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ABSTRACT OF THE DISSERTATION

Analysis and Design of Asynchronous Non-Orthogonal Multiple Access

By

Xun Zou

Doctor of Philosophy in Electrical Engineering

University of California, Irvine, 2020

Professor Hamid Jafarkhani, Chair

In this dissertation, the analysis and design of asynchronous non-orthogonal multiple ac-

cess (ANOMA) are presented and the advantages of ANOMA over the conventional non-

orthogonal multiple access (NOMA) are detailed. The gain of ANOMA over NOMA, which

is called “sampling diversity”, results from intentionally introducing the symbol asynchrony

at the transmitter and applying the oversampling technique at the receiver. In this disser-

tation, first, the conventional NOMA is introduced, including the superposition coding and

the successive interference cancellation (SIC), and the trellis code is designed and optimized

specifically for NOMA systems with the aid of the tensor product of trellises. Second, we

analyze the performance of an uplink ANOMA system and the effects of timing errors on

the system performance. It is revealed that ANOMA achieves a higher sum throughput

compared with NOMA and the synchronization timing error causes a more severe perfor-

mance loss compared with the coordination timing error. Third, a downlink cooperative

ANOMA system with user relaying is studied, including the throughput performance and

the power consumption. It is demonstrated that ANOMA is more power efficient compared

with NOMA. Finally, we further investigate the impact of imperfect channel state infor-

mation (CSI) on ANOMA systems. It is shown that under the same channel estimation

error, the users in ANOMA systems achieve a lower outage probability compared with those

in NOMA systems. Furthermore, the limited feedback scheme for the downlink ANOMA

xiv



systems is proposed and optimized. It is manifested that ANOMA can achieve the same or

even higher average max-min rate as NOMA with a lower feedback rate.
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Chapter 1

Introduction

Non-orthogonal multiple access (NOMA) is envisaged as a promising technique for future

radio access [1]. Traditional orthogonal multiple access (OMA) techniques allocate orthogo-

nal resources to different users, e.g., orthogonal time resources in the time division multiple

access (TDMA) scheme. Differently, the NOMA provides the multiuser access by allocating

non-orthogonal resources to users [2]. For example, in the power-domain NOMA scheme, the

signals for multiple users are superposed at different power levels using superposition coding

[3], and the multiuser detection method, such as successive interference cancellation (SIC)

[4], is employed at the receiver. The advantages of the NOMA over the OMA have been ex-

tensively studied in [1] and the references therein, e.g., providing higher system throughput

compared with OMA and supporting massive connectivity.

Another line of research is to study the effects of asynchronous transmission on the perfor-

mance of the wireless communication systems. Asynchronous transmission refers to the case

where the symbol epochs of the signals transmitted by the users are not aligned at the re-

ceiver [5]. In particular, [5] first pointed out the potential advantages of symbol-asynchronous

communications in terms of increasing the capacity of a multiple-access channel. The work in

1



[6] applied the symbol-asynchronous channel estimation method to tackle the pilot contam-

ination problem in massive multiple-input multiple-output (MIMO) systems. Asynchronous

transmission was studied in [7, 8] as a tool to mitigate or cancel the inter-user interference.

In addition, the nonzero symbol offset was used to reduce the inter-antenna interference in

MIMO systems in [9]. Moreover, an asynchronous analog network coding scheme for mul-

tiuser cooperative communications was proposed in [10] to provide a greater diversity order

compared with that of synchronous analog network coding. Also, adding intentional timing

mismatch was proposed in [11] to improve the performance of a relay network. The authors

of [12, 13] further proposed several differential decoding schemes for asynchronous multiuser

MIMO systems based on orthogonal space-time block codes (OSTBCs) and for differential

distributed space-time coding systems with imperfect synchronization.

Asynchronous NOMA (ANOMA) is proposed by combining the asynchronous transmission

with NOMA. It can be proved that ANOMA outperforms NOMA in terms of, e.g., the

throughput, the outage probability, and the power consumption, by intentionally introduc-

ing a timing mismatch at the transmitter and applying the oversampling technique at the

receiver. The main contribution of this dissertation is summarized as follows:

1. We study the design of trellis code in NOMA systems. The signals for different users

are produced by trellis coded modulation (TCM) and then superimposed on different

power levels. By interpreting the encoding process via the tensor product of trellises,

we introduce a joint detection method based on the Viterbi algorithm. Then, we

determine the optimal power allocation between the two users by maximizing the free

distance of the tensor product trellis. Finally, we manifest that the trellis-coded NOMA

outperforms the uncoded NOMA at high signal-to-noise ratio (SNR).

2. We investigate the uplink ANOMA system. Focusing on a two-user uplink system,

for the first time, we analytically prove that the ANOMA with a sufficiently large

frame length can always outperform the NOMA in terms of the sum throughput.
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To this end, we derive the expression for the sum throughput of the ANOMA as

a function of SNR, frame length, and normalized timing mismatch. Based on the

derived expression, we find that users should transmit at full powers to maximize the

sum throughput. In addition, we obtain the optimal timing mismatch as the frame

length goes to infinity. Moreover, we comprehensively study the impact of timing

error on the ANOMA throughput performance. Two types of timing error, i.e., the

synchronization timing error and the coordination timing error, are considered. We

derive the throughput loss incurred by both types of timing error and find that the

synchronization timing error has a greater impact on the throughput performance

compared with the coordination timing error.

3. We propose a novel half-duplex cooperative ANOMA (C-ANOMA) framework with

user relaying, where a timing mismatch is intentionally added in the broadcast sig-

nal. We derive the expressions for the throughputs of the strong user (acts as relay)

which employs the block-wise SIC and the weak user which combines the symbol-

asynchronous signal with the interference-free signal. We analytically prove that in

the C-ANOMA systems with a sufficiently large block length, the strong user attains

the same throughput to decode its own message while both users can achieve a higher

throughput to decode the weak user’s message compared with those in the cooperative

NOMA (C-NOMA) systems. Besides, we obtain the optimal timing mismatch when

the block length goes to infinity. Furthermore, to exploit the tradeoff between the

power consumption of the base station and that of the relay user, we solve a weighted

sum power minimization problem under quality of services (QoS) constraints. Numer-

ical results show that the C-ANOMA system can consume less power compared with

the C-NOMA system to satisfy the same QoS requirements.

4. We investigate a downlink ANOMA system with imperfect CSI. It is analytically proved

that the ANOMA system with a relatively large frame length outperforms the NOMA

3



system in terms of the outage probability. To this end, we derive the analytical expres-

sions for the individual throughput of each user and simplify them in the asymptotic

case of infinite frame length. Besides, we show that with channel estimation error,

the optimal timing mismatch converges to half of a single symbol length as the frame

length goes to infinity.

5. We study a two-user downlink ANOMA with limited feedback. We employ the max-

min criterion for the power allocation and derive the closed-form expressions for the

upper and lower bounds of the max-min rate. It is demonstrated that ANOMA can

achieve the same or even higher average max-min rate with a lower feedback rate com-

pared with NOMA. Moreover, we propose a quantizer optimization algorithm which

applies to both NOMA and ANOMA. Simulation results show that the optimized quan-

tizer significantly improves the average max-min rate compared with the conventional

uniform quantizer, especially in the scenario with a low feedback rate.

4



Chapter 2

Non-Orthogonal Multiple Access and

Trellis Code Design

2.1 Introduction

From a unified perspective, NOMA consists of code-domain NOMA and power-domain

NOMA [14]. Both code-domain and power-domain NOMA have been extensively studied in

the existing literature.

2.1.1 Power-domain NOMA

In the power-domain NOMA systems, the signals of different users are assigned different

powers. Then, one major challenge is the optimal power allocation as discussed, for exam-

ple, in [2, 15]. The optimal power can be determined according to the channel conditions to

maximize users’ achievable rates. Superposition coding and successive interference cancella-

tion (SIC) techniques are utilized at the transmitter and the receiver, respectively. Again,

5



there are many studies on how to perform these techniques efficiently, for example [16, 17].

For simplicity, we consider a two-user scenario to illustrate the NOMA technique. In an

uplink system, two users transmit signals to the base station (BS) simultaneously using the

same bandwidth. The received signal at the BS is given by

y = h1

√
P1s1 + h2

√
P2s2 + n, (2.1)

where hi, Pi, and si are the channel coefficient, the transmit power, and the transmitted

symbol of User i, respectively, and n is the additive Gaussian noise, i.e., n ∼ CN (0, σ2
n). SIC

is employed at the BS. Assume that User 1 is decoded first. The rate of User 1 is given by

R1 = log

(
1 +

P1|h1|2

P2|h2|2 + σ2
n

)
. (2.2)

Under the assumption of perfect SIC, after removing the signal from User 1, the rate of

User 2 is given by

R2 = log

(
1 +

P2|h2|2

σ2
n

)
. (2.3)

In the downlink NOMA system, the superposition coding is adopted at the BS. The trans-

mitted signal is given by

s =
√
P1s1 +

√
P2s2, (2.4)

where Pi and si is the power allocated to User i and the symbol for User i, respectively. The

received signal at User i is given by

yi = his+ ni = hi
√
P1s1 + hi

√
P2s2 + ni. (2.5)
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Assume that User 1 is the stronger user with a better channel. User 1 can employ the SIC,

which first detects User 2’s messages, removes it, and then detects its own messages. The

rate of User 1 to detect User 2’s message is given by

R2→1 = log

(
1 +

P2|h1|2

P1|h1|2 + σ2
n1

)
. (2.6)

With perfect SIC, the rate of User 1 is given by

R1 = log

(
1 +

P1|h1|2

σ2
n1

)
. (2.7)

Similarly, the rate of User 2 is given by

R2 = log

(
1 +

P2|h2|2

P1|h2|2 + σ2
n2

)
. (2.8)

2.1.2 Code-domain NOMA

The code-domain NOMA has its origin in code division multiple access (CDMA), including

sparse code multiple access (SCMA) [18] and trellis coded multiple access (TCMA) [19]. The

signals of multiple users are separated by user-specific features, e.g., the uniquely assigned

codeword of each user. In the code-domain NOMA, the main efforts are devoted to the

multi-user detection, for example, the design of multidimensional constellations [18, 20]. To

the best of our knowledge, the joint design of the code-domain and power-domain NOMA

has never been studied.

In this chapter, we apply trellis coded modulation (TCM) to the power-domain NOMA,

taking advantages of the coding gain and the power optimization. Utilizing superposition

coding, the signals for multiple users are superimposed on different power levels. Compared
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with [20], the main contribution of this work is introducing the power allocation to code-

domain NOMA. The performance can be improved by allocating proper powers to the signals

of different users. Instead of utilizing TCM purely for codeword design in [20], TCM is

employed in this work to jointly optimize the error control coding and modulation. Therefore,

the Viterbi algorithm can be directly applied to the proposed scheme. By interpreting the

modulating process via the tensor product of trellises [21, 22], we implement the maximum

likelihood sequence detection (MLSD) based on the Viterbi algorithm [23]. Furthermore, we

derive the optimal power allocation between the two users by maximizing the free distance

of the tensor product trellis.

The key difference between the trellis-coded NOMA and the traditional TCMA lies in the

multiple access scheme. In TCMA, the signals of multiple users are differentiated by their

unique features, for example, convolutional encoder, constellation, or interleaver [24]. How-

ever, in the trellis-coded NOMA, the signals are differentiated only by the power levels.

Furthermore, for the first time, we provide insight into the power optimization for the su-

perimposed TCM signals.

2.2 System Model

In this chapter, we consider a downlink NOMA system consisting of one base station (BS)

and two users. Superposition coding is employed at the transmitter. The power allocated to

User i’s signal is denoted as Pi, i = 1, 2. The channel coefficient between the BS and User i

is represented by hi. We adopt the block fading channel model, i.e., the channel remains

static within each block and changes independently from one block to another [2, 15]. We

assume that the channel state information is perfectly known by the BS and users. Without

loss of generality, we assume that |h1|2 > |h2|2. To stipulate the user fairness, we set

P2 > P1. In what follows, the 8-phase-shift keying (PSK) 4-state TCM serves as an example
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Figure 2.1: Illustration of an 8-PSK 4-state TCM encoder.

of TCM [25], which is depicted in Fig. 2.1. The trellis diagram and the 8-PSK mapping

are shown in Figs. 2.2 (a) and (b), respectively. In Figs. 2.1 and 2.2, x1 and x2 represent

the uncoded bits while z0 and z1 denote the coded bits via the convolutional encoder. For

the sake of brevity, we employ the signal constellation with unit signal power, i.e., Eb = 1.

Note that the proposed scheme can be applied to the case where two users employ different

modulations/trellises and also the case of more than two users.

In the proposed trellis-coded NOMA, the signals for Users 1 and 2 are first modulated by

TCM, as shown in Figs. 2.1 and 2.2, and then superimposed on different power levels. Using

superposition coding, the nth transmitted symbol at the BS is given by
√
P1a1(n)+

√
P2a2(n)

where ai(n) is the nth symbol for User i after TCM. Then, the nth received sample at User i

is given by

yi(n) = hi

[√
P1a1(n) +

√
P2a2(n)

]
+ wi(n), (2.9)

where wi(n) ∼ CN (0, σ2
i ) is the additive noise. At users, the modulated symbols are detected

and then the binary information bits are recovered from the modulated symbols, which will

be explained in the next section.
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Figure 2.2: (a) Trellis representation of 8-PSK 4-state TCM. (b) The mapping of 8-PSK constella-
tion.

2.3 Tensor Product of Trellises and Detection Design

In this section, we first present the separate detection method with SIC. Then, we propose

the joint detection method based on a novel trellis structure known as “tensor product of

trellises”.

2.3.1 Separate Detection with SIC

In the separate detection scheme, the signals for Users 1 and 2 are detected separately. User 2

(the weak user) detects its own signal by considering User 1’s signal as noise. User 1 (the

strong user) utilizes SIC, i.e., first detects User 2’s signal, removes it from the superimposed

signal, and then detects its own signal. The Viterbi algorithm [23] can be employed to

determine the sequence with the minimum Euclidean distance from the received sequence

using the 4-state trellis in Fig. 2.2 (a).
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Figure 2.3: Underlying tensor product of trellises.

2.3.2 Joint Detection with Tensor Product of Trellises

First, we review the concept of the tensor product of trellises [22, 21]. Let us consider trellises

T1 and T2 with r1 and r2 states, respectively, and S
(l)
i , i = 1, · · · , rl, denotes the ith state of

Tl. The tensor product of T1 and T2, denoted as T1⊗T2, can be represented as a trellis with

r1 × r2 states. Each state in T1 ⊗ T2 is given by S
(1)
i S

(2)
j , i = 1, · · · , r1, j = 1, · · · , r2. The

state transition from S
(1)
i S

(2)
j to S

(1)
k S

(2)
l exists if and only if there exist transitions from S

(1)
i

to S
(1)
k in T1 and from S

(2)
j to S

(2)
l in T2. One can easily extend the definition of the tensor

product trellis to the case of more than two trellises.
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Let us revisit the modulating process of two users’ signals in Section 2.2. The symbols for

Users 1 and 2 are modulated independently through the 4-state trellis, shown in Fig. 2.2 (a).

Let T1 and T2 stand for the trellises employed to modulate the symbols for Users 1 and 2,

respectively. The tensor product trellis T1 ⊗ T2 is the 16-state trellis in Fig. 2.3. Every pair

of state transitions in T1 and T2 can be represented by a unique transition path in T1 ⊗ T2.

For example, let us assume that the state of T1 transits from S
(1)
i to S

(1)
k producing the

modulated symbol a1 and the state of T2 transits from S
(2)
j to S

(2)
l generating the modulated

symbol a2. From the perspective of T1 ⊗ T2, the state transits from S
(1)
i S

(2)
j to S

(1)
k S

(2)
l and

the superimposed symbol
√
P1a1 +

√
P2a2 is produced. Since every state transition can be

realized by two parallel paths in T1 and T2, as shown in Fig. 2.2 (a), every state transition

in T1 ⊗ T2 includes 2× 2 = 4 parallel paths.

The description of the tensor product trellis demonstrates the equivalence of the trellis-coded

NOMA and the TCM using the tensor product trellis. The joint detection is to detect both

users’ signals jointly by treating the trellis-coded NOMA as a regular TCM with the tensor

product trellis. In the joint detection, the Viterbi algorithm is implemented using the tensor

product trellis. It is worth mentioning that there is no necessity to modulate the signals for

Users 1 and 2 jointly using the tensor product trellis at the transmitter. The transmitted

symbols for each user can be modulated independently according to its own trellis by applying

an appropriate power allocation scheme to ensure a good decoding performance (as shown

in Section V).

Since the Viterbi algorithm can be employed in joint decoding, the computational complexity

increases linearly with the number of decoded symbols, N . More specifically, if the number

of states in Ti (i = 1, 2) is Ki and the total number of edges in Ti is Li, the computational

complexity of the joint detection method is given by O(N(K1K2 + L1L2)) while that of the

separate detection method with SIC is O(N(K1 +K2 + L1 + L2)).
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2.4 Power Optimization

In this section, we study the power allocation to optimize the performance of the joint

detection scheme. The power allocation is optimized under two power constraints. One is

the sum power constraint, i.e., P1 + P2 ≤ P where P is the total transmit power. The other

constraint is P1 < P2 which is added with no loss of generality. We adopt the free distance

of the tensor product trellis, dfree, to measure the performance, which is widely used in the

existing TCM studies, for example [26]. A larger free distance results in a better performance

at high signal-to-noise ratio (SNR). As will be illustrated later, the free distance is a function

of the power coefficients P1 and P2. We obtain the optimal powers by maximizing the free

distance.

The free distance is defined as the minimum Euclidean distance between any pair of valid

and distinct sequences produced by a given trellis, i.e., dfree = arg mina1,a2∈V,a1 6=a2
||a1 − a2||

where V is the set of all valid sequences. The free distance can be determined by choosing

the minimum of two candidates: the minimum Euclidean distance between the symbols

produced by the parallel paths, i.e., dparallel, and that between the sequences which diverge

from the same state and then merge at the same state, i.e., dD&M. The subscript D&M is

the acronym for “diverging and merging”. In what follows, we analyze these two distances

separately. Assume that there are two different paths in T1 ⊗ T2 producing
√
P1u1 +

√
P2v1

and
√
P1u2 +

√
P2v2, where u1 and u2 are the modulated symbols of T1 and v1 and v2 are

those of T2.

2.4.1 Parallel Paths

First, we study the case where
√
P1u1 +

√
P2v1 and

√
P1u2 +

√
P2v2 are produced by the

parallel paths in T1 ⊗ T2. Fig. 2.4 illustrates the possible positions of
√
P1u1 +

√
P2v1

and
√
P1u2 +

√
P2v2 in the superimposed constellation when v1 and v2 are chosen from
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Figure 2.4: Illustration of the minimum Euclidean distance in the superimposed constellation.
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0100

0110

ddiverge dmergedmid

Figure 2.5: Illustration of the diverging-and-merging paths with the minimum Euclidean distance.

{1,−1}. Because of symmetry, the minimum Euclidean distance for all the other choices

will be the same. In Fig. 2.4, there are four different markers, hollow/solid square/circle.

The superimposed symbols depicted by the same marker are the symbols produced by the

parallel paths for a specific state transition in T1 ⊗ T2. Every state transition in T1 ⊗ T2

can be realized by four parallel paths. Therefore, there are four positions for every marker.

The minimum Euclidean distance between parallel paths can be found by calculating the

Euclidean distance between the points sharing the same marker. It is clear from Fig. 2.4

that the minimum Euclidean distance is either δ1 or δ2. Thus,

dparallel =min {δ1, δ2}=min
{

2
√
P2−2

√
P1, 2

√
P1

}
. (2.10)

2.4.2 Diverging-and-Merging Paths

Second, we study the Euclidean distance between the sequences which diverge from the same

state and then merge at the same state. It can be shown that if two sequences diverge from

14



any state, it takes at least three transitions to merge at the same state. We utilize the

exhaustive search to find a pair of sequences with the minimum Euclidean distance among

all pairs of distinct sequences, which is shown in Fig. 2.5. Note that all valid codewords

start and end at state zero. However, any common sub-sequence will not contribute to

dfree. Therefore, to calculate dfree in Fig. 2.5, we need to consider the state transitions

1100 → 1000 → 0100 → 1100 and 1100 → 1001 → 0110 → 1100. As shown in Fig. 2.5, the

squared Euclidean distance between the diverging-and-merging paths is given by

d2
D&M = d2

diverge + d2
mid + d2

merge. (2.11)

First, let us focus on the diverging paths in Fig. 2.5. According to Fig. 2.2, the super-

imposed symbol produced by the path 1100 → 1000 is given by
√
P1u1 +

√
P2v1, where

u1 ∈ {ej3π/4, ej7π/4} and v1 ∈ {1,−1}. Similarly, the superimposed symbol produced by

1100→ 1001 is given by
√
P1u2 +

√
P2v2, where u2 ∈ {ej3π/4, ej7π/4} and v2 ∈ {ejπ/2, ej3π/2}.

The positions of the superimposed symbols can be shown in Fig. 2.6. The minimum Eu-

clidean distance between the diverging paths is given by

ddiverge = δ3 = |
√

2P2 − 2
√
P1|.

One can employ the same approach to derive the minimum Euclidean distance between the

merging paths and find that dmerge = ddiverge.

Second, we investigate the Euclidean distance dmid in Fig. 2.5. The superimposed symbol

produced by the path 1000 → 0100 is given by
√
P1u1 +

√
P2v1, where u1 ∈ {1,−1} and

v1 ∈ {1,−1}. Similarly, the superimposed symbol produced by the path 1001 → 0110 is

given by
√
P1u2 +

√
P2v2, where u2 ∈ {1,−1} and v2 ∈ {ejπ/4, ej5π/4}. The positions of

the superimposed symbols can be shown in Fig. 2.7. According to Fig. 2.7, the minimum
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1100->1001

1100->1000

Figure 2.6: Illustration of the minimum Euclidean distance between the symbols produced by
diverging paths.

Euclidean distance dmid is given by

d2
mid = min{δ2

4, δ
2
5}

= (2−
√

2)P2 + min
{

0, 4P1 + 2
√
P1P2

(√
2− 2

)}
.

To summarize, the minimum Euclidean distance between the diverging-and-merging paths

is given by

d2
D&M =d2

diverge + d2
mid + d2

merge

=
(

6−
√

2
)
P2 + 8P1 − 8

√
2P1P2 + min

{
0, 4P1 + 2

√
P1P2

(√
2− 2

)}
. (2.12)
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1001->0110

1000->0100

Figure 2.7: Illustration of the minimum Euclidean distance between the symbols in the intermediate
stage of the diverging-and-merging paths.

2.4.3 Free Distance

The free distance of T1⊗T2 is determined by finding the minimum of dparallel and dD&M, i.e.,

d2
free = min{d2

parallel, d
2
D&M}

= min

{
4P1,4

(√
P2 −

√
P1

)2

,
(

6−
√

2
)
P2 + 8P1

−8
√

2P1P2+min
{
0,4P1+2

√
P1P2

(√
2−2

)}}
. (2.13)

The optimal powers can be derived by maximizing the free distance, i.e.,

[P ∗1 , P
∗
2 ] = arg max

P1,P2

d2
free, s.t. P1 + P2 ≤ P, (2.14)

where P is the total transmit power. According to (2.13), one can derive that dfree is maxi-

mized when 4P1 =
(
6−
√

2
)
P2+8P1−8

√
2P1P2, which then results in

P ∗1
P ∗2

=

(
2
√

2−
√

2+
√

2

2

)2

≈

0.2404. Besides, to combat the channel noise, P1 + P2 should be maximized. As a result,
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P ∗1 = 0.2404
1+0.2404

P ≈ 0.1938P and P ∗2 ≈ 0.8062P .

While we presented the results for a two-user scenario with 8-PSK 4-state TCM, our approach

can be generalized to any TCM.

2.5 Simulation Results

In this section, we present the simulation results of the 8-PSK 4-state trellis-coded NOMA

(TC-NOMA), TCMA, and the uncoded NOMA (UC-NOMA) with 4-PSK. We ensure a fair

comparison among these schemes since the TCM is implemented without consuming extra

bandwidth compared with the uncoded modulation [25]. In our simulation, we employ bit

error ratio (BER) as the measure of performance. In the uncoded NOMA, the maximum

likelihood detection is employed. We also present the results for the TCMA where the signals

for Users 1 and 2 are modulated by the identical trellis shown in Fig. 2.2 but differentiated

by constellation [19]. In TCMA, the constellation used by one user is the other user’s

constellation rotated by π/8. In contrast to the trellis-coded NOMA, the transmitted signal

in TCMA is given by
√

(P1 + P2) /2[a1(n)+a2(n)], which ensures a fair comparison by using

the same sum transmit power.

