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The erroneous signals of detection theory
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Signal detection theory has influenced the behavioural sciences for over

50 years. The theory provides a simple equation that indicates numerous

‘intuitive’ results; e.g. prey should be more prone to take evasive action (in

response to an ambiguous cue) if predators are more common. Here, we

use analytical and computational models to show that, in numerous biological

scenarios, the standard results of signal detection theory do not apply; more

predators can result in prey being less responsive to such cues. The standard

results need not apply when the probability of danger pertains not just to the

present, but also to future decisions. We identify how responses to risk should

depend on background mortality and autocorrelation, and that predictions in

relation to animal welfare can also be reversed from the standard theory.
For every complex problem there is an answer that is clear, simple and wrong.
—H. L. Mencken
1. Introduction
Signal detection theory formalizes the intuition that an individual facing a high

probability of danger (e.g. through predation) should be more wary than another

individual that is at less risk. The theory assumes that sensory inputs (signals) are

uncertain, so which of two possible situations actually applies cannot be perfectly

discriminated. With two actions to choose between, each being best in one of the

situations, an individual chooses the action that seems most appropriate, given

the signal that they have received. Two types of error are possible: ignoring

true dangers and responding to ‘false alarms’; the optimal decision depends on

the expected payoffs of each action. Signal detection theory has been used to

explain a diverse range of behaviours, including mate choice decisions [1],

immune function [2], the behaviours of predators choosing between models

and mimics [3], the evolution of plant defences [4], and mental illnesses [5].

The theory has spawned shorthand terms for some effects, such as the ‘smoke

detector principle’ [2,6] and, in an evolutionary context, is sometimes now

referred to as ‘error management theory’ [7]. We describe standard signal

detection theory and its key predictions in the next section.

The apparent simplicity and power of the standard theory can be misleading.

An implicit assumption of the standard theory is that only a single decision will be

made, but decisions are rarely taken in isolation. In a more realistic model, mod-

ifying the value of a parameter may often correspond to modifying the parameter

for multiple decisions. The change is important because multi-step, knock-on

effects can produce counterintuitive effects.

Our recent work made the use of signal detection theory more realistic by

incorporating it into a larger framework of state-dependent modelling [8].

State-dependent detection theory (SDDT) can be used to analyse numerous

behavioural decisions where the consequences of a decision at one time

(e.g. whether to forage or flee) influences decisions by altering the reserves of

the decision-maker. Our earlier work [8] used SDDT to address behavioural

responses to novel situations that are safe but appear dangerous (e.g. presence

of ecotourists). Here, we use SDDT to examine the critically important issue of

behavioural responses to actual danger (e.g. predation risk) and how the
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responses should alter with the level of danger. We describe the

theory in greater detail in §3. We then show that the results of

the more realistic theory conflict with those of standard signal

detection theory; predicted trends are often reversed.
Table 1. The generic payoff matrix of signal detection theory.

situation

dangerous, D no danger, N

action flee (run & hide), R VDR VNR

forage, F VDF VNF

high

signal

reserves

low

Figure 1. SDDT sets an optimal detection threshold for each level of reserves.
The individual can be killed by predation or starvation, so at high reserves,
the individual is more willing to respond to a perceived danger than when
reserves are low and it needs food to avoid starvation.
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2. Standard signal detection theory
Signal detection theory [9] has been applied to many scenarios;

here we illustrate the principles in a foraging scenario. We

assume that the real situation is either safe (no predator

present) or dangerous (predator present, with probability p).

If safe, then it is best to forage, and if dangerous then it is

better to flee. Prey evaluate the situation and take action after

receiving a signal (of strength x) that tends to be larger when

the situation is dangerous, e.g. predators typically being

larger or louder. Because the two signal distributions overlap,

prey are somewhat uncertain about whether the environment

is safe or not. This uncertainty means that an individual faces

a trade-off; a more wary individual (more easily induced to

flee) will less often err by continuing to forage under danger-

ous conditions, but will more often flee unnecessarily in safe

conditions. Being more wary thus results in lower predation

risk in the short-term, but higher risk of energy shortfalls

(and if energy reserves are low, higher risk of starvation or

needing to take greater risks to obtain food). The conflict

between foraging and fleeing is, of course, a central trade-off

that has been the subject of numerous models (e.g. [10,11]);

the signal detection framework emphasizes, in particular, the

role of cues and their uncertainty in balancing this trade-off.

