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ABSTRACT OF THE DISSERTATION
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from single nucleotides to single cells

by
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Doctor of Philosophy in Bioinformatics and Systems Biology
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Professor Gene Yeo, Chair
Professor Vineet Bafna, Co-Chair

With the advent of RNA sequencing and other high-throughput molecu-

lar assays, RNA biology has recently transitioned from careful curation of single-

hypothesis experiments to data-driven design of multi-hypothesis investigations.

Fortunately, statistical advances and increasingly powerful computers have given

rise to machine learning, a computational framework which can automatically dis-

till perpetually growing datasets into predictive models of fundamental cellular

and disease processes. Finally, recent advances in microfluidics have enabled the

e�cient capture and interrogation of individual cells by a variety of molecular as-

says. My research bridges theses fields by introducing predictive statistical models
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of RNA abundance and processing in single cells to uncover new insights into the

regulation of RNA editing and splicing and their e↵ects on cellular di↵erentiation.

This dissertation collects my contributions in single-cell and statistical ge-

nomics, from low-level details of data analysis to high-level principles of cellular

identity and diversity. My early contributions concentrate on building error mod-

els of RNA sequencing data in order to extract biologically-relevant signals from

experimental noise and sampling biases inherent in high-throughput sequencing

technologies. Specifically, I describe statistical models of RNA splicing and editing

that are robust to noise from PCR duplicates or sequencing errors and to uneven

sampling from incomplete reverse transcription or cDNA fragmentation biases. I

then evaluate the models’ self-consistency and compare their accuracy relative to

a gold standard. With a solid statistical foundation for sequencing data analy-

sis established, my latest contributions focus on developing principled methods

of constructing and evaluating compelling biological hypotheses in collaboration

with domain experts. Specifically, I describe a Bayesian model of A-to-I RNA

editing whose high specificity helped resolve the functional di↵erence between the

catalytically-active RNA binding protein ADR-2, and its inactive homolog ADR-

1. In another collaboration, I used machine learning to resolve a long-standing

question in immunology regarding the asymmetric specification of T cells into two

functionally distinct lineages. Here, through one of the first applications of single-

cell gene expression analysis of the immune system, I demonstrate that pathogen-

activated T cells undergo an early bifurcation into e↵ector- and memory-fated

populations and help identify the genes whose asymmetric expression drive this

phenomenon. Together all of these contributions establish a principled statistical

framework for experimental design and analysis which integrates both hypothesis-

and data-driven models to validate new findings and uncover novel principles of

RNA biology.
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Chapter 1

Introduction

Previously dismissed as a mere intermediary of genetic information between

the nucleus and cytoplasm, RNA and cellular processes dedicated to it have been

subject to extensive research e↵orts (Blencowe 2007, Sharp 2009, Licatalosi 2010).

Much more than a transient vessel of genetic information, RNA is commanding a

growing role in our understanding of fundamental cellular processes. Astonishing

discoveries in the mechanisms of mRNA splicing and post-transcriptional regula-

tion, microRNA biogenesis and targeting, as well as RNA stability and localization

have implicated the transcriptome as a complex and dynamic system with more

variation and adaptation than the genome itself (Blencowe 2007, Sharp 2009, Li-

catalosi 2010). RNA expression is finely regulated for tissue- and condition-specific

functions via a variety of post-transcriptional processes such as splicing and edit-

ing.

1.1 RNA processing

1.1.1 Alternative splicing

Splicing of RNA is a widespread, highly-regulated, and well-studied pro-

cess. In eukaryotes, the spliceosome binds to gene transcripts (either pre-mRNA

or lncRNA), removes long stretches called introns, and joins the remaining (rela-

tively short) exons into a processed transcript. Due to variations in the sequences

1



2

of exons and splicing factor binding a�nities, variations in the splicing process

increases protein diversity through the stochastic exclusion of introns and inclu-

sion of exons from a gene transcript (Yeo 2004, Pan 2008). One such process

is alternative splicing, which can produce a combinatorial number of variations

from an unprocessed RNA transcript. While splicing itself happens to more than

90% of multi-exon genes in mammals, this thesis addresses a common and very

well-studied form called alternative splicing. Alternative splicing is especially no-

table in the brain, likely due to the large number and length of multi-exon genes

expressed primarily in neurons and astrocytes (Pan 2008, Barash 2010). During

the alternative splicing of a pre-mRNA transcript, two constitutive exons which

are included in every mature transcript surround an alternative exon, which is

sometimes spliced out of the pre-mRNA together with its flanking introns. This

process is tightly regulated by short (2-3 nucleotides) sequence motifs called splice

donor and acceptor sites at the 5’ and 3’ ends of each intron, by longer (6-8 nt)

motifs called splicing cis-regulatory elements that serve as binding sites for the

spliceosome complex itself in the exonic/intronic sequence flanking the exon (Lo

2013). Splicing is also regulated by distant trans-regulatory motifs and RNA bind-

ing proteins (RBPs) such as NOVA and RBFOX2, which serve as either enchanters

or repressors of splicing activity depending on the position of their binding sites

(Barash 2010, Lovci 2014).

1.1.2 A-to-I editing

A less studied mechanism for additional fine-tuning of the transcriptome is

through single-nucleotide RNA editing. The editing process can insert, delete, or

modify single nucleotides within an RNA transcript. While there are various forms

of RNA editing, this thesis addresses the most common form: Adenosine-to-Inosine

(A-to-I) editing, which is catalyzed by the ADAR (Adenosine Deaminase Acting

on RNA) family of enzymes. A-to-I editing is essential to proper brain function.

RNA editing of ADAR targets in the brain has been well studied, due to the high

amount of editing occurring in the nervous system; however, only a handful of

RNA-editing targets have been validated and accepted by the community (Li 2011,
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Pickrell 2012, Lin 2012). ADAR proteins are highly expressed in brain tissue, and

mis-regulation of their A-to-I editing function in the nervous system often leads to

deadly phenotypes. Additionally, ADAR transcripts and proteins steadily increase

during various developmental stages of the brain (Jacobs 2009). It is well known

that post-transcriptional modifications are highly prevalent in the brain, resulting

in an incredible amount of transcript diversity, which is required for normal brain

function. Accordingly, there are likely many more ADAR targets in the brain than

the few that have been revealed. While A-to-I editing is predicted to occur in the

coding regions of more than 10,000 human genes (Xiao 2011), the function of RNA

editing is only known in the case for a few well-studied RNA editing sites. Among

them is the well-known GluR2 Q/R site, which is detailed below.

One of the most prominent examples of A-to-I editing is the Q/R site on

exon 11 of the Glutamate Receptor Subunit 2 protein (GluR2). Catalyzed by

the double-stranded RNA binding protein (dsRBP) ADAR2, the A-to-I conversion

introduces a non-synonymous amino-acid substitution (CAG!CGG, hence Q!R)

in the protein Glur2, one of the subunits for the glutamate receptor (AMPA2)

which regulates calcium ion channels in neurons. This edit is conserved exclusively

in brain all the way from humans to C. elegans. In healthy neurons, the GluR2

Q/R site is edited with 100% e�ciency, while editing sites in other transcripts allow

a mix of both the A and I isoform to be expressed. While inactive in other tissues,

the edit renders the AMPA receptor impermeable to calcium ions in the absence of

glutamate. Similar to knockout phenotype of ADR2 in worms, neurodegenerative

diseases in human reduce the editing e�ciency of the Q/R site, which allows Ca2+

ions to flood into the synaptic channels and trigger neuronal death (Maas 2006).

Reduced levels of editing in the GRIA2 Q/R site are associated with defective

calcium channels in patients with Amyotrophic Lateral Sclerosis (ALS), where the

amount of mis-editing correlates with disease progression and neurodegenerative

phenotype severity (Kawahara 2004).
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AAAA!pre-mRNA!
5’UTR! 3’UTR!

AGO!

ADAR!ADAR!

Ribo%

Alternative Splicing!

RBP!

FOX2!

RNA Stability!
Translation!

ADAR!

ADAR!

MicroRNA Targeting!

exon2! exon3!

exon1! exon3! exon2! exon3!

exon1!

exon1!

ADAR!

pri-miRNA!

MicroRNA Biogenesis!Drosha!

Figure 1.1: Summary of ADAR a↵ects, both steric and catalytic.
ADAR proteins have the ability to block many cellular processes including miRNA
biogenesis, miRNA targeting, RNA stability, alternative splicing, and translation
by blocking other regulatory RBPs through A-to-I editing (lime star) or solely
through binding.