First, we show the BER as a function of SNR for NOMA and TCMA schemes in Figs. 2.8

and 2.9 when P2 = 1 and P1 = 0.1 or 0.3, respectively. SNR is given by 1
σ2 where σ2 is

the variance of noise. For P1 = 0.1 or 0.3, it is manifested that at high-SNR, similar to

conventional TCM [25], the trellis-coded NOMA using the joint detection outperforms the

uncoded NOMA. Besides, the trellis-coded NOMA using the separate detection achieves a

similar performance to that using the joint detection when P1 = 0.1. In contrast, there is a

huge gap between the BER curves of the separate detection and those of the joint detection

when P1 = 0.3. This is because of the severe inter-user interference when detecting two
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Figure 2.8: BER vs. SNR for TCMA, uncoded and trellis-coded NOMA when P1 = 0.1, P2 = 1,
|h1|2 = 2, |h2|2 = 1.

user’s signals separately and the error propagation problem in SIC. Furthermore, using the

joint detection, the trellis-coded NOMA outperforms TCMA at high-SNR in Figs. 2.8 and

2.9. Moreover, in the trellis-coded NOMA, the signals of different users can also employ

different constellations. The curves with “TC-NOMA, Joint, Rotate” in Fig. 2.9 are for the

case where the constellation used by one user is the other user’s constellation rotated by π/8.

The trellis-coded NOMA with constellation rotation achieves a better performance compared

with the trellis-coded or uncoded NOMA without constellation rotation and TCMA. It can

be explained intuitively by considering how the constellation rotation affects the Euclidean

distance between superimposed symbols. According to Figs. 2.4 and 2.6, the minimum

Euclidean distance may increase if the constellation of User 1’s signal rotates by π/8, which

then improves the performance.

Fig. 2.10 shows how the average BER changes with the power ratio P1/P2 using the joint

detection at SNRs 16dB and 18dB for the 4-state trellis in Fig. 2.2 and the 8-state trellis
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Figure 2.9: BER vs. SNR for TCMA, uncoded and trellis-coded NOMA when P1 = 0.3, P2 = 1,
|h1|2 = 2, |h2|2 = 1.

in Fig. 12.8 of [26]. It is shown that the minimum BER is achieved when P1/P2 ≈ 0.25

for the uncoded NOMA and the 8-state trellis-coded NOMA. The optimal power ratio for

the 4-state trellis-coded NOMA is 0.24 for SNR=16dB and 0.22 for SNR=18dB, which are

close to the optimal power ratio of 0.2404 derived in Section 2.4. Moreover, the trellis-coded

NOMA in its best case scenario outperforms the uncoded NOMA in its best case scenario.

Besides, the performance of TCMA does not change with P1/P2. By choosing the proper

powers, the trellis-coded NOMA outperforms TCMA.

2.6 Conclusions

In this chapter, we study the trellis-coded NOMA and propose a joint detection method based

on the tensor product of trellises. Besides, we derive the optimal power allocation between the
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Figure 2.10: BER vs. P1/P2 for TCMA, uncoded and trellis-coded NOMA schemes at users
employing the joint detection when P1 + P2 = 1.

two users by maximizing the free distance of the tensor product trellis. Simulation results

demonstrate that the trellis-coded NOMA outperforms the uncoded NOMA and TCMA

using an appropriate power allocation. The study of the trellis-coded NOMA systems with

more than two users is our future work.
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Chapter 3

Uplink Asynchronous

Non-Orthogonal Multiple Access

3.1 Introduction

Applying the symbol-asynchronous transmission to NOMA, a scheme named asynchronous

NOMA (ANOMA) was studied in [27]. In fact, an idea similar to the ANOMA in [27],

i.e., applying asynchronous transmission for multiple access, has also been proposed and

investigated in, e.g., [11, 7, 8]. Specially, a timing mismatch between signals for different

users is intentionally added as an additional resource to address the problem of inter-user

interference. It has been shown using the numerical simulation in [27] that the ANOMA

outperforms the conventional (synchronized) NOMA by achieving a larger throughput.

However, the work in [27] has several limitations. While addressing those limitations is

important to understand the ANOMA systems, to the best of our knowledge, no existing

paper has tackled the following issues. First, there is no analytical result on the comparison

between the performance of the ANOMA and that of the NOMA in terms of the throughput,
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although numerically it is shown that ANOMA outperforms NOMA in certain scenarios.

This is probably because the existing expression for the throughput of the ANOMA system

is given as a function of the channel matrix but not the signal-to-noise ratio (SNR). The lack

of such an expression in terms of SNR makes the analytical comparison between NOMA

and ANOMA almost intractable. Second, the optimal design of ANOMA has not been

investigated. Despite the fact that the performance of ANOMA is directly affected by

important design parameters such as the transmit power and the timing mismatch, existing

papers mainly focused on the performance demonstration only. Third, the impact of timing

error has not been studied on the ANOMA systems. In the ANOMA systems, existing

studies ideally assumed that the timing information was perfectly known. However, the

timing information in practice cannot always be perfectly obtained, and the timing error

is often inevitable. The timing information plays a vital role in ANOMA systems, since

oversampling is designed using the timing information [6, 7]. Note that the impact of timing

error has been widely studied on different communication systems, such as [28] on the direct-

sequence code division multiple-access (DS-CDMA) system, [29] on the multi-carrier code

division multiple-access (MC-CDMA) system, and [30] on the multiple-input single-output

(MISO) system using distributed OSTBC to name a few.

In this chapter, we comprehensively investigate the ANOMA in a two-user uplink system.

The primary contributions of the chapter are summarized as follows:

1. For the first time, we analytically prove that the ANOMA with a sufficiently large frame

length can always outperform the NOMA in terms of the system sum throughput. To

this end, we derive the expression for the sum throughput of the ANOMA system

as a function of SNR, frame length, and normalized timing mismatch. A simplified

throughput expression is further obtained for the asymptotic case of infinite frame

length.

2. We investigate the optimal design of the two-user uplink ANOMA system aiming at
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maximizing the sum throughput. We find that each user should transmit at full power

despite the negative effect of inter-user interference. In addition, we prove that the

optimal timing mismatch converges to one half of a symbol time as the frame length

goes to infinity.

3. We analyze the impact of timing error on the performance of the uplink ANOMA

system. Two types of timing error are taken into consideration, i.e., the synchronization

timing error and the coordination timing error, which account for the timing error

caused in signal synchronization and the coordination of the timing mismatch between

asynchronous signals, respectively. We derive the expressions for the throughput loss

of the ANOMA system with respect to both types of timing error, and analyze how

the synchronization timing error and the coordination timing error individually and

jointly affect the system performance.

Compared with our conference version [31] which briefly analyzed the impact of timing error

in the ANOMA systems, the new analyses incorporated in this chapter include, e.g., the

sum throughput analysis of the ANOMA, the analytical comparisons between ANOMA and

NOMA, the asymptotic analysis for a large frame length, and the optimal transmit power

and timing mismatch designs. The remainder of the chapter is organized as follows. The

two-user uplink system model is presented in Section 3.2. The performance of the ANOMA

system is analyzed in Section 3.3. We discuss the optimal design of the ANOMA system in

Section 3.4. We analyze the outputs of ANOMA matched filters with timing error and the

throughput loss incurred by timing error in Section 3.5. Numerical results are presented in

Section 3.6. Finally, we draw the conclusions in Section 3.7.

Notations: (·)H denotes the Hermitian transpose, (·)T denotes the transpose, Tr(·) denotes

the trace operation, (·)−1 denotes the inverse operation, |x| denotes the absolute value of x,

E[·] denotes the expectation operation, CN (0, 1) denotes the complex normal distribution

with zero mean and unit variance, and 1(·) denotes the unit step function whose value is
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zero for negative arguments and one for positive arguments.

3.2 System Model

In this chapter, we consider an uplink system which consists of a single base station (BS)

and two users, as shown in Fig. 3.1. The two users share the same frequency-time resource

to transmit signals to the BS. We assume that perfect channel state information (CSI) is

known at the BS via the uplink channel training.

3.2.1 ANOMA System

For the ANOMA, a timing mismatch is intentionally introduced between the symbols from

two users. By intentionally introducing the timing mismatch, the oversampling technique

can be adopted at the receiver, so that extra linearly independent samples can be obtained to

have sampling diversity. Then, the performance of the ANOMA can be improved by utilizing

the sampling diversity. In contrast, one cannot get sampling diversity by oversampling the

synchronized signals in conventional NOMA schemes. As shown in Fig. 3.2, the intended

timing mismatch between the symbols of Users 1 and 2 is denoted by τT , where T is the

duration of each symbol and τ , 0 ≤ τ < 1, is the normalized timing mismatch. Note that

the ANOMA system becomes a synchronous NOMA system when τ = 0. In this section,

we assume that τ is perfectly known at BS via timing offset estimation and uplink timing

control techniques, such as the timing advance [32]. We will study the ANOMA system with

timing error in Section 3.5.

Let a1[i] = h1

√
P1s1[i] and a2[i] = h2

√
P2s2[i], where the subscripts 1 and 2 denote the

parameters for Users 1 and 2, respectively, sj[i] (j = 1, 2) denotes the ith normalized trans-

mitted symbol, hj denotes the channel coefficient in the block of transmission, and Pj denotes
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Figure 3.1: Illustration of a two-user uplink system.
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Figure 3.2: Illustration of the sampling for ANOMA.

the transmit power. The BS’s received signal at time t is then given by

y(t) =
N−1∑
i=0

a1[i]p(t− iT ) +
N−1∑
i=0

a2[i]p(t− iT − τT ) + n(t), (3.1)

where N denotes the number of symbols in a frame, i.e., the frame length, T denotes the

time duration of one symbol, p(·) denotes the pulse-shaping filter, and n(t) ∼ CN (0, 1)

denotes the normalized additive white Gaussian noise (AWGN). Without loss of generality,

the rectangular pulse shape is adopted, i.e., p(t) = 1/
√
T when t ∈ [0, T ] and p(t) = 0 when

t /∈ [0, T ]. With the block fading model, we assume that the channels remain static during

the transmission of N consecutive symbols. As an initial study on the ANOMA systems,

our work adopts a basic flat fading channel model without the consideration of a frequency

selective channel and OFDM. The assumption of flat fading has been widely used in the

existing literature; see, e.g., [2, 9, 33, 27], and the references therein.

The BS uses the oversampling technique to take advantage of sampling diversity in the
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asynchronous systems [6, 31]. Oversampling uses the matched filter to sample signals at

instants iT and (i + τ)T , i = 1, · · · , N , which produces 2N samples without doubling the

sampling rate. It has been shown in [5] that the samples obtained by oversampling are

sufficient statistics for the transmitted messages in the symbol-asynchronous scenario.

As shown in Fig. 3.2, the BS obtains two sample vectors, denoted by [y1[1], · · · , y1[N ]]T and

[y2[1], · · · , y2[N ]]T . Specifically, the ith element in the first sample vector is given by

y1[i] =

∫ ∞
0

y(t)p(t− iT )dt

=

∫ ∞
0

a1[i]p(t− iT )p(t− iT )dt+

∫ ∞
0

{a2[i− 1]p(t− (i+ 1 + τ)T )

+a2[i]p(t− (i+ τ)T )} p(t− iT )dt+ n1[i]

= a1[i] + τa2[i− 1] + (1− τ)a2[i] + n1[i], (3.2)

where n1[i] =
∫∞

0
n(t)p(t− iT )dt denotes the additive noise in the first sampled vector. The

ith element in the second sample vector is given by

y2[i] =

∫ ∞
0

y(t)p(t− iT − τT )dt = a2[i] + τa1[i+ 1] + (1− τ)a1[i] + n2[i], (3.3)

where n2[i] =
∫∞

0
n(t)p(t−iT−τT )dt denotes the additive noise in the second sampled vector.

From (3.2) and (3.3), we note that the inter-user interference exists, since the symbols for

Users 1 and 2, i.e., a1[i] and a2[i], are added together to interfere with each other in the

received samples.

We can write the outputs at the BS in a matrix form as

Y = RHX + N, (3.4)

27



where

Y = [y1[1] y2[1] y1[2] y2[2] · · · y1[N ] y2[N ]]T , (3.5)

X = [s1[1] s2[1] s1[2] s2[2] · · · s1[N ] s2[N ]]T , (3.6)

N = [n1[1] n2[1] n1[2] n2[2] · · · n1[N ] n2[N ]]T , (3.7)

R =


1 1−τ 0 ··· ··· 0

1−τ 1 τ 0 ··· 0
0 τ 1 1−τ ··· 0
...

... ... ... ...
...

0 ··· 0 τ 1 1−τ
0 ··· ··· 0 1−τ 1

 , (3.8)

and

H =


h1
√
P1

h2
√
P2

...
h1
√
P1

h2
√
P2

 . (3.9)

We note that the inter-user interference is represented in matrix R. If there is no inter-user

interference, R becomes a diagonal matrix. With inter-user interference, R is given as (3.8)

which is a tridiagonal matrix, but not a diagonal matrix.

We assume that the transmitted symbols are independent, such that E
[
XXH

]
= I. Note

that the noise terms in (3.4) are colored due to the oversampling, and we have

E
{
n1[i]nH2 [i]

}
=

∫ ∞
0

∫ ∞
0

E
{
n(t)nH(s)

}
p (t− iT ) p (s− iT − τT ) dtds = 1− τ.

(3.10)

Thus, the covariance matrix of N is given by

RN = E
{
NNH

}
= R. (3.11)

As an initial study on ANOMA, the analysis in this chapter focuses on the rectangular
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pulse shape. It is worth mentioning that the ANOMA with oversampling is also applicable

to other pulse shapes, such as the raised cosine pulse shape. Since the raised cosine pulse

shape spans more than T , it causes more severe inter-user interference compared with the

rectangular pulse shape. In terms of the mathematical expression, the matrix R in (3.8)

changes accordingly while (3.11) still holds. The (i, j)th entry of R for the raised cosine

pulse shape is given as

Ri,j =



ρ

(
τT + bj − i

2
cT
)
, i is odd, j is even

ρ

(
τT + bi− j

2
cT
)
, i is even, j is odd

ρ

(
j − i

2
T

)
, otherwise,

(3.12)

where ρ is the auto-correlation function of the raised cosine function. The rest of the through-

put formulas remain the same.

3.2.2 Benchmark System – NOMA

By setting τ = 0, the ANOMA system becomes the synchronous NOMA system. For the

NOMA, the BS uses the typical matched filter instead of the oversampling technique, and

the ith sample at the BS can be written as

y[i] = a1[i] + a2[i] + n[i], (3.13)

where n[i] =
∫∞

0
n(t)p(t − iT )dt. Note that (3.13) can be derived from either (3.2) or (3.3)

by letting τ = 0.

It is worth mentioning that the OMA systems also have the asynchrony issue in practice. For

OMA, different users transmit signals using orthogonal resources. For TDMA, orthogonal

time resources are allocated to different users. The asynchrony in time domain will destroy
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such orthogonality, which will then degrade the system performance. For orthogonal fre-

quency division multiple access (OFDMA), orthogonal frequency resources are allocated to

different users. The asynchrony in frequency domain, for example in the form of frequency

offsets, will destroy such orthogonality, which will then degrade the system performance. In

general, the asynchrony does not benefit the OMA schemes.

3.3 Performance Analysis of ANOMA Systems

In this chapter, we employ the widely used performance metric, i.e., the sum throughput,

to investigate the rate performance limit of the ANOMA systems. From (3.4), the sum

throughput of the two-user uplink ANOMA system can be written as

RANOMA =
1

N + τ
log det

(
I2N + HHHR

)
. (3.14)

Some existing papers, e.g., [27], define the throughput of ANOMA as

RANOMA
exist =

1

N
log det

(
I2N + HHHR

)
, (3.15)

which is slightly different from (3.14). Although (3.14) and (3.15) converge to the same

expression as N → ∞, we highlight that our adopted expression in (3.14) is more accurate

than (3.15) for evaluating the throughput of ANOMA with finite frame length N , since the

system actually spends N + τ instead of N symbol times to transmit N symbols for each

user.

It is worth mentioning that the practical transmission scheme may even simply allocate

N + 1 instead of N + τ symbol times for the transmission, and the throughput becomes

RANOMA
N+1 = 1

N+1
log det

(
I2N + HHHR

)
. Our analysis is still applicable to that case, since
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one can simply revise (most) results according to RANOMA
N+1 = N+τ

N+1
RANOMA. It is also worth

mentioning that (3.14) and (3.15) are based on two main assumptions. The first assumption

is the symbol-level asynchrony. That is, there is a timing mismatch τT (τ ∈ [0, 1)) between

symbols from different users. The second assumption is that the timing mismatch is perfectly

known at BS, which is a common assumption in the existing literature, e.g., [7, 9, 27]. We

will analyze the impact of timing error in the case that the timing information is not perfectly

known in Section 3.5.

In the following theorem, we derive the sum throughput of the two-user uplink ANOMA

system in terms of the receive SNRs, µ1 = P1|h1|2 and µ2 = P2|h2|2, the normalized timing

mismatch, τ , and the frame length, N .

Theorem 3.1. The sum throughput of the two-user uplink ANOMA system is derived as

RANOMA =
N

N + τ
log (µ1µ2) +

1

N + τ
log

(rN+1
1 − rN+1

2 ) + τ 2(rN1 − rN2 )

r1 − r2

, (3.16)

where

r1 =
µ−1

1 +µ−1
2 +µ−1

1 µ−1
2 +2τ(1− τ)

2

+

√[
µ−1

1 + µ−1
2 + µ−1

1 µ−1
2 + 2τ(1− τ)

]2−4τ 2(1− τ)2

2
, (3.17)

r2 =
µ−1

1 +µ−1
2 +µ−1

1 µ−1
2 +2τ(1− τ)

2

−

√[
µ−1

1 + µ−1
2 + µ−1

1 µ−1
2 + 2τ(1− τ)

]2−4τ 2(1− τ)2

2
. (3.18)

Proof. See Appendix A.1.

Based on Theorem 3.1, we present the throughput of the two-user uplink ANOMA system

for the asymptotic case of N →∞ in the following corollary, which characterizes the limiting

performance of the system when the frame length N is large.
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Corollary 3.1. The throughput of the two-user uplink ANOMA system in the asymptotic

case of N →∞ is given by

lim
N→∞

RANOMA = log (µ1µ2r1) . (3.19)

Proof. See Appendix A.2.

3.3.1 Comparison with NOMA

In NOMA systems, SIC is adopted at BS to decode transmitted symbols, which works as

follows. The BS first decodes the message from User 1 (stronger user) while treating the

codeword from User 2 (weaker user) as an extra source of interference or noise. Then, the

BS subtracts the decoded message from the received signal, and decodes the message from

User 2.

According to (3.13), with perfect SIC at BS, the sum throughput of the two users in the

uplink NOMA system can be written as [34]

RNOMA = log(1 + P1|h1|2 + P2|h2|2) = log(1 + µ1 + µ2), (3.20)

which can also be obtained from (3.16) by setting τ = 0.

Due to the complicated expression for the throughput of ANOMA in (3.16), it is difficult

to analytically compare the NOMA with the ANOMA for a general value of N . Instead,

we provide numerical results in Section 3.6 and consider the asymptotic case of N →∞ for

an analytical comparison in the following theorem. Our asymptotic analysis here aims to

provide useful insights for ANOMA in the scenario where the frame length, N , is relatively

large. Most results in the chapter are valid for any arbitrary value of N , e.g., the throughput

analysis, the optimal transmit power design, and the impact of timing error.
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Theorem 3.2. The two-user uplink ANOMA system as N →∞ achieves an equal or higher

throughput compared with the NOMA system, i.e.,

lim
N→∞

RANOMA ≥ RNOMA, (3.21)

where limN→∞R
ANOMA = RNOMA if and only if the normalized timing mismatch τ = 0.

Proof. See Appendix A.3.

We note that the oversampling in ANOMA enables the sampling diversity, which leads to the

possible performance advantage of the ANOMA compared with the NOMA. On the other

hand, an extra τT time resource is used to transmit N symbols in the ANOMA, which has a

negative effect on the performance of the ANOMA compared with that of the NOMA. When

N is small, the negative effect of the extra transmission time dominates the sum throughput

of ANOMA. As N grows, the effect of the extra transmission time becomes negligible and

the sampling diversity dominants, which results in Theorem 3.2. Thus, one can expect a

better ANOMA throughput performance compared with the NOMA when N is larger than

a certain value.

The physical meaning of (3.21) is further clarified by the following corollary.

Corollary 3.2. With a sufficiently large frame length, the ANOMA outperforms the NOMA

for the two-user uplink system in terms of the sum throughput.

In general, the ANOMA system requires a higher detection complexity compared with the

NOMA system. ANOMA adopts the oversampling technique to obtain more samples of the

signal compared with the conventional NOMA system. Thus, the decoding process of the

ANOMA system involves a larger number of samples compared with that of the NOMA

system. Maximum-likelihood sequence detection, with relatively high complexity, can be
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used to decode the transmitted messages. For the low-complexity decoding methods in the

ANOMA systems, one can employ the methods in the existing literature with some modi-

fications, e.g., SIC with hard decision passing and the forward backward belief propagation

detection proposed in [7] or the low complexity decoder using dynamic programming in [12].

3.4 Design of ANOMA Systems

From the analysis in Section 3.3, we note that the throughput performance of the uplink

ANOMA system is directly determined by the transmit powers and the normalized timing

mismatch, i.e., P1, P2, and τ . In this section, we investigate the optimal P1, P2, and τ that

maximize the throughput of the system.

The design problem is formulated as follows:

arg max
P1,P2,τ

RANOMA,

s.t. 0 ≤ τ < 1, 0 ≤ P1 ≤ P1,max, 0 ≤ P2 ≤ P2,max, (3.22)

where P1,max and P2,max are the maximum available powers at which Users 1 and 2 can

transmit, respectively. Note that the transmit powers are coupled together in a complicated

way in the expression for the throughput of the ANOMA system in (3.16), which is different

from the case of NOMA in (3.20). Thus, the optimal transmit powers for the ANOMA

system are not easy to determine, while it is easy to find that we shall use the maximum

available transmit powers at users for the NOMA system.

It is worth mentioning that the performance of the uplink ANOMA system is also affected

by the frame length, N . However, the frame length is constrained by the channel condition,

i.e., the length of each block of the block fading channel, and the acceptable transceiver
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complexity. Hence, we do not investigate the design of N in this work and assume that it is

fixed based on the channel conditions and the overall system design.

3.4.1 Optimal Transmit Power

We first obtain the optimal transmit power scheme. We summarize the optimal transmit

powers for the ANOMA system as follows.

Theorem 3.3. For the two-user uplink ANOMA system with any frame length, N , and the

normalized timing mismatch, τ , the optimal transmit powers at Users 1 and 2, P ∗1 and P ∗2 ,

are equal to the maximum available powers at which Users 1 and 2 can transmit, P1,max and

P2,max, i.e., P ∗1 = P1,max and P ∗2 = P2,max

Proof. See Appendix A.4.

From Theorem 3.3, we find that the optimal design of transmit powers for the two-user

uplink ANOMA system is the same as that for the NOMA system.

3.4.2 Optimal Normalized Timing Mismatch

We now study the optimal normalized timing mismatch, τ ∗. The optimal normalized timing

mismatch, τ ∗, is analytically intractable for a general finite frame length N , while we can

numerically obtain τ ∗ for a given finite N by simply searching in the range of 0 ≤ τ < 1. In

addition, we present τ ∗ in the asymptotic case of N →∞ in the following theorem.

Theorem 3.4. For the two-user uplink ANOMA system with the frame length N →∞, the

optimal normalized timing mismatch to maximize the sum throughput is given by τ ∗ = 0.5.

Proof. See Appendix A.5.
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3.5 Impact of Timing Error on ANOMA systems

The analysis in the previous sections is based on the assumption that the BS perfectly

knows the timing information. However, the timing information cannot always be perfectly

obtained in practice, and the timing error is often inevitable. In this section, we study the

impact of timing error on the ANOMA system.

3.5.1 Timing Error

We consider two types of timing error for the ANOMA system, i.e., the synchronization

timing error and the coordination timing error.

3.5.1.1 Synchronization Timing Error

To synchronize the signals, we need a reference signal. Without loss of generality, we use

the signal from User 1 as the timing reference (the timing offset is 0). This requires a

symbol-level timing synchronization with User 1 at the BS, as it is also done in NOMA. The

normalized synchronization timing error, denoted by ε1 in Fig. 3.3, is due to the imperfect

timing synchronization. Without loss of generality, we assume that ε1 ∈ (τ − 1, τ). With

the synchronization timing error, y1[i] is taken from the time (i− 1)T + ε1T to iT + ε1T and

y2[i] is taken from the time (i− 1)T + (τ + ε1)T to iT + (τ + ε1)T , although the BS intends

to take y1[i] from the time (i− 1)T to iT and y2[i] from the time (i− 1)T + τT to iT + τT .

We will study the effect of this timing error later.
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Figure 3.3: Illustration of the sampling for ANOMA with timing error.

