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Abstract
Purpose—To evaluate which common post-processing method applied to gradient-echo DSC-
MRI data, acquired with a single gadolinium injection and low flip-angle, most accurately reflects
microvascular histopathology for patients with de novo, treatment-naive glioblastoma multiforme
(GBM).

Materials and Methods—72 tissue samples were collected from 35 patients with treatment-
naïve GBM. Sample locations were co-registered to preoperative gradient-echo dynamic
susceptibility contrast (DSC) MRI acquired with 35° flip-angle and 0.1mmol/kg gadolinium.
Estimates of blood volume and leakiness at each sample location were calculated using four
common post-processing methods (leakage-corrected nonlinear gamma-variate, non-parametric,
scaled MR-signal, and unscaled MR-signal). Tissue sample microvascular morphology was
characterized using Factor VIII immunohistochemical analysis. A random-effects regression
model, adjusted for repeated measures and contrast-enhancement, identified whether MR
parameter estimates significantly predicted IHC findings.

Results—Elevated blood volume estimates from nonlinear and non-parametric methods
significantly predicted increased microvascular hyperplasia. Abnormal microvasculature existed
beyond the CE-lesion and was significantly reflected by increased blood volume from nonlinear,
non-parametric, and scaled MR-signal analysis.

Conclusion—This study provides histopathological support for both non-parametric and
nonlinear post-processing of low flip-angle DSC-MRI for characterizing microvascular
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hyperplasia within GBM. Non-parametric analysis with a single gadolinium injection may be a
particularly useful strategy clinically, as it requires less computational expense and limits
gadolinium exposure.

Keywords
perfusion MRI; tissue sample; DSC post-processing; microvascular histopathology; low flip angle

Introduction
Dynamic susceptibility-weighted contrast-enhanced (DSC) MR imaging is used for patients
with brain tumors to noninvasively assess the tumor angiogenesis and underlying
microvascular environment in the lesion and surrounding tissue. DSC MR imaging has
become increasingly important in the management of patients with glioma as the therapy
paradigm shifts to incorporate anti-angiogenic therapy. One of the challenges of assessing
response in this context is that anti-angiogenic agents directly remove what has historically
been considered the primary surrogate outcome measure for assessing treatment response,
namely the presence of a contrast-enhancing lesion after the injection of a gadolinium based
MR contrast agent (1,2). It is for this reason that DSC imaging has received increasing
attention as a more quantitative method for evaluating microvascular changes associated
with the tumor (3–5).

Gliomas are the most common malignant primary brain tumor in adults and are highly
infiltrative in nature. Accurate diagnosis and definition of tumor grade is based upon
histopathologic evaluation of tissue samples obtained by stereotactic biopsy or surgical
resection using WHO criteria (6). Glioblastoma multiforme (GBM) is the most malignant
and the highest grade glioma (Grade IV) and is characterized by increased cellular
proliferation, nuclear atypia, necrosis and microvascular proliferation. Microvascular
hallmarks of GBM include the presence of complex microvascular hyperplasia, epitomized
by “glomeruloid” bodies, tortuous lamina, and breakdown of the blood brain barrier (BBB)
(7). Histopathologic and immunohistochemical (IHC) analysis of the biopsy sample can be
used to highlight the microvasculature and is the gold-standard for determining malignancy.

Noninvasive DSC imaging assesses vascular function by tracking the relaxation effects of
injected gadolinium-based MR contrast agent as it circulates through the brain. Following
the injection of a bolus of gadolinium, the observed T2 or T2*-weighted signal decreases
and then recovers as the agent recirculates. The reduction in signal is due to spin-spin
dephasing caused by the susceptibility gradient induced by the intravascular
compartmentalized gadolinium (8). The changes in signal intensity can be modeled as a

change in T2* relaxivity ( ), which has a nearly linear relationship with contrast agent
concentration and provides information about the hemodynamics of the tissue. A number of
different parameters are computed from the concentration-time curve to create various
parametric maps that reflect different characteristics of the underlying microvasculature in
the tumor region. The most common parameter used to describe the changes in signal
intensity is the relative cerebral blood volume (rCBV), which represents bulk vessel density
often expressed as a ratio value to contralateral normal appearing white matter.

For regions where there is breakdown of the BBB, the extravasation of the contrast agent
causes a change in the T1 relaxation time which modifies the observed signal intensity and
makes the estimation of vascular parameters more complex (9). Multiple strategies have
been proposed to address this situation (10–13). Acquisition methods to reduce the impact of
the T1 effect include the use of a low flip angle (35°) gradient echo sequence (14,15), the
implementation of a dual-echo sequence (16–18) and the application of an additional, pre-
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load injection of gadolinium (10,19,20). A post-processing strategy that has been widely

used in a research setting, is to model the  curve as the sum of a gamma-variate function
that results from the bolus and an additional component caused by leakage. This requires a
more complex nonlinear fitting procedure to estimate model parameters such as rCBV and
leakage factor (RF), but the resulting values been shown to correlate well with glioma grade
(21).

In cases where a low flip angle is used for data acquisition, a simpler, non-parametric

approach to characterizing the  curve is the determination of the relative peak height
(rPH) and percent signal recovery to baseline (PSR). Reduced rPH and PSR have been
shown to differentiate brain metastasis from GBM (22). In patients newly diagnosed with
GBM, the magnitude of PSR early in therapy was shown to be associated with progression-
free survival (23). In a clinical setting, estimates of rCBV have also been calculated directly
from the MR signal trace, either scaled to initial baseline levels (13) or unscaled raw MR
data (12). These parameters require minimal computational time for post-processing the
data, which makes them a common choice for use in the clinic, but there is limited evidence
to support their relationship to physiologic variables (12).