1.1.3 RNP code

Post-transcriptional processes such as alternative splicing and A-to-I editing

are regulated by a collection of interacting RNA binding proteins (RBPs) adorn-

ing various binding sites on each RNA molecule. From their transcription and

splicing, through editing and silencing, to polyadenilation, export, and eventual

degradation, RNAs are adorned and regulated by companion proteins which bind

to specific target sites in a sequence- and structure-dependent manner. These

RBPs and their targets form the mRNP code which dictates how each RNA in the

nucleus will be processed, translated, or degraded (Figure 1.1). Disruptions in

the mRNP code such as abnormal changes in alternative splicing and loss of RNA

editing form the basis of many human cancers and neurological diseases such as

Autism, Alzheimer’s, and ALS [?, ?].

ADAR proteins are essential for survival, and studying their targets and

interactions with other RBPs is crucial to understanding post-transcriptional pro-

cessing. In mammals, there are three ADAR proteins: ADAR1, ADAR2, and

ADAR3. While they have very similar gene structure, they are expressed in di↵er-
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ent tissues, localize to di↵erent parts of the nucleus and cytoplasm, and most im-

portantly have sequence- and structure-specific preferences in their RNA targets.

All three ADAR proteins carry multiple double-stranded RNA binding motifs:

three in ADAR1, and two in both ADAR2 and ADAR3. ADAR1 also uniquely car-

ries two Z-DNA-binding domains (Bass 2002). ADAR1 and ADAR2 are expressed

in most tissues, with the exception of skeletal muscle (Heale 2009). ADAR2 is

most highly expressed in the nervous system, and ADAR3 is only expressed in the

brain (Chen 2000).

ADAR1 and ADAR2 bind to dsRNA as homodimers to convert an adeno-

sine to an inosine though the selective or non-selective deamination of substrates.

ADAR3 lacks this catalytic activity; however, it has been suggested that ADAR3

may compete with the catalytically active ADAR proteins for binding to sub-

strates (Chen 2000), or dimerize with them to sequester them away from their

RNA targets (Valente 2007, Cenci 2008). Most RNA editing is found to occur

non-selectively and in high abundance at inverted Alu repetitive elements within

introns and untranslated genic regions (Blow 2004). The hyperediting often found

in these regions is thought to a↵ect localization of the target, preventing nuclear

export, and stability (Hundley 2010). RNA editing occurs in less abundance, but

more specifically in coding regions, leading to synonymous and nonsynonymous

codon changes (Hundley 2010). While the ADAR reaction seems simple, single

base A-to-I editing can have a profound e↵ect in several cellular processes. An in-

osine in an RNA transcript is recognized by all downstream events as a guanosine

(G), and an A-to-I edit will be read as an A-G mismatch between the genomic

DNA and complimentary DNA (cDNA). Consequently, A-to-I editing may a↵ect

the secondary structure of target mRNAs, splice site selection, miRNA targeting,

and translation of amino acids crucial for protein function.

1.2 Single-cell transcriptomics

Why was single-cell sequencing named ’method of the year’ in the January

2014 issue of Nature Methods? Because peering into the molecular contents of an
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individual cell is not only very technically challenging, but also potentially very

revealing. Measuring gene expression from individual cells as opposed to bulk

samples allows us to notice stochastic di↵erences and core similarities between

cells of the same type in the context of other cell types and clarify the molecular

definition of cell identity and state. Even more importantly, the natural variation

present between cells of the same type serves as a statistical re-sampling which can

unveil higher-order population statistics such as variance and skew in ways that

simple bulk samples cannot. Any rare cells with unique molecular contents such

as pluripotent or malignant cells will be lost in the pool of more ordinary cells.

Moreover, the true heterogeneity of a cell type will always be underestimated by

the bulk samples. There is a fundamental mathematical reason that encapsulates

both of these cases and shows why n samples of individual cells will be more

informative than n samples of m >> 1 cells each. The central limit theorem, also

known as the law of large numbers, states that the mean of n independent and

identically distributed random variables x

1

, . . . , xn, no matter what their original

distribution is (as long as it has finite mean and variance), will approximate the

Gaussian distribution with mean equal to the sample mean

µn =
1

n

nX

i=1

xi = µ

and variance which is n times smaller than the individual sample variance

�

2

n =
nX

i=1

(xi � µ)2

n

2

=
�

2

n

Therefore, any biologically-relevant non-gaussian distribution which contains mul-

tiple modes (cellular subtypes) or even has wider tail (higher than normal het-

erogeneity) will be reflected in single-cell sampling, but will be lost in the bulk

sampling! Applying high-throughput sequencing and microfuidic technologies to

determine the expression and processing of RNA in single cells necessitates ex-

perimental design that is closely coupled to powerful statistical analysis, in order

to harness the potential for increased precision and scale. Finally, the statistical
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power of this framework for high-throughput single-cell experiments has enabled

us to construct more sophisticated and precise definitions of cellular identity and

function, and apply them to tracking the molecular phenotypes of T cells though

immune specification and of iPS cells though neuronal di↵erentiation.

1.3 Statistical Modeling

Many scientists rightfully mistrust statistical models – experimental biol-

ogists often because they don’t fully understand the details, and computational

biologists because they do. Therefore, a successful statistical model not only needs

to capture as many relevant details of the known science, but also frame it’s novel

predictions in the context of known entities that can be interpreted by biologists

and validated by statisticians. One of the dangerous pitfalls in both science and

medicine is to gather data and run tests without a hypothesis because random

fluctuations may be interpreted as interesting anomalies. At the same time, one

of the dangerous pitfalls in statistics is to apply a model without understanding

its assumptions because any prediction of the model will be biased if the real

constraints on the data don’t match those assumptions.

1.4 Specific contributions

In the following chapters, I capture various technical and biological signals

with a variety of statistical and probabilistic models. Among them, my techni-

cal contributions consist of either designing, adapting, or simply applying various

statistical models for RNA sequencing data to capture di↵erent biological signals,

depending on their intended hypothesis. A majority of these models are called

generative because they generate a joint probability distribution over their inputs

x and any known labels t. They include: several types of error models for PCR

duplication and fragmentation bias that robustly estimate the level of alternative

splicing from RNA sequencing data in Chapters 2; a new Bayesian model of RNA

sequencing errors that robustly estimates the level of RNA editing in Chapter
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3; and adapting existing statistical tools such as Principal Components Analysis

(PCA) and Hidden Markov Models (HMM) to capture single-cell gene expression

through a di↵erentiation time course in Chapter 4. My conclusions and future

research directions are contained in Chapter 5.



Chapter 2

Challenges in estimating percent

inclusion of alternatively spliced

junctions from RNA-seq data

Transcript quantification is a long-standing problem in genomics and es-

timating the relative abundance of alternatively-spliced isoforms from the same

transcript is an important special case. Both problems have recently been illu-

minated by high-throughput RNA sequencing experiments which are quickly gen-

erating large amounts of data. However, much of the signal present in this data

is corrupted or obscured by biases resulting in non-uniform and non-proportional

representation of sequences from di↵erent transcripts. Many existing analyses at-

tempt to deal with these and other biases with various task-specific approaches,

which makes direct comparison between them di�cult. However, two popular

tools for isoform quantification, MISO and Cu✏inks, have adopted a general prob-

abilistic framework to model and mitigate these biases in a more general fashion.

These advances motivate the need to investigate the e↵ects of RNA-seq biases on

the accuracy of di↵erent approaches for isoform quantification. We conduct the

investigation by building models of increasing sophistication to account for noise

introduced by the biases and compare their accuracy to the established approaches.

We focus on methods that estimate the expression of alternatively-spliced

isoforms with the percent-spliced-in (PSI) metric for each exon skipping event. To

9
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improve their estimates, many methods use evidence from RNA-seq reads that

align to exon bodies. However, the methods we propose focus on reads that span

only exon-exon junctions. As a result, our approaches are simpler and less sensitive

to exon definitions than existing methods, which enables us to distinguish their

strengths and weaknesses more easily. We present several probabilistic models of

of position-specific read counts with increasing complexity and compare them to

each other and to the current state-of-the-art methods in isoform quantification,

MISO and Cu✏inks. On a validation set with RT-PCR measurements for 26

cassette events, some of our methods are more accurate and some are significantly

more consistent than these two popular tools. This comparison demonstrates the

challenges in estimating the percent inclusion of alternatively spliced junctions and

illuminates the tradeo↵s between di↵erent approaches.

2.1 Introduction

Determining the relative abundance of gene transcripts in a cell � whether

in relation to each other or in relation to corresponding transcripts in other cells

� is an important and long-standing problem in genomics. Since introduction of

RNA-seq, a high-throughput experimental method of measuring the RNA content

of a sample by reverse-transcribing it and sequencing the resultant cDNA, this

problem has been illuminated by vast amounts of data and by many methods for

elucidating transcript abundance (Mortazavi 2008). Current collections of RNA-

seq data are rapidly growing in multiple dimensions such as species, tissues, and

conditions (Wang 2009).