3.5.1.2 Coordination Timing Error

In order to achieve the desired timing mismatch between the two signals, the BS coordinates

the uplink transmission timing of the two users to add the intended timing offsets at each

transmitter. For example, the timing advance is the technique employed in long term evo-

lution (LTE) systems to estimate and adjust the timing offsets among uplink signals at BS

[35, 32]. The normalized coordination timing error, denoted by ε2 in Fig. 3.3, results from

the imperfect coordination between the users. With the coordination timing error, the actual

timing mismatch becomes (τ + ε2)T , while the intended timing mismatch is τT . In addition

to the synchronization timing error ε1T , the sample y2[i] is taken from (i−1)T+(τ+ε1+ε2)T

to iT + (τ + ε1 + ε2)T , although the BS intends to take y2[i] from (i− 1)T + τT to iT + τT .

Without loss of generality, we assume that ε1 + ε2 ∈ (−τ, 1− τ).

Fig. 3.3 illustrates the sampling for an ANOMA system with timing error. It is worth

mentioning that the sign of the timing error stands for the direction in which the function of

the matched filter is shifted. For example, as shown in Fig. 3.3, the matched filter is shifted

to the right by ε1T if ε1 > 0 compared with the matched filter designed with no timing error

in Fig. 3.2. Fig. 3.3 only presents the case when ε1 > 0 and ε1 + ε2 > 0, while our analysis

works for any values of ε1 and ε2.
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3.5.2 Outputs of ANOMA Matched Filters with Timing Error

In the presence of timing error, the ith element of the first sample vector is given by

ŷ1[i] =

∫ ∞
0

y(t)p(t− iT − ε1T )dt

=

∫ ∞
0

a1[i]p(t− iT )p(t− iT − ε1T )dt

+ 1(−ε1)

∫ ∞
0

a1[i− 1]p(t−(i− 1)T )p(t−iT−ε1T )dt

+ 1(ε1)

∫ ∞
0

a1[i+ 1]p(t− (i+ 1)T )p(t− iT − ε1T )dt

+

∫ ∞
0

a2[i− 1]p(t− τT − (i− 1)T )p(t− iT − ε1T )dt

+

∫ ∞
0

a2[i]p(t− τT − iT )p(t− iT − ε1T )dt

+

∫ ∞
0

n(t)p(t− iT − ε1T )dt

=a1[i](1−|ε1|)+a1[i− 1]1(−ε1)(−ε1)+a1[i+1]1(ε1)ε1

+ a2[i− 1](τ − ε1) + a2[i](1− τ + ε1) + n̂1[i], (3.23)

and the ith element of the second sample vector is given by

ŷ2[i] =

∫ ∞
0

y(t)p(t− (i+ τ + ε1 + ε2)T )dt

= a2[i](1− |ε1 + ε2|) + a2[i− 1]1(−ε1 − ε2)(−ε1 − ε2)

+ a2[i+ 1]1(ε1 + ε2)(ε1 + ε2) + a1[i](τ − ε1 − ε2)

+ a1[i+ 1](1− τ + ε1 + ε2) + n̂2[i], (3.24)

where n̂1[i] =
∫∞

0
n(t)p(t− iT − ε1T )dt and n̂2[i] =

∫∞
0
n(t)p(t− (i+ τ + ε1 + ε2)T )dt.

We note from (3.23) and (3.24) that the first sample vector is affected by the normalized

synchronization timing error ε1 only, while the second sample vector is affected by the sum

of the normalized synchronization timing error ε1 and the normalized coordination timing
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error ε2.

With (3.23) and (3.24), we obtain the outputs of the two matched filters at the BS subject

to the timing error in the matrix form as

Ŷ = R̂HX + N̂, (3.25)

where Ŷ = [ŷ1[1] ŷ2[1] ŷ1[2] ŷ2[2] · · · ŷ1[N ] ŷ2[N ]]T , N̂ = [n̂1[1] n̂2[1] n̂1[2] n̂2[2] · · · n̂1[N ]

n̂2[N ]]T , and R̂ is given by

R̂ =


1−|ε1| 1−τ+ε1 1(ε1)ε1 0 ··· ··· 0

1−τ−ε1−ε2 1−|ε1+ε2| τ+ε1+ε2 1(ε1+ε2)(ε1+ε2) 0 ··· 0
1(−ε1)(−ε1) τ−ε1 1−|ε1| 1−τ+ε1 1(ε1)ε1 ··· 0

...
... ... ... ... ...

...
0 ··· 1(−ε1−ε2)(−ε1−ε2) 1−τ−ε1−ε2 1−|ε1+ε2| τ+ε1+ε2 1(ε1+ε2)(ε1+ε2)
0 ··· 0 1(−ε1)(−ε1) τ−ε1 1−|ε1| 1−τ+ε1
0 ··· ··· 0 1(−ε1−ε2)(−ε1−ε2) 1−τ−ε1−ε2 1−|ε1+ε2|


= R

+


−|ε1| ε1 1(ε1)ε1 0 ··· ··· 0
−ε1−ε2 −|ε1+ε2| ε1+ε2 1(ε1+ε2)(ε1+ε2) 0 ··· 0

1(−ε1)(−ε1) −ε1 −|ε1| ε1 1(ε1)ε1 ··· 0

...
... ... ... ... ...

...
0 ··· 1(−ε1−ε2)(−ε1−ε2) −ε1−ε2 −|ε1+ε2| ε1+ε2 1(ε1+ε2)(ε1+ε2)
0 ··· 0 1(−ε1)(−ε1) −ε1 −|ε1| ε1
0 ··· ··· 0 1(−ε1−ε2)(−ε1−ε2) −ε1−ε2 −|ε1+ε2|


︸ ︷︷ ︸

E1

.

(3.26)

We note from (3.26) that the expression for E1 is related to the signs of ε1 and ε1 + ε2. For

the sake of brevity, we present the analytical results for the case of ε1 > 0 and ε1 + ε2 > 0 in

the rest of the chapter, while our analytical method and findings are applicable to all cases.

In addition, we will present the numerical results in Section 3.6 for all possible cases of ε1
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and ε1 + ε2. With ε1 > 0 and ε1 + ε2 > 0, the expression for E1 is rewritten as

E1 = ε1


−1 1 1 0 ··· ··· 0
−1 −1 1 1 0 ··· 0
0 −1 −1 1 1 ··· 0
...

... ... ... ... ...
...

0 ··· 0 −1 −1 1 1
0 ··· 0 0 −1 −1 1
0 ··· ··· 0 0 −1 −1


︸ ︷︷ ︸

Z1

+ε2


0 0 0 0 ··· ··· 0
−1 −1 1 1 0 ··· 0
0 0 0 0 0 ··· 0
...

... ... ... ... ...
...

0 ··· 0 −1 −1 1 1
0 ··· 0 0 0 0 0
0 ··· ··· 0 0 −1 −1


︸ ︷︷ ︸

Z2

. (3.27)

The covariance matrix of N̂ is given by

R̂N = E
{

N̂N̂
H
}

=


1 1−τ−ε2 0 ··· ··· 0

1−τ−ε2 1 τ+ε2 0 ··· 0
0 τ+ε2 1 1−τ−ε2 ··· 0
...

... ... ... ...
...

0 ··· 0 τ+ε2 1 1−τ−ε2
0 ··· ··· 0 1−τ−ε2 1



= R +


0 −ε2 0 ··· ··· 0
−ε2 0 ε2 0 ··· 0

0 ε2 0 −ε2 ··· 0
...

... ... ... ...
...

0 ··· 0 ε2 0 −ε2
0 ··· ··· 0 −ε2 0


︸ ︷︷ ︸

E2

, (3.28)

where E2 can be rewritten as

E2 = ε2


0 −1 0 ··· ··· 0
−1 0 1 0 ··· 0
0 1 0 −1 ··· 0
...

... ... ... ...
...

0 ··· 0 1 0 −1
0 ··· ··· 0 −1 0


︸ ︷︷ ︸

Z3

. (3.29)

We note from (3.29) that the covariance matrix of the noise terms is affected by the normal-

ized coordination timing error ε2, while it is not related to the normalized synchronization

timing error ε1.
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3.5.3 Impact of Timing Error on Throughput Performance

According to (3.25), the throughput of the ANOMA system with timing error is given by

RANOMA
e =

1

N+τ
log det

(
I2N + R̂−1

N R̂HH
H

R̂H
)

=
1

N+τ
log det

(
I2N+(R+E2)−1(R+E1)HHH(R+EH

1 )
)

=
1

N + τ
log det

(
I2N +

(
I2N + (R + E2)−1(E1 − E2)

)
HHH(R + EH

1 )
)

=
1

N + τ
log det

(
I2N+HHHR + HHHEH

1 +(R + E2)−1

·(E1 − E2)HHH(R+EH
1 )
)
. (3.30)

When there is no timing error, i.e., ε1 = ε2 = 0, we have E1 = E2 = 0. Hence, substituting

E1 = E2 = 0 into (3.30), we obtain the throughput of the ANOMA system without timing

error, which is the same as (3.14).

From (3.14) and (3.30), we derive the throughput loss incurred by the timing error as

∆ = RANOMA −RANOMA
e

= − 1

N + τ
log det

{
I2N +

(
I2N + HHHR

)−1 [
HHHEH

1

+(R + E2)−1(E1 − E2)HHH(R + EH
1 )
]}
. (3.31)

In what follows, we separately analyze the throughput loss incurred by the synchronization

timing error and the coordination timing error with the practical consideration that these

two types of timing error both are relatively small.
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3.5.3.1 Impact of Synchronization Timing Error

We first investigate the impact of synchronization timing error on the throughput loss and

consider the practical scenario where the error is relatively small, such that ε2 = 0 and

ε1 � 1.

In this case, by omitting high-order terms of ε1, we obtain the throughput loss incurred by

the synchronization timing error from (3.31) as

∆ε1 = − 1

N+τ
log det

{
I2N+ε1

(
I2N+HHHR

)−1 [
HHHZH

1 +R−1Z1HHH(R+ε1Z
H
1 )
]}

(a)
≈ − 1

N + τ
log det

{
I2N + ε1

(
I2N + HHHR

)−1 [
HHHZH

1 + R−1Z1HHHR
]}

(b)
≈ − 1

N + τ
log
(
1 + ε1Tr(F1) +O(ε21)

) (c)
≈ ε1c1, (3.32)

where F1 =
(
I2N+HHHR

)−1(
HHHZH

1 + R−1Z1HHHR
)
, c1 =− 1

N+τ
Tr(F1), (a) is approx-

imated by using R + ε1Z ≈ R as ε1 → 0, (b) is derived using the special case of Jacobi’s

formula [36], i.e., det (I + εA) = 1 + εTr(A) +O(ε2), and (c) is derived by omitting the high-

order terms of ε1 and applying the approximation log(1 + x) ≈ x when x� 1. From (3.32),

we note that the throughput loss is approximately linear to ε1 when ε2 = 0 and ε1 � 1.

3.5.3.2 Impact of Coordination Timing Error

We now investigate the impact of the coordination timing error on the throughput loss and

still consider the practical scenario where the error is relatively small, such that ε1 = 0 and

ε2 � 1.

By omitting high-order terms of ε2, we obtain the throughput loss incurred by the coordina-
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Figure 3.4: The sum throughput of two users as a function of channel gains for ANOMA and
NOMA systems when P1 = 1, P2 = 1, τ = 0.5, and N = 10.

tion timing error from (3.31) as

∆ε2 = − 1

N + τ
log det

{
I2N + ε2

(
I2N + HHHR

)−1

·
[
HHHZH

2 +(R + ε2Z3)−1(Z2−Z3)HHH(R+ε2Z
H
2 )
]}

(a)
≈ ε2c2, (3.33)

where F2 =
(
I2N+HHHR

)−1(
HHHZH

2 +R−1(Z2−Z3) ·HHHR
)
, c2 = − 1

N+τ
Tr(F2), and (a)

can be derived by following the same steps in the derivation of (3.32). From (3.33), we note

that the throughput loss is approximately linear to ε2 when ε1 = 0 and ε2 � 1.
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Figure 3.5: The sum throughput of two users as a function of the frame length N for ANOMA and
NOMA systems when P1|h1|2 = 1, P2|h2|2 = 0.5, τ = 0.5 or 0.1.

3.6 Numerical Results

In this section, we present numerical results to compare the throughput performances of

NOMA and ANOMA systems and illustrate the impact of timing error on the performance

of the ANOMA system. Figures 3.5, 3.6, and 3.7 show the ANOMA system without timing

error while the other figures are for the impact of timing error. In our simulations, we set

the symbol length T = 1 and the AWGN with unit power. If not specified, the normalized

timing mismatch between the two signals τ is set to 0.5.

At first, we present the throughput performances of NOMA and ANOMA systems under

different channel conditions and pulse shapes in Figure 3.4. In Fig. 3.4, the curves of

“ANOMA in (3.14)” are derived directly from the definition in (3.14), and the curves of

“ANOMA in (3.16)” are obtained from our result in Theorem 3.1. Note that the performance

of NOMA is not affected by the adopted pulse shape if the pulse shape has unit power and
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Figure 3.6: The sum throughput of two users as a function of transmit powers of Users 1 & 2 for
ANOMA systems when |h1|2 = 1, |h2|2 = 0.5, P1,max = P2,max = 1, τ = 0.5, and N = 10.

causes no inter-symbol interference. It is shown that, for the rectangular pulse shape, the

throughput computed by Theorem 3.1 completely aligns with that calculated by (3.14) for

different combinations of channel conditions, which confirms the correctness of Theorem

3.1. Besides, Fig. 3.4 demonstrates that the throughputs of ANOMA and NOMA systems

increase with the channel gains |h1|2 and |h2|2 for both rectangular and raised cosine pulse

shapes. Furthermore, the ANOMA systems using the rectangular pulse shape outperform

those using the raised cosine pulse shape with roll-off factor β = 0.5. It is because the

raised cosine pulse shape spans more than one symbol time, causing more severe interference

compared with the rectangular pulse shape.

Then, we compare the throughput performances of NOMA and ANOMA systems. Figure 3.5

shows the throughput as a function of the frame length N . In Fig. 3.5, it is demonstrated

that as N increases, the throughput of ANOMA systems converges to the result in Corollary
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Figure 3.7: The optimal normalized timing mismatch τ∗ to maximize the sum throughput of two
users as a function of the frame length N for different channel conditions.

3.1, which provides the throughput in the asymptotic case of N → ∞. Furthermore, we

note from the figure that the throughputs of ANOMA systems for different τs as N → ∞

are greater than that of the NOMA system, which is consistent with our analytical results in

Theorem 3.2 and Corollary 3.2. In global system for mobile communications (GSM), there

are approximately 156 symbols in a normal burst (a physical channel carrying information

on traffic and control channels) [37]. In LTE, there are 140 symbols with normal cyclic prefix

(CP) in a frame [32]. We find from Fig. 3.5 that the ANOMA outperforms the NOMA if N

is greater than 20, which is much smaller than the number of symbols in a burst/frame of

GSM/LTE. Since the needed frame length of ANOMA to outperform NOMA is much less

than the burst/frame length in GSM/LTE systems, the detection delay is within a reasonable

range.

In addition, we illustrate the optimal parameter design of the ANOMA system in Figures 3.6
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and 3.7. Figure 3.6 demonstrates the sum throughput of two users as a function of their

transmit powers. It is shown that the maximal sum throughput is reached when the transmit

powers are equal to the maximum available powers, which aligns with Theorem 3.3. We

present the optimal normalized timing mismatch τ ∗ found by exhaustive search to maximize

the sum throughput of two users in Figure 3.7. As shown in Fig. 3.7, τ ∗ starts with 0, and

then increases with N , finally converges to 0.5 as N grows, which verifies the correctness of

Theorem 3.4.

Figure 3.5 demonstrates that ANOMA outperforms NOMA for N ≥ 20 in the considered

scenario. Also, from Fig. 3.7, we note that the optimal τ closely approaches 0.5 as N ≥ 50. It

is worth mentioning that having N ≥ 50 is reasonable for practical communication systems.

For a high-speed train traveling at 200 km/h using a 900 MHz carrier, the coherence time is

approximately 3 ms [37]. In GSM (operating at 900 MHz), the symbol rate is approximately

271 ksymbols/second. As a result, it is reasonable to assume a static channel with flat fading

if the frame length N does not exceed 3 ms × 271 ksymbols/second = 813, which is much

greater than the threshold needed, i.e., 50.

In what follows, we evaluate the impact of timing error on the throughput of ANOMA

systems. In the following figures, the throughput loss ratio is defined as the ratio of the

throughput loss in (3.31) and the throughput of the ANOMA system without timing error

in (3.14), i.e.,γ = ∆
RANOMA .

In Fig. 3.8, we present the throughput loss ratio as a function of ε1 and ε2 ranging from -0.1 to

0.1. As shown in Fig. 3.8, the throughput loss ratio increases with both the synchronization

timing error and the coordination timing error. We also find that the throughput loss ratio

γ is a continuous function with respect to ε1 and ε2 but non-differentiable when ε1 = 0 or

ε1 + ε2 = 0. This is because there are non-linear step functions in the expression for E1 in

(3.26). We find from the figure that there still exists a considerable performance loss when

ε1 + ε2 = 0, which can be explained as follows. Note that ε1 + ε2 = 0 does not necessarily
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Figure 3.8: The throughput loss ratio as a function of the normalized synchronization timing error
ε1 and the normalized coordination timing error ε2 when P1|h1|2 = 1, P2|h2|2 = 0.5, τ = 0.5 and
N = 10.

mean that ε1 = 0 and ε2 = 0, since ε1 and ε2 can be negative values. The system may be still

affected by non-zero timing errors, even when ε1 + ε2 = 0. According to (3.23) and (3.24),

when ε1 + ε2 = 0, the first sample vector is still affected by ε1, although the second sample

vector will have no timing error.

We also study the individual effects of the timing synchronization error and the coordination

timing error on the throughput of ANOMA systems. In Fig. 3.9, we show the throughput

loss ratio as a function of ε1 when ε2 = 0 and ε2 when ε1 = 0. Note that the curves of “impact

of ε1” and “impact of ε2” are the slices of Fig. 3.8 when ε2 = 0 and ε1 = 0, respectively.

The approximated results are calculated by ∆ε1/R
ANOMA and ∆ε2/R

ANOMA using (3.32) and

(3.33). It is demonstrated that the expressions in (3.32) and (3.33) are good approximations

of (3.31) when |ε1| < 0.05 and |ε2| < 0.05, respectively. Besides, ε1 causes almost twice

throughput loss compared with ε2 for the same value of error. This phenomenon reveals

that the synchronization timing error deteriorates the system performance more severely
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Figure 3.9: The individual impacts of the normalized synchronization timing error ε1 and the
normalized coordination timing error ε2 on the throughput loss ratio when P1|h1|2 = 1, P2|h2|2 =
0.5, τ = 0.5, and N = 10.

compared with the coordination timing error. This observation can be explained as follows.

With the oversampling, the sampling instants are at (i + ε1)T and (i + τ + ε1 + ε2)T ,

i = 1, · · · , N , which illustrates that the synchronization timing error affects all sampling

instants while the coordination timing error only has impacts on half of the sampling instants.

Finally, we compare the performances of OMA, NOMA, ANOMA without and with timing

error in Figure 3.10. In our simulation, the conventional TDMA is adopted as the OMA

scheme. As shown in the figure, the throughput curve of OMA is a single point because

it is not a function of timing error. The throughput of the NOMA system is calculated

under the assumption that perfect SIC is realized at BS. It is demonstrated that the rate

performance for ANOMA without timing error is better than that of NOMA with SIC

which is further greater than that of OMA. Also, ANOMA always outperforms a perfectly
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Figure 3.10: Comparison of throughputs among OMA, NOMA, and ANOMA when P1|h1|2 = 1,
P2|h2|2 = 0.5, τ = 0.5, and N = 10.

synchronized OMA. We note that for small values of timing error, ANOMA outperforms even

a perfectly synchronized NOMA. For the same timing error, the performance of ANOMA is

better than that of NOMA. Besides, as shown in Fig. 3.10, the throughput decreases with

the absolute value of ε2 monotonously, while the throughput decreases at the beginning and

then increases as the absolute value of ε1 increases. This phenomenon can be explained as

follows: If there is no timing error (ε1 = ε2 = 0) and τ = 0.5, the sampling moments are

at iT and (i + 0.5)T , i = 1, · · · , N . If |ε1| = 0.5 and ε2 = 0, the sampling moments are at

(i± 0.5)T and (i + 1± 0.5)T , i = 1, · · · , N , which are equivalent to advancing (ε1 = −0.5)

or delaying (ε1 = 0.5) all sampling moments by 0.5T . The sampling diversity can still be

achieved except that there will be throughput loss due to the shift of sampling moments.

For the case ε1 = 0 and |ε2| = 0.5, the second sample vector is a duplicate (ε2 = −0.5) or

shifted version (ε2 = 0.5) of the first sample vector. Hence, the sampling diversity cannot be

obtained and only the first sample vector can be used to recover the transmitted symbols.

50



3.7 Conclusion and Future Work

In this chapter, we have studied the performance of a two-user uplink ANOMA system and

compared it with the NOMA system. We derive an analytical expression for the two-user

sum throughput in the ANOMA system as a function of SNR, frame length, and normalized

timing mismatch. We have demonstrated that the ANOMA outperforms the NOMA when

the frame length is sufficiently large. Furthermore, we have shown that two users should

transmit at full power to maximize the two-user sum throughput. The optimal timing

mismatch to maximize the sum throughput converges to a half of one time slot as the frame

length goes to infinity. Besides, we discuss the impact of timing error on the throughput

performance of the ANOMA system, including the synchronization timing error and the

coordination timing error. We have shown how these two types of timing error individually

and jointly affect the throughput performance of the ANOMA system.
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Chapter 4

Cooperative Asynchronous

Non-Orthogonal Multiple Access

4.1 Introduction

Cooperative communication is an effective approach to exploit spatial diversity available

through cooperating terminals’ relaying signals for one another [38, 39, 40]. Cooperative re-

laying network with NOMA has been extensively studied in the literature, e.g., [41, 42, 43]. It

has been shown that the cooperative NOMA (C-NOMA) systems outperform the cooperative

OMA systems in terms of the spectral efficiency [41] and the outage probability [42]. Instead

of dedicated relay nodes, users can also be adopted as relays in a cooperative network. A key

feature of NOMA is that users with better channel conditions have prior information about

the messages of other users. Ding et al. [44] proposed a C-NOMA scheme to fully exploit

the prior knowledge at the strong user, where the users could cooperate with each other via

short-range communication channels. Yue et al. [45] compared different operation modes of

the relay user in a C-NOMA system. The half-duplex relay user receives and transmits in
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separate time slots while the full-duplex relay user receives and transmits simultaneously.

In [45], the outage probability, the ergodic rate, and the energy efficiency were analyzed in

a NOMA user relaying system where the near user could switch between full-duplex and

half-duplex modes to relay messages to the far user. Zhang et al. [46] studied an adap-

tive multiple access scheme to further improve the outage performance, which dynamically

switched among the C-NOMA with user relaying, conventional NOMA, and OMA schemes,

according to the level of residual self-interference and the quality of links. Wei et al. [47]

solved the energy efficiency maximization problem of a full-duplex C-NOMA system under

the constraint of successful SIC operation.

4.1.1 Motivations and Related Works

By intentionally introducing symbol asynchrony in the transmitted signal, asynchronous

NOMA (ANOMA) systems can achieve a better throughput performance compared with

the conventional (synchronous) NOMA systems [48, 27, 49, 50]. In ANOMA systems, the

receiver utilizes the oversampling technique [12] to achieve the sampling diversity gain. It has

been revealed that the cooperative communication systems can also benefit from the symbol-

asynchronous transmission. Sodagari et al. [51] studied an asynchronous cognitive radio

framework, where the primary user and the secondary user were not aligned in their timing.

They conclude that not only can asynchronous cognitive radio reduce the interference to

the primary user, but it also saves power at the secondary user compared with synchronous

cognitive radio systems. An asynchronous network coding (ANC) transmission strategy

for multiuser cooperative networks was investigated in [10, 11], where the received signals

from multiple sources were asynchronous to each other. The proposed scheme achieves full

diversity and outperforms the complex field network coding in terms of decoding complexity

and bit error rate (BER).
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In this chapter, we consider a half-duplex cooperative ANOMA (C-ANOMA) system with

user relaying, including a base station (BS), a strong user (also acting as a relay), and a

weak user. The half-duplex C-ANOMA system employs a transmission scheme similar to

that of the conventional half-duplex C-NOMA system [45, 52, 44]: The BS transmits the

superimposed signals to two users simultaneously in the first time block and then the relay

user transmits the signal to the weak user at the second time block. Different from the

conventional C-NOMA systems, a symbol asynchrony is intentionally added to the downlink

superposed signal in the broadcast phase of C-ANOMA systems. The weak user receives

two blocks of signals via the broadcast link and the relay link separately. The questions then

arise: How to realize SIC based on the symbol-asynchronous signal and then evaluate the

performance of the strong user in the C-ANOMA systems? How to evaluate the performance

of the weak user which combines a symbol-asynchronous signal from the broadcast link with

an interference-free signal from the relay link? Moreover, compared with the cooperative

systems with dedicated relay nodes, the power control strategy plays a more critical role in

the cooperative systems with user relaying because the power consumption of the relay user

affects the lifetime of the cooperative network. We assume that the channel information is

available at transmitters [47, 52] and the system works in the delay-tolerant transmission

mode [45], such that the transmitters can dynamically adjust their transmit powers according

to the channel states to avoid outage and save energy. On one hand, the relay user with

very limited battery capacity is more sensitive to the power consumption compared with the

BS. On the other hand, the relay user can transmit signals to the weak user more efficiently

because the relay user is usually closer to the weak user. As a result, an effective power

control strategy is of practical interest to make a trade-off between the transmit power of

the BS and that of the relay user while satisfying the quality of service (QoS) constraints in

the C-ANOMA/C-NOMA systems with user relaying. To reduce the energy consumption,

the power minimization problem has been investigated in several systems, e.g., the downlink

NOMA systems [53], the multicell NOMA systems [54], and the cooperative beamforming
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networks [55]. Besides, Liu et al. [52] and Chen et al. [56] studied the power allocation

problem for half-duplex and full-duplex C-NOMA systems, respectively, to maximize the

minimum achievable user rate in a NOMA user pair. To the best of our knowledge, the

power minimization problem has never been studied in the C-NOMA or C-ANOMA systems

with user relaying.