Signal detection theory identifies the optimal threshold,

xT, for action, whereby receiving a signal larger than the

threshold indicates that it is better to flee; otherwise it is

better to forage. The optimal threshold depends on the

payoff values, V, associated with each combination of

situation and action (table 1) and is given by:

PðxTjDÞ
PðxTjNÞ

¼ ð1� pÞ
p
ðVNF � VNRÞ
ðVDR � VDFÞ

ð2:1Þ

([12], or see electronic supplementary material), where p is

the background probability (prior to receiving any signal)

that the situation is dangerous.

Assuming that none of the payoff values depend on p, the

right-hand side of equation (2.1) decreases monotonically as p
increases, so the optimal threshold for action, xT, decreases. In

other words, if there is a high perceived probability of danger, then
the individual should be more prone to fleeing, as [9, p.23] point out.

A key difficulty with signal detection theory is that the

expected reproductive success (the reproductive values in the

payoff matrix) should depend on the reserve state of the individ-

ual [10,13]. For instance, the cost of fleeing may be very high if

the individual is near starvation [14–16]. This has led to signal

detection theory being incorporated into a wider framework

of state-dependent modelling [8], as we now describe.
3. State-dependent detection theory
Following the scenario outlined above, SDDT identifies the

optimal response thresholds for action, depending on the

individual’s reserve level, as illustrated in figure 1.

Time is discretized into a series of independent units with

signal detection theory being used to make a decision in each

time step. With SDDT, the expected payoff values associated
with each combination of situation and action (cf. table 1)

emerge from the analysis as part of the process [8].

We model the specific, simple scenario where a unit of

reserves is lost in each time step but two units of energy are

obtained when foraging (resulting in a net gain of a unit of

energy while foraging). The individual dies if it forages when

a predator is present or if reserves reach zero. The aim of the

individual is to reach a reproductive reserve level, L (we have

set L ¼ 10, except where specified). The thresholds at each

reserve level are optimized to maximize the probability of

reaching this reserve level.
4. State-dependent detection theory results
In complete contrast to standard signal detection theory,

increasing the probability of danger, p, increases thresholds

(figure 2). In other words, the SDDT model suggests that as
the perceived probability of danger increases, individuals should
require a higher signal (of danger) in order to flee.

Although this SDDT result may seem surprising, there is a

clear logic to it. When p is higher, the organism’s expected

future reproductive success must decrease and thus the

payoff values associated with each outcome in standard

signal detection theory should change. Standard signal detec-

tion theory overlooks this long-term effect. The SDDT model

takes into account the change in the probability of danger

across time; an increase applies across all time steps. Thus, post-

poning foraging in order to remain safe simply shifts that risk of

facing danger to a subsequent time. And as fleeing decreases

the reserves of the animal, the individual will need to be willing

to take larger risks (i.e. less prone to flee) at subsequent time

steps. This effect is taken into account at all reserve levels

where there is a choice to be made. Put another way, if predators
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mD ¼ 2, reserves required for reproduction, L ¼ 10.)
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reserves of 5 with p ¼ 0.1; thus the lines have equivalent values at that
point. (Parameters: mN ¼ 0, mD ¼ 2, L ¼ 10.)
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are rare, when an organism receives a signal of possible danger,

it can afford to flee because it should have plenty of opportunity

to make up for lost energy at a later time. In contrast, if preda-

tors are very common, the organism cannot afford to flee every

time it receives a signal of possible danger.

To illustrate the difference between results of the two

models, we make use of the payoff values from the optimized

SDDT model to assess the expected value of gaining or losing a

unit of food, at mid-reserve levels of 5. With baseline parameter

values, and changing p in both models, we obtain figure 3.

While boldness decreases with p according to the standard

theory, boldness increases with p in the SDDT paradigm.

