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Using Big Data to Understand Memory and Future Thinking 

Robert Thorstad & Phillip Wolff 
{rthorst, pwolff} @ emory.edu 

Emory University Department of Psychology 

 

Abstract 

Imagining the future and remembering the past both involve 
mental time travel. This commonality could indicate shared 
mental processes, as held by the Constructive Episodic 
Simulation Hypothesis (Schacter & Addis, 2008), or else 
interactive processes that complement one another, a 
possibility we call the Complementarity Hypothesis. 
According to the Complementarity Hypothesis, future thoughts 
are constructed from schemas making them episodically poor, 
whereas past thoughts are constructed from schemas and direct 
retrieval of memory traces, making them relatively 
episodically rich. We tested these hypotheses using machine 
learning to data mine mental operations in language, much as 
a geologist can recover physical processes from the geological 
record. People’s natural, unprompted talk on web blogs was 
automatically analyzed for past, present, and future references 
using a temporal orientation classifier. In Study 1, we found 
that perceptual details were mentioned more often in past than 
future talk, implying greater use of episodic processing in past 
than future thinking. In Study 2, a neural network using 
schemas generated from Latent Dirichlet Allocation better 
predicted the content of references to the future than the past, 
implying that constructive processes are more common in 
future than past thinking. In Study 3, we used the results from 
the two prior studies to construct an episodic-by-constructive 
process space. We adapted techniques from fMRI analysis to 
analyze this space for clusters of activity, as if the frequency of 
past and future thinking were BOLD responses in cortical 
space. We found that past and future thinking occupy highly 
separable regions of processing space, supporting the 
Complementarity Hypothesis.  

Keywords: Prospection; Memory; Future Thinking; Big 
Data; Naturally Occurring Datasets  

Introduction 

Memory is not just used to remember the past. It also helps 

people predict and plan for the future (Schacter & Addis, 

2007; Klein, Robertson, & Delton, 2010). At a minimum, 

then, the cognitive process used to think about the future must 

be able to connect with those used to remember the past. Such 

a connection would be facilitated by overlap in the processes 

used to think about the future and past. According to the 

Constructive Episodic Simulations Hypothesis (Schacter & 

Addis, 2008) the overlap in these processes is considerable. 

An alternative possibility is that the thought processes used 
to think about the past and the future are largely unique and 

non-overlapping, but connect with each other in manner that 

complements the other. We will refer to this later possibility 

as the Complementarity Hypothesis. In this research, we seek 

to test between these two competing proposals using 

information afforded by machine learning and big data 

analytics. 

   The idea that thinking about the future and the past might 

involve similar kinds of process has received significant 

empirical support. Viard et al (2011) found that past and 

future thinking engage several common brain regions 

including the hippocampus, precuneus, prefrontal cortex, and 

posterior cingulate cortex. Addis, Wong, & Schacter (2007) 

found that past and future thinking both engage the left 

hippocampus, a region known to be involved in episodic 

memory. Meta-analyses suggest that the overlap between 

past and future thinking is robust and involves a broad set of 

regions in the brain’s default network (Benoit & Schacter, 

2015; Spreng, Mar, & Kim, 2009). 

    The evidence for common processes is not, however, 
uniform. Irish, Addis, Hodges, and Piguet (2012) found that 

conceptual knowledge impairments in semantic dementia 

were more severe in future thinking than past thinking. 

Craver, Kwan, Seindam, and Rosenbaum (2014) found that 

people who lost the ability to remember the past due to 

hippocampal amnesia often retained some ability to think 

about the future. Such patients make normal future-oriented 

decisions in delay discounting and score normally on surveys 

of future orientation. Findings such as these suggest that past 

and future thinking may rely on different cognitive processes.  

    The conflicting findings from past research are associated 

with different kinds of methodology. Studies supporting 
shared process have been those using brain imaging, while 

those indicating differences have been based on 

neuropsychological research investigating the effects of brain 

damage (although see Klein, Loftus, & Kihlstrom, 2002 for 

neuropsychological evidence for similar processing). Both 

kinds of research have their limitations. One of the challenges 

in neuroimaging work is the problem of how to elicit thoughts 

about the past and the future without bias to the results. 