The goal of this study was to apply the most common post-processing methods to DSC
imaging data that were acquired with a single dose of gadolinium and a low flip angle using
gradient-echo sequence in order to determine which method most accurately reflects the
underlying vascular pathology for patients with de novo, treatment-naive GBM. This was
achieved by acquiring DSC data from patients prior to surgical resection and making a direct
comparison between MR parameter estimates from the locations where image guided tissue
samples were obtained and the results from subsequent histopathological analysis of
individual specimens.

Materials and Methods
Patient Population

Thirty-five patients with de novo (primary), treatment-naïve, pathologically confirmed GBM
were included in this HIPPA compliant, imaging study. All patients received MRI exams,
including anatomic and physiologic imaging, prior to undergoing tumor resection.
Preoperative MR data were used to guide the site of tissue sample towards regions with
elevated nCBV, low apparent diffusion coefficient (ADC), or high Choline-to-NAA index.
Image-guided tissue samples were collected from these tumor locations and the MR imaging
coordinates of the sample location were recorded using Brainlab software (Vector Vision
Navigation System, Medtronic, Stealth Station). Once removed, the 5mm-diameter spherical
samples (approximately 50 mg) were divided into two sections; half was snap-frozen and
stored for ex vivo analysis (24) and half was fixed in 10% buffered formalin for histologic
and immunohistologic evaluation. The tissue specimen handling methods have been
described previously (25).

MRI Protocol
MR imaging exams were performed on a 3T GE scanner and included both anatomic and
physiologic imaging. In selected cases lactate edited 1H MRSI data were also collected
using methods described previously (26,27) and used as an adjunct to the other
measurements to select regions of putative tumor for targeting tissue collection. The
standard anatomic imaging protocol included axial T2 weighted FLAIR sequence (TE= 120
ms, TR = 10,000 ms, TI = 2200 ms, slice thickness = 3mm, slice gap = 0 mm, matrix =
192×256, FOV = 24×24 cm) and pre- and post-contrast axial T1-weighted 3D IRSPGR
(TE=2.5 ms, TR = 8.9 ms, TI = 400 ms, slice thickness = 1.5mm, matrix = 256×256, FOV =
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24×24 cm2 with acceleration factor R=2). The standard physiologic imaging included
diffusion-weighted imaging (DWI) and DSC perfusion imaging. DWI was acquired with a
2D spin-echo, echo-planar sequence (TE = 99 ms, TR = 10,000 ms, slice thickness = 3mm,
matrix = 256×256, FOV = 24×24 cm2, 6 gradient directions, b=0 and 1000 s/mm2).
Gradient-echo, echo-planar DSC imaging (TE = 54 – 56 ms, TR = 1250 – 1500 ms, flip
angle = 35°, slice thickness = 3–4 mm, matrix = 128 × 128, FOV = 24 × 24 cm2) was
acquired before, during, and following an injection of 0.1 mmol/kg gadolinium contrast
agent (Magnevist, Bayer HealthCare Pharmaceuticals Inc.) at 4–5 ml/s. Fifteen seconds of
dynamic imaging was acquired prior to the contrast agent injection. The first five data points
acquired were excluded and the following 10 data points were used to get an estimate of
baseline. Total DSC imaging time was 100 – 120 seconds. DSC was acquired with a
gradient-echo pulse sequence and single dose of gadolinium in order to reduce the risks
associated with additional gadolinium exposure. A flip-angle of 35° was chosen for all DSC
acquisitions in this study in order to minimize T1 sensitivity during the first-pass of the
contrast agent. A TE of 54–56 ms was selected to maximize the susceptibility change during
the first-pass of contrast agent. These parameters have consistently achieved maximum
contrast between normal appearing white matter and tumor during the recirculation phase of
contrast at our institution.

DSC Image-Processing
The DSC data were non-rigidly aligned to the pre-contrast, T1-weighted images using B-
spline warping by maximization of normalized mutual information in order to minimize
distortion from the echo-planar imaging (28,29). A 5-mm diameter spherical region of
interest (ROI) was placed at the corresponding surgical coordinates of the image-guided
target location on the co-registered MRI images (BrainLab, VectorVision Navigation
System; Medtronic, Stealth Station). The region of normal-appearing white matter (NAWM)
was defined semi-automatically on the pre-contrast T1-weighted image (27). These ROI’s
were then re-sampled to the native resolution of the DSC data set and overlaid on the DSC
data at the original resolution. Average hemodynamic curves were calculated within each
specimen region and NAWM using each of the 4 post-processing methods selected for
comparison in this study. Any voxel with a signal peak of less than 4 times the baseline
noise level was excluded to insure that necrosis voxels would not be included in the
representative biopsy average curve. The four post-processing methods included: i)
Nonlinear Fit Model of concentration-time curve (nl), (ii) Non-parametric concentration-
time curve analysis (np), (iii) Scaled MR signal-time curve analysis (sc), and (iv) Unscaled
MR signal-time curve analysis (unsc). Strategies (i) and (ii) are both commonly accepted in
the research community (8,9,21,30), while strategies (iii) and (iv) are often used in the
clinical setting (12,13). Table 1 describes the hemodynamic curve data, model, and derived
parameters for each of these four methods and Figure 1 illustrates examples of the derived
perfusion parameters.

These post-processing methods are described in two steps: (1) manipulation of the
hemodynamic data curve and (2) calculation of derived parameters.