This data deluge necessitates more sophisticated and accurate analysis

methods, which in turn create an opportunity to gain deeper insights into the

role and regulation of transcript abundance in important developmental and dis-

ease processes. Undoubtedly, one important research area that can benefit from

these advances is the study of RNA splicing, an essential cellular process that

e↵ectively increases the phenotypic complexity of eukaryotic organisms without

necessitating an increase in their genetic complexity. Accurate measurements of
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the expression levels for isoforms from a large number of genes are especially use-

ful for research into the molecular mechanisms that regulate alternative splicing

in di↵erent tissues. For example, the recent advances in the RNA splicing code

that determines the relative abundance of alternatively spliced isoforms (Barash

2010) was made possible by high-throughput microarray technology. In principle,

RNA-seq can lead to much richer datasets at a fraction of the cost. Thus RNA-seq

technology can lead to significant new breakthroughts, as the code quality achieved

by (Barash 2010) leaves a lot of room for improvement. The focus of this paper

� estimation of the percent inclusion of alternatively-spliced exons from RNA-seq

data � is a step toward a more accurate interpretation of the natural splicing

code. This problem is complicated by several sources of bias in short read counts

including those due to the cDNA fragmentation and primer amplification steps

of current RNA-seq protocols (Roberts2011, Hansen 2012). These biases lead to

widely varying abundances for reads from di↵erent positions in the transcript. We

investigate this position-specific bias further and suggest methods to mitigate it.

Specifically, we restrict our interest only to exon-skipping events(Pan 2008,

Katz 2010). The numerical quantity which captures relevant information for these

events is termed percent-spliced-in (PSI). For each exon-skipping event, PSI is de-

fined as the expression of isogorms containing the alternatively spliced exon (i.e.

those containing a given cassette exon and its flanking constitutive exons) as a

fraction of the total expression for both alternatively and constitutively spliced

isoforms (i.e. those containing the flanking exons only) which is reported in per-

cent. Accurate estimation of PSI is not only desirable on its own, but it can also

be used to improve the resolution of di↵erential splicing and thus improve the

predictive power of the splicing code (Barash 2010).

There are several recent tools for estimating relative abundance of isoforms,

which deal with position-specific biases in di↵erent ways (Katz 2010, Roberts2011,

Nicolae 2011, Turro 2011). MISO can directly estimate PSI specifically for exon-

skipping events (Katz 2010), while most others estimate the expression of whole

isoforms from which a PSI value may be derived. This makes MISO the natural

point of reference for our comparisons, but we also include Cu✏inks (Roberts 2011)
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in the comparisons because of its popularity and explicit modeling of fragmenta-

tion and amplification biases. However, for the task of estimating PSI, Cu✏inks’

focus on multi-exon isoforms appears to be detrimental, as we show in the Results

section.

Our pursuit of robust estimates for PSI necessitates an appropriate mea-

sure of the uncertainty for these estimates. This additional necessity is crucial for

the task of deciphering the natural RNA splicing code. Linking noisy RNA-seq

read counts with the sequence determinants of RNA splicing is a hard task that

requires good measurement of splicing levels even in case of transcripts with mini-

mal coverage. For this task it is just as important to quantify the range of possible

PSI values supported by the RNA-seq data, given that the position-specific bias

can dramatically influence these estimates. We start by framing the classic IID

sampling assumption as a Poisson model and modify it to mitigate the e↵ect of

position-specific biases. This leads to three methods of increasing complexity. We

evaluate our models in terms of their accuracy and consistency. We compare our

methods’ accuracy to each other and to existing approaches of estimating PSI with

respect to a reference set of 26 RT-PCR measurements from a human cell line. As

we discussed above, we are interested in developing algorithms that provide robust

estimates: A handful of highly biased positions in the transcript, from which a

much larger number of reads is obtained simply due to fragmentation bias, should

not unduly influence the estimate of PSI. Our results show a moderate increase in

accuracy and a significant increase in consistency of our methods over the current

state of the art methods for quantifying of alternative splicing events.

2.2 Methods

2.2.1 RNA-seq data

RNA-seq data was generated from a HeLa cell line by the Blencowe Lab

at the University of Toronto [?]. The protocol consisted of polyA-selected RNA

extraction, random hexamer primed reverse transcription, cDNA fragmentation

(with mean insert size of 220nt), and 50nt paired-end sequencing by Illumina GA.



13

This dataset is publicly available on the NCBI Gene Expression Omnibus with ac-

cession number GSE26463. 305 million RNA-seq reads were sequenced and mapped

to the reference human genome (NCBI build37, UCSC hg19) using TopHat, which

is capable of reporting split-read alignments across splice junctions (Trapnell 2009).

TopHat produced error-free alignments for 66 million reads (about 22% of the to-

tal). For each exon-exon junction, the reads that overlapped it by at least 8nt

were selected and their positions were noted. Positions that contained reads map-

ping elsewhere were excluded. The number of 3’ fragment ends (i.e. reads starts)

around the junction was tabulated into a profile of read hits for each junction.

This profile of read start counts is also called a read cover, in contrast to the more

popular read coverage.

Figure 2.1 illustrates the actual cover profile for a representative constitutive

(i.e. exclusion) junction with a relatively high total number of reads. Position-

dependent biases in the read cover lead to positions with zero reads, as well as

positions with many mode reads than are expected based on other positions. These

two situations are sometimes treated di↵erently, but they are essentially due to the

same cause: position-dependent e↵ects. Note that these position-dependent e↵ects

are present in the majority of junctions regardless of their underlying expression.

Another source of error is mis-matched reads but, in this work, we deliberately

used only error-free alignments (as opposed to the common practice of allowing a

small number of mismatches) in order to di↵erentiate the positional biases from

mismatch noise. When estimating PSI, the individual read covers for each pair of

alternative junctions that flank an alternative exon can be tabulated into a joint

inclusion junction cover using half-counts at each position. This is common practice

for analyses of alternative splicing as it is assumed that the increased sample size

results in better estimates of expression. However, we note that averaging the read

covers for the two alternative junctions is not appropriate when the constitutive

annotation of the two flanking exons is in question, and this approach does not

significantly reduce the harsh e↵ects of positional biases.

The existing tools for isoform quantification, MISO and Cu✏inks were pro-

vided with the entire alignment, not just the reads mapping to junctions. MISO
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(version 0.2) and Cu✏inks (version 1.2) were run with default parameters except

for the paired-end read insert size and the number of samples from the appropriate

posterior, which were set to 220 and 10000, respectively.

2.2.2 Native model

The first model we study makes the simplifying assumption that reads are

sampled independently and identically distributed (IID) from the expressed iso-

forms. We refer to it as the “Native” model, because its key component, the

Poisson arrival process, is a natural model for IID read coverage. This “Native”

model has worked su�ciently well in the past for analysis in many respectable

DNA and RNA sequencing studies (Wang 2009).

Many simple models of RNA-seq data assume, either explicitly or implicitly,

that reads are sampled uniformly along the length of a transcript (Mortazavi 2008,

Trapnell 2009). However, actual RNA-seq data do not follow this assumption

because of multiple sequence- and position-specific biases inherent in the cDNA

library preparation and sequencing (Srivastava 2010, Hansen 2010, Katz 2010,

Roberts 2011). Still, we might expect this assumption to hold for su�ciently short

regions on a transcript, such as the neighborhood around an exon-exon junction. In

this case, the number of read starts xp mapping to each position p near the junction

should follow a Poisson distribution whose mean is estimated by ↵̃ = 1

P

P
p xp

where the region of interest spans positions {1, 2, . . . P}. The mean and matching

variance ↵ will estimate both the overall expression for that junction and the

model’s uncertainty in that expression. Unfortunately, reads are not distributed

uniformly, even along short regions with su�cient coverage. As shown on Figure

2.1, the read counts covering the region within 50nt of a representative constitutive

junction are highly variable and non-uniform. The corresponding cover for the

two alternative junctions (not shown) contains about twice as many read counts

in total, but they are split over two neighborhoods of 50nt. In general, RNA-seq

data deviates from the Native Poisson model in two ways:

• the high sparsity of the data (⇠ 80% of positions have no reads starting

at them) causes ↵̃, the average cover for the region, to underestimate the
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expected abundance ↵.

• the variance of the non-zero elements xp > 0 is three times larger than that

dictated by the Native model.

