qubits in one unit cell and θ being
a control parameter. In the Supplemental Materials [42],
we show that the qubit operators can be converted to
magnon operators with the MatsubaraMatsuda transfor-
mation, where the qubit excitations generate magnon
bands [42]. Here we only consider qubit states with a
single excitation. Because the number of excitations is
conserved in our system, the Hilbert space under consid-
eration can be restricted to the space spanned by single-
excitation states {σ̂+

x |G〉}, where |G〉 = |gg · · · g〉 is the
magnon vacuum and |g〉 is the ground state of each qubit.
For p = 2, each unit cell contains two qubits labeled

by ax and bx, respectively. The Hamiltonian becomes

Ĥ =

N
∑

x=1

(J1σ̂
+
ax

σ̂−

bx
+ J2σ̂

+
bx
σ̂−

ax+1
+H.c.) (1)

with Jm = g0 + (−1)mg1 cos θ (m = 1, 2) and N being
the number of unit cells. This qubit chain resembles the
SSH model in the single-magnon space [42]. It has two
magnon bands and their topological features are charac-
terized by the winding number ν = [1+sgn(g0g1 cos θ)]/2
[42]. For positive g0g1, the magnon band is in a nontriv-
ial (trivial) topological phase with ν = 1 (ν = 0) when
θ ∈ (−π/2, π/2) [θ ∈ (π/2, 3π/2)].
The winding number is a basic topological invariant to

characterize the topological bands. Here we show that
it can be directly measured from quantum dynamics.
Define the center of excitation difference between the
a- and b-type qubits as P̂d =

∑N

x=1 x(P̂
e
ax

− P̂ e
bx
) with

P̂ e
q = |e〉q〈e| (q = ax, bx). Its dynamics can be revealed

from P̄d(t) = 〈ψ(0)|eiĤtP̂de
−iĤt|ψ(0)〉 with |ψ(0)〉 being

the initial state. Let the qubits in the central unit be
initially prepared in the Bell state |χ〉 = (|ge〉+ |eg〉)/

√
2

and all other qubits in their ground states [42], i.e.,
|ψ(0)〉 = |gg · · ·χ · · · gg〉. We find that P̄d(t) is related
to the winding number as [42]

ν = lim
T→∞

2

T

∫ T

0

dt P̄d(t) (2)

with T being the total evolution time. Equation (2)
provides a new method to detect the winding number
through measuring the dynamical evolution of the qubit
excitation, which may also open a prospect in exploring
topology-dependent quantum dynamics.
For the case of p > 2, the generalized SSH-type qubit

chain has p magnon bands. Different from p = 2 case,
their topological features are characterized by Chern
numbers. Here we illustrate p = 3 as an example. In
such case, each unit cell has three qubits labeled as a, b,
and c, respectively, and the Hamiltonian reads

Ĥ =
N
∑

x=1

(J1σ̂
+
ax

σ̂−

bx
+ J2σ̂

+
bx
σ̂−

cx
+ J3σ̂

+
cx
σ̂−

ax+1
+H.c.) (3)

with Jm = g0 + g1 cos(2πm/3 + θ) (m = 1, 2, 3).
The Hamiltonian (3) supports three topological magnon
bands. Suppose the Chern number for the n-th magnon
band is Cn (n = 1, 2, 3). It is found that there are
two different topological magnon phases characterized by
the Chern numbers {C1 = −1, C2 = 2, C3 = −1} and
{C1 = 2, C2 = −4, C3 = 2}, respectively [42]. The topo-
logical transition between these two phases can be tuned
by changing the ratio g0/g1 [42]. So various topological
phase transitions can be observed in this simple system
The Chern numbers can be detected by an

entanglement-dependent Thouless pumping with θ adia-
batically tuned. For illustration, we take g0 = g1, under
which the three magnon bands have the Chern numbers
{C1 = −1, C2 = 2, C3 = −1}. Let θ(t) = Ωt + ϕ0 with
Ω being the ramping frequency and ϕ0 being the initial
phase. The total pumping time is then Tp = 2π/Ω. At
time t = 0, let θ(0) = ϕ0 = π. The coupling strengths
are then J1,2 = 3g1/2 and J3 = 0, i.e., the unit cells are
isolated with zero inter-cell coupling. The eigenstates of
a single magnon excitation in an isolated unit cell are
the entangled states |χ1,3〉 = (|egg〉∓

√
2|geg〉+ |gge〉)/2

and |χ2〉 = (|egg〉 − |gge〉)/
√
2. Let the initial state be

|ψn(0)〉 = |ggg · · ·χn · · · ggg〉, with one unit cell in the
entangled state |χn〉 and all other qubits in their ground
states [42]. As θ is swept from t = 0 to t = Tp, the state
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FIG. 2. The energy spectra of the p = 2 SSH model vs θ for the imperfection strength (a) W = 0, (c) W = 0.6g1 and (d)
W = 0.8g1. The total qubit number is 9. (b) The fidelity of the QST vs the imperfection strength. The total qubit number is
9 (black), 15 (red), and 21 (blue) with Ω = {0.04g1, 0.02g1, 0.01g1}. The other parameter is g0 = g1.