Typically, temporal thoughts are elicited by explicit 

instructions to do so. The problem is that these instructions 

may alter the cognitive processes involved. For example, to 
image the future, participants are often instructed to imagine 

specific events that are highly likely to occur (e.g., Addis, 

Wong, & Schacter, 2007). These instructions might bias 

people to use their memory of the past to imagine future 

events because it requests that they offer specific details, a 

process that may not necessarily be associated with future 

thinking. Neuropsychological research investigating brain 

damage is limited by the (fortunately) relatively small 

numbers of participants. Most importantly, the research using 

both kinds of methodology has focused on people’s ability to 

remember or imagine scenes with significant perceptual 
detail, but not all thoughts about the future and past are 

necessarily high in episodic detail. Certain thoughts about the 

future and past might be driven by abstract conceptual 

knowledge, possibly by schemas. Some research has 

investigated the role of cultural life scripts on future thinking 

(Bernsten & Bohn, 2010), but life scripts are only a small 
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portion of people’s abstract conceptual knowledge. In sum, 

prior research has been limited in its ability to study the 

potential impact of abstract knowledge and schemas on 

people’s thoughts about the past and the future for lack of an 

inventory of the generic abstract knowledge structures that 
people are likely to possess. 

The limitations of prior work can be addressed using big 

data methods. Big data methods involve mining large-scale 

naturally occurring behavior to provide insight into human 

cognition (Goldstone & Lupyan, 2016; Thorstad & Wolff, 

2018a). In the case of mental time travel, people talk 

regularly about the past, such as what they did yesterday, and 

the future, such as what they plan to do tomorrow. This talk 

can be mined to understand the cognitive processes of 

memory and future thinking. These big data methods address 

some of the challenges of prior work. Big data methods avoid 

the explicit prompting in prior work by studying natural, 
unprompted talk about time. Big data methods also allow 

investigation of a much wider set of conceptual knowledge 

by learning the relevant concepts from the data. 

Here, we examine people’s temporal talk in a large web 

blog corpus. This corpus is ideal for studying mental time 

travel because people write without prompting about topics 

of their choosing. Once the sentences in the corpus are 

analyzed for their temporal orientation, we can investigate the 

cognitive processes associated with this talk to test between 

the Constructive Episodic Simulation and Complementarity 

hypotheses. 

Study 1: What is the Content of Past and 

Future Thinking? 

The view that past and future thinking share common 

cognitive processes makes a strong prediction about the 
content of people’s temporal talk. Past and future thinking 

have been argued to rely on shared episodic processes 

(Schacter & Addis, 2008), and these episodic processes have 

characteristic types of representation that can be identified in 

text. Episodic thoughts are highly concrete and perceptual, 

with episodic future thinking typically described as a kind of 

pre-experiencing (Atance & O’Neil, 2001) or simulation 

(Schacter & Addis, 2008). Episodic thoughts also involve a 

spatial location (Tulving, 1993), as also reflected in work 

using spatial relations as a marker of episodic future thinking 

(Russell, Alexis, & Clayton, 2010). We measured these 
episodic representations in people’s talk about the past, 

present, and future, based on psychometric dictionaries. If 

past and future thinking rely on common episodic processes 

as predicted by the Constructive Episodic Simulation 

Hypothesis, then we should observe similar amounts of 

episodic processing in past and future talk. By contrast, if past 

and future thinking rely on different processes as predicted 

by the Complementarity Hypothesis, then we should observe 

more episodic processing in talk about the past than the 

future. Such a pattern could occur if thoughts about the future 

are more  constructed than  thoughts about the past. 

 
Fig. 1. Analyzing Episodic Language in Blog Posts. We 

extracted three episodic language indicators from a corpus 

of blog posts: concreteness, the amount of perceptual words, 

and the presence of spatial relation words. 

Methods 

All procedures were approved by the Emory University IRB. 

 

Materials The analyses used the Blog Authorship Corpus 

(Schler, Koppel, Argamon, & Pennebaker, 2006). The corpus 

is demographically diverse, including 19,320 bloggers (50% 
female) from 40 different occupational categories and a wide 

range of ages (13-17y: N=8,240, 23-27y: N=8,086, 30-47y: 

N=2,994). 