Step 1. Manipulation of the Hemodynamic Data Curve—Average DSC data were

either (A) converted to change in relaxivity ( ) representative of the concentration-time
curve using Equation 1 or (B) left as MR signal-time curve.

(Equation 1)
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Step 2. Calculation of Derived Perfusion Parameters—Perfusion parameters that
were derived included estimates of blood volume (rCBV, peak height (PH), negative
enhancement integral (NEI), or maximum signal drop (MSD)) and estimates of vessel
leakiness (percent signal recovery (PSR)) depending on the post-processing method. The
average hemodynamic curve from within NAWM was used as a normalization reference to
compute normalized blood volume measures (nCBV, nPH, nNEI, nMSD, Figure 1).

A.  Signal

(i) Nonlinear Fit Model (nl): The concentration-time curve was fit with a
nonlinear gamma-variate model with leakage correction (9). nCBV(nl),
nPH(nl), and PSR(nl) were calculated from the model of the first pass
(Figure 1.i: Nonlinear Fit Model).

(ii) Non-parametric Analysis (np): The concentration-time curve was used
to directly calculate nPH(np) and PSR(np), without fitting a parametric
model (Figure 1.ii: Non-Parametric).

B. MR Signal

(iii) Scaled MR Signal Analysis (sc): The  MR signal intensity-time curve
was scaled to baseline MR signal intensity (mean of the 5th through
10th time-points) and baseline was shifted to 1000 MR arbitrary units.
nMSD(sc), nNEI(sc), and PSR(sc) were calculated from this scaled MR
signal-time curve (see Figure 1.iii: Scaled MR Signal)

(iv) Unscaled MR Signal Analysis (unsc): The raw  MR signal intensity-
time curve was used to directly calculate nMSD(unsc), nNEI(unsc), and
PSR(unsc) (Figure 1.iv: Unscaled MR Signal)

Factor VIII Immunohistochemical Microvascular Staining
Immunohistochemistry for Factor VIII, rabbit polyclonal antibody (Dako) at 1.2 µg/ml for
20 min at 37°C, was analyzed blinded to the MRI findings by an experienced
neuropathologist. On the basis of Factor VIII immunostaining, the microvascular
morphology was graded as delicate (resembling normal cerebral vessels), simple
microvascular hyperplasia (circumferential single cell hyperplasia with definitive lumen), or
complex microvascular hyperplasia (circumferential multi-layered and glomeruloid-type
vessels). Two features were scored from the factor VIII IHC results, (1) relative contribution
of each vascular morphology and (2) overall vascular morphology score. The relative
contribution of each vascular morphology to total vascularity within the sample was
qualitatively measured on a four-tiered ordinal scale (0, no contribution; 1, minimal; 2,
prevalent; 3, predominant) at a magnification of 200×. The overall microvascular
morphology score assigned to each tissue sample corresponded to the most abnormal,
morphologic-type of vasculature present in the sample as follows: 0, delicate only; 1, simple
microvascular hyperplasia; and 2, complex microvascular hyperplasia. For example,
samples that contained any contribution of complex hyperplasia were scored as “complex.”
Whereas, samples that contained a mix of delicate and simple, but no complex vasculature,
were scored as “simple.” Digital images were captured using a microscope (Olympus,
Model BX41TF) and digital camera (Olympus, Model DP70).

Contrast-Enhancing vs. Non-enhancing Classification of Specimens
Each tissue specimen ROI, in the native DSC resolution, was also overlaid on the T1-
weighted post-contrast image in order to determine if the sample originated from a lesion
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location with contrast-enhancement (CE) or no contrast-enhancement (NE). A board-
certified radiologist evaluated all CE and NE classifications blinded to the DSC findings.

Statistical Analysis
A random-effects regression model, adjusted for CE categorization at the specimen location
and repeated specimen samples per patient, was used to determine if the perfusion
parameters from each post-processing method significantly predicted IHC findings. The two
types of factor VIII IHC findings, vascular morphology (delicate, simple, complex) and
relative contribution of each vascular morphology (0-none to 3-large) were treated as ordinal
outcomes on a 3-tiered and 4-tiered scale, respectively. Outcome levels were also grouped to
assess whether DSC findings were predictive of complex vasculature (delicate or simple vs.
complex) or abnormal vasculature (delicate vs. simple or complex). Binary CE
categorization was included as a covariate in each model to adjust for CE at the specimen
site, which is known to be associated with increased microvascular density and abnormal
perfusion (31).

To assess the association of the perfusion parameters and the ordinal histopathology
variables we employed a proportional odds logistic regression model with repeated measures
to model the probability of observing a lower vs. a higher response. This model is written as:

(Equation 2)

where c is the total number of levels of the ordinal variable, Xi is the design matrix for the
fixed effects and Zi for the random effects; xij and zij are rows corresponding to the jth
biopsy specimen (ranges from 1 to 4); and β & bi are the vectors of fixed and random
parameters. The intercepts are fixed and category dependent. The odds ratio and p-value for
each variable is reported. The ordinal-valued outcome mixed effect models were analyzed
with PROC GENMOD in SAS v.9.2.

Significance was assessed at p<.05 for all models. Due to the exploratory nature of the
study, no adjustment for type I error was included. Any perfusion parameter that was
predictive of IHC results at p<.05, adjusted for CE and repeated sampling, was deemed to be
a significant predictor and is presented in the results. The method(s) with the greatest
number of significant predictors was determined to be the post-processing method that most
reflected underlying vascular histopathology.