in the initial unit cell experiences an adiabatic pumping
and the entanglement will propagate to other unit cells.
Define the center of excitation as P̂s =

∑N

x=1 x(P̂
e
ax

+

P̂ e
bx

+ P̂ e
cx
). The time-dependence of the center of exci-

tation is described by P̄sn(t) = 〈ψn(t)|P̂s|ψn(t)〉 for an
initial entanglement |χn〉 (n = 1, 2, 3). Our analytical
derivation [42] shows that the change of the average cen-
ter of excitation after one pumping circle is equal to the
band-dependent Chern number with

Cn = P̄sn(Tp)− P̄sn(0). (4)

This dynamical process yields an entanglement-
dependent topological pumping [42], which introduces
quantum entanglement into the original Thouless parti-
cle pumping [43–47] and has not been reported before.
Based on this pumping scheme, we can measure the
Chern numbers in a practical superconducting circuit
with a few qubits [42].
Robust single-qubit quantum state transfer.– The bulk

states of the p = 2 SSH model are characterized by the
winding number. The bulk-edge correspondence, which
relates topological invariants to the topologically pro-
tected excitations localized at the boundaries, guarantees
the existence of the topologically protected edge states in
this system [14, 15]. In the following, we will show that
the edge state in a chain of odd number (2N − 1) qubits
can be exploited as a topologically protected quantum
channel to realize the robust QST. The wave function of
this edge state has the form

|ψE(θ)〉 =
N
∑

x=1

(−1)x
(

g0 − g1 cos θ

g0 + g1 cos θ

)x

σ̂+
ax

|G〉, (5)

which only occupies the a-type qubits [42]. Let g0 =
g1, the edge state concentrates towards the left (right)
end when θ ∈ (−π/2, π/2) [θ ∈ (π/2, 3π/2)]. In par-
ticular, at θ = 0 (π), the coupling strength becomes
J1 = 0 (J2 = 0) with the leftmost (rightmost) qubit
decoupled from the rest of the qubit chain, and the

edge state is |L〉 = |egg · · · gg〉 (|R〉 = |gg · · · ge〉). At
θ = π/2 or 3π/2, the edge state is a W-state |W 〉 =
∑N

x=1(−1)xσ̂+
ax

|g〉
⊗

N/
√
N with equal excitation in all

the a-type qubits.
An unknown single-qubit state can be transferred adi-

abatically via the edge mode. Let θ(t) = Ωt, where θ
is swept from 0 at t = 0 to π at the final time. At time
t = 0, the leftmost qubit is prepared in the unknown state
α|e〉+β|g〉 and all other qubits are in their ground states.
The state of the qubit chain is then |ψi〉 = α|L〉 + β|G〉,
which is in a superposition of the edge state at θ = 0
and the ground state |G〉 with no excitation. During the
sweeping, the state evolves from |L〉 → |W 〉 → |R〉, as θ
is varied from 0 → π/2 → π (see Fig. 2(a)). The final
state of the qubit chain is |ψf 〉 = α|R〉 + β|G〉 with the
rightmost qubit in the state α|e〉+β|g〉. To ensure high fi-
delity of QST, it is required that the process be adiabatic
in the entire process, i.e.,

√
g1Ω needs to be smaller than

the energy gap between the bulk and the edge states.
For example, we can choose Ω = 0.01g1 for a chain of 21
qubits, which has an energy gap larger than 0.1g1. For
superconducting X-mon qubits with g1/2π = 250 MHz,
the time of QST is tf = π/Ω = 0.2µs, much shorter than
typical qubit decoherence times [24, 25].
In practical, the system parameters cannot be perfectly

tuned to exact values due to the intrinsic fluctuations in
device fabrication. In our scheme, the main imperfection
factor is the qubit-coupling imperfection that far exceeds
the effect of qubit decoherence [48, 49]. This imperfection
can be described by the Hamiltonian

Ĥd =
∑

x

δJxσ̂
+
x σ̂

−

x+1 +H.c., (6)

where δJx =Wδ withW being the imperfection strength
and δ ∈ [−0.5, 0.5] being a random number. For each δJx,
we choose 100 samples to perform the numerical simula-
tion throughout this work. The fidelity is obtained by
averaging over the results of all samples. In Fig. 2(b),
we numerically calculate the fidelity F = |〈R|ψ(tf )〉| as
a function of the imperfection strength. A wide plateau
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at F ≈ 1 appears for W . 0.1g1, where the energy gap
remains large enough to protect QST. The appearance
of the plateau is a hallmark of the topologically pro-
tected QST, which ensures high transfer fidelity, and the
plateau can also be observed in the two-qubit entangle-
ment transfer studied below. With current technology,
the imperfection strength is ∼ 5 − 10% of the coupling
constant g1. Our simulation shows that the fidelity can
exceed 0.998 for W = 0.1g1 when the qubit chain size is
over 20. This indicates that nearly perfect QST can be
realized in practical circuits with our protocol.
This topological protection is endowed by the chiral

symmetry that is intrinsic to the SSH model. Such
symmetry requires a symmetric energy spectrum with
each positive eigenenergy E accompanied by a nega-
tive eigenenergy −E, implying existence of zero energy
edge mode. In the presence of qubit-coupling imper-
fection, the system Hamiltonian still obeys the chiral
symmetry, i.e., Γ̂(Ĥ + Ĥd)Γ̂

−1 = −(Ĥ + Ĥd), where
Γ̂ =

∏

x(σ̂
+
ax

σ̂ax
− σ̂+

bx
σ̂bx) is the chiral operator [26, 27].