Note that the Poisson model describes the likelihood P (xp | ↵) of observing

a particular read cover profile xp given the unknown expression ↵. However, we are

interested in the posterior probability P (↵ | xp) of the hidden expression given the

observed data. This posterior can be obtained from the likelihood of the observed

data and the prior over the expression through the classic Bayes’ Rule:

P (↵ | x) =
P (x | ↵) ⇤ P (↵)

P (x)
(2.1)

Once we have distributions over the expected expression for both the alternative

(a.k.a. inclusion) and the constitutive (a.k.a exclusion) junctions, ↵

i and ↵

e re-

spectively, we combine them to produce the posterior over the PSI estimate of this

model P ( 
Native

|xi
p, x

e
p) given the observed read counts over the inclusion (xi

p) and

exclusion (xe
p) junctions, respectively. There is no closed-form expression for this

distribution, but we can estimate it with the ratios of samples from the inclusion

and exclusion posteriors:

P ( 
Native

|xi
p, x

e
p) /

X

↵i,↵e
:

↵i

↵i+↵e = Native

P (↵i | x

i
p) ⇤ P (↵e | x

e
p) (2.2)

2.2.3 Gaussian model

In order to alleviate the shortcomings of the Native model, we propose two

simple modifications which result in a new Gaussian model that is more robust to

the position-specific biases present in RNA-seq data. To deal with the sparse cover

and its e↵ect on the expected expression, ↵, we dismiss all unmappable positions,

i.e. those positions which coincide with the start of reads that map elsewhere in

the reference genome or transcriptome. This leaves only the set of position indexes

Q which coincide with the hits of only uniquely-mappable reads. Therefore, the

normalized expression of a junction is � = 1

|Q|
P

q2Q xq + 1

P
where we have added
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the pseudo-count 1

P
in order to avoid dividing by zero for junctions which have

no uniquely-mappable reads, e.g. those that come from homologous regions of the

genome.

To deal with the high variance at positions with non-zero read count, we

approximate the PSI ratio of normalized junction expressions with a Gaussian dis-

tribution. Unlike the Poisson distribution whose mean and variance are identical

by definition, the link between the mean and variance of this Gaussian approxi-

mation can be relaxed in order to make the model more robust. The mean µ is

estimated by the ratio of the normalized read counts for the inclusion and exclusion

junctions (�i and �

e, respectively). The standard deviation � is proportional to

the geometric mean of µ and its complement 1�µ. The variance �

2 is normalized

by the total number of uniquely mappable reads in the alternative and constitu-

tive junction � = �

i|Qi| + �

e|Qe|, where |Qi| is the number of uniquely-mappable

positions for the inclusion junction, and |Qi| is that for the exclusion junction.

Finally, the variance is lower-bounded by an arbitrary threshold in order to avoid

over-fitting the noisy RNA-seq data:

µ̃ =
�

i

�

i + �

e
�̃

2 = max


0.01,

µ̃(1� µ̃)

�

�
(2.3)

This approximation allows us to skip the Bayesian procedure and sampling ap-

proximation required by the Native model, since we can directly specify the poste-

rior distribution of our estimate for PSI given the read counts around a junction:

P ( 
Gaussian

| xp0) ⇠ N (µ̃, �̃

2).

2.2.4 Bootstrap technique

To robustly estimate PSI without explicitly modeling sequence and position

dependent bias, we propose a method based on randomly resampling the observed

data. This method computes the degree of uncertainty in PSI by estimating the

consistency within the observed dataset. It belongs to a general class of statistical

methods called bootstraping that have been successfully used to model complex

and unknown distributions (Davison 1997).
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The bootstrap can be used to assess the uncertainty in the PSI estimates

produced by any method that takes position-dependent read counts as input. Here,

we use a Poisson model. We assume that there are P mappable junction positions

for each exon skipping event. We observe x

i
p inclusion reads and x

e
p exclusion

reads for each position p = {1, 2, ...P}. To estimate PSI from such a dataset,

a simple approach assumes that for every position, x

i
p and x

e
p are generated by a

Poisson distribution with real-valued underlying abundances �

i and �

j respectively.

A Poisson distribution is used to model the process of how RNA-seq reads in

each position arise from the true abundance of isoforms in the biological sample.

Because of the IID assumption, the maxmimum likelihood (ML) estimator of � is

simply the sum of the observed reads. Instead of simply using the ML estimator,

we take a Bayesian approach where we assume an improper prior for P (�) = 1 for

the abundances of both inclusion and exclusion variants. The posterior of � is a

Gamma distribution with a shape parameter equal to 1:

P (�) = 1; (2.4)

P (~x|�) =
Y

k

P (xp|�); (2.5)

P (xp|�) = Poisson(x|�); (2.6)

=
�

xp

xp!
e

��; (2.7)

P (�|~x) / P (�)P (~x|�); (2.8)

/ �

P
p xp

(
P

p xp)!
e

��; (2.9)

P (�|~x) = Gamma(1, 1 +
X

p

xp), (2.10)

where Gamma(✓, k) denote the real valued Gamma distribution with scale param-

eter ✓ and shape parameter k. In this application, the shape parameter is one

plus the sum of the reads across positions. The Gamma random variable in the

above equation incorporates our belief of likely values of isoform abundances (�)

given the observed reads, with the IID assumption for read generation across po-

sitions. However, the IID assumption described above is highly incorrect, because

of position-dependent e↵ects introduced by RNA-seq technologies. We use the
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bootstrap to assess the uncertainty induced by these e↵ects as follows. Instead of

summing over the reads at all positions, we generate a sample of P positions with

replacement from the observed data and then sum the reads at those positions to

produce an estimate of � as described above.

The above procedure is repeated to generate a distribution of � estimates,

which can be used to form a distribution of PSI. In our approach, one million �

i

and �

e are generated with which one million samples of  
bootstrap

are produced.

2.2.5 Robust mixture model

We propose a robust mixture model of read counts that span alternatively-

spliced junctions from exon skipping events. The mixture has three components:

1. A zero-cover component to explain the empty positions arising from sparse

fragmentation bias.

2. A noise component to capture the read stacks arising from the other type of

positional bias.

3. A Poisson component to capture the remaining signal in the read cover.

Formulating a mixture model allows us to explicitly capture each of the two types

of bias alongside the underlying signal in RNA-seq data.

For each cassette splicing event, our model links the hidden expression

counts �

i and �

e, for the inclusion and exclusion junctions, to the unknown PSI

and coverage values:  � 2 Q and C 2 Z, and to the observed read counts: x

i
p 2 Z

and x

i
p 2 Z where p 2 {1, 2, . . . P} are positions in the neighborhood of each

junction. As before,  �, C, and � are linked by a deterministic relationship:

 � =
�

i

C

where C = �

i + �

e (2.11)

Figure 2.2 shows the plate diagram for the Robust Mixture model. Its priors

and factors are described in the following sections. The the priors and factors

combine via Bayes’ Rule (already described in Equation (2.1)) to give the posterior

distribution over the hidden variables and mixture weights of this model.



19

Priors

• PSI:  � ⇠ Uniform[0, 1]

even though the empirical distribution is closer to a convex Beta distribution

with preference for extreme values of  �, we use the least informative prior

in order to gain the most information about this hidden variable of interest

[?].

• Cover: C ⇠ Gamma(✓, k)

with scale parameter ✓ = 77.77 and shape parameter k = 0.77 estimated

from C’s empirical distribution.

• Expression: A complex prior on �

i and �

e is induced by the priors on  � and

C through the relation in equation (2.11). We impose no further restriction

on the distribution of these hidden variables.

• Mixture: The weights of the three mixture components represent the relative

strengths of the signal and the two noise models. The observed sparsity

of RNA-seq data ( where 80% of junction-neighboring positions have no

read alignments starting from them) is an upper bound on the true sparsity

because we expect to see zero-cover positions in junctions with very low

expression. Therefore we chose 60% sparsity as a reasonable compromise.

Likewise, the observed read-stack outlier rates for the Illumina platform is

a lower bound on the actual fraction of outlier reads (3% of all junction-

adjacent positions have a read count that is 10⇥ higher than the simple

average).

p

0

(mp) =

8
>>>><

>>>>:

0.60 Zero Cover (mp = 0)

0.36 Poisson Model (mp = 1)

0.04 Read Stacks (mp = 2)

(2.12)

Factors

• Deterministic: �

i
, �

e ⇠ �(�i =  � ⇤ C)�(�e = C � �

i)
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• Multinomial: mp ⇠ Multinomial(cz, cp, cs)

This factor allows our model to learn the actual mixture weights for each of

the components from the observed data.