Results
Tissue Specimen IHC Results

Table 2 summarizes the distribution of vascular morphology observed in the 72 samples
obtained from the thirty-five patients with de-novo GBM. The number of samples acquired
per patient ranged from 1 to 4 with an average of 2 samples per patient. Patient age ranged
from 33 to 85 years old (median = 66) and 25 patients were male and 10 patients were
female. 52 (72.2%) of the samples were from CE regions and 20 (27.8%) samples were from
NE regions. The highest degree of microvascular hyperplasia within each sample was used
to determine the overall microvascular morphology. Among the 72 samples, 16 contained at
most delicate microvasculature (delicate), 27 contained at most simple microvascular
hyperplasia (simple), and 29 contained complex microvascular hyperplasia (complex). As
expected, the majority of complex hyperplasia was found in the CE specimens (89.6% of
specimens with complex were CE), however approximately half of the CE specimens
sampled did not contain complex microvascular hyperplasia.
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Predicting Vascular Morphology using DSC data
Identification of Microvascular Morphology (delicate, simple, or complex)—
The ability of each post-processing method to predict the microvascular morphology of a
tissue was further assessed using the proportional odds logistic regression statistical
analysis. Odds ratios (OR) and significance of each regression model are reported in Table
3. Statistical results reflect each parameter adjusted for the other covariate in the model. For
example, in the first model of nonlinear post-processing in Table 3 (shaded), the top row
reports nCBV(nl) adjusted for presence of CE and the bottom row reports presence of CE
adjusted for nCBV(nl) in predicting underlying vascular morphology.

The nCBV(nl), nPH(nl), and nPH(np) parameters significantly predicted the underlying
vascular morphology (p < 0.05, p = 0.02, p = 0.02, respectively). The presence of CE,
adjusted for blood volume, in each of these models was also a significant predictor of
increasingly abnormal vascular morphology. This is expected since more samples with
hyperplasia (simple or complex) were found in CE specimens than NE specimens (44 of 52
CE samples compared to 13 of 20 NE samples, Table 2). Perfusion parameters from scaled
MR signal analysis and unscaled MR signal analysis were not predictive of vascular
morphology (Table 3).

Figure 2 further illustrate the differences among post-processing methods in distinguishing
between samples of different vascular morphologies. In Figure 2, histograms of a blood
volume estimate from each of the four post-processing methods (a.–d.) are plotted grouped
by the Factor VIII vascular morphology of the tissue samples. Samples with delicate
microvasculature are shown in green, simple microvasculature are shown in blue, and
samples with complex microvasculature are shown in red.

Note that for nonlinear and non-parametric analyses (Figure 2.a–b) samples with delicate
microvasculature generally cluster at low blood volume (median nCBV(nl) = 1.79, median
nPH(np) = 1.73), simple hyperplasia cluster in mid-range (median nCBV(nl) = 2.15, median
nPH(np) = 1.98), and complex hyperplasia cluster in mid-to-high range (median nCBV(nl) =
2.55, median nPH(np) = 2.30). For scaled MR signal (Figure 2.c) the blood volume
estimates of delicate microvasculature cluster in the low range (median nNEI(sc) = 1.78),
but simple and complex show high overlap (median nNEI(sc) = 2.00 (simple), 2.07
(complex)). For unscaled MR signal (Figure 2.d), the blood volume estimates of samples
with delicate, simple, and complex hyperplasia all show high overlap (median nNEI(unsc) =
2.72 (delicate), 3.04 (simple), 3.10 (complex)).

In general, a one-unit increase in the nonlinear and non-parametric blood volume measures
corresponded to approximately 1.7 times increased likelihood of the sample containing
microvasculature with a greater degree of hyperplasia (delicate, simple, complex; ORs in
Table 3). Figure 3 illustrates how greater nCBV(nl), nPH(nl), and nPH(np) are predictive of
increased microvascular hyperplasia present in the tissue sample.

Identification of Complex Microvasculature—The presence of CE was a highly
significant covariate in the model predictor of complex hyperplasia in the tissue sample (CE
presence covariate: p<.05 for each model, Table 4). Contrast enhancing biopsies were much
more likely to contain complex microvascular hyperplasia (see high ORs in Table 4), as
expected given greater contrast extravasation among markedly abnormal microvasculature.
Even when adjusted for the presence of CE categorization, the nCBV(nl), nPH(nl), and
nPH(np) were marginally significant risk factors for complex hyperplasia (p=.09, p<.07, p<.
08 respectively, Table 4). Again, perfusion parameters derived from scaled MR signal
analysis and unscaled MR signal analysis were not predictive of complex hyperplasia and
neither were the PSR measures from any of the four post-processing methods (Table 4).
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Identification of Abnormal Microvasculature (Simple or Complex)—The blood
volume measures calculated from the nonlinear, non-parametric, and scaled MR signal
methods each were significant predictors of the presence of abnormal microvasculature
(simple or complex), while the presence of CE categorization was not (nCBV(nl): p=.03,
nPH(nl): p<.03; nPH(np): p<.02; nNEI(sc): p<.03, nMSD(sc): p<.05; CE presence in each
model: p≥.15). Unscaled MR signal analysis was not predictive of abnormal vasculature and
neither were the PSR measures from any of the post-processing methods. 13 of the 20 NE
specimens contained abnormal vasculature (simple = 10, complex = 3, Table 2). Table 5
describes the ORs and significance of each model in predicting abnormal microvasculature.
Note that in Figure 2, this pattern of elevated blood volume in abnormal microvasculature
(blue-simple and red-complex) compared to delicate microvasculature (green) is more
evident in panels a – c (nonlinear, non-parametric, and scaled MR signal analysis), than in
panel d (unscaled MR signal analysis).

