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Abstract 

U.S. students consistently score poorly on international 
mathematics assessments. One reason is their tendency to 
approach mathematics learning by memorizing steps in a 
solution procedure, without understanding the purpose of 
each step. As a result, students are often unable to flexibly 
transfer their knowledge to novel problems. Whereas 
mathematics is traditionally taught using explicit instruction 
to convey analytic knowledge, here we propose the causal 
contrast approach, an instructional method that recruits an 
implicit empirical-learning process to help students discover 
the reasons underlying mathematical procedures. For a topic 
in high-school algebra, we tested the causal contrast approach 
against an enhanced traditional approach, controlling for 
conceptual information conveyed, feedback, and practice. The 
causal contrast approach yielded remarkably greater success, 
especially on novel problems, across students with varying 
levels of mathematical competence.  

Keywords: comparison; mathematics education; causal 
induction; concepts, knowledge transfer 

Introduction 
Mathematics experts use general goal-directed reasoning to 
solve problems. Students, in contrast, are commonly 
observed to use procedures without understanding, often 
just following a memorized sequence of steps to solve a 
problem (Stigler, Givvin, & Thompson, 2010). Because 
they have not connected procedures to goals or concepts, 
students lack the flexibility of experts: they often are unable 
to decompose a procedure and apply the constituent 
operations successfully to a novel problem for which the 
learned sequence is inadequate (Cooper & Sweller, 1987). 
This lack of goal-directed reasoning in mathematics may be 
a major cause of the poor performance of U.S. students 
(PISA, 2009, 2013; Stigler & Hiebert, 1999; TIMSS, 2007).  

A critical prerequisite for goal-directed reasoning is 
learning cause-and-effect relations. People, including 
children and even infants, have a natural capacity for 
learning causal relations (Cheng, 1997; Gopnik et al, 2004; 
Leslie & Keeble, 1987). Much like language learning, 
causal induction is a universal learning process that is 
shared by virtually all humans. Because of its universality, 
causal induction can be recruited in nearly all learners to 
support goal-directed reasoning. Once an effect of interest is 
identified, most learners will naturally seek to discover 
causes of that effect. Moreover, they will succeed if the 
requisite information for the discovery is readily available. 
For example, imagine you wake up one morning, 

disappointed to discover that your digital video recorder 
(DVR) failed to record a special television show last night 
(your goal). You would probably think back to occasions on 
which your DVR successfully recorded, and compare them 
to the failed attempt. If a presetting to record a regular show 
is the only feature that differs between your failed and 
successful attempts, you would readily determine the cause 
of the failure -- the presetting interfered with your new 
setting. This process enables you to discover a new causal 
relation and better understand how your DVR works.   

Causal induction is the process whereby we come to 
know how the empirical world works; it is what allows us to 
predict, diagnose, and intervene on the world to achieve an 
effect. Based on the premise that action-outcome relations 
in mathematics are no less causal than those in other 
domains, we ask: Can we 1) activate students’ natural 
capacity for causal induction during mathematical problem-
solving, inducing them to formulate the goals of a 
mathematical procedure, and 2) promptly have the requisite 
information available, allowing students to discover the 
actions that would achieve those goals, and thereby to 
understand the causal structure of the solution to a problem?  
If so, students may become better able to generalize their 
mathematical knowledge. Although previous researchers 
have noted the importance of applying causal knowledge to 
solve mathematical problems (e.g., Anderson, 1990), to our 
knowledge the simple but powerful process of causal 
induction has never been systematically recruited in the 
acquisition of the requisite causal knowledge in 
mathematics education. Causal induction may at first appear 
irrelevant to mathematical learning, as mathematics is 
analytic whereas causation is empirical. Moreover, the 
causal induction process is implicit; neither its requisite 
input nor its operation is open to introspection. Thus, the 
potential use of this process in mathematics learning does 
not readily present itself. 