In the electronic supplementary material, we show analyti-

cally that the threshold increases (i.e. becomes more risk prone)

monotonically with p in a particular case. We also show that

the effect of food availability has the opposite effect in SDDT

than in standard signal detection theory; rather than individ-

uals becoming more inclined to forage when food is more

abundant, they should be less inclined to forage.

with respect to the probability of danger, p. (Parameters: mN ¼ 0, mD ¼ 2,
L ¼ 3.)
5. The effect of background mortality
So far, the only possible sources of mortality have been star-

vation and predation. We now introduce an additional form

of mortality that the individual is assumed to have no control

over by its choice of behaviour. This background mortality

risk could relate to anything from disease to asteroid strikes.

The essential point is that only by reaching reproductive

size more quickly can the risk of background mortality be

reduced. While up to this point, we find that increasing the

prevalence of predators makes individuals bolder, in this

section, we show that with the addition of background mor-

tality, increasing p from low to medium to high can first

decrease and then increase boldness; i.e. that both the conven-

tional wisdom, that increased p makes animals more wary, and

our new result can both apply, but under different ranges of

predator prevalence.
We assume that background mortality strikes with prob-

ability d per time step. The value of d does not affect the trend

of the standard signal detection equation: individuals should

become less bold as p increases (see electronic supplementary

material). However, d does affect the state-dependent result

(figure 4). The electronic supplementary material provides an

analytic case to show that the U-shape of the figure 4 results

hold across all background mortality levels, 0 , d , 1.

This small change in the formulation of equations, introdu-

cing a fixed background mortality at each time, therefore

results in non-monotonic outcomes with respect to p. The intui-

tion is that when predators are very rare, the situation is likely

to be safe even when a moderately strong signal has been

received; prey should only flee when the signal is very strong

(fleeing increases the probability of background mortality

before reproductive size is reached). If predators are somewhat
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more common, prey should be more fearful (have a lower

threshold) because moderately strong signals are now more

likely to correctly indicate danger, and prey still have plenty

of opportunities to recover lost energy. If predators are very

common, prey cannot afford to flee continually, so again

require a strong signal to stop foraging.

A crucial component of the reversal of the standard result is

that when an individual flees, their energy reserves decline,

and the individual must thus face the danger more often

in the future. Without this effect (if the individual simply

remains at the current reserve level when fleeing), the standard

result would apply—of being more ready to flee if danger is

more prevalent.
R.Soc.B
284:20171852
6. Autocorrelation and other scenarios
Standard signal detection theory assumes that only a single

decision will be made, where future prospects are known. In

contrast, the state-dependent approach has assumed that the

current decision is just one of many such decisions, all with

the same independent probability, p, of danger. These are

two extreme possibilities. In many situations, the current

probability of danger is only partially predictive of future prob-

abilities and this may influence current behaviour; if p is

currently high but may soon change, then there is good

reason to wait before foraging.

The intermediate case can be modelled in a simple way by

assuming that there are two possible probabilities of the world

being dangerous, p1 and p2, with an action being required at

each time step. With probability l, the world will remain in

the current state in the next time step. In the electronic sup-

plementary material, we provide the general formulae and

analyse a simple case (assuming that the organism has evolved

to respond appropriately to p1, p2 and l). The results confirm

that for high autocorrelation (l close to 1), the thresholds

increase as the corresponding probabilities of danger increase

(the SDDT result).

Our models so far have assumed that the decision-maker

must reach a particular level of reserves in order to reproduce.

However, the standard signal detection theory result—of indi-

viduals becoming more risk averse as the probability of danger

increases—is also reversed when survival probability is maxi-

mized over a fixed period (e.g. a small bird in winter; [17])

and when maximizing expected survival time (see electronic

supplementary material).

Finally, the models to this point have assumed an internal

state variable, but this constraint is not necessary to get differ-

ent trends from standard signal detection theory. For instance,

if an individual must survive transit to a particular location and

receives a signal of the current risk, then the individual may

become less risk averse as danger increases (electronic sup-

plementary material). This model highlights that there must

be a twofold effect of danger for the standard signal detection

theory result to be reversed.
7. Discussion
Signal detection theory has been used in many scenarios that

involve distinguishing between safe and dangerous situations.