4.1.2 Contributions

In this chapter, we comprehensively investigate a half-duplex C-ANOMA system with user

relaying. The primary contributions of the chapter are summarized as follows:

• We introduce the block-wise SIC technique into C-ANOMA systems, which is em-

ployed at the strong (relay) user. We derive the analytical expressions for throughputs

achieved by the strong user to decode both users’ messages and study their asymptotic

performances as the block length goes to infinity. We analytically show that in the

C-ANOMA systems with a sufficiently large block length, the strong user can achieve a

higher throughput to detect the weak user’s message while attains the same throughput

when detecting its own message compared with those in C-NOMA systems.

• We derive the expression for the combining throughput achieved by the weak user

which combines the asynchronously superimposed signal from the broadcast link with

the interference-free signal from the relay link. Based on the derived throughput ex-

pressions, we obtain the asymptotic throughput as the block length goes to infinity

and its simple upper and lower bounds. We analytically prove that in the C-ANOMA

systems with a sufficiently large block length, the combining throughput of the weak

user is greater than that in the C-NOMA systems.

• We further study the optimal design of C-ANOMA systems. We analytically prove

that the optimal timing mismatch to maximize the individual throughput converges

55



to half of the symbol interval as the block length increases. Besides, we solve the

weighted sum power minimization problem under the QoS constraints for C-ANOMA

and C-NOMA systems. The solution is given by the explicit expressions of the powers

allocated to the strong and weak users at the BS and the transmit power of the relay

(strong) user. It is demonstrated that for a relatively large block length, the C-ANOMA

systems consume less power compared with the C-NOMA systems in order to satisfy

the same QoS requirements. In other words, under the same transmit power limits, the

C-ANOMA systems can provide a higher QoS for users compared with the C-NOMA

systems.

4.1.3 Organization and Notation

The remainder of the chapter is organized as follows. The C-ANOMA system model is

presented in Section 4.2. The throughput performance of the C-ANOMA system is analyzed

in Section 4.3. We discuss the optimal design of the C-ANOMA system in Section 4.4 where

we investigate the optimal timing mismatch and solve the weighted power minimization

problem under QoS constraints. Numerical results are presented in Section 4.5. Finally, we

draw the conclusions in Section 4.6.

Notations: (·)H denotes the Hermitian transpose, (·)T denotes the transpose, (·)−1 denotes

the inverse operation, ⊗ denotes the Kronecker product, |x| denotes the absolute value of

x, x̄ denotes the complex conjugate of x, E[·] denotes the expectation operation, CN (0, 1)

denotes the complex normal distribution with zero mean and unit variance. diag(x) stands

for a diagonal matrix whose k-th diagonal element is equal to the k-th entry of vector x.
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Figure 4.1: (a) Illustration of a three-node C-ANOMA/C-NOMA system with user relaying. (b)
Illustration of the sampling for the broadcast phase in C-ANOMA systems.

4.2 System Model

In this chapter, as shown in Fig. 4.1 (a), we consider a downlink half-duplex C-ANOMA

system which includes a single BS and two users equipped with a single antenna. User 1

(strong user) acts as a relay for User 2 (weak user) and adopts the decode-and-forward (DF)

protocol, i.e., decodes and forwards the message to User 2 via the relay link. The downlink

transmission is done in blocks, including two phases, i.e., the broadcast phase and the relay

phase. In the broadcast phase, the BS broadcasts one block of superposed signal to two

users simultaneously while User 1 is silent. In the relay phase, User 1 transmits the block

of decoded signal to User 2 while the BS keeps silent. We assume that the channel is static

within each block [57] and all the channel information is perfectly known at the BS, Users 1

and 2 [52, 47]. The channel coefficient between the BS and User i is denoted as hi (i = 1, 2)

and the channel coefficient between Users 1 and 2 is denoted as h12. In what follows, we

present our analysis in the broadcast phase and the relay phase separately.

57



4.2.1 Broadcast Phase

4.2.1.1 C-ANOMA

In the C-ANOMA systems, a symbol mismatch is intentionally introduced in the downlink

signal. As shown in Fig. 4.1 (b), the intended timing mismatch between the symbols for Users

1 and 2 is denoted by τT , where T is the symbol interval and τ , 0 ≤ τ < 1, is the normalized

timing mismatch. We assume that τ can be perfectly known at users. The timing mismatch

information can be transmitted as part of the downlink control information through the

downlink control channel, such as the physical downlink control channel (PDCCH) in the

long term evolution (LTE) system. The downlink control channel is designed to be robust in

order to ensure the successful reception of the control information, e.g., by applying a low-

rate coding scheme. Note that the C-ANOMA system becomes a synchronous C-NOMA

system when τ = 0.

Let a1[i] =
√
P1s1[i] and a2[i] =

√
P2s2[i], where sj[i] denotes the ith symbol sent to User j,

j = 1, 2, Pj stands for the power allocated to User j. The transmitted signal at the BS is

given by

s(t) =
N∑
i=1

a1[i]p(t− iT ) +
N∑
i=1

a2[i]p(t− iT − τT ). (4.1)

where N denotes the number of symbols in a block, i.e., the block length, p(·) denotes the

pulse-shaping filter. Without loss of generality, the rectangular pulse shape is adopted, i.e.,

p(t) = 1/
√
T when t ∈ [0, T ] and p(t) = 0 otherwise.

The received signal at User 1 is given by

y1(t) =h1s(t) + n1(t)
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=h1

(
N∑
i=1

a1[i]p(t− iT ) +
N∑
i=1

a2[i]p(t− iT − τT )

)
+ n1(t), (4.2)

where n1(t) ∼ CN (0, 1) denotes the normalized additive white Gaussian noise (AWGN).

The oversampling technique [6, 31, 7], depicted in Fig. 4.1 (b), is employed at the receiver

to take advantage of sampling diversity in asynchronous systems. As shown in Fig. 4.1 (b),

the receiver uses the matched filter, sampling at iT and (i + τ)T , i = 1, · · · , N , to obtain

two sample vectors, denoted by [y1,1[1], · · · , y1,1[N ]]T and [y1,2[1], · · · , y1,2[N ]]T . Specifically,

the ith element in the first sample vector is given by

y1,1[i] =

∫ ∞
0

y1(t)p(t− iT )dt

=

∫ ∞
0

h1a1[i]p(t− iT )p(t− iT )dt+

∫ ∞
0

{h1a2[i− 1]p(t− (i+ 1 + τ)T )

+h1a2[i]p(t− (i+ τ)T )} p(t− iT )dt+ n1,1[i]

=h1a1[i]+τh1a2[i−1]+(1−τ)h1a2[i]+n1,1[i], (4.3)

where n1,1[i] =
∫∞

0
n1(t)p(t− iT )dt denotes the additive noise. The ith element in the second

sample vector is given by

y1,2[i] =

∫ ∞
0

y1(t)p(t− iT − τT )dt

= h1a2[i]+τh1a1[i+1]+(1−τ)h1a1[i] + n1,2[i], (4.4)

where n1,2[i] =
∫∞

0
n1(t)p(t− iT − τT )dt denotes the additive noise.

We can write the outputs of the two matched filters at User 1 in a matrix form as

Y1 = h1

√
P1RG1S1 + h1

√
P2RG2S2 + N1 (4.5)

where Y1 = [y1,1[1] y1,2[1] · · · y1,1[N ] y1,2[N ]]T , G1 and G2 are 2N -by-N matrices given
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by G1 = IN ⊗ [1 0]T and G2 = IN ⊗ [0 1]T , Si = [si[1] · · · si[N ]]T (i = 1, 2), N1 =

[n1,1[1] n1,2[1] · · · n1,1[N ] n1,2[N ]]T , and

R =


1 1−τ 0 ··· ··· 0

1−τ 1 τ 0 ··· 0
0 τ 1 1−τ ··· 0
...

... ... ... ...
...

0 ··· 0 τ 1 1−τ
0 ··· ··· 0 1−τ 1

 . (4.6)

Note that multiplying R by Gi outputs a 2N -by-N matrix whose columns are equal to the

odd (if i = 1) or even (if i = 2) columns of R.

We assume that the transmitted symbols are normalized and independent to each other,

such that E
[
SiSi

H
]

= I (i = 1, 2). Note that the noise terms in (4.3) and (4.4) are colored

due to the oversampling, and we have

E
{
n1,1[i]nH1,2[i]

}
=

∫ ∞
0

∫ ∞
0

E
{
n1(t)nH1 (s)

}
p (t− iT ) p (s− iT − τT ) dtds = 1− τ.

(4.7)

Thus, the covariance matrix of N1 in (4.5) is given by

RN1 = E
{
N1N

H
1

}
= R. (4.8)

Similarly, the received samples at User 2 in the broadcast phase can be written as

Y2 = h2

√
P1RG1S1 + h2

√
P2RG2S2 + N2, (4.9)

where the covariance matrix RN2 = E
{
N2N

H
2

}
= R.
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4.2.1.2 C-NOMA

By setting τ = 0, the C-ANOMA system becomes the C-NOMA system. For the C-NOMA

systems, users do not use the oversampling technique. The ith sample at Users 1 and 2 in

the broadcast phase will be

y1[i] = h1

√
P1s1[i] + h1

√
P2s2[i] + n1[i], (4.10)

y2[i] = h2

√
P1s1[i] + h2

√
P2s2[i] + n2[i], (4.11)

where nj[i] =
∫∞

0
nj(t)p(t− iT )dt, j = 1, 2. Note that (4.10) and (4.11) can also be derived

from (4.5) and (4.9), respectively, by letting τ = 0.

4.2.2 Relay Phase

In the relay phase, User 2 receives another copy of the desired signal from User 1. The ith

sample received at User 2 in the relay phase is given by

y12[i] = h12

√
Prs2[i] + n12[i], (4.12)

where Pr is the transmit power of User 1 and n12[i] =
∫∞

0
n12(t)p(t − iT )dt is the additive

noise. Note that the C-NOMA and C-ANOMA systems coincide in the relay phase.

For ease of the following analysis, we rewrite the received samples from the relay link in

(4.12) into the matrix format, i.e.,

Y12 = h12

√
PrS2 + N12, (4.13)

where Y12 = [y12[1], y12[2], · · · , y12[N ]]T , N12 = [n12[1], n12[2], · · · , n12[N ]]T , and the covari-
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ance matrix RN12 = E
{
N12N

H
12

}
= IN .

Combining all the received samples of User 2 in C-ANOMA systems, i.e., Y2 in (4.9) and

Y12 in (4.13), we have

Ỹ2 =
[

Y2
Y12

]
=
[
h2
√
P1RG1
0N

]
︸ ︷︷ ︸

W1

S1 +
[
h2
√
P2RG2

h12
√
PrIN

]
︸ ︷︷ ︸

W2

S2 +
[

N2
N12

]︸ ︷︷ ︸
N

. (4.14)

Applying E
{
N2N

H
2

}
= R and E

{
N12N

H
12

}
= IN , the covariance matrix of the concatenated

noise vector N is given by

RN =E
{
NNH

}
=

[
E{N2NH

2 } E{N2NH
12}

E{N12NH
2 } E{N12NH

12}

]
=[ R 0

0 I ] . (4.15)

4.3 Performance Analysis of C-ANOMA Systems

In this section, we analyze the individual throughput of users in the C-ANOMA and C-

NOMA systems, including the strong and weak users.

4.3.1 Strong User

4.3.1.1 C-ANOMA

In C-ANOMA systems, the block-wise SIC is adopted at User 1, i.e., it first decodes the

block of symbols intended for User 2, subtracts it from the received signal, and then decodes

its intended symbols. Note that the BS transmits one block of symbols via two time blocks

in the half-duplex mode [45]. Besides, an extra τT time is utilized to create the sampling

diversity in the symbol-asynchronous transmission. Hence, in the half-duplex C-ANOMA
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systems, a block of N symbols are transmitted via 2N + τ channel uses to Users 1 and 2. By

considering (4.5) as a virtual multiple-input multiple-output (MIMO) system and treating

the symbols for User 1 as noise, the throughput of User 1 to detect User 2’s message is given

by

RANOMA
2→1 =

1

2N + τ
log det

[
I2N +

(
RN1 + P1|h1|2RG1G

H
1 RH

)−1
P2|h1|2RG2G

H
2 RH

]
(a)
=

1

2N + τ
log det

[
I2N +

(
I2N + P1|h1|2G1G

H
1 R
)−1

P2|h1|2G2G
H
2 R
]
, (4.16)

where (a) is derived by applying RN1 = R and RH = R.

Under the assumption of perfect SIC, by subtracting User 2’s message from the superposed

signal in (4.5), the throughput of User 1 to detect its own message is calculated as

RANOMA
1 =

1

2N+τ
log det

(
I2N+P1|h1|2R−1

N1
RG1G

H
1 RH

)
=

1

2N+τ
log det

(
I2N+P1|h1|2G1G

H
1 R
)
. (4.17)

After matrix calculations, we can rewrite the throughput expressions for User 1 in (4.16) and

(4.17) as functions of the receive signal-to-noise ratios (SNRs), i.e., µ1 and µ2, the normalized

timing mismatch, τ , and the block length, N , i.e.,

RANOMA
2→1 =

1

2N + τ
log

(
rN+1

1 − rN+1
2

)
+ τ 2

(
rN1 − rN2

)
r1 − r2

+
N

2N + τ
log

(
µ1µ2

1 + µ1

)
, (4.18)

RANOMA
1 =

N

2N + τ
log (1 + µ1) , (4.19)

where

µ1 =P1|h1|2, µ2 = P2|h1|2, Q = 2τ(1− τ), (4.20)

r1 =
µ−1

1 +µ−1
2 +µ−1

1 µ−1
2 +Q+

√(
µ−1

1 + µ−1
2 + µ−1

1 µ−1
2 +Q

)2−Q2

2
, (4.21)
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r2 =
µ−1

1 +µ−1
2 +µ−1

1 µ−1
2 +Q−

√(
µ−1

1 + µ−1
2 + µ−1

1 µ−1
2 +Q

)2−Q2

2
. (4.22)

The detailed derivation of (4.18) and (4.19) is presented in Appendix B.1.

4.3.1.2 C-NOMA

In conventional (synchronous) NOMA systems, with perfect SIC, the throughputs of User 1

are given by [41, 45]

RNOMA
2→1 =

1

2
log

(
1 +

µ2

1 + µ1

)
, (4.23)

RNOMA
1 =

1

2
log(1 + µ1). (4.24)

We note that by setting τ = 0, we obtain Q = 0, r2 = 0, and r1 = µ−1
1 + µ−1

2 + µ−1
1 µ−1

2 .

Thus, RANOMA
2→1 |τ=0 = RNOMA

2→1 and RANOMA
1 |τ=0 = RNOMA

1 .

4.3.1.3 Comparison between C-ANOMA and C-NOMA

To study the throughput performance in the systems with a relatively large block length, we

consider the asymptotic case of N → ∞. According to (4.19), the throughput of User 1 to

decode its own message if N →∞ is given by

RANOMA
1,asymp

4
= lim
N→∞

RANOMA
1 =

1

2
log (1+µ1)=RNOMA

1 . (4.25)

We note from (4.25) that User 1 in C-ANOMA and C-NOMA systems can achieve the same

throughput to detect its own message for a sufficiently large block length. It is because

with perfect SIC, the throughput of User 1 to detect its own message is not affected by the
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symbol asynchrony of the signal for User 2. Furthermore, we derive the following theorem

to compare the throughputs of User 1 to detect User 2’s message in the C-ANOMA and

C-NOMA systems.

Theorem 4.1. The throughputs of User 1 to detect User 2’s message in the C-NOMA and

C-ANOMA systems satisfy the following inequalities

RNOMA
2→1 ≤ RANOMA

2→1,L

4
=

1

2
log

(
1 +

µ2 + 1
2
µ1µ2Q

1 + µ1

)
≤ RANOMA

2→1,asymp

4
= lim

N→∞
RANOMA

2→1 =
1

2
log

(
µ1µ2r1

1+µ1

)
≤ RANOMA

2→1,U

4
=

1

2
log

(
1 +

µ2 + µ1µ2Q

1 + µ1

)
, (4.26)

where Q = 2τ(1− τ), all the equal signs are achieved if and only if τ = 0.

Proof. See Appendix B.2.

We note from Theorem 4.1 that for a relatively large block length, User 1 in C-ANOMA

systems can achieve a higher throughput to decode User 2’s message compared with that

in C-NOMA systems. Besides, comparing the expressions for RANOMA
2→1,L and RNOMA

2→1 , we find

that the gain of C-ANOMA systems is related to the term µ1µ2Q which increases as the

channel qualities improve.

In practice, the block length, N , is determined by several factors, such as the channel co-

herence time, the modulation, the sampling rate, etc., which are beyond the scope of this

chapter. We assume that the block length N is a predetermined parameter in this chapter.

We will show in Section 4.5 that the asymptotic throughput approximates the accurate one

for not-so-large values of N , e.g, N > 50.
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4.3.2 Weak User

In the half-duplex cooperative relaying scenario, the weak user, User 2, receives two blocks

of symbols, one from the BS with the superposed signal through the broadcast link and the

other one from User 1 with only the intended signal through the relay link.

4.3.2.1 C-ANOMA

Treating (4.14) as a virtual MIMO system and considering User 1’s message as noise, the

combining throughput of User 2 can be calculated as

RANOMA
2 =

1

2N + τ
log det

[
I3N +

(
RN + W1W

H
1

)−1
W2W

H
2

]
. (4.27)

The combining throughput of User 2 can be written as a function of the transmit powers,

the channel gains, the normalized timing mismatch, and the block length in the following

theorem.

Theorem 4.2. In the half-duplex C-ANOMA systems, the combining throughput of User 2

is given by

RANOMA
2 =

1

2N + τ
log

(
zN+1

1 − zN+1
2

)
+ τ 2

(
zN1 − zN2

)
z1 − z2

+
N

2N + τ
log

(
P1P2|h2|4

1 + P1|h2|2

)
,

(4.28)

where

ν1 =P1|h2|2, ν2 =
P2|h2|2

1 + Pr|h12|2
, Q = 2τ(1− τ) (4.29)

z1 =
ν−1

1 +ν−1
2 +ν−1

1 ν−1
2 +Q+

√[
ν−1

1 + ν−1
2 + ν−1

1 ν−1
2 +Q

]2−Q2

2
, (4.30)
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z2 =
ν−1

1 +ν−1
2 +ν−1

1 ν−1
2 +Q−

√[
ν−1

1 + ν−1
2 + ν−1

1 ν−1
2 +Q

]2−Q2

2
. (4.31)

Proof. See Appendix B.3.

4.3.2.2 C-NOMA

In C-NOMA systems, User 2 adopts the maximal ratio combining (MRC) to combine the

signals from the direct and relay links [46, 45]. Then, the combining throughput of User 2

is given by

RNOMA
2 =

1

2
log

(
1 + Pr|h12|2 +

P2|h2|2

P1|h2|2 + 1

)
. (4.32)

Note that by setting τ = 0, we have Q = 0, z2 = 0, and z1 = ν−1
1 +ν−1

2 +ν−1
1 ν−1

2 . Thus,

the expression for the combining throughput of User 2 in C-ANOMA systems coincides with

that in C-NOMA systems, i.e., RANOMA
2 |τ=0 = RNOMA

2 .

4.3.2.3 Comparison between C-ANOMA and C-NOMA

We derive the following theorem which compares the throughputs of the C-ANOMA and

C-NOMA systems for N →∞.

Theorem 4.3. In C-ANOMA systems, the combining throughput of User 2 for the asymp-

totic case of N →∞ is given by

RANOMA
2,asymp

4
= lim

N→∞
RANOMA

2

=
1

2
log

{
1 + Pr|h12|2

2
+
P2|h2|2 + P1P2|h2|4Q

2(1 + P1|h2|2)
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+
1

2

[(
1 + Pr|h12|2 +

P2|h2|2+P1P2|h2|4Q
1 + P1|h2|2

)2

−
(
P1P2|h2|4Q
1 + P1|h2|2

)2
] 1

2

 ,

(4.33)

where Q = 2τ(1−τ). The combining throughputs of User 2 for the C-NOMA and C-ANOMA

systems satisfy the following inequalities

RNOMA
2 ≤ RANOMA

2,L

4
=

1

2
log

(
1 + Pr|h12|2 +

P2|h2|2 + 1
2
P1P2|h2|4Q

1 + P1|h2|2

)
≤ RANOMA

2,asymp

≤ RANOMA
2,U

4
=

1

2
log

(
1+Pr|h12|2+

P2|h2|2+P1P2|h2|4Q
1+P1|h2|2

)
, (4.34)

where the equal signs are achieved if and only if τ = 0.

Proof. See Appendix B.4.

We note from (4.34) that the gain of C-ANOMA over C-NOMA depends on the term

P1P2|h2|4Q, thus, a better direct channel between User 2 and the BS results in a greater per-

formance improvement of C-ANOMA systems compared with C-NOMA systems. Moreover,

according to (4.25), Theorems 4.1 and 4.3, it is shown that for N → ∞, the throughputs

of both users to detect the weak user’s message in the C-ANOMA systems are larger than

those in the C-NOMA systems while the throughput of the strong user to detect its own

message is identical for the C-ANOMA and C-NOMA systems. In Section 4.5, we will show

by numerical results that the C-ANOMA systems outperform the C-NOMA systems in terms

of the throughput to decode the weak user’s message with a relatively small value of N , e.g.,

N > 20.

68



Furthermore, in both C-ANOMA and C-NOMA systems, the actual throughput of User 2

is affected by both the throughput of User 1 to detect User 2’s message, R2→1, and the

combining throughput of User 2, R2. Since User 2’s message needs to be detected by both

Users 1 and 2, the minimum of R2→1 and R2 is the bottleneck of the actual throughput of

User 2, i.e., Ract,2 = min {R2→1, R2} [52]. According to Theorems 4.1 and 4.3, it is trivial to

derive that for a sufficiently large N and τ 6= 0, RANOMA
act,2 > RNOMA

act,2 .

4.4 C-ANOMA System Design

In this section, we study the optimal design of the C-ANOMA systems, including the optimal

timing mismatch and the power control strategy.

4.4.1 Optimal Timing mismatch

We first investigate the optimal normalized timing mismatch, τ ∗. Although the optimal

normalized timing mismatch to maximize RANOMA
2→1 and RANOMA

2 is analytically intractable

for a general finite block length N , we can numerically obtain τ ∗ for a given finite N by

simply searching in the range of 0 ≤ τ < 1 as done in Section 4.5. To derive the optimal τ

for a large N , we study the asymptotic case of N →∞. According to (4.25), the throughput

of User 1 to detect its own message is independent of τ . According to (4.26) and (4.33), it

is easy to show that RANOMA
2→1,asymp and RANOMA

2,asymp are increasing functions of Q which is given by

2τ(1− τ). Thus, maximizing RANOMA
2→1,asymp and RANOMA

2,asymp is equivalent to maximizing the term

τ(1− τ). Therefore, the optimal τ to maximize the throughputs of both users to detect User

2’s message converges to 0.5, i.e.,

τ ∗
4
=arg max

τ
RANOMA

2→1,asymp =arg max
τ

RANOMA
2,asymp =0.5. (4.35)
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In practice, in order to reduce the resource consumption of the control information, the

normalized timing mismatch can be fixed to the default value of 0.5 at both the BS and the

users.

4.4.2 Power Minimization

In this chapter, we consider the delay-tolerant mode where the BS and the relay user can

dynamically adjust their transmit powers according to the channel states in order to avoid

outage and satisfy the minimum rate requirements [45]. Our objective is to minimize the

weighted sum transmit power of the BS and the relay user under the minimum rate (i.e.,

QoS) requirements and the individual power constraints. Then, the power minimization

problem can be formulated as

min
P1,P2,Pr

ωs(P1 + P2) + ωrPr, (4.36a)

s.t. RANOMA
2→1 ≥ R∗2, R

ANOMA
1 ≥ R∗1, R

ANOMA
2 ≥ R∗2, (4.36b)

P1 + P2 < Ps,max, Pr < Pr,max, (4.36c)

where ωs and ωr are the non-negative weights for the transmit powers of the BS and User

1, respectively, such that ωs + ωr = 1. Ps,max and Pr,max stand for the maximum available

powers of the BS and User 1, respectively. R∗1 and R∗2 are the target rates of Users 1 and

2’s messages. Note that the choice of ωs and ωr provides a trade-off between the power

consumption of the BS and that of the relay user. For instance, if one wants to further

restrict the power consumption of the relay user due to its limited battery capacity, ωr

should be chosen greater than ωs.