Traditional instructional approaches teach students 
analytically and explicitly the rules and steps for solving 
specific types of problems. For example, a student presented 
with this equation 

x2 – 13x – 30 = 0   (Eq. 1)   
is taught to first factor the expression on the left, then 
determine the possible values of x using the zero-product 
property (ZPP) (if a•b = 0, then a = 0 or b = 0). For a 
substantial fraction of students, as evidenced by their failure 
to flexibly generalize their learning to novel problems, this 
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approach does not impart an understanding of the causal 
structure of the solution, the reason behind each step in the 
procedure and how the steps work together. For example, 
what is the purpose of factoring the expression on the left 
hand side (LHS) -- why can’t one merely rearrange the 
equation to solve for x? And what is the relationship 
between factoring and the ZPP?  Even when students are 
given opportunities to compare worked examples (Rittle-
Johnson & Star, 2007; Rittle-Johnson, Star & Durkin, 
2009), or explain solutions (Chi et al, 1989, 1994; Chi, 
2000), they may still fail to formulate questions that enable 
understanding of the causal structure of a problem.   

The approach we are exploring is designed to support 
students’ discovery of the causal structure that underlies 
mathematical procedures, the causal structure that reflects 
the critical mathematical concepts essential to the solution 
of relevant types of problems. At the heart of our approach 
is the use of targeted comparison tasks designed to activate 
students’ cause-effect learning at just the points in the 
problem-solving process at which critical concepts should 
apply. It is not the use of comparison per se that 
differentiates our approach, but rather the targeting of 
critical concepts by specific comparisons designed to invoke 
causal induction. To continue with the same example, 
students in our approach are first asked to try solving 
Equation 1. If they fail to solve Equation 1, we present them 
with a contrasting problem, one that is carefully chosen to 
control for confounding factors by being as similar as 
possible to Equation 1 but with the features causing the 
difficulty removed.  The contrast aims at invoking students’ 
implicit causal learning process, so that they discover the 
cause of their difficulty. For example, after failing to solve 
Eq. 1, students are asked to solve these equations: 

 x – 30 = 0      (Eq. 2) 
    x2 – 30 = 0    (Eq. 3) 

After students solve these (all our participants did), they 
are asked why these problems are easier for them to solve 
than Equation 1. This comparison enables students to 
readily discover a cause of their failure: unlike Equations 2 
and 3, Equation 1 has both an x and an x2 term, preventing 
them from isolating x by simply rearranging the equation.  
The newly formulated cause -- having both x and x2 terms -- 
in turn becomes an “effect” for subsequent operations to 
prevent or remove. Additional contrast comparisons enable 
students to discover a conjunctive preventive relation, 
namely, that factoring and applying the ZPP in combination 
can result in equations that can be rearranged to isolate x.  

Figure 1 displays a fragment of the causal structure of the 
solution for Equation 1. Whereas causal arrows point from 
the bottom up in the figure, learners construct the causal 
structure by experiencing the contrasting events from the 
top down. Leaving out any “cause” or “effect” would create 
gaps in one’s mental causal structure of the solution. 
Without their initial attempt to isolate x, learners would 
have no “effect” (top node in the figure) for which to 
discover its cause. This effect -- failure to isolate x by 
rearranging the equation -- is not explicitly noted in 

traditional instruction on solving quadratic equations and 
requires formulation. Conversely, without a comparison 
with Equations 2 and 3, a learner who is asked to explain 
why Equation 1 is difficult may mention the effect alone, 
“I’m unable to rearrange the equation to isolate x”, omitting 
to identify its “cause”: having both x and x2 terms in the 
same equation, the intermediate node. In turn, without the 
intermediate node, there would be no “effect” for learners to 
subsequently discover its preventive cause (the bottom 
node), namely, factoring. Thus, each comparison is designed 
to direct attention to an essential causal relation in the 
structure of the solution. 

 
Figure 1. Fragment of the causal structure of solution to a 
factorable quadratic equation. 

 
In more general terms, the comparisons we construct 
provide conditional contingency information (Cheng & 
Holyoak, 1995), input that enables a causal contrast. For 
events involving causes and effects that are binary – the 
type of events of concern here – conditional contingency 
information consists of the state of an effect (e.g., 
succeeding to solve a problem or not) in the presence of a 
candidate cause (a feature of the math problem, e.g., an 
equation having both an x and an x2 term) and in its absence 
(an equation not having both an x and an x2 term), with 
alternative causes held constant. 