In general, a 1-unit increase in the nonlinear, non-parametric, and scaled MR signal blood
volume measures was associated with approximately a 2.3-fold greater likelihood of
presence of abnormal microvasculature (ORs in Table 5). Figure 4 illustrates an example of
a patient with abnormal microvasculature (simple or complex hyperplasia) in both the CE
and NE tissue, which is reflected by elevated blood volume estimates from the nonlinear,
non-parametric, and scaled MR signal analysis methods.

Predicting Relative Contribution of Microvascular Morphology using DSC data
Based on immunostaining for Factor VIII the relative contribution of each microvascular
pattern to the overall microvasculature, was similarly evaluated to determine if any of the
DSC parameters were significant predictors. Adjusted for CE, nPH(nl) and nPH(np) were
marginally significant predictors of a predominance of simple hyperplasia in the specimen
(nPH(nl): OR = 1.42, p=.06; nPH(np): OR = 1.4, p=.06). In these models, presence of CE
was a significant predictor of increased relative contribution of simple hyperplasia, with CE
specimens more likely to contain a greater predominance of simple hyperplasia (p=.02, p=.
03 respectively). Contrastingly, greater nPH(nl) and nPH(np) were not predictive of the
predominance of complex hyperplasia. The perfusion parameters calculated from the scaled
MR signal analysis and unscaled MR signal analysis were not found to be predictive of the
relative contribution of any of the three vascular morphologies. Generally, perfusion
parameters were found to better describe the type of microvascular hyperplasia present
rather than relative extent of a given vascular morphology, which is described more
thoroughly in the following discussion.

Discussion
In this retrospective study, tissue samples were collected from patients with treatment-naïve
GBM who had received a pre-operative MR imaging examination that included the
acquisition of DSC data with a 35° flip angle and single-dose of gadolinium. Four common
post-processing methods were applied to the DSC data and evaluated in order to determine
whether any of the estimated perfusion parameters could non-invasively predict the
underlying tissue microvasculature. It was found that blood volume measures from both the
nonlinear and non-parametric analysis of the concentration time curve significantly
predicted the underlying vascular morphology as defined by Factor VIII IHC analysis.
Higher values of the nCBV and nPH obtained using the nonlinear fitting method and higher
values of the non-parametric estimate of nPH were predictive of a greater degree of
hyperplasia, both within the CE and the NE portion of the lesion.

Complex vasculature is a hallmark of GBM and more often present in specimens from the
CE lesion. This is in agreement with previous research (13,31). However, not all CE-
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specimens contained complex vasculature, implying that the tissue within this region has
heterogeneous vascular morphology. The nonlinear and non-parametric DSC parameters
may therefore assist in guiding sampling toward complex vasculature where it is present.
There were only four patients who had a sample with complex vasculature that was
represented as having lower blood volume than a sample with simple or delicate vasculature.
In re-examining these cases, all four samples were removed from the central core of the CE-
lesion or the internal edge of a contrast-enhancing rim around a necrotic core. Partial
voluming of low signal from necrosis may have reduced the average hemodynamic curve
from these ROIs. This suggests that care must be exercised in interpreting estimates of blood
volume from regions that are close to necrosis.

Interestingly, while complex microvasculature was found preferentially in the CE lesion,
simple microvasculature was found in specimens from the both the NE and CE lesion.
Previous studies have shown abnormal, simple microvasculature to be associated with
increased endothelial cellularity and luminal patency (32,33). In a complementary study
investigating physiologic MRI correlates of histopathologic features within GBM, which
included the patient cohort presented here, tissue samples with simple microvasculature
were found to be associated with elevated cellularity, proliferation, and tumor score (25).
The availability of a non-invasive method for identifying regions with abnormal
microvascular hyperplasia that includes simple and complex morphologies is therefore key
to characterizing vascular tumor burden, which often extends outside the CE lesion. Blood
volume measures derived from the nonlinear, non-parametric, and scaled MR signal
analyses were all able to identify abnormal vasculature, while the CE categorization did not.
This suggests that CE alone is not sufficient in visualizing regions with abnormal
microvasculature and that these DSC-derived blood volume measurements can identify
abnormal microvascular morphology both within and beyond the CE lesion (example in
Figure 4).

DSC perfusion parameters were more reflective of overall morphologic-type of
microvasculature in the tissue sample than relative contribution of each vascular
morphology within the sample. Both the nonlinear and non-parametric estimates of nPH
were marginally predictive of the relative contribution of simple vasculature, while not
predictive of the relative contribution of complex vasculature. This could be a limitation of
the study since the relative contribution was a more qualitative parameter assessed from the
IHC staining than the more general vascular morphology presence parameter. However, this
could also reflect the nonlinearity of increasing relative contribution of complex vasculature
and blood volume. Specimens with a high degree of complex, glomeruloid vasculature with
partially thrombosed or minimally patent vessels may result in slower arrival of gadolinium
or greater contrast agent extravasation, which may lead to reduced blood volume measures.
Generally, these results support that the MR estimates of blood volume are more predictive
of the dominant morphologic-type of microvasculature present in the sample location, rather
than relative contribution of each specific vascular morphology.