Procedures Several preprocessing steps were taken to clean 

the corpus. Special characters, emoticons and URLs were 

removed. Misspellings were automatically corrected using a 

dictionary from Han, Cook, & Baldwin (2012). Extremely 

short posts with less than 10 words were dropped. Non-

English sentences were removed using the Python library 

langdetect. 

    We extracted temporal talk from the corpus by 
automatically classifying the sentences using a temporal 

orientation classifier. As a first step, the sentences in the 

corpus were syntactically parsed using the Stanford Parser 

(Chen & Manning, 2014). These parses could then be used to 

determine temporal orientation using a set of 121 syntactic 

and lexical rules written in the regular expression-like 

language Tregex (Levy & Andrew, 2006). References to the 

past were flagged using rules like “VP>VG>have” and 

references to the future by rules like “MD>will” (Copley & 

Wolff, in prep.)  

   Before running the classifier on the corpus, the 
performance of the classifier was verified in a separate rating 

study where we recruited 30 human raters via Amazon 

Mechanical Turk. We obtained 3 ratings for each of 1,000 

randomly drawn sentences from the blog corpus (100 

ratings/participants), as to whether the sentences referred to 

the past, present, future, atemporal, or unintelligible. 

Participant quality was ensured using unmarked attention 

checks and by requiring participants to have completed 100 

previous MTurk tasks with 95% approval rating. We found 

that the performance of the classifier, as indicated by the F 

statistic (Raschka, 2015), F = 0.61, where chance = 0.33, 

approached human-level accuracy, F = 0.67. We also 
compared the classifier to other classifiers based on the 

Linguistic Inquiry and Word Count psychometric dictionary 

(Pennebaker et al, 2015), a decision-tree model based on a 

variety of language features (Schwartz et al, 2015), and a 
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regular-expression pattern-based temporal classifier known 

as SUTime (Chang & Manning, 2012). Our temporal 

orientation classifier outperformed these other temporal 

orientation classifiers, specifically SUTime, F = 0.25, 

decision trees, F = 0.33, and the Linguistic Inquiry and Word 

Count psychometric dictionary, F = 0.56. 

    Once applied to the blog corpus, the classifier was able to 

identify which sentences referred to the past (2,134,357 
sentences, 39.5%), present (1,428,626 sentences, 26.5%), or 

future (1,834,206 sentences, 34.0%). 

   As shown in Fig. 1, we measured the episodic processing 

in each sentence in the blog corpus using three measures. We 

analyzed concrete language based on averaging the 

concreteness of the words in each sentence using 

concreteness ratings of 40,000 English lemmas from 

Byrsbaert et al (2014). We analyzed the perceptual and 

spatial language in each sentence by calculating the 

proportion of words in the sentence matching predefined lists 

from the Linguistic Inquiry and Word Count psychometric 
dictionary (Pennebaker et al., 2015). 

Results and Discussion 

We found that past thoughts involved more of all three types 

of episodic representations than future thoughts. In all three 

cases, past thoughts were more similar to present thoughts, 

which do not require mental time travel, than to future 

thoughts. As shown in Fig. 2, references to the past were rated 

as more spatial, t(18,808) = 48.34, p < 0.001, perceptual, t(18,808) 

= 23.27, p < 0.001, and concrete, t(18,806) = 46.65, p < 0.001, 

than references to the future. As also shown in Fig. 2, 

references to the past are as perceptually rich as references to 
the present. Together, the results suggest that past thinking is 

more episodic than future thinking, a result that is fully 

consistent with the Complementarity Hypothesis. 

Study 2: What Processes are used for Future 

Thinking? 

Study 1 suggests that past thoughts are more episodic than 

future thoughts. These results raise the question of what 

processes are used to think about the future. An intuitive 

possibility is that because the past has happened but the future 

has not, future thoughts may be more constructed than past 

thoughts. This construction could be performed by relying on 

stored knowledge structures known as schemas. While the 

possibility that future thoughts rely more on schemas is 

intuitive, it is broadly agreed that memory also relies on 

schemas (Bransford & Johnson, 1972), and so one could also 

predict that past and future thoughts rely equally on schemas. 

In Study 2, we therefore asked whether future thoughts rely 

more on schemas than past thoughts. 