• Mixture: We use a mixture factor in order to capture each of the two biases

and the actual signal in separate components. The choice for each component

is motivated by the form of the signal or noise it is designed to capture.

xp | mp, � ⇠

8
>>>><

>>>>:

�(xp = 0) Sparsity (mp = 0)

Poisson(�) Signal (mp = 1)

Uniform[1, L] Noise (mp = 2)

(2.13)

2.2.6 Practical considerations

Performing inference in the Native and Robust Mixture models described

above is intractable due to the complex partition function that normalizes the

posterior distribution P ( |xp). To compute the posterior, we could use advanced

approximate inference methods such as Expectation Maximization used by IsoEM

(Nicolae 2011), Markov Chain Monte Carlo used by MISO (Katz 2010), and com-

binatorial optimization used by Cu✏inks (Trapnell 2010, Roberts 2011). However,

we note that discretizing the values of their parameters allows us to approximate

the partition function and directly calculate the posterior distribution over the

discretized PSI values:  ↵ and  � respectively. In contrast, the Gaussian and

bootstrap models give a posterior over  � directly, either in a closed form expres-

sion or in the form of samples from a provably exact distribution. Figure 2.3 shows

that the resulting posterior distributions for all PSI estimators are well-formed, es-

pecially for junctions with su�ciently high read cover, and gives support for the

viability of our discretization scheme for junctions of medium or even low read

cover. Finally, performing inference with discretized parameters takes consider-

ably less time at a minimal loss of precision. This allows our methods to analyze

an entire pre-aligned RNA-seq dataset in the manner of a few minutes, while other

methods take tens of hours or even days on the same task.
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2.3 Results and discussion

2.3.1 Accurate estimation of PSI

In order to evaluate the accuracy of our models and compare it to that of the

existing methods, we selected a validation set of 26 cassette exons with reference

PSI values derived from RT-PCR experiments in HeLa cells (Saltzman 2011). The

26 events include 11 high-expression events with between 10 and 20 read starts per

position, 8 medium-expression events with about 1 read start per position, and 7

low-expression events with 10 or fewer reads total across all 50 positions ( 0.2

read starts per position). Figure 2.3 compares the posterior distributions over

PSI inferred by six di↵erent methods: our four methods described in the Methods

section, and two popular tools for isoform quantification, MISO and Cu✏inks. All

tools shared the same input, but were able to extract varying amount of information

from it. The shared TopHat alignment file included the mapping of reads to a

reference set constructed only from the constitutive and alternative exons of the 26

cassette events. Our tools were able to use only the reads mapping across junctions,

while MISO and Cu✏inks was free to use the entire set of alignments. Furthermore,

our methods did not benefit from the paired-end dependencies between the reads,

while both MISO and Cu✏inks were able to do so. To be fair, we note that

Cu✏inks is designed for whole-transcript quantification. Thus, we did not expect

it to be competitive with the other methods on a highly restricted reference set

consisting of only three exons per alternative splicing event

While limited, this comparison clearly shows that no particular method

outperforms the others on every event. However, it does suggest that our methods

are more accurate, especially when they agree with each other. We investigate the

consistency of our methods in a later part of the Results section. Unfortunately

there is no canonical way to measure the error between a distribution estimate

and a point target. However, we modify three existing distance metrics between

distributions and propose a new metric which allow us to compute the overall per-

formance of the six methods on all 26 events. Given a PDF distribution of PSI

estimates P (x) and a target value  described by discretized Gaussian distribution
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Q (x) centered at the point target,  . We used an arbitrary standard deviation

� = 0.05 which is comparable to the accuracy needed for downstream applica-

tions of PSI estimates. The new metric directly computes the distance between a

distribution and its target.

• Variation distance, which measures the total deviation between the two dis-

tributions

V (P, Q ) =
X

0x1

| P (x)�Q (x) | (2.14)

• Disagreement distance between CDFs, which measures the maximum devi-

ation. In our case, the maximum is attained at the mode of either P or

Q 

S(P, Q ) = max
0y1

X

0xy

P (x)�Q (x) (2.15)

• KL divergence, which measures the asymmetric disagreement between P or

Q with respect to the latter

D

KL

(Q kP ) =
X

0x1

Q (x) log
Q (x)

P (x)
(2.16)

• Novel confidence-weighted L

1
2

error distance, is designed to penalize distri-

butions that distribute weight away from the target  

E

1
2
(P, ) =

X

0x1

P (x)kx�  k 1
2

(2.17)

Table 2.1 shows the overall performance of each PSI estimation method over the

26 target events according to each of these error metrics. While our most robust

methods perform well on three of these metrics, it is not surprising that MISO

outperforms every other method on the remaining S-metric because it always dis-

tributes its posterior mass wider than our methods. The disagreement distance,

S(P, Q ) rewards this extensive hedging because it is very susceptible to sampling

noise which is abundant on Figure 2.3. The remaining metrics are chosen to be

more robust when faced with this sampling noise.
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2.3.2 Consistent estimation of PSI

In order to further investigate the consistency of PSI estimation methods,

we performed a random sub-sampling procedure. This procedure chooses a random

half of the positions around a junction and uses the subset of reads that start at

those positions to obtain an unbiased estimate of the noise associated with the

positional bias. A dataset with reduced set of positions is equivalent to a dataset

with reduced signal-to-noise ratio. Comparing the PSI estimate of a method given

each half of the positions can measure the consistency of that method. Figure 2.4

depicts the consistency of the most accurate methods from Table 2.1 with a non-

standard 2D color visualization. We call a this visualization a constellation plot

because of its superficial resemblance to images of deep-space galaxies.

We expect more consistent methods to produce consistently more similar

estimates of PSI. For each method, we calculate the KL-divergence between its

PSI estimate on a particular event to the PSI estimate on all other events. We

compare the mean of all cross-event divergence to the divergence between PSI

estimates from complementary halves of the same event. The former divergence

we call the inter-exon distance, and the latter we call the intra-exon distance.

Then, the ratio between the inter- and intra-exon distances is a measure of the

method’s consistency for that particular exon. More consistent methods will have

a higher ratio over all events. Figure 2.5 compares the consistency ratios of our four

methods and that of MISO using a larger dataset of over 1000 events (including

the 26 validated by RT-PCR).

Consistency of the PSI estimates is especially important to the downstream

uses of our methods. If only a randomly selected subset of positions are taken into

account, the PSI estimate (and its uncertainty) should be very similar to the

estimate that would be computed based on the complementary set of transcript

positions. Thus we defined a measure of consistency of the estimator as the ratio

of the average distance of the PSI distributions obtained from two di↵erent genes

and the average distance from PSI distributions obtained from di↵erent position

subsets of the same transcript. High values of this ratio indicated that using a

smaller subset of the positions will not a↵ect the estimate of PSI drastically, but



24

that this is not achieved in a trivial way by always estimating either a high or a

very low level of exon inclusion.

2.3.3 Runtime and e�ciency

While accuracy and consistency are the most important considerations for

any approach of estimating PSI, runtime and e�ciency are becoming increasingly

relevant as the amount of RNA-seq data grows rapidly. Table 2.2 compares the

runtimes of all methods on both the small validation set of 26 events and the larger

set of 1051 events. To estimate the distribution over PSI values for each event, we

used 10,000 samples for all methods. Sampling from the Gaussian model was direct

whereas other models sampled the expression for inclusion and exclusion isoforms

separately. It is not surprising that the run time of our pre-processing grows

linearly with the number of RNA-seq reads, and we expect the same happens to the

pre-processing subroutines of both MISO and Cu✏inks. However, the estimation

subroutines in the two established tools are disproportionately slower on the larger

dataset than any of our simple methods, including the robust and very consistent

bootstrap model.

Table 2.1: Comparison of error between di↵erent PSI estimation methods with
respect to RT-PCR target. The best methods with lowest error in each row are
bolded. Robust Mixture model is abbreviated to “Mixture”.

Error Native Gaussian Mixture Bootstrap MISO Cu✏inks
V 28.5 24.1 27.2 24.2 30.9 43.7
S 12.90 15.26 15.87 15.22 9.87 12.65
D

KL

264 102 94.2 92.0 220 1115
E

1/2

9.34 7.08 6.62 6.65 9.28 14.65

2.4 Conclusion

This work addressed the problem of estimating relative abundances of al-

ternatively spliced cassette exons from the sparse and noisy evidence in RNA-seq

data. First, we investigated the raw data and reviewed known fragmentation bi-

ases resulting from current RNA-seq protocols. Next, we identified position-specific
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Table 2.2: Comparison of run times between di↵erent PSI estimation methods.
For our methods, we report the runtime of the shared pre-processing step separately
from the PSI estimation. All tests were performed on a Dell Precision T7400
workstation with 8 cores (at 3 GHz) and 32 GB of RAM. We report wall-clock
times averaged over 3 re-runs then rounded to the nearest minute (or second where
appropriate).

Datasets: Validation High-Throughput
RNA-seq reads 66 Million 145 Million

AS events 26 1051
Cu✏inks 16 min 75 min

MISO 77 min 458 min
Preprocess 4 min 11 min

Gaussian +1 sec +2 min
Native +2 sec +5 min

Mixture +6 sec +17 min
Bootstrap +12 sec +29 min

anomalies a↵ected by these biases, and proposed a modular probabilistic frame-

work that robustly estimates the PSI and total coverage of alternatively-spliced

exon junctions. Using this foundation, we framed the classic IID read sampling

assumption as a Poisson model and termed the two types of position-specific de-

viations in the actual data as sparse cover and read stacks. Using the established

framework, we proposed three novel probabilistic methods of increasing complex-

ity, which mitigate the e↵ects of these two biases. We compared our methods’

accuracy to each other and to existing approaches of estimating PSI with respect

to a reference set of 26 RT-PCR measurements from a human cell line. Our results

showed a moderate increase in accuracy and a significant increase in consistency

of our methods over the current state-of-the-art for quantification of alternative

splicing events. While we presented and referenced several methods for quantifying

alternative splicing, our goal was not to pick a single champion that is superior to

all others, but to compare the strengths and weaknesses of the various approaches.