The exact expressions of RANOMA
2→1 and RANOMA

2 in (4.18) and (4.28) make the optimization

problem (4.36) analytically intractable. To simplify the optimization problem, we replace
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RANOMA
2→1 and RANOMA

2 in (4.36b) with their asymptotic lower bounds, which can provide a

suboptimal solution for the original optimization problem (4.36), i.e.,

min
P1,P2,Pr

ωs(P1 + P2) + ωrPr, (4.37a)

s.t. RANOMA
2→1,L ≥ R∗2, (4.37b)

RANOMA
1 ≥ R∗1, (4.37c)

RANOMA
2,L ≥ R∗2, (4.37d)

P1 + P2 < Ps,max, Pr < Pr,max. (4.37e)

For sufficiently large values of N , Eqs. (4.37b) and (4.37d) are stronger constraints for

RANOMA
2→1 and RANOMA

2 compared with those in (4.36b), which means that the solution of

(4.36) can do at least as good as that of (4.37). In what follows, we explain that (4.37) can

also provide a suboptimal solution of (4.36) for a finite N . By definition, as N increases,

the exact throughputs can be arbitrarily close to the asymptotic ones. We assume that

RANOMA
2→1 ≥ RANOMA

2→1,L for any N ≥ N1 and RANOMA
2 ≥ RANOMA

2,L for any N ≥ N2. By choosing

a proper N∗, for example, N∗ = max{N1, N2}, we can ensure that RANOMA
2→1 ≥ RANOMA

2→1,L and

RANOMA
2 ≥ RANOMA

2,L for the given N∗. We will show that N∗ can be a reasonable value (e.g.,

N∗ = 100) in the numerical results section. In practice, the actual block length is usually

greater than 100. For example, in global system for mobile communications (GSM), there

are approximately 156 symbols in a normal burst (a physical channel carrying information

on traffic and control channels) [37]. As a result, the optimization problem (4.37) can

provide a suboptimal solution for the problem (4.36) with the block length used in practical

communication systems.

By simplifying (4.37b), (4.37c), and (4.37d), we obtain

P2 ≥
γ2

|h1|2
1 + P1|h1|2

1 + 1
2
QP1|h1|2

, (4.38)
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P1 ≥
γ1 + ε

|h1|2
, (4.39)

Pr ≥
γ2

|h12|2
− P2|h2|2

|h12|2
1 + 1

2
QP1|h2|2

1 + P1|h2|2
. (4.40)

where γi = 22R∗i − 1, i = 1, 2, is the target signal-to-interference-plus-noise ratio (SINR) to

detect User i’s message and ε = 22R∗1(2
τ
N
R∗1 − 1). The value of ε can be made arbitrary small

with increasing N . For a sufficiently large N , i.e., N > N∗, we have ε < ε∗
4
= 22R∗1(2

τ
N∗R

∗
1−1),

hence, we can substitute (4.39) with a stronger constraint, i.e.,

P1 ≥
γ1 + ε∗

|h1|2
. (4.41)

Then, by replacing the constraints with (4.38), (4.40), and (4.41), the optimization problem

(4.37) becomes

min
P1,P2,Pr

ωs(P1 + P2) + ωrPr, (4.42a)

s.t.
γ1 + ε∗

|h1|2
≤ P1 ≤ Ps,max, (4.42b)

γ2

|h1|2
1+P1|h1|2

1+ 1
2
QP1|h1|2

≤P2 ≤ Ps,max−P1, (4.42c)

ζr ≤ Pr ≤ Pr,max, (4.42d)

where ζr
4
= max

{
0, γ2
|h12|2 −

P2|h2|2
|h12|2

1+ 1
2
QP1|h2|2

1+P1|h2|2

}
. Note that (4.42d) indicates that the feasible

domain of Pr depends on P1 and P2 while the constraints of P1 and P2 in (4.42b) and (4.42c)

do not rely on Pr. For any given P1 and P2, the weighted sum power is minimized when Pr is

equal to the least possible value, i.e., Pr = ζr. Besides, we note that increasing P1 improves

RANOMA
1 while worsens RANOMA

2,L and RANOMA
2→1,L due to the increased interference from User 1’s

message. Then, the powers P2 and Pr have to increase to counteract the interference of

User 1’s message. As a result, P1 should also be chosen as the least possible value within

the feasible domain (4.42b) to minimize the weighted sum power, i.e., P1 = γ1+ε∗

|h1|2 . By
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Case 1: Case 2:

Figure 4.2: Illustration of the relationship among ζ∗2 , ζ2, and Ps,max − γ1+ε∗

|h1|2 .

substituting the values of Pr and P1, the optimization problem (4.42) becomes

min
P2

ωsP2 + ωr max

{
0,

γ2

|h12|2
−P2|h2|2

|h12|2
|h1|2+ 1

2
Q(γ1+ε∗)|h2|2

|h1|2 + (γ1 + ε∗)|h2|2

}
, (4.43a)

s.t. ζ2 ≤ P2 ≤ Ps,max −
γ1 + ε∗

|h1|2
, (4.43b)

where

ζ2 = max

{
γ2

|h1|2
1 + γ1 + ε∗

1 + 1
2
Q(γ1 + ε∗)

,

(
γ2

|h12|2
−Pr,max

)
|h12|2

|h2|2
|h1|2 + (γ1 + ε∗)|h2|2

|h1|2 + 1
2
Q(γ1 + ε∗)|h2|2

}
,

(4.44)

and the rightmost term in (4.44) is derived by setting ζr < Pr,max.

We note from (4.42b) and (4.43b) that if γ1+ε∗

|h1|2 > Ps,max or ζ2 > Ps,max − γ1+ε∗

|h1|2 , there is no

valid solution for the power minimization problem, i.e., QoS requirements cannot be satisfied

with the limited transmit powers of the BS and the relay user. The following analysis is under

the assumption that there are valid solutions for the power minimization problem.

By setting γ2
|h12|2 −

P2|h2|2
|h12|2

|h1|2+ 1
2
Q(γ1+ε∗)|h2|2

|h1|2+(γ1+ε∗)|h2|2 = 0, we obtain

P2 = ζ∗2
4
=

γ2

|h2|2
|h1|2 + (γ1 + ε∗)|h2|2

|h1|2 + 1
2
Q(γ1 + ε∗)|h2|2

. (4.45)

Then, the objective function (4.43a) becomes ωsP2 + ωr

(
γ2
|h12|2 −

P2|h2|2
|h12|2

|h1|2+ 1
2
Q(γ1+ε∗)|h2|2

|h1|2+(γ1+ε∗)|h2|2

)
if

P2 < ζ∗2 and ωsP2 otherwise. As shown in Fig. 4.2, we separate the following analysis into
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three cases according to the relationship among ζ∗2 , ζ2, and Ps,max − γ1+ε∗

|h1|2 .

4.4.2.1 Case 1

If ζ∗2 < ζ2, the optimization problem (4.43) becomes

min
P2

P2, s.t. ζ2 ≤ P2 ≤ Ps,max −
γ1 + ε∗

|h1|2
, (4.46)

In this case, it is easy to obtain that the optimal transmit powers are P ∗1 = γ1+ε∗

|h1|2 , P ∗2 = ζ2,

and P ∗r = 0. Intuitively, this case indicates that the channel between the BS and User 2 is

strong enough such that no relay transmission is needed to satisfy the QoS requirements at

User 2.

4.4.2.2 Case 2

If ζ∗2 > Ps,max − γ1+ε∗

|h1|2 , the optimization problem (4.43) becomes

min
P2

ωsP2 + ωr

(
γ2

|h12|2
−P2|h2|2

|h12|2
|h1|2+ 1

2
Q(γ1+ε∗)|h2|2

|h1|2+(γ1+ε∗)|h2|2

)
, (4.47a)

s.t. ζ2 ≤ P2 ≤ Ps,max −
γ1 + ε∗

|h1|2
. (4.47b)

By omitting the constant terms, the objective function (4.47a) becomes

min
P2

(
ωs − ωr

|h2|2

|h12|2
|h1|2 + 1

2
Q(γ1 + ε∗)|h2|2

|h1|2 + (γ1 + ε∗)|h2|2

)
P2. (4.48)

Note that the solution of (4.47) depends on the values of ωs and ωr. The solutions can be
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given as follows: If ωs = ωr
|h2|2
|h12|2

|h1|2+ 1
2
Q(γ1+ε∗)|h2|2

|h1|2+(γ1+ε∗)|h2|2 , the optimal transmit powers are

P ∗1 =
γ1+ε∗

|h1|2
,P ∗2 ∈

[
ζ2, Ps,max−

γ1 + ε∗

|h1|2

]
, P ∗r =

γ2

|h12|2
−P

∗
2 |h2|2

|h12|2
|h1|2+ 1

2
Q(γ1+ε∗)|h2|2

|h1|2 + (γ1 + ε∗)|h2|2
,

(4.49)

where P ∗2 can be any value in the given range. We provide the intuitive explanation for the

solution as follows: One can observe from (4.49) that P ∗r decreases with P ∗2 . Under certain

conditions on ωr and ωs, i.e., ωs = ωr
|h2|2
|h12|2

|h1|2+ 1
2
Q(γ1+ε∗)|h2|2

|h1|2+(γ1+ε∗)|h2|2 , the weighted sum power will be

constant as the decrease in P ∗r is equal to the increase in P ∗2 .

If ωs > ωr
|h2|2
|h12|2

|h1|2+ 1
2
Q(γ1+ε∗)|h2|2

|h1|2+(γ1+ε∗)|h2|2 , P ∗2 should be chosen the least possible value. The optimal

transmit powers are given by

P ∗1 =
γ1 + ε∗

|h1|2
, P ∗2 = ζ2, P

∗
r =

γ2

|h12|2
− P ∗2 |h2|2

|h12|2
|h1|2 + 1

2
Q(γ1 + ε∗)|h2|2

|h1|2 + (γ1 + ε∗)|h2|2
. (4.50)

If ωs < ωr
|h2|2
|h12|2

|h1|2+ 1
2
Q(γ1+ε∗)|h2|2

|h1|2+(γ1+ε∗)|h2|2 , P ∗2 should choose the largest possible value. The optimal

transmit powers are given by

P ∗1 =
γ1 + ε∗

|h1|2
, P ∗2 = Ps,max −

γ1 + ε∗

|h1|2
, P ∗r =

γ2

|h12|2
− P ∗2 |h2|2

|h12|2
|h1|2 + 1

2
Q(γ1 + ε∗)|h2|2

|h1|2 + (γ1 + ε∗)|h2|2
.

(4.51)

4.4.2.3 Case 3

If ζ2 < ζ∗2 < Ps,max− γ1+ε∗

|h1|2 , the optimization problem (4.43) becomes two sub-problems, i.e.,

min
P2

P2, s.t. ζ∗2 ≤ P2 ≤ Ps,max −
γ1 + ε∗

|h1|2
, (4.52)
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and

min
P2

P2

(
ωs − ωr

P2|h2|2

|h12|2
|h1|2 + 1

2
Q(γ1 + ε∗)|h2|2

|h1|2 + (γ1 + ε∗)|h2|2

)
,

s.t. ζ2 ≤ P2 ≤ ζ∗2 . (4.53)

By following the derivation of Case 1, one can solve the problem (4.52). Similarly, by

following the steps of Case 2, one can solve the problem (4.53). We assume that the optimal

transmit powers for (4.52) and (4.53) are [P̃1, P̃2, P̃r] and [P̄1, P̄2, P̄r], respectively. Then,

the solution for Case 3 is given by

[P ∗1 , P
∗
2 , P

∗
r ] = arg min

[P1,P2,Pr]∈{[P̃1,P̃2,P̃r],[P̄1,P̄2,P̄r]}
ωs(P1 + P2) + ωrPr. (4.54)

To summarize the solutions, we provide Algorithm 1 to solve the problem (4.42). Note that

Algorithm 1 is implemented by using only the conditional statements. All the expressions

used in Algorithm 1 are closed-form. Hence, Algorithm 1 can run in constant time.

4.4.3 Comparison with C-NOMA

According to (4.25), (4.26), Theorems 4.1 and 4.3, the expressions for the throughputs in

C-ANOMA systems, RANOMA
2→1,L , RANOMA

1 , and RANOMA
2,L , become those in C-NOMA systems,

RNOMA
2→1 , RNOMA

1 , and RNOMA
2 , by setting τ = 0. Therefore, the solutions derived in the

previous subsection can be applied to the C-NOMA systems simply by setting τ = 0 which

then results in ε∗ = 0 and Q = 0. For the C-NOMA systems, the power minimization

problem (4.42) becomes

min
P1,P2,Pr

ωs(P1 + P2) + ωrPr, (4.55a)

76



Algorithm 1 Algorithm to find the optimal powers under QoS constraints

1: function Solve case 1(L, U)
2: return P ∗2 = L, P ∗r = 0.
3: end function
4: function Solve case 2(L, U)

5: if ωs = ωr
|h2|2
|h12|2

|h1|2+ 1
2
Q(γ1+ε∗)|h2|2

|h1|2+(γ1+ε∗)|h2|2 , then P ∗2 = random
([
ζ2, Ps,max − γ1+ε∗

|h1|2

])
.

6: else if ωs > ωr
|h2|2
|h12|2

|h1|2+ 1
2
Q(γ1+ε∗)|h2|2

|h1|2+(γ1+ε∗)|h2|2 , then P ∗2 = L.
7: else P ∗2 = U .

8: return P ∗2 , P ∗r = γ2
|h12|2 −

P ∗2 |h2|2
|h12|2

|h1|2+ 1
2
Q(γ1+ε∗)|h2|2

|h1|2+(γ1+ε∗)|h2|2 .
9: end function

10: if γ1+ε∗

|h1|2 > Ps,max or ζ2 > Ps,max − γ1+ε∗

|h1|2 , then there is no solution, break.

11: P ∗1 = γ1+ε∗

|h1|2

12: if ζ∗2 < ζ2, then P ∗2 , P ∗r = Solve case 1(ζ2, Ps,max − γ1+ε∗

|h1|2 ).

13: else if ζ∗2 > Ps,max − γ1+ε∗

|h1|2 , then P ∗2 , P ∗r = Solve case 2(ζ2, Ps,max − γ1+ε∗

|h1|2 ).
14: else
15: P̃ ∗2 , P̃

∗
r = Solve case 1(ζ∗2 , Ps,max − γ1+ε∗

|h1|2 ).

16: P̂ ∗2 , P̂
∗
r = Solve case 2(ζ2, ζ

∗
2 ).

17: P ∗2 , P
∗
r = arg min[P2,Pr]∈{[P̃ ∗2 ,P̃ ∗r ],[P̂ ∗2 ,P̂

∗
r ]} ωsP2 + ωrPr.

18: return P ∗1 , P ∗2 , P ∗r .

s.t.
γ1

|h1|2
≤ P1 ≤ Ps,max, (4.55b)

γ2 (1 + P1|h1|2)

|h1|2
≤ P2 ≤ Ps,max − P1, (4.55c)

max

{
0,

γ2

|h12|2
− P2|h2|2

|h12|2 (1+P1|h2|2)

}
≤Pr≤Pr,max. (4.55d)

Note that the feasible domains of P2 and Pr in (4.55c) and (4.55d) are the subsets of those

in (4.42c) and (4.42d), respectively. As a result, for a sufficiently large N , the minimization

problem (4.42) for the C-ANOMA systems is a relaxation of the minimization problem (4.55)

for the C-NOMA systems [58]. That is, the problem (4.42) provides a solution to minimize

the weighted sum power within a wider feasible domain compared with (4.55). In other

words, if [P ∗1,ANOMA, P ∗2,ANOMA, P ∗r,ANOMA] and [P ∗1,NOMA, P ∗2,NOMA, P ∗r,NOMA] are the optimal
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Figure 4.3: The throughputs R2→1, R1, and R2 as functions of the channel gain |h1|2 or |h12|2 for
C-ANOMA and C-NOMA systems when N = 10, τ = 0.5, P1 + P2 = 5, Pr = 2, |h2|2 = 1.

solutions for (4.42) and (4.55), respectively, we have

ωs(P
∗
1,ANOMA + P ∗2,ANOMA) + ωrP

∗
r,ANOMA ≤ ωs(P

∗
1,NOMA + P ∗2,NOMA) + ωrP

∗
r,NOMA.

(4.56)

We note from (4.56) that for a sufficiently large block length, the C-ANOMA systems can

consume less power compared with the C-NOMA systems in order to guarantee the same

QoS. We will illustrate this phenomenon with numerical results in Section 4.5.

4.5 Numerical Results

In this section, we present numerical results to compare the throughputs and power con-

sumptions of C-NOMA and C-ANOMA systems.

First, we compare the throughputs of Users 1 and 2 in the C-NOMA and C-ANOMA systems

with different ratios of P1 to P2 in Fig. 4.3. The curves of “ANOMA in (4.16)/(4.18)/(4.17)
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/(4.19)/(4.27)/(4.28)” are derived directly from the expressions in (4.16)/(4.18)/(4.17)/(4.19)

/(4.27)/(4.28). First, in Fig. 4.3, it is shown that the throughputs calculated by (4.18),

(4.19), and (4.28) completely align with the results of (4.16), (4.17), and (4.27), respectively,

which verifies the correctness of (4.18), (4.19), and (4.28). Second, it is demonstrated that

the throughputs R2→1 and R2 in the C-ANOMA systems are higher than those in the C-

NOMA systems. And RANOMA
1 is less than but very close to RNOMA

1 even for a relatively

small block length N = 10, especially when |h1|2 is small. Third, Fig. 4.3 shows that the

throughputs in both C-ANOMA and C-NOMA systems increase with the channel gain. More

specifically, the gaps of R2→1 between the C-ANOMA and C-NOMA systems grow wider as

|h1|2 increases. In contrast, the gaps of R2 between the C-ANOMA and C-NOMA systems

shrink as |h12|2 increases. Note that R2 depends on both the broadcast link from the BS

and the relay link from User 1. The sampling diversity can only be obtained through the

asynchronous transmission from the broadcast link. As |h12|2 increases, the quality of the

relay link becomes more and more dominant in calculating R2. Accordingly, the throughput

gain from the sampling diversity becomes less and less noticeable as |h12|2 increases while

|h2|2 is constant. Finally, it is evident that the actual throughput of User 2 for C-ANOMA

is better than that of C-NOMA since RANOMA
2 > RNOMA

2 and RANOMA
2→1 > RNOMA

2→1 .

We compare the throughput performances of C-ANOMA and C-NOMA systems in the full-

duplex or half-duplex mode in Fig. 4.4. In our simulation, we calculate the users’ throughputs

in the full-duplex C-NOMA systems based on the SINR expressions derived in the existing

literature, for example [45]. Using the notation in [45], |hLI|2 stands for the level of the

residual loop self-interference at the relay user caused by the full-duplex operation. For

the full-duplex C-ANOMA and C-NOMA, the throughput of the relay user is calculated by

treating the self-interference as noise. In Fig. 4.4, it is shown that in both half-duplex and

full-duplex modes, R2→1 and R2 in C-ANOMA outperform those in C-NOMA while R1 in

C-ANOMA is very close to that in C-NOMA. These results align with the results in Fig. 4.3.

Besides, in some cases, the performance of full-duplex systems can be worse than that of
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Figure 4.4: The throughputs as functions of the channel gain for the full-duplex or half-duplex
C-NOMA and C-ANOMA systems when N = 10, τ = 0.5, P1 = 1, P2 = 4, Pr = 2, |h2|2 = 1, |hLI|2
= 1.

the half-duplex systems due to the residual loop self-interference. For example, R1 in the

full-duplex C-ANOMA or C-NOMA system is worse than that in half-duplex C-ANOMA

or C-NOMA system. As studied in the existing literature, the self-interference cancellation

plays a crucial role in the full-duplex systems [59]. Moreover, it is also shown that R2 in the

full-duplex C-ANOMA or C-NOMA system is better than that in the half-duplex C-ANOMA

or C-NOMA system because the relay user in the full-duplex mode can relay the signal to the

weak user without consuming an additional time block. Note that the full-duplex operation

and the realization of the self-interference require higher hardware complexity and power

consumption at the relay user compared with the half-duplex operation.

We compare the performances of C-ANOMA, C-NOMA, and C-OMA in Fig. 4.5. Following

the comparison between C-NOMA and C-OMA in the existing literature [46, 52, 45, 44], we

adopt the time division multiple access (TDMA) C-OMA as an example of C-OMA systems.

Specifically, the transmission in C-OMA occupies three time slots. In the first time slot,

the BS transmits User 1’s messages to User 1. In the second time slot, the BS broadcasts
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Figure 4.5: The throughputs R1 vs. Ract,2 for C-ANOMA, C-NOMA, and C-OMA systems when
|h12|2 = 1, |h2|2 = 0.5, N = 100, τ = 0.5, P1 + P2 = 5, Pr = 1.

User 2’s messages to Users 1 and 2. In the last time slot, User 1 relays User 2’s messages to

User 2. In Fig. 4.5, it is shown that C-NOMA achieves a better performance compared with

C-OMA. Besides, it is also demonstrated that C-ANOMA outperforms C-NOMA because

the oversampling technique provides extra sampling diversity [6, 31, 7].

In Fig. 4.6, we show how the throughputs in C-ANOMA systems change with the block

length N . Since the expression for RANOMA
1 in (4.19) is simple, the curves of RANOMA

1 are

omitted in Fig. 4.6. It is shown that as the block length increases, the accurate throughputs

RANOMA
2→1 and RANOMA

2 converge to the asymptotic ones calculated by (4.26) and (4.33),

respectively. We note that the asymptotic throughputs, RANOMA
2→1,asymp and RANOMA

2,asymp , perfectly

approximate the accurate throughputs, RANOMA
2→1 and RANOMA

2 , when N > 50. And for both

RANOMA
2→1 and RANOMA

2 , the accurate throughputs exceed their asymptotic lower bounds when

N > 20. As a result, for N > 20, it is reasonable to use the lower bounds of the asymptotic

throughputs as the constraints (4.37b) and (4.37d) in order to simplify the optimization

problem. Besides, Fig. 4.6 verifies Theorems 4.1 and 4.3 in addition to showing that the
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Figure 4.6: The throughputs R2 and R2→1 as functions of the block length N for C-ANOMA and
C-NOMA systems when τ = 0.5, P1 = 1.5, P2 = 3.5, Pr = 2, |h1|2 = 1, |h2|2 = 0.8, |h12|2 = 1.

C-ANOMA systems outperform the C-NOMA systems for relatively small values of N .

Based on the results in Fig. 4.6, we discuss the time delay of the message delivery. In the

non-cooperative NOMA or full-duplex C-NOMA systems, one message block is delivered

to two users simultaneously via one time block. In contrast, in the half-duplex C-NOMA

or C-ANOMA systems, one additional time block is needed to transmit the same message

block. In order to reduce the delay, the block length is expected to be small. Besides, as

shown in Fig. 4.6, the accurate throughputs in C-ANOMA systems increase with the block

length. It is worth mentioning that when the block length is large, e.g., N > 50, a greater

block length only results in a very subtle throughput improvement. Therefore, considering

the delay and the throughput, a modest block length is desired.

We also study the optimal design of C-ANOMA systems. Fig. 4.7 (a) shows the optimal

normalized timing mismatch τ ∗ to maximize RANOMA
2 or RANOMA

2→1 as a function of the block

82



0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6
(a)

0 0.2 0.4 0.6 0.8 1
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

T
h

ro
u

g
h

p
u

t 
(b

p
cu

)

(b)

Figure 4.7: (a) The optimal normalized timing mismatch τ∗ to maximize the throughputs RANOMA
2

and RANOMA
2→1 as a function of the block length N when P1 +P2 = 5, Pr = 2, |h1|2 = 1, |h2|2 = 0.5,

|h12|2 = 2. (b) The throughputs R2 and R2→1 as functions of the normalized timing mismatch τ
when N = 50, P1 + P2 = 5, Pr = 2, |h1|2 = 1, |h2|2 = 0.5, |h12|2 = 2.

length N . In our simulation, τ ∗ is found by exhaustive search. Although τ ∗ varies a lot

when N is relatively small, τ ∗ converges to 0.5 steadily as N increases for both RANOMA
2

and RANOMA
2→1 with different ratios of P1 to P2, as predicted by our analytical results. This is

because the timing mismatch only exists in the asynchronous transmission in the broadcast

phase and will affect RANOMA
2→1 and RANOMA

2 in the same way. Moreover, Fig. 4.7 (b) presents

how the throughputs change with the normalized timing mismatch. It is demonstrated that

for both RANOMA
2 and RANOMA

2→1 , the throughputs are maximized when τ ≈ 0.5, which verifies

the results shown in Fig. 4.7 (a). Compared with RANOMA
2→1 , the choice of τ has a greater

impact on RANOMA
1 . It is because the relay link dominates the performance of User 2 if the

channel of the relay link is good. Besides, it is shown that for τ ∈ [0.4, 0.6], the choice of τ

only has a subtle effect on RANOMA
2→1 and RANOMA

1 .