As Wickens [18, p. 213] said in the opening line of his paper,

‘The signal-detection model [. . .] is unquestionably one of the

most successful models in mathematical psychology’. The
standard result may seem obvious: that an individual should

be more ready to take evasive action when the probability of

danger is higher. While interpreting the signal detection

equation, Nesse [2, p. 97), wrote, ‘This is consistent with intui-

tion; the defense should be expressed less readily (at a higher

criterion) as noise becomes more prevalent than signal’ (e.g.

when predators are rare). Numerous authors have written

similar statements; e.g. Quigley & Barrett [19, p. 444], ‘an

increase in false alarms is adaptive for individuals living in

conditions of high threat’; and Lynn et al. [20, p. 727], ‘rare

targets [. . .] promote conservative bias’.

Our most striking result is that this conventional wisdom is

thoroughly misleading. We consider decision-making not as a

single event but as a series of events, and find that as the preva-

lence of danger increases, individuals should be bolder, not

more cautious. The logic is straightforward; animals cannot

afford to continually take evasive action when danger is

common, because avoidance of danger is costly (e.g. reducing

energy reserves); instead they should be more bold. While it

has long been recognized that sequential choice models should

be better predictors of behaviour in many situations (e.g. [21]),

it is perhaps surprising to find such a complete reversal of pre-

dictions. We have demonstrated that the standard results of

signal detection theory (which apply regardless of what costs

and benefits are set) are reversed in numerous biological scen-

arios (when multiple decisions will be required): risk-sensitive

foraging when growing to a particular size before reproducing

(either semelparously or iteroparously), maximizing survival

over a fixed number of time steps (such as over-winter), maxi-

mizing expected survival time, food availability altering and,

in some cases, individuals choosing when to alter location.

We have also shown that adding a background probability

of mortality, likely an ever-present reality, produces a U-shaped

relationship between the prior probability of danger and the

organisms’ predicted boldness. This occurs because as the prob-

ability of danger alters, the risks of predation and starvation,

relative to background mortality, are governed by actions and

expected future payoffs. Thus the effect of sequential decisions

is crucial to understanding this relationship.

The single- and multi-decision models generate very differ-

ent predictions, so a key issue is whether an empirical situation

of interest better fits one scenario or the other. Single-decision

models can be suitable for organisms that make a decision that

radically alters subsequent trajectories; e.g. whether a juvenile

fish should become a hook or a jack [22]. However, many scen-

arios require individuals to make decisions repeatedly,

in which case the SDDT approach may be more applicable.

This is often the case even if there will only be one apparent

action. For instance, an individual choosing an oviposition

site may assess numerous sites (i.e. making multiple decisions)

before accepting just once.

In multi-decision scenarios, a key element of the decision-

making logic relates to temporal autocorrelation. Our pri-

mary SDDT model assumed that the same prior probability

of danger would apply to each time step. If the prevalence

of predators is high, and it is likely to remain so, prey need

to forage despite the persistent risk. However, in an environ-

ment with low autocorrelation, foragers should flee readily

when the prevalence of danger is high because the risk is

likely to reduce soon, allowing the animal to resume feeding

in relative safety. Earlier models have identified this effect of

autocorrelation (e.g. [23] on vigilance) but not in the context

of signal detection theory.
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The ‘risk allocation hypothesis’ [24] predicts that prey in

consistently high-risk environments should be less vigilant

than prey in consistently low-risk environments. Our SDDT

results concur with this prediction, which has empirical sup-

port. For instance, Brown et al. [25] identified that, ‘cichlids

previously exposed to [a] high background level of risk exhib-

ited a lower overall intensity response to each alarm cue

concentration than those exposed to [a] low background level

of risk’. Ferrari et al. [26] identify that although empirical sup-

port is somewhat mixed, animals that were given more time to

evaluate their situations were more likely to behave according

to the risk allocation predictions. Higginson et al. [27] empha-

sized that, theoretically, a crucial factor is the expected

duration of danger. These theoretical and empirical findings

concur with our analysis of autocorrelation. How thresholds

should shift with expectations remains an interesting question.

To address it, we need modelling approaches that take account

of how those expectations change (i.e. learning processes),

which will often be influenced by past levels of environmental

autocorrelation [28].