We hope that these advances will enable more sensitive downstream analyses, such

as better determinants of di↵erential splicing which can eventually lead to an im-

proved RNA splicing code.
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Figure 2.1: A read cover profile shows the number of read alignments (y-axis) that
start at a particular distance (x-axis) from the splice junction. This histogram is a
typical example of the 50nt neighborhood around a highly expressed constitutive
junction. This example exhibits two types of read mapping bias: sparse coverage
(empty positions) and read-stacks (tall blue bars). The horizontal line (in red)
↵ = 3.4 marks the average expression of the junction determined by the Native
model.
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Figure 2.2: Our Mixture Model for robust estimation of PSI and coverage of
cassette junctions from RNA-seq data. Only the read counts at each position
(shaded xp) are observed. The mixture components (mp), robust expression esti-
mates for each junction (�ie), and the overall cover (C) and percent-spliced-in ( )
are inferred by the model.
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Figure 2.3: Comparison of PSI estimators of di↵erent methods for (A) high-
(B )medium- and (C) low-cover junctions in a reference RT-PCR study. Each
method’s estimated distribution over PSI is shown in di↵erent color, and the target
PSI value is shown as a yellow star on the x-axis. Methods which commit the most
of their distribution mass near the star have the most accurate estimates. The
text inside each plot identifies a cassette event and gives the raw number of reads
mapping to the constitutive (Ne) and the average of the alternative junctions (Ni).
This figure is best viewed in color.
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Figure 2.4: Constellation plot of the estimated PSI distributions from one vs.
another half of the positions in each cassette event. The distribution of PSI along
the x-axis, Px( ) over the range (0-100%) is estimated from a random half of the
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The yellow star along each diagonal is placed at the x- and y-coordinate matching
the PSI value determined by RT-PCR for the event whose name and cover are
printed in white font. This figure is best viewed in color.
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Figure 2.5: Plots of the consistency ratio between inter- and intra-exon divergence
in the estimated PSI distributions for five of the methods in two human tissues. The
PSI estimates were generated for a random half of the positions in each junction
and compared to the PSI estimate from the other half within the same exon and
between di↵erent exons. More consistent methods have a higher consistency ratio.



Chapter 3

Adenosine to Inosine RNA

editing in C. elegans

3.1 The dsRBP and inactive editor, ADR-1, uti-

lizes dsRNA binding to regulate A-to-I RNA

editing across the C. elegans transcriptome

Inadequate adenosine-to-inosine editing of noncoding regions occurs in dis-

ease, often uncorrelated with ADAR levels, underscoring the need to study deam-

inase independent control of editing. C. elegans have two ADAR proteins, ADR-2

and the theoretically catalytically inactive ADR-1. Using high-throughput RNA

sequencing of wild-type and adr mutant worms, we expanded the repertoire of C.

elegans edited transcripts over 5-fold and confirmed that ADR-2 is the only ac-

tive deaminase in vivo. Despite lacking deaminase function, ADR-1 a↵ects editing

of over 60 adenosines within the 3’ UTRs of 16 di↵erent mRNAs. Furthermore,

ADR-1 interacts directly with ADR-2 substrates, even in the absence of ADR-

2; and mutations within its dsRNA binding domains abolished both binding and

editing regulation. We conclude that ADR-1 acts as a major regulator of editing

by binding ADR-2 substrates in vivo and raises the possibility that other dsRNA

binding proteins, including the inactive human ADARs, regulate RNA editing by

31
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deaminase-independent mechanisms.

3.2 Introduction

RNA editing is a posttranscriptional process that introduces changes in

RNA sequences and structures (Gott and Emeson, 2000). The most prevalent

form of RNA editing in metazoa is the hydrolytic deamination of adenosine (A) to

inosine (I) (Nishikura, 2010). Adenosine deaminases that act on RNA (ADARs)

bind to double-stranded regions of RNA and catalyze this type of editing (Good-

man et al., 2012; Savva et al., 2012). Although RNA editing was initially thought

to be restricted to a few select mRNAs in the central nervous system, it is now

clear that adenosine deamination is widespread, with current estimates of 400,000-

1,000,000 A-to-I editing events in the human transcriptome (Ramaswami et al.,

2013). Adenosine and inosine have di↵erent base-pairing properties; therefore,

editing alters RNA structure (Bass, 2002). Furthermore, as inosine is recognized

as guanosine by cellular machinery, RNA editing can modify splice sites, alter the

amino acid encoded by a codon and redirect miRNAs and siRNAs to new tar-

gets (Hundley and Bass, 2010; Rosenthal and Seeburg, 2012). As the extent of

RNA editing varies during development and between cell types (Wahlstedt et al.,

2009), this type of modification dynamically regulates gene expression (Tan et al.,

2009). The molecular diversity generated by ADARs is most pronounced in the

brain transcriptome (Blow et al., 2004; Paul and Bass, 1998). Consistent with

this, deletion of ADARs in lower organisms, such as C. elegans and Drosophila,

results in behavioral defects (Palladino et al., 2000; Tonkin et al., 2002), indi-

cating that RNA editing is required for proper neuronal function. Furthermore,

alterations in editing levels have been observed in a number of neuropathological

diseases, including epilepsy, depression, amyotrophic lateral sclerosis, and brain tu-

mors (Farajollahi and Maas, 2010; Tariq and Jantsch, 2012). In both development

and disease, ADAR expression levels do not directly correlate with the extent of

editing (Maas et al., 2001; Wahlstedt et al., 2009), implying that other mechanisms

exist to regulate ADAR-mediated RNA editing. Both alternative splicing (Lai et
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al., 1997; Rueter et al., 1999) and post-translational modification (Desterro et al.,

2005) of ADARs generate less active variants of ADARs. Likewise, editing activity

can be inhibited by sequestration of ADAR in the nucleolus (Sansam et al., 2003)

or enhanced by proteins that promote nuclear localization of ADARs (Marcucci et

al., 2011; Ohta et al., 2008). In addition to proteins that directly regulate ADARs,

it has recently been demonstrated that both the local RNA structure (Daniel et

al., 2012) and RNA binding protein (RBP) landscape of individual transcripts

(Tariq et al., 2013) regulate ADAR activity. To date, none of these mechanisms

have been linked to reduced RNA editing activity in disease (Orlandi et al., 2012).

Furthermore, it is unlikely that the regulators of specific transcripts will play a

key role in the global hypoediting of transcripts observed in many human can-

cers and neurological diseases. To identify mechanisms that could decrease global

RNA editing levels, we focused on the role of catalytically inactive ADAR family

members. The C. elegans genome encodes two proteins with the common ADAR

family domain structure (ADR-1 and ADR-2). However, ADR-1 lacks several key

amino acids required for deaminase activity. Worms lacking the adr-2 gene, have

no detectable editing of the six known edited endogenous mRNAs (Tonkin et al.,

2002), suggesting that ADR-2 is the catalytically active ADAR protein in worms.

However, initial studies of worms lacking adr-1 revealed alterations in the editing

e�ciency of all six endogenous mRNAs examined (Tonkin et al., 2002). In ad-

dition, recent deep sequencing of C. elegans small RNAs identified over 30 small

RNAs that are edited in vivo, and each have altered editing levels in worms lacking

adr-1 (Warf et al., 2012). These prior observations suggest ADR-1 regulates edit-

ing. However, it is also possible that background mutations in the strains lacking

adr-1 contribute to alterations in editing or that loss of adr-1 indirectly a↵ects

editing by ADR-2. To directly address these concerns, we developed a quantita-

tive assay to measure in vivo editing levels of worms expressing adr-1 transgenes.

About 40% of adenosines within three known edited mRNAs were a↵ected by loss

of adr-1. Furthermore, using a combination of high-throughput RNA sequencing

of transgenic worms and probabilistic modeling we were able to identify 48 novel

edited transcripts and demonstrate that loss of adr-1 a↵ects editing of at least
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half of these newly identified ADAR targets. Using an RNA immunoprecipitation

(RIP) assay, we demonstrate that ADR-1 directly binds to known editing targets

in vivo, that disrupting this binding alters editing of the mRNAs, and that ADR-1

and ADR-2 co-occupy transcripts in vivo. In summary, we demonstrate that cat-

alytically inactive ADR-1 acts as a global regulator of editing by binding to target

mRNAs and modulating the accessibility of ADR-2 for target adenosines.