Moreover, we show the minimized weighted sum power under the QoS constraints as a
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Figure 4.8: The minimized weighted sum power under the QoS constraints as a function of the
target SINRs, γ1 and γ2, for the C-NOMA and C-ANOMA systems when τ = 0.5, Ps,max = 20,
Pr,max = 5, ωs = 0.2, ωr = 0.8, |h1|2 = 1, |h2|2 = 0.5, |h12|2 = 2, N = 100. The right-most
figure illustrates the difference between the minimized weighted sum power in C-NOMA systems
and that in C-ANOMA systems. In that figure, A stands for the area where QoS constraints can
be satisfied for both ANOMA and NOMA and PANOMA

sum < PNOMA
sum . B stands for the area where

QoS constraints can be satisfied for ANOMA, but not for NOMA. C stands for the area where QoS
constraints cannot be satisfied for either ANOMA or NOMA.

function of target SINRs, γ1 and γ2, for C-NOMA and C-ANOMA systems in Fig. 4.8. We set

ωs and ωr as 0.2 and 0.8, respectively, because the power consumption of the relay user with

limited battery capacity has a higher priority in the power minimization problem. In Fig. 4.8,

the weighted sum power is calculated by solving the power optimization problem (4.42) for

the C-NOMA (setting τ = 0) and C-ANOMA (setting τ = 0.5) systems. In our simulation,

we assume that the BS and the relay user will stop transmission (i.e., P1 = P2 = Pr = 0) if

the QoS constraints cannot be satisfied. For both C-NOMA and C-ANOMA systems, it is

shown in Fig. 4.8 that the weighted sum power increases with the target SINRs until the BS

and the relay user reach their power limits and stop transmission. To further compare the

power consumptions, we calculate the difference of the weighted sum powers between the

C-NOMA and C-ANOMA systems and provide the results in Fig. 4.8. As shown in Fig. 4.8,

C-ANOMA systems can consume less power compared with C-NOMA systems to guarantee
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Figure 4.9: The power consumptions as functions of the weight allocated to the transmit power
of the BS, i.e., ωs, for the C-ANOMA systems when τ = 0.5, Ps,max = 20, Pr,max = 5, |h1|2 = 1,
|h2|2 = 0.5, |h12|2 = 2, N = 100.

the same QoS in the area A. In the area B, it is shown that C-ANOMA systems can still

satisfy the QoS with limited transmit powers while C-NOMA systems cannot. When both

γ1 and γ2 are large, i.e., in the area C, neither C-NOMA nor ANOMA systems can satisfy

the QoS with the limited transmit powers.

Finally, we show how the power consumptions change with the weight ωs in the power

minimization problem in Fig. 4.9. In our simulation, we set ωr = 1 − ωs. In Fig. 4.9, the

power allocated to User 1 does not change with ωs as long as the BS has enough transmit

power to support the QoS of User 1. If ωs is large, the BS can save a large amount of power

(decreases by about 2) under the help of the relay user (transmit power increases by about

0.5) because the channel of the relay link is better than that of the broadcast link between

the BS and User 2. When ωs is small (ωr is large), the relay user keeps silent to reduce

energy consumption. When ωs is large (ωr is small), the BS communicates with User 2
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under the help of the relay user, which takes advantage of the relay link to complement the

large path loss between the BS and User 2. Hence, Fig. 4.9 shows that one can make a

trade-off between the power consumption of the BS and that of the relay user by adjusting

the weight ωs.

4.6 Conclusion

In this chapter, we study the half-duplex C-ANOMA systems with user relaying. We an-

alytically prove that for a sufficiently large block length, the strong user in C-ANOMA

systems can achieve the same throughput as that in C-NOMA systems while the weak user

in C-ANOMA systems benefits from the symbol-asynchronous transmission. Moreover, we

analyze the optimal design of the C-ANOMA systems. As the block length increases, the op-

timal timing mismatch converges to half of the symbol interval. Besides, we solve a weighted

sum power minimization problem under QoS constraints. Numerical results demonstrate

that C-ANOMA systems can consume less power to satisfy the same QoS requirements

compared with C-NOMA systems.

There are several directions worth studying in the future. For example, since the analysis of

this chapter is under the assumption of perfect channel estimation, the impact of imperfect

channel estimation on the system performance is an interesting future work.
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Chapter 5

Downlink Asynchronous

Non-Orthogonal Multiple Access with

Imperfect Channel State Information

5.1 Introduction

NOMA has been extensively studied in academia. Zhu et al. [60] investigated resource alloca-

tion in downlink NOMA systems abd analytically characterized the optimal power allocation

with given channel assignment over multiple channels under different performance criteria.

Ding et al. [61] studied the performance of NOMA in a cellular downlink scenario with ran-

domly deployed users and showed the superiority of NOMA in terms of ergodic sum rates.

In addition, the NOMA systems have also been studied with practical consideration, such

as the imperfect channel state information (CSI). For example, Yang et al. investigated the

performance of NOMA with partial CSI, including the case with imperfect CSI and that

with second order statistics. Fang et al. [62] investigated energy efficiency improvement
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for a downlink NOMA single-cell network by considering imperfect CSI. The system opti-

mization problem has also been studied in the NOMA system with imperfect CSI, e.g., the

optimal resource allocation for power-efficient multicarrier NOMA [63] and the optimization

of scheduling[64]. Besides, Liu and Jafarkhani analyzed downlink NOMA networks with

limited channel feedback information in [2].

Recently, a scheme called asynchronous NOMA (ANOMA) has been proposed and stud-

ied [48, 49, 65]. Compared with conventional (synchronous) NOMA, a timing mismatch is

intentionally introduced in the superimposed signal and the oversampling technique is uti-

lized at receiver to achieve the sampling diversity. In [48], the uplink ANOMA system was

thoroughly studied and the impact of timing error on ANOMA systems was analyzed. It

was demonstrated that the ANOMA can achieve higher sum throughput than the NOMA.

In [49], the downlink ANOMA system was also investigated and the superiority of ANOMA

over the conventional NOMA was demonstrated. However, to the best of our knowledge, the

ANOMA systems with imperfect CSI have never been studied and little is known about the

performance comparison between ANOMA and NOMA with imperfect CSI.

In this chapter, we consider a downlink ANOMA system with imperfect CSI. With channel

estimation error, we prove that with a relatively large frame length, the ANOMA systems

can achieve lower outage probability compared with the NOMA systems. To this end, we

derive the expressions for the individual throughput of each user and greatly simplify them

for the asymptotic case of infinite frame length. Besides, we analytically prove that the

optimal timing mismatch converges to half of a single symbol length as the frame length

goes up.

The remainder of the chapter is organized as follows. The downlink ANOMA system model

is presented in Section 5.2. The throughput performance of the ANOMA system is analyzed

in Section 5.3. We discuss the outage probability in Section 5.4. Numerical and simulation

results are presented in Section 5.5. Finally, we draw the conclusions in Section 5.6.

88



BS

User 1

User 2

h1

h2

Figure 5.1: Illustration of a two-user downlink system.
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yi,1[j]

Figure 5.2: Illustration of oversampling in ANOMA systems.

Notations: (·)H denotes the Hermitian transpose, (·)T denotes the transpose, (·)−1 denotes

the inverse operation, ⊗ denotes the Kronecker product, |x| denotes the absolute value of

x, x̄ denotes the complex conjugate of x, E[·] denotes the expectation operation, CN (0, 1)

denotes the complex normal distribution with zero mean and unit variance. diag(x) stands

for a diagonal matrix whose k-th diagonal element is equal to the k-th entry of vector x.

5.2 System Model

In this chapter, as shown in Fig. 5.1, we consider a downlink ANOMA system, including a

single base station (BS) and two users which are equipped with a single antenna. User 1 has

the strong channel while User 2 has the weak channel. We assume that the channel remains
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static within each frame and varies independently from one frame to another. The channel

coefficient between BS and User i is denoted as hi (i = 1, 2) and |h1|2 > |h2|2.

In ANOMA systems, a timing mismatch is intentionally introduced in the superimposed

signal. As shown in Fig. 5.2, the intended timing mismatch between the symbols for Users

1 and 2 is denoted by τT , where T is the symbol length and τ , 0 ≤ τ < 1, is the normalized

timing mismatch. We assume that τ can be perfectly known at users as the downlink control

information. Note that the ANOMA system becomes a synchronous NOMA system when

τ = 0.

Let a1[j] =
√
P1s1[j] and a2[j] =

√
P2s2[j], where si[j] denotes the jth symbol sent to User

i, i = 1, 2, Pi stands for the power allocated to User i. The transmitted signal at BS is given

by

s(t) =
N∑
j=1

a1[j]p(t− jT ) +
N∑
j=1

a2[j]p(t− jT − τT ). (5.1)

where N denotes the number of symbols in a frame, i.e., the frame length, p(·) denotes the

pulse-shaping filter. Without loss of generality, the rectangular pulse shape is adopted, i.e.,

p(t) = 1/
√
T when t ∈ [0, T ] and p(t) = 0 otherwise. Then, the received signal of User i is

given by

yi(t) = his(t) + ni(t). (5.2)

The oversampling technique [6, 31, 7], depicted in Fig. 3.2, is utilized at the receiver to create

extra samples. As shown in Fig. 3.2, the receiver uses the matched filter, sampling at jT

and (j + τ)T , j = 1, · · · , N , to obtain two sample vectors, denoted by [yi,1[1], · · · , yi,1[N ]]T

and [yi,2[1], · · · , yi,2[N ]]T . Specifically, the jth element in the first sample vector of User i is
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given by

yi,1[j] =

∫ ∞
0

yi(t)p(t− jT )dt = hia1[j] + τhia2[j − 1] + (1− τ)hia2[j] + ni,1[j], (5.3)

where ni,1[j] =
∫∞

0
ni(t)p(t−jT )dt denotes the additive noise. The jth element in the second

sample vector is given by

yi,2[j] =

∫ ∞
0

yi(t)p(t− jT − τT )dt = hia2[j] + τhia1[j + 1] + (1− τ)hia1[j] + ni,2[j],

(5.4)

where ni,2[j] =
∫∞

0
ni(t)p(t− jT − τT )dt denotes the additive noise.

Combining (5.3) with (5.4), the received signal at User i is given by

Yi = hi
√
P1RG1S1 + hi

√
P2RG2S2 + Ni (5.5)

where Yi = [yi,1[1] yi,2[1] · · · yi,1[N ] yi,2[N ]]T , G1 and G2 are 2N -by-N matrices given

by G1 = IN ⊗ [1 0]T and G2 = IN ⊗ [0 1]T , Si = [si[1] · · · si[N ]]T (i = 1, 2), Ni =

[ni,1[1] ni,2[1] · · · ni,1[N ] ni,2[N ]]T , and

R =


1 1−τ 0 ··· ··· 0

1−τ 1 τ 0 ··· 0
0 τ 1 1−τ ··· 0
...

... ... ... ...
...

0 ··· 0 τ 1 1−τ
0 ··· ··· 0 1−τ 1

 . (5.6)

Note that multiplying R by Gi outputs a 2N -by-N matrix whose columns are equal to the

odd (if i = 1) or even (if i = 2) columns of R.

We assume that the transmitted symbols are normalized and independent to each other,

such that E
[
SiS

H
i

]
= I. Note that the noise terms in (3.2) and (3.3) are colored due to the
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oversampling, and we have

E
{
ni,1[j]nHi,2[j]

}
=

∫ ∞
0

∫ ∞
0

E
{
ni(t)n

H
i (s)

}
p (t− jT ) p (s− jT − τT ) dtds = 1− τ.

(5.7)

Thus, the covariance matrix of Ni in (5.5) is given by

RNi
= E

{
NiN

H
i

}
= R. (5.8)

5.3 Performance of ANOMA Systems with Imperfect

CSI

In this chapter, we assume that BS can perfectly estimate CSI via uplink channel training.

Then, BS feeds CSI back to users and the users fail to decode the feedback message perfectly.

We model the channel coefficient between BS and User i as

hi = ĥi + εi, (5.9)

where ĥi is the estimated channel coefficient, εi ∼ CN (0, σ2
εi

) denotes the channel estimation

error at User i. We assume that ĥi and εi are uncorrelated to each other.

Substituting (5.9), (5.5) can be rewritten as

Yi = ĥiRPG1S1 + ĥiRPG2S2 + εiRPS + Ni, (5.10)

where S = G1S1 + G2S2.

With stronger channel, User 1 adopts the SIC technique, i.e., first detects User 2’s message,
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removes it, and then detects its own message, which implies that User 2’s message will

be detected at both users. By treating (5.10) as a virtual multiple-input multiple-output

(MIMO) system, the throughput of User i to decode User 2’s message is calculated as

RA
2→i =

1

N + τ
log det

[
I +

(
RNi + |ĥi|2RPG1G

H
1 PHR

+σ2
εi
RPPHR

)−1 |ĥi|2RPG2G
H
2 PHR

]
=

1

N + τ
log det

[
I +

(
I + |ĥi|2PG1G

H
1 PHR

+σ2
εi
PPHR

)−1 |ĥi|2PG2G
H
2 PHR

]
=

1

N+τ
log det

[
I+P

(
|ĥi|2G1G

H
1 +|ĥi|2G2G

H
2 +σ2

εi
I
)

PHR
]

− 1

N + τ
log det

[
I + |ĥi|2PG1G

H
1 PHR + σ2

εi
PPHR

]
(a)
=

1

N + τ
log det

[
I +

(
|ĥi|2 + σ2

εi

)
PPHR

]
− 1

N + τ
log det

[
I + |ĥi|2PG1G

H
1 PHR + σ2

εi
PPHR

]
, (5.11)

where (a) is derived by applying G1G
H
1 + G2G

H
2 = I.

Under the assumption of perfect SIC, the throughput of User 1 to decode its own message

is computed as

RA
1 =

1

N + τ
log det

[
I +

(
RN + σ2

ε1
RPPHR

)−1 |ĥ1|2RPG1G1
HPHR

]
=

1

N + τ
log det

[
I + σ2

ε1
PPHR + |ĥ1|2PG1G1

HPHR
]

− 1

N + τ
log det

[
I + σ2

ε1
PPHR

]
(5.12)

According to [65], for ωi 6= 0 (i = 1, 2), we have

1

N + τ
log det [I + ΩR]
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=
N

N + τ
log (ω1ω2) +

1

N + τ
log

[
rN+1

1 − rN+1
2

]
+ τ 2

[
rN1 − rN2

]
r1 − r2︸ ︷︷ ︸

4
=φ(ω1,ω2,τ)

, (5.13)

where

Ω =diag (ω1, ω2, · · · , ω1, ω2) , Q = 2τ(1− τ), (5.14)

r1 =
ω−1

1 +ω−1
2 +ω−1

1 ω−1
2 +Q

2
+

√[
ω−1

1 + ω−1
2 + ω−1

1 ω−1
2 +Q

]2−Q2

2
, (5.15)

r2 =
ω−1

1 +ω−1
2 +ω−1

1 ω−1
2 +Q

2
−

√[
ω−1

1 + ω−1
2 + ω−1

1 ω−1
2 +Q

]2−Q2

2
, (5.16)

and

lim
N→∞

φ(ω1, ω2, τ) = log r1. (5.17)

According to (5.13), we obtain

1

N + τ
log det

[
I +

(
|ĥi|2 + σ2

εi

)
PPHR

]
=

N

N + τ
log (µ1iµ2i) + φ(µ1i, µ2i, τ), (5.18)

1

N + τ
log det

[
I + |ĥi|2PG1G

H
1 PHR + σ2

εi
PPHR

]
(a)
=

1

N + τ
log det

[
I + |ĥi|2P1G1G

H
1 R + σ2

εi
PPHR

]
=

N

N + τ
log (ν1iν2i) + φ(ν1i, ν2i, τ), (5.19)

1

N + τ
log det

[
I + σ2

ε1
PPHR

]
=

N

N + τ
log(ρ1ρ2) + φ(ρ1, ρ2, τ), (5.20)

where (a) is derived by applying PG1G
H
1 PH = P1G1G

H
1 ,

µ1i =P1

(
|ĥi|2 + σ2

εi

)
, µ2i = P2

(
|ĥi|2 + σ2

εi

)
, (5.21)

ν1i =P1

(
|ĥi|2 + σ2

εi

)
, ν2i = P2σ

2
εi
. (5.22)
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ρ1 =P1σ
2
ε1
, ρ2 = P2σ

2
ε1
. (5.23)

Note that µ1i = ν1i and ν21 = ρ2. Applying (5.18), (5.19), and (5.20), we can easily simplify

the matrix expressions for RA
2→i and RA

1 in (5.11) and (5.12), i.e.,

RA
2→i =

N

N + τ
log

(
µ1iµ2i

ν1iν2i

)
+ φ(µ1i, µ2i, τ)− φ(ν1i, ν2i, τ), (5.24)

RA
1 =

N

N + τ
log

(
ν11ν21

ρ1ρ2

)
+ φ(ν11, ν21, τ)− φ(ρ1, ρ2, τ). (5.25)

Note that the throughput expressions for the ANOMA systems with imperfect CSI, i.e.,

(5.24) and (5.25), are consistent with those for the NOMA systems with imperfect CSI. For

example, by setting τ = 0, we obtain the throughput expressions for the NOMA systems

with imperfect CSI, i.e., [62, 66]

RN
2→i = log

1 + µ1i + µ2i

1 + ν1i + ν2i

= log

(
1 +

P2|ĥi|2

1 + (P1 + P2)σ2
εi

+ P1|ĥi|2

)
, (5.26)

RN
1 = log

1 + ν11 + ν21

1 + ρ1 + ρ2

= log

(
1 +

P1|ĥ1|2

1 + (P1 + P2)σ2
ε1

)
. (5.27)

Note that the general expressions for RA
1 and RA

2→i for a finite N , (5.24) and (5.25), are

too complicated to analyze. In addition, the frame length in practical systems are relatively

large, e.g., N ≈ 156 in global system for mobile communications (GSM). As a result, we

analyze throughputs in ANOMA systems for the asymptotic case of N → ∞. Applying

(5.17), we have

RA
2→i,∞

4
= lim

N→∞
RA

2→i = log
1 +Q µ1iµ2i

µ1i+µ2i+1
+
√

1 + 2Q µ1iµ2i
µ1i+µ2i+1

1 +Q ν1iν2i
ν1i+ν2i+1

+
√

1 + 2Q ν1iν2i
ν1i+ν2i+1

+ log
1 + µ1i + µ2i

1 + ν1i + ν2i

,

(5.28)

95



RA
1,∞

4
= lim

N→∞
RA

1 = log
1 +Q ν11ν21

ν11+ν21+1
+
√

1 + 2Q ν11ν21
ν11+ν21+1

1 +Q ρ1ρ2
ρ1+ρ2+1

+
√

1 +2Q ρ1ρ2
ρ1+ρ2+1

+ log
1 + ν11 + ν21

1 + ρ1 + ρ2

.

(5.29)

To compare the throughputs of ANOMA and NOMA systems, we derive the following the-

orem.

Theorem 5.1. For the asymptotic case of infinite frame length, the users in ANOMA sys-

tems can achieve higher throughputs compared with those in NOMA systems, i.e.,

RA
2→i,∞ > RN

2→i, (5.30)

RA
1,∞ > RN

1 . (5.31)

Proof. See Appendix C.1.

Based on (5.28) and (5.29), the optimal timing mismatch can be obtained to maximize the

individual throughput, which is shown in the following theorem.

Theorem 5.2. As the frame length goes to infinity, the optimal timing mismatch to maximize

the individual throughputs in ANOMA systems converges to half of the frame length, i.e.,

argτ maxRA
2→i,∞ = 0.5, (5.32)

argτ maxRA
1,∞ = 0.5. (5.33)

Proof. See Appendix C.2.

Note that Theorem 5.2 is consistent with the results provided in [48] (the uplink ANOMA

system with perfect CSI) and [65] (the cooperative ANOMA system with perfect CSI). In

other words, the availability of perfect CSI does not affect the optimal timing mismatch.
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5.4 Outage Performance of ANOMA Systems

Due to the fact that only the imperfect CSI is available at the user side, the outage event

may happen. Since SIC is employed at User 1, the outage event happens at User 1 if it

cannot detect either User 2’s message or its own message. Thus, the outage probability of

User 1 is computed as

PN
out,1

4
=1− P

{
RN

2→1 > C2, R
N
1 > C1

} (a)

≥ 1− P
{
RA

2→1,∞ > C2, R
A
1,∞ > C1

} 4
= PA

out,1,∞.

(5.34)

where (a) is derived by applying Theorem 5.1 and C1 and C2 are the target throughput for

User 1 and 2, respectively. Similarly, the outage event happens if User 2 cannot detect its

own message, i.e.,

PN
out,2

4
=P

{
RN

2→2 < C2

}
≥ P

{
RA

2→2,∞ < C2

} 4
= PA

out,2,∞. (5.35)

We note from (5.34) and (5.35) that with a sufficiently large frame length, the ANOMA

systems can achieve lower outage probability compared with the NOMA systems. We will

show in the simulation results section that the condition of “sufficiently large frame length”

can be satisfied with a reasonable finite N . Besides, maximizing RA
2→2,∞ and RA

1,∞ are

equivalent to minimizing the outage probabilities. Therefore, Theorem 5.2 still applies when

minimizing PA
out,1,∞ and PA

out,2,∞, i.e., the optimal timing mismatch to minimize the outage

probability is half of the frame length for the infinite frame length.
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5.5 Numerical and Simulation Results

In this section, we provide numerical and simulation results to compare the performances

of ANOMA and NOMA systems. Note that RA
2→1 and RA

2→2 given by (5.11) only differs in

the channel coefficients. Hence, for the sake of brevity, we only present the results of RA
2→1

and compare it with RN
2→1 in Figs. 5.3, 5.4, and 5.5. The conclusions drawn from RA

2→1 and

RN
2→1 also apply to RA

2→2 and RN
2→2.

At first, we compare the throughput performances of ANOMA and NOMA systems as the

function of the estimated channel gain in Fig. 5.3. The curves “ANOMA, matrix expression”

are calculated according to (5.11) and (5.12) while the curves “ANOMA, scalar expression”

are computed by applying (5.24) and (5.25). In Fig. 5.3, it is shown that the throughputs

calculated by the matrix expression completely align with those by the scalar expression,

which verifies the correctness of (5.24) and (5.25). Besides, for both R2→1 and R1, the
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throughputs in the ANOMA systems are larger than those in the NOMA systems.

Second, we show how the throughouts in the ANOMA systems change with the frame length

in Fig. 5.4. The curves “ANOMA, asympototic value” are calculated by (5.28) and (5.29). In

Fig. 5.4, it is demonstrated that the actual throughputs steadily converge to the asymptotic

ones in ANOMA systems. In addition, for a relatively large frame length, e.g., N > 20, the

ANOMA systems outperform the NOMA systems in terms of the throughput, which verifies

Theorem 5.1.

Furthermore, we study the throughputs in the ANOMA systems as a function of the normal-

ized timing mismatch τ for the asymptotic case of N →∞ in Fig. 5.5. It is shown that for

both R2→1 and R1, the optimal normalized timing mismatch to maximize the throughput is

0.5, which verifies Theorem 5.2.
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At last, we simulate and compare the outage probabilities of ANOMA and NOMA systems

with imperfect CSI in Fig. 5.6. It is shown that the outage probability increases with the

variance of channel estimation error. Besides, for both Users 1 and 2, the ANOMA systems

can achieve a lower outage probability compared with the NOMA systems.

5.6 Conclusion

In this chapter, the downlink ANOMA systems with imperfect CSI are studied. We conclude

that with the channel estimation error, the ANOMA systems outperform the NOMA systems

in terms of outage probability. In addition, we also discover that with imperfect CSI, the

optimal timing mismatch converges to half of a single symbol length, which is consistent

with the ANOMA systems with perfect CSI.
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Chapter 6

Downlink Asynchronous

Non-Orthogonal Multiple Access with

Limited Feedback

6.1 Introduction

The channel state information (CSI) plays a critical role in optimizing the system per-

formance. At the receiver side, CSI is utilized to perform the coherent detection which

improves the signal estimation performance. More importantly, the CSI at the transmitter

side is employed to conduct the adaptive power/rate allocation and generate the beamform-

ing vectors in multiple-input multiple-output (MIMO) systems. In time-division duplexing

(TDD) systems, the channel reciprocity is exploited by the base station (BS) to utilize the

CSI estimated via the uplink training. In frequency-division duplexing (FDD) systems, a

prevailing technique is using the limited feedback from users. The NOMA with limited feed-

back has been studied in the existing literature, for example, the one-bit feedback scheme
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in the massive MIMO NOMA systems [67] and the multi-user single antenna systems [68],

and the scalar quantizer design in downlink power-domain NOMA [2]. To the best of our

knowledge, the analysis of limited feedback schemes in ANOMA systems and the optimal

quantizer design for NOMA/ANOMA are still absent. In fact, the limited feedback design

in NOMA/ANOMA systems is more challenging compared with that in the orthogonal mul-

tiple access (OMA) scenario, e.g., in [69]. It is because the CSI of each user not only affects

its own but also other users’ performance due to the inter-user interference (IUI) ingrained

in the non-orthogonal transmission. In more details, the CSI is used for both allocating

powers and determining the SIC order, which further complicates the rate expressions and

the system design.

