Title

KNO 1: Facilitating the Adoption of Embedded Networked Sensing by Emerging National Environmental Observatories

Permalink

https://escholarship.org/uc/item/7fp998hk

Authors

J. Goldman
D. Estrin
M. Hamilton
et al.

Publication Date

2006

CENS
 Center for Embedded Networked Sensing

Facilitating the Adoption of Embedded Networked Sensing by Emerging National Environmental Observatories

J. Goldman, D. Estrin, M. Hamilton, T. Harmon, and W. Kaiser

Background

What is an environmental observatory?

- Nationally-distributed field facility and suite of measurement systems designed to enable next-generation scientific inquiry
- Many disciplines planning or building observatories Ecology (NEON), Environmental Engineering (CLEANER), Hydrological science (Hydrologic Observatories), Seismology (EarthScope), Oceanography (ORION)
- NSF is a primary sponsor
- Analogous to Radio Telescopes and Particle accelerators in scope, expense, and community benefit

Why does CENS invest in KT with observatories?

Service and mutual benefit
All environmental observatories aim to capitalize on advances in technology and cyberinfrastructure, including sensor networks. We can help meet this need, while also exploring new design solutions based on these applications
Effective outreach mechanism
Environmental observing systems are envisioned to serve thousands of users. By providing sensing solutions to these efforts we can reach large portions of our prospective future user base

Role of Embedded Networked Sensing

Sensor networks provide:

-Appropriate temporal and spatial resolution at multiple scales
-Ability to measure multiple heterogeneous variables
-Capacity for adaptive sampling

All of which are needed to understand the multiple factors that influence natural systems

CENS Contributions to Two National Observatories

National Ecological Observatory Network

Objective

- Enable environmental scientist to understand how land use and climate affect ecological systems in order to make forecasts about future ecological states

Description

- Geographically nested set of sites in a variety of landscapes
- Sites contain several embedded sensor networks to observe the climate, canopy, soil, and freshwater

CENS Involvement

National Leadership
D. Estrin and J. Goldman serve on the NEON Board of Directors

- D. Estrin and M. Hamilton, serve as cochairs of the sensing subcommittee
W. Kaiser and P. Rundel are frequent advisors \& workshops participants
Workshop Host and Organizer CENS hosted and helped to organize a workshop with ENS vendors to define specifications \& prepare for construction
- System Integration at James Reserve In preparation for construction the James Reserve is a potential site for sensor system integration work

neゃn

Collaborative Large-Scale Engineering Assessment Network for Environmental Research

Objective

- Develop an engineering analysis network and field facilities to protect, remediate, and restore stressed environments and promote sustainable environmental resources

Description

- A network of instrumented field facilities
- A virtual repository of data
- A mechanism for multi-disciplinary research, education, and the formulation of engineering and policy options
A collaboration among engineers and others interested in solving environmental problems

CENS Involvement

Planning Grant

Envisions a backbone network of sensors installed throughout the San Joaquin River Basin

- Runs along the Merced River in the Sierra Nevada snow pack area; through the foothills, farmlands and urban areas of the San Joaquin Valley; and into the low wetlands around the river

National Leadership

T. Harmon serves on the national CLEANER Executive Committee and as co-chair of the Sensors Subcommittee; D. Estrin serves on the advisory board

Collaborative Large-scalo Engincering Analysis Network