The blood volume measurements calculated in this study were more predictive of vascular
morphology rather than quantitative assessment of endothelial leakiness. Elevated blood
volume may be more characteristic of specific abnormal vascular morphology, while
leakiness measures, like PSR, may be more reflective of a combination of vascular type and
amount of extravasation within the tissue microenvironment. Blood volume measures from
non-parametric and nonlinear analysis were consistently reflective of underlying
vasculature; observed through predicting morphology, identifying abnormal vasculature, and
highlighting complex vasculature within the CE lesion. Scaled MR signal analysis was only
found to be predictive of identifying abnormal vasculature, while the unscaled MR signal
analysis was not found to be predictive of any of the IHC results.
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One limitation of this study is the potential for misregistration between the tissue specimen
location acquired with the surgical navigation tool and the pre-operative MR images due to
tissue-shift during craniotomy. Multiple steps were taken during surgery to minimize this
risk, such as avoiding substantial loss of cerebrospinal fluid, accurately registering imaging
to patient’s facial anatomy, and watching for brain swelling. In addition, by generating
sufficiently large spherical ROI’s (diameter of 5mm) representative of the tissue sample
(approximately 50 mg) and resampling these to the native perfusion resolution, we
attempted to compensate for any tissue shift at the specimen location. Thus, while both
surgical and image analysis steps were taken to minimize this risk, there is still a possibility
that the correspondence is imperfect.

Contrast-agent extravasation near areas of compromised BBB leads to competing signal
enhancement, which is a known challenge that plagues interpretation of DSC perfusion
parameters (9,10,21). Multiple acquisition strategies and post-processing methods exist for
addressing this limitation and have been shown to greatly influence the resultant estimates of
CBV (10). The acquisition strategy chosen for this study was a 35° flip angle to limit T1-
sensitivity, a TE of 54–56 ms to maximize susceptibility contrast, and a single-dose of
gadolinium to limit gadolinium exposure for patients. Of the 4 most common post-
processing techniques compared, nonlinear and non-parametric analysis were consistently
predictive of vascular morphology. Nonlinear gamma-variate fit with leakage correction,
while a common method for addressing this extravasation limitation in the research setting,
necessitates curve-fitting which limits its use in the clinical practice. Non-parametric
analysis, which was equally representative of histopathology, is less computationally
expensive and may be a better alternative for CBV estimation in the clinical setting. Both
the scaled and unscaled MR signal analysis, which are often used in the clinical setting due
to their direct ease of use, were not found to be predictive of vascular morphology. This
highlights the need for an alternative post-processing method for DSC data that is
histopathologically validated and easy-to-use in clinical practice. An open-source, freely
available software package with non-parametric DSC post-processing analysis is currently
being developed (34) such that these non-invasive blood volume measures can be used more
reliably in clinical practice.

In conclusion, this study provides histopathological support for using both non-parametric
and nonlinear post-processing techniques in conjunction with low flip angle DSC imaging
data as noninvasive methods for characterizing microvascular hyperplasia within GBM. The
non-parametric analysis method and acquisition strategy that requires a single injection of a
standard dose of gadolinium may be particularly useful in the clinic, as it requires less
computational expense and limits the potential side effects associated with gadolinium. The
findings from this study also suggest that blood volume measurements derived in the manner
described may assist in both guiding sites of tissue sampling to regions with vascular
features characteristic of GBM and in identifying and monitoring patients with highly
vascular GBM who may benefit from targeted antiangiogenic therapy.
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Figure 1. Post-processing Methods
Figure 1 illustrates the hemodynamic curve from a single CE-biopsy with complex
vasculature calculated using each of the four post-processing methods. The first 5 data
points were excluded from parameter calculation to allow for steady-state relaxation to be
reached. All blood volume estimates were normalized to the respective blood volume
estimate from the normal-appearing white matter (NAWM) hemodynamic curve to generate
relative measures (nCBV, nPH, nNEI, nMSD, as marked in figure).
(i) Nonlinear gamma-variate fit with leakage correction (black curve) is used to calculate the

leakage-corrected first-pass (blue curve) from the average  data (black circles) within the
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biopsy region. Peak height (PH) = peak of the first pass, cerebral blood volume (CBV) =
integral of the first pass and S1 = steady-state height of the leakage component. Percent
signal recovery (PSR) = b / a, where b = (PH – S1) and a = PH.
(ii) Non-parametric analysis is used to calculate the hemodynamic curve (red) directly from

the average  data (black circles) in the biopsy region. PH = maximum of the average
hemodynamic curve and S1 = average of the last 15 time points acquired. PSR = b / a, where
b = PH – S1 and a = PH.
(iii) Scaled MR signal analysis is used to scale the T2* signal intensity to the original
baseline level and shift to 1000 MR au. Negative enhancement integral (NEI) is calculated
using trapezoidal integration of signal-time curve from initial drop of signal to 3/2*full-
width half-max of the first pass, maximum signal drop (MSD) = absolute value of the
difference between the minimum of signal-time curve and the baseline average of 5th

through 15th time-points, S1 = average of the last 15 time-points. PSR = b / a, where b =
absolute value of the difference between the minimum of the signal-time curve and S1 and a
= MSD.
(iv) Unscaled MR signal analysis is used to directly calculate perfusion parameters from the
raw MR signal-time curve. NEI = trapezoidal integration of signal-time curve from initial
signal drop to 3/2 * full-width half-max of the first pass, MSD = absolute value of the
difference between the minimum of signal-time curve and the baseline average of 5th