   There are two challenges to quantifying the influence of 

schemas on temporal thoughts. First, it is difficult to know in 

advance which schemas people use to mentally time travel. It 
seems likely that the most important schemas may be used in 

everyday talk. With a large enough sample of everyday talk, 

it should be possible, then, to extract these schemas. To do 

this, we analyzed 1 month of posts from the social media 

website Reddit (307 million words). We extracted the 500 

most common schemas using a machine learning model 

known as a topic model (Blei, Ng, & Jordan, 2003). As shown 

in Fig. 3, a topic model works by inferring the latent topics 

that organize people’s choices of which words to write in 

certain documents, or Reddit posts. These topics can thought 

of as probability distributions over words. While these topics 
do not share every feature of schemas (for example they are 

not hierarchical), they share some of the essential features, 

such as the fact that the important words represent slots that 

can be filled by words, which are conceptually similar, but 

not necessarily semantically related.  

   The second important challenge is that the mere presence 

of a schema does not necessarily imply a cognitive process. 

It is necessary to ask whether an author used a schema to 

guide their writing or merely invoked the schema 

incidentally. To make this leap from describing schemas to 

cognitive processes, we capitalized on a key cognitive 
function of schemas: schemas are thought to fill in missing 

information. For example, if a person goes to a restaurant, 

they can use their schemas to know that there will be a waiter 

even before they have seen a waiter. We created an analogue 

of this prediction in text by asking whether, if only a part of 

a sentence is provided, the rest of the sentence can be filled 

in based on knowledge of the schema. We did this by training 

a neural network to use the schemas evident in people’s blog 

posts to predict the words they wrote next. We performed this 

prediction separately for sentences about the past, present, 

and future, thus allowing us to investigate whether schemas 

are more involved in filling in missing information for the 
past, present, or future.  
    If past and future thinking rely on common cognitive 

processes as predicted by the Constructive Episodic 

Simulation Hypothesis, then we would expect schemas to be 

Fig. 2. Amount of episodic processing (+/- 95% CI) in sentences about past, present, and future. 
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equally useful for predicting the content of people’s past and 

future talk. By contrast, if past and future thinking rely on 

different cognitive processes as predicted by the 

Complementarity Hypothesis, then we would expect schemas 

to be more useful for predicting the content of people’s past 
talk than future talk. 

 

 

 
 

 

Fig. 3. Learning and Identifying Schemas in Temporal 

References. (Top) We identified the most prevalent 

schemas in a large social media corpus using Latent 

Dirichlet Allocation, which learns the 500 most common 

topics across many social media posts. (Bottom) For a 

particular blog post, we identified the schemas implicit in 

the post, and then trained a neural network to use those 

schemas to predict words in the unseen last sentence of the 

post. We conducted this prediction separately for sentences 

referring to the past, present, and future, allowing us to ask 

whether schemas were more useful for filling information 

for particular kinds of temporal references. 

Methods 

Schema Identification As shown in the top row of Fig. 3, we 

identified common schemas in a large corpus based on every 

post to the social media website Reddit in the month of 
January 2017 (307 million words). As shown in the top row 

of Fig. 3, we identified schemas in the posts by training a type 

of topic model known as Latent Dirichlet Allocation (Blei, 

Ng, & Jordan, 2003). The model was trained using the Python 

library gensim with the parameters α = 0.002, η = 0.002, 

number of topics = 500, using 100 training iterations. 
Using Schemas to Fill in Information As shown in the 

bottom row of Fig. 3, for every post in the blog corpus, we 

used the LDA model to identify the schemas in the post based 

on every sentence except the last sentence in the post. Next, 

we created a dataset where the input was the schema of the 

post, and the output was a randomly selected word from the 

unseen last sentence in the post, restricting to the 5,000 most 

common words in the corpus. We then trained a neural 

network model to use the schema to predict the unseen word 
(out of 5,000 possible words). The model had a relatively 

simple architecture, with a single hidden layer with 500 units 

and a relu activation function, and was trained to minimize 

cross-entropy loss with Adam optimization, based on 25,000 

training batches with a minibatch size of 100. The model was 

evaluated using unseen test data (10%). As described in the 

main text, we also trained a scrambled version of the model 

using the same procedure but randomly assigning words to 

Reddit posts. 