As a result, the zero-energy edge state is insensitive to
imperfection in the couplings. This is verified by our nu-
merical calculation of the energy spectrum of the qubit
chain in the presence of qubit-coupling imperfection, as
given in Fig. 2(c, d).
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FIG. 3. (a) The energy spectra of the p = 3 generalized
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The fidelities of entanglement transfer vs the imperfection
strength. The total qubit number is 8 (black), 14 (red), and
20 (blue) with Ω = {0.01g1, 0.004g1, 0.001g1}, respectively.

Robust entanglement transfer.– For the p = 3 general-
ized SSH model with 3N −1 qubits, there exists one pair
of edge states (see Fig. 3(a)). Here one edge state exists
within each bulk energy gap. The energies and the wave
functions of the edge states can be solved analytically as
E± = ± [g0 + g1 cos(2π/3 + θ)] and

|ψ±〉 =
∑

x

[

∓g0 + g1 cos(4π/3 + θ)

g0 + g1 cos θ

]x σ̂+
ax

± σ̂+
bx√

2
|G〉,

(7)
which only occupies the a- and b-type qubits [42]. Let
g0 = 0. The edge states concentrate near the left
end when θ ∈ (−π/6, π/3) ∪ (5π/6, 4π/3), and occupy
the right end when θ ∈ (π/3, 5π/6) ∪ (4π/3, 11π/6).
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Specifically, at θ = π/6, 7π/6 (π/2, 3π/2), the coupling
strength J1 = 0 (J2 = 0), and the two leftmost (right-
most) qubits are decoupled from the rest of the qubit
chain. The edge states are |L±〉 = |χ±〉|ggg · · · ggg〉
(|R±〉 = |ggg · · · ggg〉|χ±〉, where |χ±〉 = (|eg〉±|ge〉)/

√
2

are Bell states. At θ = π/3, 4π/3, the edge states are W
states |W±〉 =

∑

x(−1)x(σ̂+
ax

+ σ̂+
bx
)|g〉

⊗
(2N)/

√
2N .

At time t = 0, let θ(0) = π/6 with the system pre-
pared in the edge states |L±〉. θ is then swept linearly
as θ(t) = θ(0) + Ωt. After a ramping time tp = π/3Ω,
θ = π/2. During the ramping, the state evolves adiabati-
cally as |L±〉 → |W±〉 → |R±〉 and reaches the final state
|R±〉, which is localized in the right end. The entangled
state |χ±〉 is thus transferred from the left end to the right
end. With g1/2π = 250 MHz, we choose Ω = 0.001g1
for a chain of 20 qubits, which gives tf = 0.67µs and
satisfies the adiabatic condition. We also numerically
simulate the transfer process in the presence of finite
qubit-coupling imperfection and obtain the transfer fi-
delity F = |〈R+|ψ(tf )〉| for the state |χ+〉. As shown
in Fig. 3(b), the fidelity exhibits a plateau at F ≈ 1,
demonstrating the topological protection of the entan-
glement transfer. A fidelity above 0.99 can be achieved
for an imperfection strength W . 0.07g1.

Discussions.– For the QST protocols to succeed, the
adiabatic condition needs to be obeyed. Denote the
energy gap as ∆, which is the smallest energy separa-
tion between the bulk and the edge states in the related
parameter range. The adiabatic theorem requires that
|dH/dt| < ∆2. For the SSH models, this corresponds to√
g1Ω < ∆. For a chain of 50 qubits, ∆ ∼ g1/10. Hence a

ramping rate Ω < 0.01g1 is required. Because the energy
gap decreases with the size of the qubit chain, as shown
in Fig. 4(a), more stringent requirement on the ramping
rate or other approaches, such as the shortcuts to adia-
baticity [52, 53], will be needed to maintain the transfer
fidelity in a longer qubit chain.
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Furthermore, we study the transfer fidelity of single-
qubit and entanglement as a function of the imperfection
lg[W/∆]. In Fig. 4(b), the transfer fidelities for qubit
chains with different size are plotted, which fall near a
single curve for a given transfer regardless of the size of
the chain size. Both curves have a wide plateau with
high fidelity exceeding 0.99 when W < 0.1∆. Our re-
sult verifies that QST via the edge states is topologically
protected and insensitive to small perturbations in the
Hamiltonian.

Our system can be implemented with current technol-
ogy of superconducting quantum devices. A chain of
9 X-mon qubits has been realized in experiments and
the implementation of longer chains is promising in near
future [50, 51]. With a typical coupling strength of
g1/2π = 250 MHz, the ramping time for QST can be
achieved in sub-micron seconds, much shorter than the
decoherence times for the X-mon qubits [48, 49].
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