The process repeats as the student proceeds through the 
solution. Each step involves 1) the student’s attempt to solve 
a difficult problem that presents an opportunity for failure – 
a misunderstanding of a critical concept or an impasse – and 
2) a comparison of the difficult problem with a contrasting 
easier problem. The failures identify the effects and the 
comparisons provide conditional-contingency information 
necessary for discovering their causes. 

Continuing with our example problem, suppose that when 
we ask students to solve a factored version of Equation 1, 

 (x – 15)(x + 2) = 0,     (Eq. 4) 
they do not encounter an impasse. They proceed to make 
use of the ZPP and infer that 

x – 15 = 0  or    (Eq. 5) 
x + 2 = 0.    (Eq. 6) 
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For some students, this success may indicate complete 
understanding of the causal structure. But for many students 
it may not. For example, these same students, if given the 
equation  

(x – 2)(x + 2) = 12,   (Eq. 7)  
might erroneously infer that 

(x – 2) = 12 and   (Eq. 8) 
(x + 2) = 12.      (Eq. 9) 

In fact, this represents a prevalent misconception; roughly 
half of our subjects (72% community-college students and 
39% university students) committed this error on the pretest.  

To address this misconception, we ask students to 
compare Equation 4 with the easier contrasting problem 

x • y = 0.     (Eq. 10) 
We ask, “what values of x would make  x • y = 0 true, 
regardless of the value of y?” In this simple form, students 
are able to think through the logic of the ZPP; all our 
participants answered the question correctly.  We then ask 
them to compare Equation 10 with Equation 4. Solving 
Equation 10 and comparing it to Equation 4 enables these 
students to see the analogous structure underlying the two 
equations and discover their misconception of the ZPP. 
Thus, what is critical to learning from causal contrasts is a 
misconception of the causal structure of a difficult problem, 
whether that misconception is manifested in an impasse (as 
in Equation 1) or succeeding for the wrong reason (as in 
Equations 7, 8, and 9). 
    For students who are at an impasse, unable to solve 
Equation 4, the comparison with Equation 10 may allow 
them to discover why they failed to transfer, for example, 
that the perceptual complexity of Equation 4 prevented them 
from recognizing that the equation is a product, that the 
content of the parentheses is “just a number”. At this point, 
the perceptual complexity can switch causal roles, taking on 
the role of an effect that the student can prevent or remove. 
The students may in the future pause to “see through” the 
perceptual complexity to recognize when a concept applies.   
  To summarize, the particular sequence of problems and 
contrast comparisons in our materials were designed to 
reveal the causal structure of the solution by focusing 
students on the goals of procedures at various levels of 
abstraction: why they factor, why they apply the ZPP, and 
perceptual cues indicating when the property applies. Our 
approach enhances the causal structure of the solution 
procedure whenever it is incomplete. Understanding the 
causal structure rather than memorizing the procedure 
enables generalization and transfer.  

Causal Contrast Compared to Similar Methods 
 Although our approach builds on previous methods in the 
literature (Anderson, 1990; Bjork, 1994; Chi et al, 1989; Chi 
et al; 1994, Chi, 2000; Kornell, Hays, & Bjork, 2009; 
VanLehn, 1988), no previous study has tested learning via 
causal-contrast comparisons. Unlike our materials, materials 
in previous studies were not designed to provide 
conditional-contingency information for the steps in a 
solution procedure.  

   Rittle-Johnson and Star (2007) had students compare and 
contrast alternative solution procedures to a worked 
example (algebra problems), or two different worked 
examples that use the same solution procedure (Rittle-
Johnson et al, 2009). Although the comparison of alternative 
solutions leads to an understanding of the common and 
distinct features of alternative solutions, it is not targeted at 
enhancing the learning of the purposes underlying 
individual steps. Without the requisite conditional-
contingency information for the steps, students may still fail 
to transfer to novel problems. Indeed, there is no evidence 
that solution-procedure comparisons induced transfer; the 
posttest problems in Rittle-Johnson and Star (2007) differed 
only slightly from the worked examples appearing in the 
instruction, and could be solved using the same procedures. 
Notably, what they term “conceptual problems” were solved 
equally well by the comparison and no-comparison groups. 
Thus, while our approach shares with Rittle-Johnson et al. 
the use of comparison tasks to promote learning, the two 
approaches differ both in what is compared and which type 
of reasoning process they engage.  