 

Fig. 4. Schema Usage. (A) The schemas learned by our 

model could predicted unseen words better than random 

schemas, replicating a key property of schemas. (B) These 
schemas were more useful for filling in unseen words for 

future references than past or present references. 

Results and Discussion 

We found that our model learned semantically coherent 

schemas from social media. We also found that future 

thoughts drew more on these schemas than did past thoughts, 

consistent with the Complementarity Hypothesis. 

We first asked whether our topic model learned 

semantically coherent schemas. Several of the schemas are 

shown in Table 1. The schemas are highly coherent on visual 

inspection. For example, the model learned a schema about 

feelings including the words feeling, feels, felt, pain, worse, 

and bad. We quantified this semantic coherence by training a 

second model but ablating the semantic information by 
randomly assigning words to documents in the Reddit corpus. 

We asked human raters to judge which model generated more 

semantically coherent topics. Raters judged the topics from 

the real model as more semantically coherent than the 

Table 1. Schemas learned by the topic model. 

a b 
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semantically ablated model, t(22) = 11.68, p < 0.001, a 

difference that was observed in every individual rater (23/23 

raters).  

We next asked whether these schemas fill in missing 

information in a sentence. We trained a neural network to 
predict the words in people’s talk in the blog corpus based on 

either the real schemas, or based on ablating schema 

knowledge using randomly generated schemas. As shown in 

Fig. 4A, we found that the model based on real schemas 

outperformed the model based on scrambled schemas, 

t(220,174) = 174.26, p < 0.001, suggesting that these schemas do 

indeed fill in missing information.  

Finally, we asked whether these schemas fill in more 

information for references to the past, present, or future. We 

found that past references drew on schemas, evidenced by 

increased prediction performance for past relative to present 

thoughts, t(110,952) = 4.60, p < 0.001 (Fig. 4B). However, we 
found that future references drew more on schemas than did 

past references, t(175,248) = 18.53, p < 0.001 (Fig. 4B). This 

increased prediction for future thoughts relative to past 

thoughts suggest that thoughts about the future rely more on 

schemas than thought about the past. This result is consistent 

with the predictions of the Complementarity Hypothesis. 

Study 3: Are these Findings the Result of 

Different Processes? 

Studies 1-2 suggest differences in the cognitive processes 

used for past and future thinking. However, these results are 

also open to an alternative interpretation, which we may call 

the Difference-in-Amount view. On this account, past and 

future thinking rely on the same basic cognitive processes, 

but to different extents.  

   Testing between the Difference-in-Amount and 
Complementarity Hypothesis requires an analysis for 

determining whether two operations reflect different 

underlying cognitive processes. Our key idea is that such a 

procedure exists in cognitive neuroscience, and can be 

adapted to big data. In fMRI studies, it is widely accepted that 

there are different cognitive processes if the two processes 

activate non-overlapping patterns of voxels in the brain. 

Indeed, the spatial overlap between past and future thinking 

in the brain has been taken as evidence for common 

processing. While this analysis is based on a brain space, a 

similar logic should hold for operations projected into what 
we will call a cognitive process space. As shown in Fig. 5, a 

process space can be created by projecting the candidate 

operations into a space composed by two or more cognitive 

processes. Evidence for a single process would be largely 

overlapping representations in process space (Fig. 5A), while 

evidence for multiple processes would be largely non-

overlapping representations in process space (Fig. 5B). To 

evaluate the Difference-in-Amount and Complementarity 

Hypotheses, we pooled the data from Studies 1 and 2 to create 

a cognitive process space defined by constructive and 

episodic processing. We projected both past and future 

thinking into the process space, and quantified the amount of 
overlap between the processes. We asked whether this 

overlap was better explained by the Difference-in-Amount 

view or the Complementarity view. 

Methods 

Materials We combined the data from Studies 1-2. We 

created an aggregate measure of episodic processing by 
separately z-scoring the concreteness, spatial relation, and 

perceptual measures and then averaging the resulting z-scores 

for each sentence. 