through 15th time-point and S1 = average of the last 15 time-points. PSR = b / a, where b =
absolute value of the difference between the minimum of the signal-time curve and S1 and a
= MSD.
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Figure 2. Blood Volume Estimate and Microvascular Hyperplasia of Tissue Samples by Post-
Processing Method
Histograms illustrating the distribution of a blood volume estimate calculated from each of
the four post-processing strategies within tissue samples of different vascular morphologies.
DSC estimates of blood volume include: (a) nCBV(nl), (b) nPH(np), (c) nNEI(sc), and (d)
nNEI(unsc). Samples with microvasculature classified as delicate are green, simple are blue,
and complex are red. nCBV(nl) (a) and nPH(np) (b) show a more separable pattern between
delicate (low-range), simple (mid-range) and complex (mid-to-high range) blood volume.
nCBV(nl) (a), nPH(np) (b), and nNEI(sc) (c) show a separable pattern between delicate
microvasculature samples (green) and abnormal microvasculature (simple-blue or complex-
red) samples, whereas nNEI(unsc) shows high overlap among all vascular morphologies (d).
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Figure 3. Increasing blood volume measures from nonlinear and non-parametric analysis predict
increasingly abnormal microvascular morphology.
IHC staining (top) and corresponding  curve (bottom) of 3 specimens with delicate,
simple, and complex microvascular hyperplasia (a–c). Increased nCBV(nl), nPH(nl), and
nPH(np) are significant risk factors for increased microvascular hyperplasia.
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Figure 4. Abnormal microvasculature detected by blood volume measures from nonlinear and
non-parametric analysis, but not CE categorization.
T1-weighted, post-contrast MRI of a patient with two tissue samples (a), one in the CE
lesion (left) and one in the NE lesion (right). Factor VIII IHC staining demonstrates
abnormal microvasculature (simple or complex hyperplasia) in both samples (b), which is
reflected by elevated nCBV(nl), nPH (nl), and nPH(np) (c) as well as elevated nNEI(sc) and
nMSD(sc) (d). Elevated blood volume estimates from nonlinear, non-parametric, and scaled
MR signal post-processing methods detect abnormal hyperplasia within and beyond the CE-
lesion.
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Table 2
Distribution of biopsy specimens, vascular morphology and CE/NE classification.

Table 2 details the distribution of biopsy specimens among the three vascular morphology levels within both
the CE and NE lesion. There were 52 specimens from CE lesions and 20 specimens from NE lesions. The vast
majority of complex vasculature was found in CE tissue samples (26 of 29 samples), yet approximately half of
the CE samples did not contain complex vasculature, highlighting the heterogeneous nature of the CE lesion.
Also note that 27 of the total samples contained simple vasculature, yet these were split between both the CE
(17 samples) and NE lesion (10 samples).

Delicate: Simple: Complex: Total:

CE: 9 17 26 52 (72.2%)

NE: 7 10 3 20 (27.8%)

Total: 16 (22.2%) 27 (37.5%) 29 (40.3%) 72 Specimens

CE = Contrast-enhancement
NE = No contrast-enhancement
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Table 3
Mixed Effects Model Results: DSC Perfusion Parameters in Predicting Microvascular
Morphology (Delicate, Simple, Complex) by Post-Processing Method.

Table 3 displays the mixed effects regression model results of predicting microvascular morphology based on
MRI data. Results are grouped by DSC post-processing method (left column) and the alternating shading
delineates the individual multi-variate models. Statistical models include two covariates: the DSC-derived
perfusion parameter (top row) and the binary presence of contrast-enhancement (CE, bottom row). Statistical
results reflect each parameter adjusted for the other covariate in the model. Note blood volume measures from
nonlinear analysis and non-parametric analysis significantly predict vascular morphology, while the other
post-processing methods do not.

Statistical Results: Predicting Microvascular Morphology (Delicate vs Simple vs Complex)

Post-Processing
Method

Parameter Odds Ratio 95% Confidence
Interval

p-value

Nonlinear

nCBV(nl) 1.578 [1.010, 2.466] 0.045*

CE Presence 3.490 [1.253, 9.716] 0.016*

nPH(nl) 1.757 [1.084, 2.848] 0.022*

CE Presence 3.934 [1.407, 11.000] 0.009*

PSR(nl) 1.004 [0.978, 1.030] 0.790

CE Presence 3.928 [1.333, 11.574] 0.013*

Non-Parametric

nPH(np) 1.717 [1.0751, 2.743] 0.024*

CE Presence 3.702 [1.314, 10.428] 0.013*

PSR(np) 1.004 [0.966, 1.043] 0.843

CE Presence 3.871 [1.324, 11.318] 0.013*

Scaled MR Signal

nNEI(sc) 1.675 [0.914, 3.070] 0.095

CE Presence 3.196 [1.114, 9.171] 0.031*

nMSD(sc) 1.910 [0.728, 5.015] 0.189

CE Presence 3.505 [1.223, 10.044] 0.020*

PSR(sc) 0.991 [0.957, 1.027] 0.627

CE Presence 3.152 [1.098, 9.054] 0.033*

Unscaled MR
Signal

nNEI(unsc) 0.996 [0.719, 1.382] 0.983

CE Presence 3.658 [1.199, 11.167] 0.023*

nMSD(unsc) 0.907 [0.614, 1.338] 0.621

CE Presence 3.652 [1.195, 11.165] 0.023*

PSR(unsc) 0.992 [0.959, 1.025] 0.621

CE Presence 3.162 [1.096, 9.124] 0.033*

nl = nonlinear
np = non-parametric
sc = scaled MR signal
unsc = unscaled MR signal
CE = contrast-enhancement
nCBV = normalized cerebral blood volume
nPH = normalized peak height
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PSR = percent signal recovery
nNEI = normalized negative enhancement integral
nMSD = normalized maximum signal decrease

*
p<.05
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Table 4
Mixed Effects Model Results: DSC Perfusion Parameters in Predicting Complex
Microvasculature by Post-Processing Method.