In this chapter, we consider a downlink ANOMA system with limited feedback. We employ

the max-min criterion for the power allocation and the scalar quantizer for channel quanti-

zation, respectively. We derive the closed-form expressions for the upper and lower bounds

of the max-min rate. It is manifested that ANOMA can achieve the same or even higher

average max-min rate with a lower feedback rate compared with NOMA. Moreover, we pro-

pose a quantizer optimization method which applies to both NOMA and ANOMA systems.

A gradient descent algorithm is designed to optimize the quantization levels. Simulation re-

sults show that a higher average max-min rate is achieved by using the optimized quantizer

compared with the conventional uniform quantizer in [2], especially for the low-rate feedback

scenario.
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Figure 6.1: Downlink scenario with limited feedback.
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Figure 6.2: Illustration of the superimposed signal in ANOMA.

6.2 Preliminaries

6.2.1 NOMA and ANOMA

In this chapter, we consider a two-user downlink system shown in Fig. 6.1 where the signals

for Users 1 and 2 are superimposed and then transmitted by the BS. As shown in Fig. 6.2,

a timing mismatch of τT is intentionally added between the superimposed signals, where

0 < τ < 1 and T is the symbol interval. Let p(t) represent the pulse shape. The transmitted

signal is given by S1[i]p(t− iT ) +S2[i]p(t− iT − τT ) where Su[i], u = 1, 2, is the ith symbol

transmitted to User u. At the receiver, the composite signal is sampled at iT and (i + τ)T

after matched filtering. This sampling method is called “oversampling” and the details have

already been presented in [48, 65]. For the sake of brevity, we omit it in this work. If τ = 0,

ANOMA degrades to NOMA and the received samples at iT and (i+ τ)T are identical. The

number of received samples is doubled in ANOMA (τ 6= 0) compared with NOMA, which

then results in sampling diversity [48, 65, 50].
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We assume that Users 1 and 2 denote the strong and weak users, respectively, i.e., |h1|2 >

|h2|2. User 1 employs SIC, i.e., first detects the messages for User 2, removes it, and then

detects its own message. As shown in [65], for a relatively large block length and the

rectangular pulse shape, the rates of Users 1 and 2 with perfect CSI are given by

Rstrong(H1) = log2 (1+αPH1) , (6.1)

Rweak(H2) = log2

(
1 + PH2 + α(1− α)P 2H2

2Q

2(1 + αPH2)

+

√
[1 + PH2 + α(1− α)P 2H2

2Q]2 − α2(1− α)2P 4H4
2Q

2

2(1 + αPH2)

)
. (6.2)

where Hi = |hi|2 is the channel gain of User i, Q = 2τ(1− τ), P is the total transmit power

of BS, α ∈ (0, 1) is the power coefficient for the strong user (User 1 in this case), i.e., the

powers allocated to Users 1 and 2 are αP and (1−α)P , respectively. Note that NOMA can

be considered as a special case of ANOMA, simply by setting τ = 0 in (6.1) and (6.2). It

has been shown that Rweak in ANOMA is higher than that in NOMA while Rstrong is the

same for ANOMA and NOMA [65].

6.2.2 Limited Feedback

q0 q1 qN-2 qN-1

x0 x1

Figure 6.3: Illustration of a scalar quantizer.

In this chapter, we assume that CSI is perfectly estimated by users and fed back to the BS

via an error and delay-free link. For example, in Fig. 6.1, User 1 knows h1 and quantizes

the channel gain H1 as H̃1 = q(|h1|2) using a scalar quantizer q, and then sends it back to

the BS. The BS determines the power coefficient α and the order of SIC according to the
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feedback. If H̃1 > H̃2 (H̃1 < H̃2), User 1 (User 2) is notified to conduct SIC. If H̃1 = H̃2,

BS can randomly assign one user to utilize SIC. Without loss of generality, we assume that

User 1 will be notified to conduct SIC if H̃1 = H̃2.

As shown in Fig. 6.3, we employ a scalar quantizer with N = 2b quantization levels,

q0, · · · , qN−1, where b is the number of bits used in a quantization codeword. b is also

defined as the feedback rate per user. The quantized value for a given x is calculated by

q(x) =

 qi, qi ≤ x < qi+1, i = 0, · · · , N − 2,

qN−1, x ≥ qN−1.
(6.3)

For example, in Fig. 6.3, x0 and x1 are quantized as q0 and qN−1, respectively. In this work,

the quantizer is used to quantize the positive channel gain. Thus, we set q0 = 0.

The BS transmits the signals to users based on the rates which are calculated according

to the quantized channel gains. For example, if H̃1 > H̃2, the BS transmits to User 1

with the rate of Rstrong(H̃1) while the actual channel capacity is Rstrong(H1). Note that the

proposed quantizer is designed to satisfy q(x) ≤ q in order to avoid outage, i.e, to guarantee

that the transmission rates do not exceed the channel capacities. It is trivial to derive

that Rstrong(H̃1) ≤ Rstrong(H1) if H̃1 ≤ H1 and Rweak(H̃2) ≤ Rweak(H2) if H̃2 ≤ H2, which

indicates that the quantizer in (6.3) avoids outage.

6.3 Power Allocation

To attain fairness among users, we employ the max-min criterion for the power allocation,

i.e., the power is allocated to users such that the minimum rate is maximized. The optimal
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power coefficient α∗ is given by

α∗ = arg
α

max min {Rstrong, Rweak} . (6.4)

According to (6.1) and (6.2), it is trivial to show that Rstrong is an increasing function of α

and Rweak is a decreasing function of α. Intuitively, if User 1 is the strong user, by increasing

α (i.e., allocating more power to User 1 and less power to User 2), Rstrong increases and Rweak

decreases, and vice versa. As a result, the optimal power coefficient α∗ can be obtained by

solving Rstrong = Rweak. According to [2], the optimal α in NOMA is given by

α∗N =
2H̃min√

(H̃1+H̃2)2+4PH̃1H̃2H̃min+H̃1+H̃2

, (6.5)

where H̃min = min
{
H̃1, H̃2

}
is defined to incorporate the rate expressions for both H̃1 ≥ H̃2

and H̃1 < H̃2. If User 1 employs SIC, the max-min rate of NOMA is given by log
(

1 + α∗NPH̃1

)
according to (6.1). If User 2 employs SIC, the max-min rate is given by log

(
1 + α∗NPH̃2

)
. To

summarize, the max-min rate of NOMA is expressed by R∗N(H̃1, H̃2) = log
(

1 + α∗NPH̃max

)
where H̃max = max

{
H̃1, H̃2

}
.

The optimal power coefficient for ANOMA, α∗A, is presented in the following theorem.

Theorem 6.1. The optimal power coefficients of NOMA and ANOMA, α∗N and α∗A, respec-

tively, satisfy the following inequality

α∗N ≤ α∗A(0.5) ≤ α∗A ≤ α∗A(1), (6.6)
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where the equal sign is achieved when τ = 0. The expression for α∗A(x) is given by.

α∗A(x)=
2H̃min√

(H̃1+H̃2 − xPH̃2
minQ)2+4H̃min(PH̃1H̃2+xPH̃2

minQ)+H̃1+H̃2−xPH̃2
minQ

.

(6.7)

Proof. See Appendix D.1.

Compared with (6.5), (6.7) introduces an extra term xPH̃2
minQ. By setting τ = 0, Q = 0

and then (6.7) coincides with (6.5). The max-min rate of ANOMA is given by R∗A(H̃1, H̃2) =

log
(

1 + α∗APH̃max

)
∈
[
log
(

1 + α∗A(0.5)PH̃max

)
, log

(
1 + α∗A(1)PH̃max

)]
.

The average max-min rate is expressed by

E [R∗] =

N1−1∑
i=0

N2−1∑
j=0

∫ qi+1,1

qi,1

∫ qj+1,2

qj,2

R∗(qi,1, qj,2)f1(H1)f2(H2)dH1dH2, (6.8)

where fi(Hi) is the distribution function of User i’s channel gain, qj,i represents the jth

quantization level of the quantizer used by User i, and R∗ can be R∗N or R∗A. Note that the

average max-min rate for the limited feedback is upper bounded by that for the full-CSI

case, i.e.,

E [R∗]<R
∗ 4
=

∫ ∞
0

∫ ∞
0

R∗(H1,H2)f1(H1)f2(H2)dH1dH2. (6.9)

Let us define the quantization distortion as D [R∗] = R
∗ − E [R∗].

Corollary 6.1. ANOMA can achieve the average max-min rate of NOMA with a lower

feedback rate.

Proof. Let us define q and q′ as two quantizers which can be given by (6.3) but with different

quantization levels. According to Theorem 6.1, ANOMA achieves a higher max-min rate
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compared with NOMA. Thus, R
∗
N < R

∗
A and E [R∗N] < E [R∗A] by using the quantizer q. The

quantizer q′ is designed such that the ANOMA using q′ achieves the same average max-min

rate as the NOMA using q, i.e., E [R∗A]′ = E [R∗N] < E [R∗A]. For ANOMA, using the quantizer

q′ results in a higher distortion compared with using q, i.e., D [R∗A]′ = R
∗
A − E [R∗A]′ >

D [R∗A] = R
∗
A − E [R∗A]. According to the rate-distortion theory, there is a trade-off between

the distortion and the quantization rate (equivalent to the feedback rate in this work). A

lower distortion can be achieved by using a quantizer with a higher feedback rate and vice

versa. As a result, the quantizer q′ can have a lower feedback rate compared with q. ANOMA

using q′ can achieve a lower feedback rate while keeping the same average max-min rate as

NOMA using q. The proof is complete.

6.4 Scalar Quantizer Optimization

The scalar quantizer shown in (6.3) is completely characterized by the quantization levels.

Our goal is to optimize the quantization levels to maximize the average max-min rate E [R∗],

i.e.,

[q∗1,q
∗
2] = arg

[q1,q2]

maxE [R∗] ,

s.t. q0,i < q2,i < · · · < qNi−1,i, i = 1 or 2. (6.10)

Since R
∗

is not a function of quantization levels, (6.10) is equivalent to minimizing the

distortion D[R∗]. In what follows, we propose a gradient descent algorithm to optimize the

quantization levels. Let E [R∗]i,j denote the (i, j)th term of E [R∗] in (6.8), i.e., E [R∗]i,j =

R∗(qi,1, qj,2)
∫ qi+1,1

qi,1

∫ qj+1,2

qj,2
f1(H1)f2(H2)dH1dH2. E [R∗]i,j is a function of qi,1, qi+1,1, qj,2, and
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qj+1,2. The gradients of E [R∗]i,j in terms of qi,1 and qi+1,1 are calculated by

∂E [R∗]i,j
∂qi,1

=

[
∂R∗(qi,1, qj,2)

∂qi,1

∫ qi+1,1

qi,1

f1(H1)dH1 −R∗(qi,1, qj,2)f1(qi,1)

]∫ qj+1,2

qj,2

f2(H2)dH2,

(6.11)

∂E [R∗]i,j
∂qi+1,1

=R∗(qi,1, qj,2)f1(qi+1,1)

∫ qj+1,2

qj,2

f2(H2)dH2, (6.12)

respectively. Similarly, we can derive
∂E[R∗]i,j
∂qj,2

and
∂E[R∗]i,j
∂qj+1,2

. Based on the gradients, we

propose the quantizer optimization algorithm in Algorithm 2. At each iteration, E [R∗] does

not decrease which is guaranteed by the gradient descent. Besides, E [R∗] is upper bounded

by a constant as shown in (6.9). Hence, Algorithm 2 converges as the number of iterations

increases.

Algorithm 2 Algorithm to optimize the scalar quantizer.

1: Initialize the step size ∆, the maximum number of iterations Imax, the number of quan-
tization levels for User 1 N1 and that for User 2 N2, the iteration count I = 0.

2: Initialize the quantization levels q1 = [0, q1,1, · · · , qN1−1,1,∞], q2 =
[0, q1,2, · · · , qN2−1,2,∞]

3: while I < Imax do
4: Initialize ER = 0, dq1 = [0, · · · , 0]1×(N1+1), dq2 = [0, · · · , 0]1×(N2+1).
5: for i = 2, · · · , N1 do
6: for j = 2, · · · , N2 do

7: ER = ER +R∗(q1[i], q2[j])
∫ q1[i+1]

q1[i]

∫ q2[j+1]

q2[j]
·f1(H1)f2(H2)dH1dH2.

8: dq1[i] = dq1[i] +
∂E[R∗]i,j
∂qi,1

.

9: dq2[j] = dq2[j] +
∂E[R∗]i,j
∂qj,2

.

10: if i 6= N1 then

11: dq1[i+ 1] = dq1[i+ 1] +
∂E[R∗]i,j
∂qi+1,1

.

12: end if
13: if j 6= N2 then

14: dq2[j + 1] = dq2[j + 1] +
∂E[R∗]i,j
∂qj+1,2

.

15: end if
16: end for
17: end for
18: q1 = q1 + ∆ ∗ dq1, q2 = q2 + ∆ ∗ dq2, I = I + 1.
19: end while
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The computation complexity of Algorithm 2 is O(N1N2) where N1 and N2 are the number of

quantization levels for Users 1 and 2, respectively. Furthermore, the maximum quantization

level of the conventional uniform quantizer is set manually according to certain criterion.

For example, in [2], the maximum quantization level is determined by considering the quan-

tization loss. The advantage of optimizing the quantization levels is that the maximum

quantization level can also be optimized using Algorithm 2 with no manual intervention,

which will be shown in the next section.

6.5 Simulation Results
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Figure 6.4: The average max-min rate vs. the number of feedback bits per channel for NOMA and
ANOMA systems.

In this section, we present simulation results for NOMA/ANOMA systems with limited

feedback. In our simulations, we employ the complex Gaussian channel model. Therefore,

the channel gain follows the exponential distribution. We assume that H1 ∼ Exp(0.5) and
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H2 ∼ Exp(1). We set the total transmit power of the BS P = 10. For comparison, we

employ the uniform quantizer proposed in [2] where the maximum quantization level T is

derived by solving T = 1
λ∆

log
(

1
∆

)
, λ is the parameter of the exponential distribution, and

∆ is the quantization bin width.
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Figure 6.5: The average max-min rate vs. the iteration count for NOMA systems.

Fig. 6.4 shows how the average max-min rate changes as a function of the number of feedback

bits per user using the uniform quantizer. As the number of feedback bits increases, the

average max-min rate converges to the full-CSI rate calculated by (6.9). Besides, using the

same number of feedback bits, the upper bound of the max-min rate for ANOMA is always

higher than its lower bound, which is then higher than that for NOMA. Equivalently, to

achieve the same or even higher average max-min rate, ANOMA needs less feedback bits

compared with NOMA, which verifies Corollary 6.1.

Fig. 6.5 shows how the average max-min rate in NOMA systems changes as the quantizer

optimization algorithm runs. As the number of iterations increases, the average max-min
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Figure 6.6: The quantization levels for NOMA and ANOMA systems when 3 bits are used to
quantize the channel gain.

rate converges. The quantizer with a higher feedback rate achieves a higher average max-min

rate. Moreover, the rate gap between the optimized quantizer and the uniform quantizer

shrinks if a higher feedback rate is used. Similar results hold for ANOMA although for the

sake of brevity, we skip the corresponding figure.

Fig. 6.6 presents the optimal quantization levels when 3 bits (i.e., 23 = 8 quantization levels)

are used. First, it is shown that the optimal quantization levels are non-uniform. The range

of the quantization levels for User 1 with a larger mean channel gain is wider than that of

User 2. Furthermore, the quantization levels optimized using the upper and lower bounds

of the max-min rate for ANOMA are very similar to each other and also close to those for

NOMA.
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6.6 Conclusion

In this chapter, we considered a downlink ANOMA system with limited feedback. We

reveal the advantage of ANOMA over NOMA in terms of the feedback rate. Furthermore,

the quantizer optimization method is proposed for both ANOMA and NOMA to further

improve the average max-min rate.
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Chapter 7

Conclusions and Future Work

In this dissertation, we thoroughly studied the ANOMA systems and demonstrated the ben-

efits of applying ANOMA compared with the conventional NOMA systems. It is manifested

that ANOMA outperforms NOMA in terms of the throughput performance, the outage

probability, the power consumption, and the feedback rate. Besides, the optimal designs of

ANOMA systems are provided, including the optimal timing mismatch in the two-user sys-

tem, the optimal power allocation, and the optimal scalar quantizer in the limited feedback

scheme.

While this dissertation mainly focuses on two-user scenarios, the ANOMA scheme can be

extended to the multi-user (more than 2 users) scenario. In a K-user scenario, the BS

should use K samples per symbol length, each aligned with one of the users to obtain

sampling diversity. The study of ANOMA in a more than two-user scenario is an interesting

future work. It is also an interesting problem to study the ANOMA in a multicell scenario.

Besides, it is worthwhile extending the considered ANOMA into the OFDM systems, since

current wireless communication systems are often based on the OFDM technique. For OFDM

systems, one can introduce the frequency-domain asynchrony instead of the time-domain
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asynchrony and apply similar ideas to design ANOMA OFDM schemes. Moreover, a further

analysis on the bit error rate performance of the ANOMA systems can be a good future

work.
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Appendix A

Supplementary Proofs for Chapter 3

A.1 Proof of Theorem 3.1

Proof. According to (3.14), we can rewrite det
(
I2N + HHHR

)
as

det
(
I2N + HHHR

)
= det

(
HHH

)
det
(
(HHH)−1 + R

)
=
(
P1|h1|2

)N (
P2|h2|2

)N
det
(
(HHH)−1 + R

)
. (A.1)

According to (3.8) and (3.9), (HHH)−1 + R is a 2N × 2N matrix calculated by (A.2) at the

bottom of this page.

For simplicity of presentation, we define µ1 = P1|h1|2, µ2 = P2|h2|2, and dm in (A.3) at the

bottom of this page.
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(HHH)−1 + R =



1+(P1|h1|2)
−1

1−τ 0 ··· ··· 0

1−τ 1+(P2|h2|2)
−1

τ 0 ··· 0

...
... ... ... ...

...
0 ··· 1−τ 1+(P2|h2|2)

−1
τ 0

0 ··· 0 τ 1+(P1|h1|2)
−1

1−τ

0 ··· ··· 0 1−τ 1+(P2|h2|2)
−1

 .

(A.2)

dm =



det




1+µ−1
1 1−τ 0 ··· ··· 0

1−τ 1+µ−1
2 τ 0 ··· 0

...
... ... ... ...

...
0 ··· 1−τ 1+µ−1

2 τ 0

0 ··· 0 τ 1+µ−1
1 1−τ

0 ··· ··· 0 1−τ 1+µ−1
2


m×m

 , if m is even,

det




1+µ−1
1 0 1−τ ··· ··· 0

1−τ 1+µ−1
2 τ 0 ··· 0

...
... ... ... ...

...
0 ··· τ 1+µ−1

1 1−τ 0

0 ··· 0 1−τ 1+µ−1
2 τ

0 ··· ··· 0 τ 1+µ−1
1


m×m

 , if m is odd.

(A.3)

Thus, det
(
(HHH)−1 + R

)
= d2N .

By the method of cofactor expansion [70], the determinant of det
(
(HHH)−1 + R

)
can be

expressed as a weighted sum of the determinants of its minors. The minor Mi,j is defined as

the determinant of the matrix that results from (HHH)−1 + R by removing the ith row and

the jth column. Then, we have

d2N =
2N∑
j=1

(−1)2N+ja2N,jM2N,j

=(−1)2N+2N
(
1+µ−1

2

)
det




1+µ−1
1 1−τ ··· ··· 0

1−τ 1+µ−1
2 τ ··· 0

...
... ... ...

...
0 ··· 1−τ 1+µ−1

2 τ

0 ··· 0 τ 1+µ−1
1


(2N−1)×(2N−1)


︸ ︷︷ ︸

d2N−1
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+ (−1)2N+2N−1(1− τ) det




1+µ−1
1 1−τ ··· ··· 0

1−τ 1+µ−1
2 τ ··· 0

...
... ... ...

...
0 ··· 1−τ 1+µ−1

2 0
0 ··· 0 τ 1−τ


(2N−1)×(2N−1)


=
(
1 + µ−1

2

)
d2N−1 − (1− τ)2(−1)4N−2

· det




1+µ−1
1 1−τ 0 ··· ··· 0

1−τ 1+µ−1
2 τ 0 ··· 0

...
... ... ... ...

...
0 ··· 1−τ 1+µ−1

2 τ 0

0 ··· 0 τ 1+µ−1
1 1−τ

0 ··· ··· 0 1−τ 1+µ−1
2


(2N−2)×(2N−2)


︸ ︷︷ ︸

d2N−2

=
(
1 + µ−1

2

)
d2N−1 − (1− τ)2d2N−2, (A.4)

where N ≥ 2 and ai,j denotes the element of the matrix (HHH)−1 + R at the ith row and

the jth column. Similarly, we can also write the recursive formula for d2N−1 as

d2N−1 = (1 + µ−1
1 )d2N−2 − τ 2d2N−3. (A.5)

From (A.4) and (A.5), we obtain

d2N =
[
µ−1

1 + µ−1
2 + µ−1

1 µ−1
2 + 2τ(1− τ)

]
d2N−2 − τ 2(1− τ)2d2N−4. (A.6)

To formalize (A.6) as the recursion formula of a geometric progression, (A.6) can be rewritten

as

d2N − r1d2N−2 = r2(d2N−2 − r1d2N−4), (A.7)

d2N − r2d2N−2 = r1(d2N−2 − r2d2N−4), (A.8)
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where

r1 =
µ−1

1 +µ−1
2 +µ−1

1 µ−1
2 +2τ(1− τ)

2

+

√[
µ−1

1 + µ−1
2 + µ−1

1 µ−1
2 + 2τ(1− τ)

]2−4τ 2(1− τ)2

2
, (A.9)

r2 =
µ−1

1 +µ−1
2 +µ−1

1 µ−1
2 +2τ(1− τ)

2

−

√[
µ−1

1 + µ−1
2 + µ−1

1 µ−1
2 + 2τ(1− τ)

]2−4τ 2(1− τ)2

2
. (A.10)

Since µ1 > 0, µ2 > 0, and τ ∈ [0, 1), we note that the part under the square root symbol in

(A.9) and (A.10) is always positive, such that

[
µ−1

1 + µ−1
2 + µ−1

1 µ−1
2 + 2τ(1− τ)

]2 − 4τ 2(1− τ)2

=
[
µ−1

1 + µ−1
2 + µ−1

1 µ−1
2 + 4τ(1− τ)

] [
µ−1

1 + µ−1
2 + µ−1

1 µ−1
2

]
> 0. (A.11)

From (A.7) and (A.8), we obtain

d2N − r1d2N−2 = rN−1
2 (d2 − r1d0), (A.12)

d2N − r2d2N−2 = rN−1
1 (d2 − r2d0). (A.13)

Solving d2N from the equation group constituted by (A.12) and (A.13), we derive

d2N =
rN1 (d2 − r2d0)− rN2 (d2 − r1d0)

r1 − r2

. (A.14)
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Substituting d0 = 1 and

d2 =

1 + µ−1
1 1− τ

1− τ 1 + µ−1
2

 =
(
1 + µ−1

1

) (
1 + µ−1

2

)
− (1− τ)2 = r1 + r2 + τ 2 (A.15)

into (A.14), we have

d2N =
(rN+1

1 − rN+1
2 ) + τ 2(rN1 − rN2 )

r1 − r2

. (A.16)

Finally, based on (A.1) and (A.16), we obtain the throughput as

RANOMA =
1

N + τ
log

(rN+1
1 − rN+1

2 ) + τ 2(rN1 − rN2 )

r1 − r2

+
N

N + τ
log (µ1µ2) . (A.17)

This completes the proof.