3.3 Results

3.3.1 ADR1 significantly alters RNA editing of multiple

mRNA targets

To determine the ability of ADR-1 to directly regulate RNA editing in

vivo, we established a quantitative assay to measure changes in editing in worms

lacking adr-1 and then tested if these changes were rescued by an ADR-1 trans-

gene. First, we examined the editing levels at 50 individual adenosines within

three known edited mRNAs: C35E7.6, lam-2 and pop-1. These three mRNAs

were chosen based on the diversity in their cellular function and length of the

double-stranded 3 UTR, which range from 517 to 1423 nucleotides. RNA was iso-

lated from three independent biological replicates of wild-type and adr-1(-) adult

worms. After reverse transcription, PCR amplification and Sanger sequencing, the

editing e�ciency was quantitatively measured using the Bio-Edit program. Tech-

nical replicates of the editing assay suggest that percent editing at each site can

be determined with less than 1% error (Figure 3.1A), which is consistent with

recently published data on the accuracy of measuring editing e�ciency by Sanger

sequencing (Eggington et al., 2011). Of the 50 edited adenosines, we observed

statistically significant di↵erences in editing levels between wild-type and adr-1(-)

worms at 22 individual sites (Figure 3.1A). The bulk of the statistically significant

sites (91%) had decreased editing, ranging from 3-35%, in the absence of adr-1.

To demonstrate that these sites are directly regulated by ADR-1, a 3X

FLAG tagged genomic version of adr-1 was re-introduced to adr-1(-) worms by
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microinjection. Importantly, this transgenic worm rescues a known adr-1 depen-

dent e↵ect on neuronal protein expression (Hundley et al., 2008), indicating that

the transgene expresses functional ADR-1 protein (Figure 3.1B). As the transgenic

worms express FLAG-ADR-1 from an extrachromosomal array that is transmit-

ted to progeny at a high frequency, but not 100%, a neuronal GFP marker was

co-injected and flow cytometry was used to purify worms containing the ADR-1

transgene. In addition, to reduce e↵ects of developmental timing on editing e�-

ciency all worms analyzed were also sorted by size to obtain only young adults.

The quantitative editing assay showed that FLAG-ADR-1 significantly restored

editing to 15 of the 22 editing sites altered in adr-1(-) worms (Figure 3.1B). It

is important to note, that editing changes in the FLAG-ADR-1 are not a general

phenomenon, as editing sites that are not a↵ected by the loss of adr-1 are not al-

tered by the transgene (Figure 3.1C). The 15 ADR-1 regulated sites include both

adenosines that have increased and decreased editing in the absence of adr-1. To-

gether, these data indicate that ADR-1 alters editing of multiple transcripts, but

the e↵ects vary depending upon the individual adenosines examined.

3.3.2 ADR1 binds directly to ADR2 target mRNAs in vivo

As the e↵ects of adr-1(-) on editing are site specific, we hypothesized that

ADR-1 is capable of regulating editing by utilizing two dsRNA binding domains

(dsRBDs) to bind to potential editing substrates and alter accessibility of ADR-

2 to particular nucleotides in the target mRNA. To determine if ADR-1 could

bind ADR-2 editing targets in vivo, we developed an RNA-immunoprecipitation

(RIP) assay for ADR-1. As a previously generated polyclonal antibody to ADR-

1 was incapable of immunoprecipitating ADR-1 e�ciently, the 3x FLAG-tagged

ADR-1 transgenic worm was utilized. To measure specific binding of ADR-1 to

target mRNAs in vivo, we compared immunoprecipitates (IPs) from FLAG-ADR-

1 and adr-1(-) worms that were subjected to UV irradiation (Fig 2A). The IP

samples were treated with Proteinase K to degrade FLAG-ADR-1 and release

ADR-1 associated RNAs into the supernatant. RNA was extracted from the IP

supernatant, reverse transcribed and quantified using real-time PCR (qRT-PCR).
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Primers that amplify the three mRNAs tested in Figure 3.1, produced 3-15 fold

more cDNA in the FLAG-ADR-1 IPs compared to the adr-1(-) IPs (Fig 2B). In

contrast, an mRNA that does not contain dsRNA, gpd-3, is not enriched, indicating

that, in vivo, ADR-1 specifically binds to these double-stranded ADR-2 target

mRNAs.

As these three mRNAs have both adenosines that are inhibited and en-

hanced by ADR-1, these data support the hypothesis that ADR-1 modulates edit-

ing via a direct interaction with dsRNA. However, in order to regulate editing,

ADR-1 needs to bind to the dsRNA before it is edited. To test this possibility, we

performed the RIP assay in cells expressing FLAG-ADR-1, but lacking adr-2 and

RNA editing. FLAG-ADR-1 was expressed and immunoprecipitated to a similar

level in the presence and absence of adr-2 (Fig 2C). Compared to the adr-1(-)

worms, all three ADAR target mRNAs were enriched to a similar extent in the

FLAG-ADR-1 IPs in the presence and absence of adr-2 (Fig 2D), indicating that

binding of ADR-1 to known edited mRNAs is independent of ADR-2. Further-

more, as these mRNAs have no detectable editing in adr-2(-) worms, we conclude

that ADR-1 binds unedited mRNAs in the cell.

3.3.3 ADR1 alters RNA editing via binding to dsRNA

Our results indicate that ADR-1 binds to mRNAs that are targets for edit-

ing by ADR-2 in vivo. To determine if this binding is required for the ability

of ADR-1 to alter editing e�ciency in vivo, we created mutations in the dsRNA

binding domains (dsRBDs) of C. elegans ADR-1 and examined the e↵ects on en-

dogenous RNA editing. A patch of lysine residues, referred to as the KKxxK motif

(K=lysine, x=any amino acid), is required for binding of dsRNA binding proteins

to dsRNA (Ramos et al., 2000; Ryter and Schultz, 1998). Mutation of the lysine

residues to glutamate (E) and alanine (A) disrupts binding of human ADARs to

dsRNA (Valente and Nishikura, 2007). To disrupt ADR-1 dsRNA binding, the

KKxxK motif was mutated to EAxxA within both of the dsRBDs (referred to as

the ds1+2 mutant) (Fig 3A). Similar to the aforementioned wild-type ADR-1, the

ds1+2 mutant was also 3XFLAG tagged and reintroduced in the adr-1(-) back-
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ground. The FLAG-ADR-1 ds1+2 mutant protein is expressed in the transgenic

worms to about the same level as transgenic wild-type FLAG-ADR-1 (Fig 3B). To

test whether these mutations disrupt ADR-1 binding to dsRNA, the RIP assay was

performed with the ds1+2 mutant. In contrast to wild-type ADR-1, the ds1+2

mutant IPs were not enriched for the ADR-2 editing targets (Fig 3C). Thus, the

ds1+2 mutant has defects in mRNA binding in vivo.

To determine if ADR-1 binding to target mRNAs influences editing ef-

ficiency, we compared in vivo editing levels of the FLAG-ADR-1 worms to the

FLAG-ADR-1 ds1+2 mutant at the 15 sites that were identified as significantly

regulated by ADR-1 (Figure 3.1B). As ADR-1 primarily promotes editing within

these target mRNAs, most of the sites exhibit decreased editing in the absence of

adr-1, with the exception of nucleotide 631 of lam-2, which has increased editing

in adr-1(-) worms (Figure 3.1A). The ADR-1 ds1+2 mutant failed to significantly

restore editing to 11 of these 15 sites, including nucleotide 631 of lam-2 (Fig 3D).

Thus, ADR-1 binding to target mRNAs is required both for its ability to promote

and inhibit editing of known edited mRNA targets in vivo.

3.3.4 Binding of dsRNA by ADR1 regulates editing of

transcripts

Our data indicates that ADR-1 binding to target mRNAs alters editing of

specific adenosines in vivo. To understand the impact of ADR-1 across the tran-

scriptome, we conducted strand-specific RNA-sequencing (RNA-Seq) of RNA from

wild-type (N2), adr-1(-), adr-2(-), FLAG-ADR-1 and FLAG-ADR-1 ds1+2 mutant

adult worms and compared the nucleotide changes amongst the strains and the

published C. elegans genomic sequence (WS220,ce10) (Fig 4A). To distinguish true

RNA editing events from single nucleotide polymorphisms (SNPs), we removed

annotated SNPs using Illuminas iGenomes collection. Unannotated variants were

further addressed by performing RNA-Seq on RNA from adr-1(-);adr-2(-) worms

and identifying all single-nucleotide variants (118,651 SNV) between the adr-1(-

);adr-2(-) RNA (which lacks all A-to-I editing) and the C. elegans genome. These

variants were subtracted from all other RNA-seq datasets. A Bayesian inverse



38

probability model was then adapted (Li et al., 2008) to identify high-confidence

A-to-I editing sites from the RNA-seq data, where a confidence value based on the

number of reads is associated with each predicted site. Empirically, we found that

a confidence threshold of 0.995 produced the largest number of predicted sites in

all strains: 59 sites in N2, 141 sites in adr-1(-), 71 sites in FLAG-ADR-1, 102 sites

in FLAG-ADR-1 ds1+2 mutant, while identifying the lowest number of edits in

the adr-2(-) strain (6 sites) that we presumed represented false positives (Table

3.1).