Table 4 displays the mixed effects regression model results of predicting complex microvasculature in the
tissue sample based on MRI data. Results are grouped by DSC post-processing method (left column) and the
alternating shading delineates the individual multivariate models. Statistical models include two covariates:
the DSC-derived perfusion parameter (top row) and the binary presence of contrast-enhancement (CE, bottom
row Statistical results reflect each parameter adjusted for the other covariate in the model. Presence of CE is a
strong predictor of complex vasculature, as expected given greater extravasation near markedly abnormal
vessels with complex hyperplasia, with an odds ratio of approximately 6 across the analysis methods.
Interestingly, even adjusted for presence of CE, nCBV(nl), nPH(nl) and nPH(np) are marginally significant
predictors of complex hyperplasia.

Statistical Results Predicting Complex Microvasculature

Post-Processing
Method

Parameter Odds Ratio 95% Confidence
Interval

p-value

Nonlinear

nCBV(nl) 1.515 [0.933, 2.458] 0.093

CE Presence 5.583 [1.567, 19.89] 0.008*

nPH(nl) 1.651 [0.967, 2.820] 0.066

CE Presence 6.236 [1.739, 22.361] 0.005*

PSR(nl) 1.002 [0.977, 1.028] 0.872

CE Presence 5.924 [1.461, 24.023] 0.013*

Non-Parametric

nPH(np) 1.607 [0.946, 2.731] 0.079

CE Presence 5.891 [1.620, 21.413] 0.007*

PSR(np) 1.002 [0.966, 1.039] 0.910

CE Presence 5.857 1.446, 23.717] 0.013*

Scaled MR Signal

nNEI(sc) 1.564 [0.814, 3.006] 0.179

CE Presence 5.062 [1.350, 18.980] 0.016*

nMSD(sc) 1.658 [0.568, 4.842] 0.355

CE Presence 5.438 [1.442, 20.506] 0.012*

PSR(sc) 0.993 [0.960, 1.027] 0.681

CE Presence 4.973 [1.167, 21.194] 0.030*

Unscaled MR
Signal

nNEI(unsc) 0.926 [0.636, 1.348] 0.688

CE Presence 5.779 [1.415, 23.608] 0.015*

nMSD(unsc) 0.809 [0.513, 1.276] 0.362

CE Presence 5.703 [1.418, 22.931] 0.014*

PSR(unsc) 0.994 [0.962, 1.027] 0.717

CE Presence 5.060 [1.199, 21.351] 0.027*

nl = nonlinear
np = non-parametric
sc = scaled MR signal
unsc = unscaled MR signal
CE = contrast-enhancement
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nCBV = normalized cerebral blood volume
nPH = normalized peak height
PSR = percent signal recovery
nNEI = normalized negative enhancement integral
nMSD = normalized maximum signal decrease

*
p<.05
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Table 5
Mixed Effects Model Results: DSC Perfusion Parameters in Predicting Abnormal
Microvasculature (Simple or Complex) by Post-Processing Method

Table 5 displays the mixed effects regression model results of predicting abnormal microvasculature (simple
or complex) in the tissue sample based on MRI data. Results are grouped by DSC post-processing method (left
column) and the alternating shading delineates the individual multi-variate models. Statistical models include
two covariates: the DSC-derived perfusion parameter (top row) and the binary presence of contrast-
enhancement (CE, bottom row). Statistical results reflect each parameter adjusted for the other covariate in the
model. Blood volume measures derived from nonlinear analysis, non-parametric analysis, and scaled MR
signal analysis each significantly predict abnormal vasculature, while presence of CE does not.

Statistical Results: Predicting Abnormal Microvasculature (Simple or Complex)

Post-Processing
Method

Parameter Odds Ratio 95% Confidence
Interval

p-value

Nonlinear

nCBV(nl) 1.993 [1.054, 3.766] 0.034*

CE Presence 2.369 [0.611, 9.183] 0.212

nPH(nl) 2.200 [1.096, 4.416] 0.027*

CE Presence 2.720 [0.693, 10.670] 0.151

PSR(nl) 1.009 [0.981, 1.037] 0.540

CE Presence 3.127 [0.769, 12.710] 0.111

Non-Parametric

nPH(np) 2.232 [1.182, 4.214] 0.013*

CE Presence 2.495 [0.644, 9.658] 0.186

PSR(np) 1.012 [0.969, 1.057] 0.597

CE Presence 3.124 [0.770, 12.673] 0.111

Scaled MR Signal

nNEI(sc) 2.282 [1.100, 4.733] 0.027*

CE Presence 2.145 [0.553, 8.316] 0.270

nMSD(sc) 2.942 [1.041, 8.313] 0.042*

CE Presence 2.462 [0.623, 9.723] 0.199

PSR(sc) 0.995 [0.955, 1.035] 0.791

CE Presence 2.331 [0.657, 8.271] 0.190

Unscaled MR
Signal

nNEI(unsc) 1.122 [0.765, 1.647] 0.556

CE Presence 2.526 [0.620, 10.283] 0.196

nMSD(unsc) 1.074 [0.670, 1.720] 0.768

CE Presence 2.581 [0.625, 10.663] 0.190

PSR(unsc) 0.993 [0.957, 1.031] 0.719

CE Presence 2.268 [0.636, 8.091] 0.207

nl = nonlinear
np = non-parametric
sc = scaled MR signal
unsc = unscaled MR signal
CE = contrast-enhancement
nCBV = normalized cerebral blood volume
nPH = normalized peak height
PSR = percent signal recovery
nNEI = normalized negative enhancement integral
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nMSD = normalized maximum signal decrease

*
p<.05
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