Anderson (1990) argues that causal knowledge is used to 
select the operators to achieve each step in a solution. 
Unlike our approach, however, his does not give learners the 
contingency information necessary to discover the reasons 
for the steps. Instead, learners are simply encouraged to 
retrieve the causal links from memory and apply them onto 
the current situation. Indeed, Anderson (1987) admits that 
his approach does not afford students the ability to infer the 
reasons for the procedure. 

The use of conditional-contingency information also 
distinguishes our approach from previous work on the role 
of self-explanation in learning. There is a large body of 
work that shows that simply giving a prompt of “please 
explain” or “why?” during learning can result in an 
enhanced ability to generalize (Chi et al, 1989; Chi et al, 
1994). This self-explanation effect is especially pronounced 
when learners experience an impasse prior to their 
explanation (Chi, 2000; VanLehn, 1988). Chi (2000) has 
argued that this effect occurs because self-explaining helps 
learners find and correct inaccuracies in their mental models 
of the particular domain under study. However, as we 
illustrated earlier regarding a self explanation of Equation 1 
without a comparison with Equations 2 and 3, self 
explanations formed in the absence of conditional-
contingency information may be too general and do not 
ensure closing gaps in the causal structure.   

The enhancement of the self-explanation effect by 
impasses is part of a large literature showing more generally 
that allowing learners to reach an impasse during problem-
solving enhances transfer to novel problems (VanLehn, 
1988). Related work in the memory literature indicates that 
encountering difficulties (e.g., retrieving wrong answers) 
during study improves performance at test (Bjork, 1994; 
Kornell, Hays, & Bjork, 2009). While impasses and 
difficulties may enhance learning, they are not necessary for 
learners to benefit from causal contrasts. What drives 
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learning in the causal-contrast approach is awareness of a 
gap in the causal structure of the solution to a problem; an 
impasse simply serves as a means to alert learners to the 
gap. As we illustrated with our example contrasts (the 
comparison between Eqs 4 and 7), causal contrasts can alert 
learners to the gap even when learners do not experience an 
impasse. Finally, impasses without the requisite conditional-
contingency information are insufficient for ensuring the 
construction of a complete causal structure.  

In summary, the present article illustrates a causal 
contrast approach to teaching mathematics. By recruiting a 
universal learning process through the use of conditional-
contingency information in the instructional materials to 
elicit causal-contrast comparisons, the approach enables 
students to formulate a causal structure of the solution. We 
hypothesize that discovering the causal structure underlying 
a solution procedure – a) the goals and their 
interrelationships and b) the operations to achieve each goal 
– should enhance even struggling students’ ability to 
generalize and use the procedure more flexibly. We tested 
our approach on community-college students taking 
remedial algebra as well as on university students (to test 
the generality of our findings). Although our illustrative 
tests focus on algebra, the method we are testing is general 
and can be applied to other areas of math. 
 

Comparing Causal-Contrast and  
Traditional Instruction 

This experiment compared the effect of a causal-contrast 
approach to teaching algebra (as developed above) with a 
traditional approach, on learning and transfer. A between-
subjects pretest/intervention/delayed-posttest design was 
employed, with the interventions focusing on solving 
factorable quadratic equations.  

Method 
Participants. Participants included (N=47) community 
college students recruited through College Algebra courses 
in Southern California, and university students (N=66) 
recruited from the UCLA Psychology Department 
undergraduate subject pool. Participants were randomly 
assigned to an intervention condition after the pretest1: 
causal-contrast (n=50) and traditional (n=63). 
 
Instructional Conditions. Students in the causal-contrast 
condition were given a packet with “difficult” problems – 
problems they were likely to fail – presented together with 
their associated contrasts. Difficult problems were selected 
to represent common misconceptions, and included x2 = 25, 
x2 – 13x – 30 = 0 (Eq. 1), and 3x2 – 10x + 8 = 0. Carefully 

                                                             
1   Participants with ceiling or floor (below 20%) scores on the 

pretest were thanked for their time and not invited to participate in 
the study (13% of community college students excluded for ceiling 
scores, 7% for low scores; 15% of university students excluded for 
ceiling scores, 1% for low scores); the extremely low scores 
indicated difficulty with basic mathematical notation.  

following a script, the experimenter directed students’ 
attention to the problems and comparisons, and gave 
feedback only to indicate whether the student solved a 
problem correctly. Each difficult problem-contrast set was 
followed by 2 or 3 practice problems that received no 
feedback. 