Process Space Creation We created a 10x10 cognitive 

process space using the episodic and constructive processing 

scores. For each measure we calculated 10 deciles. For 

example the bottom-left corner represents 0-10% episodic 

processing and 0-10% constructive processing. We then 

calculated the proportion of past and future thoughts falling 

in each region of process space. We stored the difference 

score (future - past) for each region and retained only scores 
larger than 0.25 in magnitude to avoid false positives. 

Cluster Permutation Test We next tested how large a 

cluster would be obtained in the process space by chance. We 

did this by creating 10,000 permutations of the data by 

shuffling the past and future labels. In each permutation we 

repeated the cognitive process analysis and stored the size of 

the largest cluster, again retaining only scores large than 0.25 

in magnitude. We used these cluster sizes to create a chance 

distribution (Fig. 5D, green distribution). 

 

 
Fig. 5. Cognitive Process Space. (a-b) Hypothetical results 

in cognitive process space that would indicate reliance on 
the same or different processes. (c) Past thinking (blue) and 

future thinking (red) projected into cognitive process space. 

(d) Chance distribution of clusters in process space (green) 

compared to observed cluster sizes (vertical dotted lines). 

Results and Discussion 

We found that past and future thinking occupied largely non-

overlapping clusters of the process space, supporting the 

predictions of the Complementarity hypothesis. 
    As shown in Fig. 5C, when past and future thinking were 

projected into cognitive process space, they occupied largely 

non-overlapping regions of the space. As shown in Fig. 5D, 
we quantified whether this pattern would be expected due to 

chance. We did this by creating 10,000 random permutations 

of the data, and recording the largest cluster size observed in 

each permutation (Fig. 5D, green distribution). We found that 

both the past thinking cluster (red dotted line) and the future 

thinking cluster (blue dotted line) were larger than those 
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observed in any of the 10,000 permutations, suggesting 

dissociable cognitive processes that would not be likely 

observed due to chance (e.g. p < 0.0001). This result suggests 

that past and future thinking rely on different cognitive 

processes, consistent with the Complementarity Hypothesis. 

General Discussion 

There is growing consensus that memory is not just for 

remembering the past, but also for imagining the future. Here, 

we considered a strong version of this idea that past and 

future thinking could rely on largely similar cognitive 

processes. In a series of three studies based on people’s 

natural talk about time, we found support for the alternative 

hypothesis that past and future thinking rely on different 

cognitive processes. In Study 1, we found that thoughts about 
the past were more episodic than thoughts about the future, 

as revealed by the increased presence of concrete words, 

perceptual words, and spatial relation words. In Study 2, we 

found that thoughts about the past were less constructed than 

thoughts about the future, as revealed by the decreased ability 

of a machine learning model to use the topics of people’s 

writing to predict the contents of future references compared 

to past references. Finally, in Study 3 we found that these 

findings were better explained by differences in cognitive 

processing than by a Difference-in-Amount view, a 

conclusion supported by projecting the data into cognitive 
process space. 

    While we believe that the schemas learned by our model 

are quite general, a limitation of the current analysis is that 

the schemas are only derived from a single social media 

corpus. The social media corpus spans a broad range of topics 

and covers millions of posts, but it may be limited in some 

ways; for example, social media users may be younger than 

or more likely to be male than the general population 

(Duggan & Brener, 2013). Future work should address 

whether similar schemas would be discovered in other kinds 

of corpora.  
    Beyond future thinking, our results have implications for 
the role of big data in psychology. It has previously been 

shown that big data can predict many psychological traits, 

including personality (Youyou, Kosinski, & Stillwell, 2015), 

mental illness (Thorstad & Wolff, 2018b), and decision-

making (Thorstad & Wolff, 2018a). However, psychologists 

are often interested in going beyond prediction to make 

inferences about the underlying cognitive processes. It is not 

obvious that cognitive processes are recoverable from big 

data, since in written text the cognitive processes that 

generated the text have already occurred. Our findings 

suggest that big data can in fact recover cognitive processes, 
in two ways. First, big data can be used to look for 

characteristic representations of a cognitive process, such as 

the episodic language markers in Study 1. Second, big data 

can be used to train a model to mimic the cognitive process 

used to generate the text, as in the schema-based prediction 

model in Study 2. Both of these techniques suggest that big 

data may be useful not just for predicting human psychology, 

but also for understanding cognitive processes, a kind of data 

mining the mind.  
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