A.2 Proof of Corollary 3.1

Proof. Note that µ1, µ2, r1, r2, and τ are all independent of N . We then have

lim
N→∞

RANOMA = lim
N→∞

N

N + τ
log(µ1µ2)

+ lim
N→∞

log
[
(rN+1

1 −rN+1
2 ) + τ 2(rN1 − rN2 )

]
− log(r1 − r2)

N + τ

(a)
= log(µ1µ2)+ lim

N→∞

(rN+1
1 log r1−rN+1

2 log r2)+τ 2(rN1 log r1−rN2 log r2)

(rN+1
1 −rN+1

2 ) + τ 2(rN1 − rN2 )

(b)
= log(µ1µ2) + lim

N→∞

(r1α
N log r1 − r2 log r2) + τ 2(αN log r1 − log r2)

(r1αN − r2) + τ 2(αN − 1)

= log(µ1µ2) + lim
N→∞

αN(r1 + τ 2) log r1 − (r2 + τ 2) log r2

αN(r1 + τ 2)− (r2 + τ 2)

(c)
= log (µ1µ2r1) , (A.18)
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where α = r1/r2, (a) is derived by applying L’Hospital’s rule, (b) is derived by dividing

both the numerator and the denominator by rN2 , and (c) is obtained from the facts that

r1 > r2 > 0 and α > 1 according to (3.17) and (3.18). This completes the proof.

A.3 Proof of Theorem 3.2

Proof. The expressions for limN→∞R
ANOMA and RNOMA are given by

lim
N→∞

RANOMA = log (µ1µ2r1)

= log

{
1 + µ1 + µ2 + µ1µ2(2τ − 2τ 2)

2

+

√
(1 + µ1 + µ2)2 + 2 (1 + µ1 + µ2)µ1µ2(2τ − 2τ 2)

2

 (A.19)

and RNOMA = log(1 + µ1 + µ2), respectively.

If τ = 0, it is easy to find that limN→∞R
ANOMA = log(1 + µ1 + µ2) = RNOMA.

If τ 6= 0, i.e., τ ∈ (0, 1), we have 2τ −2τ 2 > 0. According to (A.19), since µ1 > 0 and µ2 > 0,

we obtain

lim
N→∞

RANOMA = log

{
1 + µ1 + µ2 + µ1µ2(2τ − 2τ 2)

2

+

√
(1 + µ1 + µ2)2 + 2 (1 + µ1 + µ2)µ1µ2(2τ − 2τ 2)

2


> log

1 + µ1 + µ2

2
+

√
(1 + µ1 + µ2)2

2

 = RNOMA. (A.20)

Until now, we have proved limN→∞R
ANOMA = RNOMA if τ = 0 and limN→∞R

ANOMA >
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RNOMA if τ 6= 0. Next, we need to prove τ = 0 if limN→∞R
ANOMA = RNOMA.

If limN→∞R
ANOMA = RNOMA, we have limN→∞R

ANOMA = log(µ1µ2r1) = log(1 +µ1 +µ2) =

RNOMA.

After simplifications, we have

√
(1+µ1+µ2)2+2 (1+µ1+µ2)µ1µ2(2τ − 2τ 2) = 1+µ1+µ2−µ1µ2(2τ − 2τ 2). (A.21)

Note that (A.21) holds only if the right side of (A.21) is non-negative, i.e.,

1 + µ1 + µ2 − µ1µ2(2τ − 2τ 2) ≥ 0. (A.22)

Squaring both sides of the equal sign in (A.21), we obtain

4(1 + µ1 + µ2)(2τ − 2τ 2) = µ1µ2(2τ − 2τ 2)2. (A.23)

Then, (A.23) holds if 2τ − 2τ 2 = 0 or 4(1 + µ1 + µ2) = µ1µ2(2τ − 2τ 2). It is easy to prove

that 4(1 + µ1 + µ2) = µ1µ2(2τ − 2τ 2) contradicts (A.22). As a result, (A.23) holds only if

2τ − 2τ 2 = 0 which then leads to τ = 0.

Therefore, limN→∞R
ANOMA ≥ RNOMA is always true and the equal sign is achieved if and

only if τ = 0. This completes the proof.
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A.4 Proof of Theorem 3.3

Proof. From Theorem 3.1, we have

RANOMA =
N

N + τ
log (µ1µ2) +

1

N + τ
log

(rN+1
1 − rN+1

2 ) + τ 2(rN1 − rN2 )

r1 − r2

(a)
=

N

N + τ
log (µ1µ2) +

1

N + τ
log

[
N∑
i=0

ri1r
N−i
2 + τ 2

N−1∑
i=0

ri1r
N−1−i
2

]

=
1

N + τ
log

[
N∑
i=0

µN1 µ
N
2 r

i
1r
N−i
2 + τ 2

N−1∑
i=0

µN1 µ
N
2 r

i
1r
N−1−i
2

]

=
1

N + τ
log

[
N∑
i=0

(µ1µ2)N−i(µ1µ2r1)irN−i2 + τ 2

N−1∑
i=0

(µ1µ2)N−i(µ1µ2r1)irN−1−i
2

]
,

(A.24)

where (a) is derived by applying aN − bN = (a − b)(
∑N−1

i=0 aibN−1−i). In what follows, we

prove that r2 is a non-decreasing function of µ1 and µ2, and µ1µ2r1 increases as µ1 and µ2

increase, so that RANOMA increases as µ1 and µ2 increase.

From (3.17), we can find that ∂r1
∂µ1

< 0 and ∂r1
∂µ2

< 0. Since r2 = τ 2(1− τ)2/r1, we further find

that

∂r2

∂µ1

=−τ
2(1− τ)2

r2
1

∂r1

∂µ1

≥ 0 and
∂r2

∂µ2

=−τ
2(1− τ)2

r2
1

∂r1

∂µ2

≥ 0. (A.25)

With (3.17), we have

µ1µ2r1 =
1 + µ1 + µ2 + µ1µ2(2τ − 2τ 2)

2

+

√
(1+µ1+µ2)2+2 (1+µ1+µ2)µ1µ2(2τ−2τ 2)

2
. (A.26)
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From (A.26), we can derive that

∂(µ1µ2r1)

∂µ1

> 0 and
∂(µ1µ2r1)

∂µ2

> 0. (A.27)

Based on (A.25) and (A.27), we note that r2 is a non-decreasing function of µ1 and µ2, and

µ1µ2r1 increases as µ1 and µ2 increase. In addition, since µ1, µ2, r2, and µ1µ2r1 are positive,

the term (µ1µ2)j(µ1µ2r1)irM−i2 (i = 0, · · · ,M − 1, j ≥ 0) is an increasing function of µ1 and

µ2 for any positive M . Then, RANOMA is an increasing function of µ1 and µ2 because it is

constituted by a sum of (µ1µ2)j(µ1µ2r1)irM−i2 (i = 0, · · · ,M − 1, j ≥ 0, M > 0). Hence,

maximizing the throughput is equivalent to maximizing µ1 and µ2 simultaneously, which

means that the two users should transmit at full power. This completes the proof.

A.5 Proof of Theorem 3.4

Proof.

τ ∗ = arg max
τ

lim
N→∞

RANOMA = arg max
τ

log (µ1µ2r1)

= arg max
τ

log

{
1 + µ1 + µ2 + µ1µ2(2τ − 2τ 2)

2

+

√
(1 + µ1 + µ2)2 + 2 (1 + µ1 + µ2)µ1µ2(2τ − 2τ 2)

2


(a)
= arg max

τ

[
2τ − 2τ 2

]
= 0.5, (A.28)

where (a) is derived due to the fact that µ1 and µ2 are positive and independent of τ . This

completes the proof.
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Appendix B

Supplementary Proofs for Chapter 4

B.1 Derivation of (4.18) and (4.19)

Substituting G1 and R by their expressions, the matrix determinant term in (4.17) becomes

(B.1), where (a) and (b) are derived by applying the cofactor expansion [70], (c) is derived

by applying the cofactor expansion iteratively. Thus, Eq. (4.19) is obtained.

According to (4.16), we have

RANOMA
2→1 =

1

2N + τ
log det

[
I2N +

(
I2N + P1|h1|2G1G

H
1 R
)−1

P2|h1|2G2G
H
2 R
]

=
1

2N + τ
log det

[(
I2N + P1|h1|2G1G

H
1 R
)−1

·
(
I2N + P1|h1|2G1G

H
1 R + P2|h1|2G2G

H
2 R
)]

=
1

2N+τ
log det

(
I2N+P1|h1|2G1G

H
1 R+P2|h1|2G2G

H
2 R
)

− 1

2N + τ
log det

(
I2N + P1|h1|2G1G

H
1 R
)

(a)
=

1

2N + τ

[
log det (I2N + HR)− log det

(
I2N + P1|h1|2G1G

H
1 R
)]
, (B.2)
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det
(
I2N + P1|h1|2G1G

H
1 R
)

= det


1+P1|h1|2 P1|h1|2(1−τ) 0 ··· ··· 0

0 1 0 0 ··· 0
0 P1|h1|2τ 1+P1|h1|2 P1|h1|2(1−τ) ··· 0

...
... ... ... ...

...
0 ··· 0 1 0 0
0 ··· 0 P1|h1|2τ 1+P1|h1|2 P1|h1|2(1−τ)
0 ··· ··· 0 0 1


2N×2N

(a)
= det


1+P1|h1|2 P1|h1|2(1−τ) 0 ··· ··· 0

0 1 0 0 ··· 0
0 P1|h1|2τ 1+P1|h1|2 P1|h1|2(1−τ) ··· 0

...
... ... ... ...

...
0 ··· 0 0 1 0
0 ··· 0 0 P1|h1|2τ 1+P1|h1|2


(2N−1)×(2N−1)

(b)
=
(
1+P1|h1|2

)
· det


1+P1|h1|2 P1|h1|2(1−τ) 0 ··· ··· 0

0 1 0 0 ··· 0
0 P1|h1|2τ 1+P1|h1|2 P1|h1|2(1−τ) ··· 0

...
... ... ... ...

...
0 ··· 0 P1|h1|2τ 1+P1|h1|2 P1|h1|2(1−τ)
0 ··· ··· 0 0 1


(2N−2)×(2N−2)

= · · · (c)
= (1 + P1|h1|2)N . (B.1)

where (a) is derived because GiG
H
i is a 2N -by-2N matrix whose odd (if i = 1) or even (if i =

2) diagonal elements are 1 and all the others are 0, and H = |h1|2 ·diag ([P1, P2, · · · , P1, P2]).

According to Theorem 1 in [48], the term log det (I2N + HR) in (B.2) can be written as

log det (I2N + HR) = N log (µ1µ2) + log

(
rN+1

1 − rN+1
2

)
+ τ 2

(
rN1 − rN2

)
r1 − r2

, (B.3)

where µ1 = P1|h1|2, µ2 = P2|h1|2, Q = 2τ(1− τ),

r1 =
µ−1

1 +µ−1
2 +µ−1

1 µ−1
2 +Q+

√[
µ−1

1 + µ−1
2 + µ−1

1 µ−1
2 +Q

]2−Q2

2
, (B.4)

r2 =
µ−1

1 +µ−1
2 +µ−1

1 µ−1
2 +Q−

√[
µ−1

1 + µ−1
2 + µ−1

1 µ−1
2 +Q

]2−Q2

2
. (B.5)

Thus, Eq. (4.18) can be easily derived according to (B.1) and (B.3).
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B.2 Proof of Theorem 4.1

Proof. According to Corollary 1 in [48], we have

lim
N→∞

1

N + τ
log

(
rN+1

1 − rN+1
2

)
+ τ 2

(
rN1 − rN2

)
r1 − r2

= log r1. (B.6)

As a result, the combining throughput of User 2 for N →∞ is calculated as

RANOMA
2,asymp =

1

2
log

(
µ1µ2r1

1 + µ1

)

=
1

2
log

1+µ1+µ2 + µ1µ2Q+
√

(1 + µ1+µ2)2+2 (1 + µ1 + µ2)µ1µ2Q

2(1 + µ1)

 ,

where µ1 > 0, µ2 > 0, τ ∈ [0, 1), and Q = 2τ(1− τ) > 0. One can easily derive

1 + µ1 + µ2 ≤
√

(1 + µ1 + µ2)2 + 2 (1 + µ1 + µ2)µ1µ2Q

=

√
(1 + µ1 + µ2 + µ1µ2Q)2 − (µ1µ2Q)2 ≤ 1 + µ1 + µ2 + µ1µ2Q,

and the equal sign is achieved if and only if τ = 0. As a result,

1

2
log

(
1 + µ1 + µ2 + 0.5µ1µ2Q

1 + µ1

)
≤ RANOMA

2,asymp ≤
1

2
log

(
1 + µ1 + µ2 + µ1µ2Q

1 + µ1

)
.

Note that,

1

2
log

(
1 + µ1 + µ2 + 0.5µ1µ2Q

1 + µ1

)
≥ 1

2
log

(
1 + µ1 + µ2

1 + µ1

)
= RNOMA

2 ,

where the equal sign is achieved if and only if τ = 0. The proof is complete.
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B.3 Proof of Theorem 4.2

Proof. According to (4.27), the combining throughput of User 2 is given by (B.7),

RANOMA
2

=
1

2N + τ
log det

[
I3N +

(
RN + W1W

H
1

)−1
W2W

H
2

]
=

1

2N + τ
log det

(
I3N +

[
R+P1|h2|2RG1GH

1 RH 0
0 IN

]−1 [
P2|h2|2RG2GH

2 RH
√
P2Prh2h̄12RG2√

P2Prh12h̄2GH
2 RH Pr|h12|2IN

])
=

1

2N + τ

· log det

[
I2N+P2|h2|2(R+P1|h2|2RG1GH

1 R)
−1

RG2GH
2 R

√
P2Prh2h̄12(R+P1|h2|2RG1GH

1 R)
−1

RG2√
P2Prh12h̄2GH

2 R IN+Pr|h12|2IN

]
(a)
=

1

2N + τ
log
{

det
[
(1 + Pr|h12|2)IN

]
det
[
I2N + P2|h2|2

(
I2N + P1|h2|2G1G

H
1 R
)−1

·G2G
H
2 R− P2Pr|h2|2|h12|2

1 + Pr|h12|2
(
I2N + P1|h2|2G1G

H
1 R
)−1
]}

=
N

2N + τ
log
(
1 + Pr|h12|2

)
+

1

2N + τ
log det

{(
I2N + P1|h2|2G1G

H
1 R
)−1

·
[
I2N + P1|h2|2G1G

H
1 R +

(
P2|h2|2 −

P2Pr|h2|2|h12|2

1 + Pr|h12|2

)(
I2N + P1|h2|2G2G

H
2 R
)]}

=
N

2N + τ
log
(
1 + Pr|h12|2

)
+

1

2N + τ
log det

(
I2N + P1|h2|2G1G

H
1 R
)−1

+
1

2N + τ
log det

(
I2N + P1|h2|2G1G

H
1 R +

P2|h2|2

1 + Pr|h12|2
G2G

H
2 R

)
=

N

2N+τ
log
(
1+Pr|h12|2

)
−

log det
(
I2N + P1|h2|2G1G

H
1 R
)

2N+τ
+

log det(I2N+H̃R)

2N+τ
.

(B.7)

where (a) is derived by applying the determinant of the block matrix, i.e., if D is invertible,

det ( A B
C D ) = det(D) det(A−BD−1C) (B.8)

and H̃ = diag
([
P1|h2|2, P2|h2|2

1+Pr|h12|2 , · · ·P1|h2|2, P2|h2|2
1+Pr|h12|2

])
.

Applying (B.1) and (B.3), Eq. (B.7) can be rewritten as (4.28). The proof is complete.
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B.4 Proof of Theorem 4.3

Proof. Applying (B.6), the combining throughput of User 2 for N →∞ is computed as

RANOMA
2,asymp =

1

2
log

(
P1P2|h2|4

1 + P1|h2|2
z1

)
(a)
=

1

2
log

[
1 + Pr|h12|2

2
+
P2|h2|2 + P1P2|h2|4Q

2(1 + P1|h2|2)

+
1

2

√(
1+Pr|h12|2+

P2|h2|2+P1P2|h2|4Q
1+P1|h2|2

)2

−
(
P1P2|h2|4Q
1+P1|h2|2

)2
 ,

where (a) is derived by replacing z1 with its expression in (4.30). Since Q ≥ 0,

1 + Pr|h12|2 +
P2|h2|2+P1P2|h2|4Q

1 + P1|h2|2

≥

√(
1 + Pr|h12|2 +

P2|h2|2+P1P2|h2|4Q
1 + P1|h2|2

)2

−
(
P1P2|h2|4Q
1 + P1|h2|2

)2

=

[(
1 + Pr|h12|2+

P2|h2|2

1 + P1|h2|2

)2

+
2P1P2|h2|4Q
1 + P1|h2|2

(
1 + Pr|h12|2 +

P2|h2|2

1 + P1|h2|2

)] 1
2

≥1 + Pr|h12|2+
P2|h2|2

1 + P1|h2|2
,

where the equal signs are achieved if and only if Q = 0 which results in τ = 0. The proof is

complete.
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Appendix C

Supplementary Proofs for Chapter 5

C.1 Proof of Theorem 5.1

Proof. According to (5.26), (5.27), (5.28), and (5.29), we have

RA
2→i,∞−RN

2→i = log
1+Q µ1iµ2i

µ1i+µ2i+1
+
√

1 + 2Q µ1iµ2i
µ1i+µ2i+1

1+Q ν1iν2i
ν1i+ν2i+1

+
√

1 + 2Q ν1iν2i
ν1i+ν2i+1

,

RA
1,∞−RN

1 = log
1+Q ν11ν21

ν11+ν21+1
+
√

1 + 2Q ν11ν21
ν11+ν21+1

1+Q ρ1ρ2
ρ1+ρ2+1

+
√

1 + 2Q ρ1ρ2
ρ1+ρ2+1

.

For the ease of proof, we define the function f(x) = 1+Qx+
√

1 + 2Qx. Then, we can rewrite

RA
2→i,∞−RN

2→i = log
[
f
(

µ1iµ2i
µ1i+µ2i+1

)
/f
(

ν1iν2i
ν1i+ν2i+1

)]
andRA

1,∞−RN
1 = log

[
f
(

ν11ν21
ν11+ν21+1

)
/f
(

ρ1ρ2
ρ1+ρ2+1

)]
.

It is obvious that the function f(x) increases with x. To compare RA
2→i,∞ and RN

2→i, we study

the relationship between µ1iµ2i
µ1i+µ2i+1

and ν1iν2i
ν1i+ν2i+1

.
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Since µ2i > ν2i and µ1i = ν1i,

1 + µ1i

µ2i

<
1 + ν1i

ν2i

=⇒ 1 + µ1i + µ2i

µ2i

<
1 + ν1i + ν2i

ν2i

=⇒ 1 + µ1i + µ2i

µ1iµ2i

<
1 + ν1i + ν2i

ν1iν2i

=⇒ µ1iµ2i

1 + µ1i + µ2i

>
ν1iν2i

1 + ν1i + ν2i

.

As a result, f
(

µ1iµ2i
1+µ1i+µ2i

)
> f

(
ν1iν2i

1+ν1i+ν2i

)
which results in RA

2→i,∞−RN
2→i > 0. Similarly, by

deriving ν11ν21
ν11+ν21+1

> ρ1ρ2
ρ1+ρ2+1

, we obtain RA
1,∞ > RN

1 .

C.2 Proof of Theorem 5.2

Proof. By setting g(x, y, z) = 1 + x + y + xyz+
√

(1 + x+ y)2+2xyz(1 + x+ y), RA
2→i,∞ =

log g(µ1i,µ2i,Q)
g(ν1i,ν2i,Q)

. Hence,

maxRA
2→i,∞ ⇐⇒ max

g(µ1i, µ2i, Q)

g(ν1i, ν2i, Q)

⇐⇒ max [g(µ1i, µ2i, Q)− g(ν1i, ν2i, Q)] .

The derivative of g(x, y,Q) with respect to Q is calculated as

∂g(x, y,Q)

∂Q
= xy +

Q(1 + x+ y)xy√
(1 + x+ y)2 + 2xyQ(1 + x+ y)

= xy

[
1 +Q

√
1 + x+ y

1 + x+ y + 2Qxy

]
= xy +Q

√
xy

√
(1 + x+ y)xy

1 + x+ y + 2Qxy
.
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It is trivial to show that xy and (1+x+y)xy
1+x+y+2Qxy

are increasing functions of y which is equivalent

to ∂2g(x,y,Q)
∂Q∂y

> 0. Since µ1i = ν1i and µ2i > ν2i, we obtain

∂[g(µ1i, µ2i, Q)− g(ν1i, ν2i, Q)]

∂Q
> 0.

As a result,

arg max
τ

[g(µ1i, µ2i, Q)− g(ν1i, ν2i, Q)]

⇐⇒ arg max
τ

Q = 0.5.

Hence, arg maxτ R
A
2→i,∞ = 0.5. Similarly, since ν11 > ρ1 and ν21 = ρ2, one can prove

arg maxτ R
A
1,∞ = 0.5 by following the same steps above.
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Appendix D

Supplementary Proofs for Chapter 6

D.1 Proof of Theorem 6.1

Proof. When τ = 0, Q = 0 which then results in α∗N = α∗A(x) for any finite x. For τ 6= 0, we

first prove Theorem 6.1 for the case of H̃1 ≥ H̃2. The case of H̃1 < H̃2 SIC will be discussed

later. By setting Rstrong(H̃1) = Rweak(H̃2), we obtain

2[1 + α∗AP (H̃1 + H̃2) + (α∗A)2P 2H̃1H̃2]

=

√
[1+PH̃2+α∗A(1−α∗A)P 2H̃2

2Q]2−[α∗A(1−α∗A)]2P 4H̃4
2Q

2

+ 1 + PH̃2 + α∗A(1− α∗A)P 2H̃2
2Q. (D.1)

By cancelling out the square root, (D.1) becomes a quartic equation. The optimal power

coefficient α∗A is one root of the quartic equation which can be given by the general formula

for quartic roots. However, it is intractable for further analysis. Therefore, we derive the

upper and lower bounds to approximate the actual value of α∗A.

For the upper bound, since [1+PH̃2 +α∗A(1−α∗A)P 2H̃2
2Q]2−(α∗A)2(1−α∗A)2P 4H̃4

2Q
2 < [1+
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PH̃2+α∗A(1−α∗A)P 2H̃2
2Q]2, (D.1) becomes

1+α∗AP (H̃1+H̃2)+(α∗A)2P 2H̃1H̃2 <1+PH̃2+α∗A(1−α∗A)P 2H̃2
2Q, (D.2)

which results in

α∗A<α
∗
U

4
=2H̃2/

[
H̃1+H̃2 − PH̃2

2Q+

√
(H̃1+H̃2−PH̃2

2Q)2+4H̃2(PH̃1H̃2+PH̃2
2Q)

]
.

(D.3)

For the lower bound, as [1+PH̃2+α∗A(1−α∗A)P 2H̃2
2Q]2−(α∗A)2(1−α∗A)2P 4H̃4

2Q
2 > [1+PH̃2]2,

2[1+α∗AP (H̃1+H̃2)+(α∗A)2P 2H̃1H̃2] > 2(1+PH̃2) +α∗A(1−α∗A)P 2H̃2
2Q. (D.4)

Then, we obtain

α∗A> α∗L
4
=

2H̃2

H̃1+H̃2 − PH̃2
2Q

2
+

√(
H̃1+H̃2− PH̃2

2Q

2

)2

+4H̃2

(
PH̃1H̃2+

PH̃2
2Q

2

) . (D.5)

If H̃1 < H̃2, i.e., User 2 employs SIC, we can also derive the expressions for α∗L and α∗U

by setting Rstrong(H̃2) = Rweak(H̃1). In fact, α∗L and α∗U for H̃1 < H̃2 are given by simply

switching H̃1 and H̃2 in (D.3) and (D.5). Both α∗L and α∗U can be incorporated into a general

expression in (6.7) by introducing a parameter x, i.e. α∗L = α∗A(0.5) and α∗U = α∗A(1).

To show the inequality in (6.6), let us define

g(x) =

√
(H̃1+H̃2 − xPH̃2

minQ)2+4H̃min(PH̃1H̃2 + xPH̃2
minQ) + H̃1+H̃2 − xPH̃2

minQ
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which is the denominator in (6.7). Then,

∂g(x)

∂x
= −PH̃2

minQ

1 +
H̃1 + H̃2 − H̃min(2 + xPH̃minQ)√

(H̃1+H̃2−xPH̃2
minQ)2+4H̃min(PH̃1H̃2+xPH̃2

minQ)

 .

If H̃1 + H̃2 − H̃min(2 + PH̃minQx) > 0, it is obvious that ∂g(x)
∂x

< 0. Otherwise,

− H̃1 − H̃2 + H̃min < 0 < PH̃1H̃2

=⇒4H̃min(−H̃1 − H̃2 + H̃min + xPH̃2
minQ) < 4H̃min(PH̃1H̃2 + xPH̃2

minQ)

=⇒
[
H̃1+H̃2−H̃min(2+xPH̃minQ)

]2

−(H̃1+H̃2−xPH̃2
minQ)2

< 4H̃min(PH̃1H̃2 + xPH̃2
minQ)

=⇒|H̃1 + H̃2 − H̃min(2 + xPH̃minQ)|

<

√
(H̃1+H̃2−xPH̃2

minQ)2+4PH̃min(H̃1H̃2+xH̃2
minQ),

which also results in ∂g(x)
∂x

< 0. Therefore, α∗A(x) increases with x. Thus, α∗N = α∗A(0) <

α∗A(0.5) < α∗A < α∗A(1). The proof is complete.
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