The traditional intervention was designed to make use of 
techniques representative of excellent, but traditional, 
instruction. Students in the traditional condition were given 
a packet of instruction based on a popular textbook 
(Sullivan & Sullivan, 2007) and lesson plans from 
mathematics teachers at an academically rigorous private 
school. The instruction packet included worked examples, 
written solutions of example problems that provide 
justifications for each procedural step, followed by problem 
solving with and without feedback. Carefully following a 
script, the experimenter went step-by-step through the 
worked examples with each subject, stating the “sub-goals” 
of the critical steps in the procedure; for example, subjects 
were told that a quadratic equation is rearranged to standard 
form (having a zero on one side and a polynomial on the 
other) so that it could be factored and solved using the ZPP. 
Emphasizing sub-goals in problem-solving has been shown 
to enhance transfer (Eiriksdottir & Catrambone, 2011). 
When a student solved a problem incorrectly, the 
experimenter demonstrated how to solve the problem using 
the procedure in the worked examples. Training that 
combines worked examples and problem solving has been 
shown to enhance learning (Sweller & Cooper, 1985). 

The interventions were identical except for the 
instructional method. Both conditions contained the exact 
same problems, in the same order, with the same subset of 
problems receiving feedback in both conditions. Both 
interventions lasted an average of 30 minutes.  

Posttest. The delayed posttest occurred 2 to 3 weeks after 
the intervention and took at maximum 30 minutes. It 
included two types of problems:  instructed and transfer. 
Instructed problems could be solved using the same solution 
procedures as the study problems. Transfer problems 
required generalization of concepts learned in the 
intervention. For example, one transfer problem,   

 x2(2x + 1)(x + 1) = 0   (Eq. 11) 
tests generalization of the role of the ZPP. In particular, the 
problem aims to test whether causal-contrast participants 
truly understood the difficulty in having both x and x2 terms 
in a problem (a difficulty not present in Equation 11).  
Would they be stymied, for example, because the factored 
equation still contains x2? Other transfer problems included 
factorable quadratics in non-standard form (see Figure 3).   

If causal contrasts can result in an understanding of the 
underlying purposes of procedures, participants in the 
contrast group should outperform those in the traditional 
group, especially on the transfer problems; they should be 
able to use their knowledge flexibly to solve novel 
problems. The instructed problems allow us to check the 
effectiveness of our traditional intervention.   
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Results 
Pretest. The causal-contrast and traditional groups did not 
differ in pretest performance for both the community-
college students (Mcontrast = 56.1+15.2; Mtraditional = 
54.1+18.4), t(45)=.64, p=.45, or university students (Mcontrast 
= 62.6+13.5; Mtraditional = 64.3+16.7), t(64)=1.32, p=.67. 
Error terms indicate one S.D. 
 
Posttest. For each sample, we conducted a one-way 
MANCOVA with two levels of instruction (causal-contrast, 
traditional) and two dependent measures (transfer and 
instructed problem performance), using pretest score as a 
covariate.  
   For the community college students, pretest score was 
marginally related to posttest performance, F(1, 44)=2.44, 
p=.10. Figure 2 (left panel) displays the posttest 
performance data (adjusted means) for the community-
college students. As the left panel of the figure indicates, the 
between-group difference on the transfer problems was 
remarkable (Mcontrast = 63.7+29.3 and Mtraditional = 36.1+28.7; 
F(1, 44)=9.63, p=.003, d=.95). Whereas only about a third 
of the transfer problems were solved in the traditional 
group, almost two thirds were solved in the causal-contrast 
group. The instructed problems were also better solved by 
the contrast group (Mcontrast = 89.2+13.2, Mtraditional = 
70.4+31.8; F(1, 44) = 6.66, p=.01, d=.77).   
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Figure 2.  Post-test performance (adjusted percent correct) 
as a function of condition and problem type in community-
college students and university students. 
 