Our result is also linked with predictions of life-history

theory that if organisms have high expected mortality rates

(regardless of antipredator defence), then their best strategy

can be to exhibit a ‘fast’ lifestyle [29]. If the juvenile mortality

rate (regardless of their behaviour) is high, organisms should

forego defence and instead grow rapidly to reach a reproduc-

tive size more quickly. If the expected adult mortality rate is

high regardless of behaviour, then organisms should put

high effort into immediate reproduction since the probability

of surviving to have higher fecundity in the future is low. In

both life-history theory and in our analysis of antipredator be-

haviour, key results are driven by expectations about the

future, which governs how much emphasis should be placed

on short-term versus long-term considerations when choosing

a current strategy.

Our findings can easily be translated to other areas. For

instance, although the energy cost of activating the immune

function is small, the effect on trace minerals is significant

[30], so taking action makes any future effort more costly.

Consequently, the effect of a change in the background expec-

tation of infection is analogous to our SDDT results vis-à-vis

shifting the background probability of danger; if the probability

of infection is high, a strong signal of infection may be required

to invoke the immune system (and, conversely, if the

probability of a signal is perceived to be low, then immune

responses may be triggered more easily, e.g. by allergens later

in life if few were experienced in childhood). Similarly, the

SDDT approach can apply to choosing between toxic and

non-toxic foods. If toxic foods are rare (and food is readily avail-

able), foragers should be very wary of any foods that appear

even slightly dangerous, while if toxic foods are common, for-

agers may need to be more willing to sample and consume

foods of ambiguous quality.

Various authors have used signal detection theory to model

moods (how mood may summarize background information

to influence behaviour or vice-versa). Nettle & Bateson [5]

identify two key aspects: the potential for current actions to

affect future state, and the need to model autocorrelation in

dealing with moods. However, in following standard theory,

they state that, ‘If [danger] is very likely under current con-

ditions, then a low threshold should be set; and if [danger] is

very unlikely under current conditions, then a high threshold

should be set’ Nettle & Bateson [5, p. R713]. In the light of
SDDT, we see that whether this statement is true depends on

how long current conditions are likely to hold. If conditions

are likely to change very soon, then their statement holds; how-

ever, if current conditions are expected to last for numerous

decisions, their prediction should be reversed.

In animal welfare, a common aim is to use behaviour to

infer mental state [31]. Signal detection theory is one candi-

date for this inferential process, potentially being used to

infer an animal’s subjective probability of danger. Here too,

the possibility of being misled by the standard theory is

clear. If animals housed in different conditions were tested

for responses to an ambiguous signal (cf. [32]) then standard

signal detection theory would suggest that animals exhibiting

more apparent fear ‘feel’ more at risk (higher inferred percep-

tion of danger). However, the more advanced theory (SDDT)

would lead to the opposite inference: animals that exhibit a

more fearful response to a given signal are ones that perceive

a lower level of threat in their environment. Those that feel

constantly endangered should be inured to the ‘risk’ and

less likely to respond to an ambiguous signal.

Similarly, inferential errors can easily be made in relation to

human affect. For instance, in relation to identifying ‘targets’ (in

our case, predators) Lynn & Barrett [33, p. 2] write: ‘Rare targets

and costly false alarms promote a conservative bias (i.e. a higher

threshold, or criterion, for judging that a target is present),

whereas common targets and costly misses promote a liberal

bias’. In contrast, we have shown that rare predators (what

Lynn & Barrett refer to as targets) can promote a lower
threshold.

One of the attractions of signal detection theory is the rela-

tive simplicity of its formulation; it is easy to mistakenly infer

that its results therefore hold fairly generally. Considering

sequences of actions over time is less simple, so it is less easy

to obtain general results (e.g. to show that the trend is always

in the other direction). However, as we have seen, the approach

is arguably also less prone to such incorrect generalizations. In

summary, we see the sequential approach as the more useful

route ahead in behavioural ecology, for two reasons:

(1) The payoffs emerge from the analysis, so are more mean-

ingful than standard signal detection theory, where the

payoffs have always been difficult to set (and are now

even more difficult in the light of our results).

(2) Being more grounded in realistic feedback (of reserves

affecting behavioural tendencies and vice versa), sequen-

tial models (such as SDDT) may produce interesting

results and counterintuitive predictions, which have not

previously been identified or tested.

Understanding these effects better may be useful in a wide var-

iety of domains, including behavioural decisions, immune

function, mental disorders and animal welfare.
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