Although pretest score was related to posttest 
performance (F(2, 62)=25.1, p<.001) in the university 
students, a similar pattern of results for posttest performance 
was obtained (see right panel of Figure 2). Controlling for 
pretest score, the causal-contrast group substantially 
outperformed the traditional group on both the transfer 
problems (Mcontrast = 82.0 +25.9, Mtraditional = 58.1+32.3; F(1, 
63)=16.53, p<.001, d=.61) and the instructed problems 
(Mcontrast = 97.6+10.3, Mtraditional = 80.1+21.4; F(1, 
63)=23.04, p<.001, d=.88.  

Looking more closely at the performance of the 
community-college students, we can see that in transfer 
Problem 6 in Figure 3, there was a large difference in 
performance across conditions: 62.5% correct versus 39.1% 
respectively for the causal-contrast and traditional groups, 

χ2(1, N=47)=2.57, p=.05. Recall that this problem is 
especially informative. The superior performance of the 
causal-contrast participants indicates that their intervention 
did not mislead them into formulating a simplistic rule 
regarding the joint presence of x and x2 that ignores whether 
they are terms or factors. Instead, the intervention enhanced 
the correct flexible use of the concepts and procedures. 
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Figure 3. Performance on individual transfer problems by 
community-college traditional and causal-contrast groups. 

 
Problem 5 in Figure 3 shows another large between-group 

difference in performance: 58.3% versus 26.1% respectively 
for causal-contrast and traditional, χ2 (1, N=47)=5.0, p=.01. 
The successful students expanded the LHS and rearranged 
the equation to obtain a 0 on the RHS. Most traditional 
subjects made the common error discussed earlier. 

To further assess the acquisition of goal-directed 
reasoning, we examined participants’ solutions to two types 
of posttest problems. Expansion problems are factored 
equations that must be expanded and rearranged in order to 
apply the ZPP (e.g., see Problem 5 in Figure 3).  In contrast, 
the ZPP can be directly applied to non-expansion problems 
(e.g., Problem 6 in Figure 3)—that is, there is no need to 
perform an additional step such as expanding the LHS to 
enable the application of the ZPP.  Novices, however, often 
circuitously expand the LHS and simplify it back to its 
original form before applying the ZPP. Participants were 
coded as goal-directed if they solved all expansion problems 
and solved a majority (2 out of 3) of the non-expansion 
problems without the unnecessary expansion. We found that 
for the community-college students, 54.2% of the causal-
contrast group were goal-directed, compared to only 21.7% 
of the traditional group, χ2 (1, N=47)=3.94, p=.047. A 
similar pattern was found in the university students (53.8% 
vs 27.5%), χ2 (1, N=66)=3.60, p=.058.   
   The consistent difference in performance between 
conditions on each transfer problem (see Figure 3) 
combined with the qualitative differences across conditions 
in goal-directed solving indicates that when students 
understand why they are performing certain operations in a 
procedure, and what those operations do in the context of 
the obstacles to be overcome, they are better able to flexibly 
use an operation to achieve an end, resulting in greater 
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success on transfer problems. On the other hand, when 
students merely follow a procedure that they memorized—
even if they were once told the reasons for the operations in 
that procedure—they are not as proficient in flexibly using 
the operations to solve novel problems; their representation 
of the underlying causal structure is evidently incomplete.  

Discussion 
   Our results show that relative to a traditional approach, the 
causal-contrast approach dramatically improves algebra 
generalization and transfer in both community-college and 
university students. Regardless of prior knowledge, the 
causal-contrast participants showed both an enhanced ability 
to solve novel transfer problems and a tendency for goal-
directed solving. These results support the causal contrast 
hypothesis that the combination of failures and conditional-
contingency information directs attention to the relevant 
causal relations in the solution structure, enhancing 
students’ ability to decompose a procedure and use the 
constituent operations flexibly in solving problems.  
    Our findings are particularly striking in view of students’ 
typical inability to solve novel problems; the issue of 
knowledge transfer is so pervasive, in fact, that mathematics 
educators have termed it the “inert knowledge problem”. 
Our results show that even when traditional, analytic 
instruction focuses on teaching the reasons for mathematical 
procedures, students still fail to learn in a way that promotes 
generalization to novel problems. In contrast, by allowing 
students to use an implicit, empirical learning process to 
discover the causal structure of solutions, students with 
different levels of skill and knowledge are able to fill in the 
missing links of their causal structure, and consequently 
need not rely on their rote memory of procedures.  
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