Of the 270 unique high confidence editing sites that were identified, but not

present in adr-2(-) worms (Table 3.1), 250 sites are novel editing events that occur

within 48 di↵erent transcripts; the remaining 20 high confidence sites were located

within the previously identified ADAR targets C35E7.6, lam-2 and rncs-1 (Morse

et al., 2002; Morse and Bass, 1999). The majority (71%) of these candidate-editing

events occur within non-coding regions of the genome (Fig 4B). Strikingly, the vast

majority of editing events occurred in 3’ UTRs, consistent with the hypothesis

that A-to-I editing controls gene expression by altering regulatory motifs in these

regions. Interestingly, regions of the genome that encode for transposons were the

second most highly identified (18%) category of editing events. In addition, we

did identify 11 potential editing sites in coding regions of 8 di↵erent mRNAs. As

editing events in the coding region of C. elegans mRNAs had not previously been

identified, this suggests that similar to mammalian and Drosophila ADARs, C.

elegans ADARs may also perform site selective editing in vivo.

Although ADARs target dsRNA of any sequence, the extent of editing at

a particular site depends on the neighboring nucleotide context (Wahlstedt and

Ohman, 2011). Using the Two Sample Logo software (Vacic et al., 2006), the 270

candidate editing sites had an over-representation of A both immediately 5 and 3 to

the edited adenosine, whereas both G and C are under-represented at the positions

5 to the edited adenosine and C is under-represented 3 to the edited adenosine

(Fig 4C). Both in vitro biochemical studies and transcriptome-wide RNA-Seq data

indicates that human ADARs have a similar 5 preference. However human ADARs

tend to favor a G at the 3 position to the edited adenosine (Lehmann and Bass,
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2000; Riedmann et al., 2008). It is important to note, that because of overlapping

specificities of mammalian ADARs, human transcriptome-wide datasets apply to

editing by both human ADAR1 and ADAR2. However, as C. elegans ADR-2 is

responsible for deamination of all of the RNA-Seq sites, our data provides the first

in vivo nucleotide preferences of a single ADAR acting primarily at noncoding

regions.

To validate the potential editing sites, Sanger sequencing editing assays

were performed for 9 novel edited transcripts (Figure 3.2). Importantly, 50 of the

53 predicted sites were verified by Sanger sequencing, suggesting the false discovery

rate of the pipeline is approximately 5.7%. However, in addition to the 50 editing

sites identified from the RNA-Seq analysis, the Sanger sequencing of these 9 novel

transcripts revealed 179 additional editing sites (Table 3.2), indicating that our

probabilistic model is capable of identifying highly edited transcripts.

To determine if ADR-1 a↵ected editing in the transcriptome, the editing

e�ciency of the 270 high confidence editing sites was quantified using a novel

Bayesian model. To ensure accurate quantification, we processed all the RNA-

Seq reads through the bioinformatics pipeline described above (Fig 4A), with one

exception: read filter 5d was relaxed from requiring an edit site to be 25 nt away

from each end down to a less-stringent 5 nt and required a minimum of 5 reads

for a site in a given strain. With these criteria, we were able to quantify editing

of over 100 sites for each of the four strains, with any two strains having an

overlap of between 72-105 editing sites (Figure 3.3A-D). Pairwise comparison of the

editing sites identified from the four RNA-Seq data sets indicated that the editing

e�ciency is most consistent between the wild type and FLAG-ADR-1 strains (Fig

4D, Figure 3.3E-G). This is consistent with the Sanger sequencing data of known

editing sites and provides further evidence that the FLAG-ADR-1 transgene is

capable of restoring editing to the adr-1(-) strain at most sites. As over-two thirds

of the wild-type and FLAG-ADR-1 sites fell within one standard deviation (12%)

of the regression line on the scatter plot, we used this threshold to categorize

our newly identified sites into ADR-1 and non-ADR-1 regulated (Table 3.3). As

multiple RNA-Seq studies have shown that determination of editing levels tends
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to increase with read coverage (Bahn et al., 2012; Lee et al., 2013), it is important

to note that similar results (greater than 80% overlap) were obtained when we

estimated the error of editing at each site upon the read density at a given site in

each strain (Table 3.3), suggesting that the editing percent thresholds for ADR-1

regulated and non-regulated sites are accurate. Comparison of editing levels at the

81 sites common between wild-type and adr-1(-) RNA-Seq datasets revealed that

over half (56%) of the edited adenosines have altered editing levels in the absence

of adr-1 (Table 3.3). Interestingly, 44 of these 45 sites are located within the 3

UTRs of 13 novel edited transcripts that we identified. This data is consistent

with our quantitative Sanger sequencing analysis of the 3 UTRs of known ADAR

targets (Fig 1A). In addition, at 38 of these ADR-1 regulated sites we were able

to quantify editing levels for both the FLAG ADR-1 and FLAG-ADR-1 ds1+2

RNA-Seq datasets. Editing levels at 13 sites located within the 3 UTRs of 8

newly identified ADAR target mRNAs were dependent upon dsRNA binding by

ADR-1 (Fig 4E). Together these transcriptome-wide studies indicate that ADR-1

regulates editing of specific adenosines within the 3 UTRs of the majority of C.

elegans edited mRNAs and dsRNA binding is required for this function.

3.3.5 ADR1 and ADR2 co-occupy multiple transcripts in

vivo

At present it is unclear how ADR-1 binding to mRNAs a↵ects editing by

ADR-2. It is possible that ADR-1 and ADR-2 heterodimerize in the cell to edit

certain transcripts, whereas other transcripts are edited by ADR-2 alone. Alter-

natively, it is possible that ADR-1 and ADR-2 interact on the same transcripts,

but regulate editing in an adenosine-specific manner. To gain insight into these

possibilities, we examined the wild-type and FLAG-ADR-1 RNA-Seq datasets to

determine whether editing at ADR-1 regulated adenosines occurred on the same

reads as edited adenosines that are not a↵ected by loss of adr-1. For most of the

novel transcripts that are edited in the 3 UTR (9/12), editing was observed at

both adenosines a↵ected by adr-1 and non-regulated sites, within the same 75 nt

read (Table 3.3).
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To provide further evidence that ADR-1 and ADR-2 associate on com-

mon targets in vivo, we immunoprecipitated FLAG-ADR1 and tested for the pres-

ence of ADR-2 with an ADR-2 specific antibody (Fig 4F). ADR-2 was present in

the FLAG-ADR-1 IPs, but not the FLAG-ADR-1 ds1+2 mutant IPs or IPs from

worms lacking adr-1 (Fig 4G). Consistent with an RNA-dependent interaction of

ADR-1 and ADR-2, IPs of wild-type ADR-1 treated with RNase also resulted in

reduced ADR-2 co-immunoprecipitation (Figure 3.5). Together, these data sug-

gest that ADR-1 and ADR-2 interact on transcripts in vivo, but are not likely to

heterodimerize independent of target mRNAs.

3.4 Discussion

In this study, we have demonstrated that C. elegans ADR-1 utilizes its

double-stranded RNA binding function to regulate A-to-I editing levels in vivo.

Using a high-throughput RNA sequencing approach coupled to probabilistic mod-

eling, we were able to expand the number of known ADAR target mRNAs five-fold,

as well as provide the first transcriptome-wide evidence that ADR-1 is a catalyti-

cally inactive member of the ADAR family. Furthermore, using both our extensive

Sanger sequencing analysis of ADAR targets and quantification of transcriptome-

wide RNA-Seq data, we demonstrate that ADR-1 regulates editing e�ciency of

specific adenosines within most ADAR target 3 UTRs.

We propose that ADR-1 regulates editing by binding to target mRNAs

and altering accessibility of ADR-2 for specific adenosines. Multiple recent studies

support the idea that the RNA binding protein landscape of ADAR target mRNAs

a↵ects editing levels (Bhogal et al., 2011; Chen, 2013; Garncarz et al., 2013; Tariq

et al., 2013). However, in most of these studies, the RNA binding activity of the

regulators was not shown to be required for A-to-I regulatory activity and these

regulators were all single-stranded RNA binding proteins that altered editing of

specific coding editing events. In contrast, we demonstrate that ADR-1 binds to

several target mRNAs via its dsRNA binding domains, and that this binding is

required for regulation of editing. This dsRNA binding activity would allow ADR-
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1 to interact with nearly all the same targets as ADR-2, thus allowing it to serve

a more global role in regulating editing within long double-stranded regions. As

dsRBDs are the second most abundant RNA recognition motif (Stefl et al., 2010),

it is unlikely that this regulatory role is limited to C. elegans ADR-1. Consistent

with this, 20% of our newly discovered edited transcripts overlap with recently

identified targets of another dsRNA binding protein (dsRBP), C. elegans Staufen

(LeGendre et al., 2013) (Table 3.1).

Our Sanger sequencing and transcriptome-wide analyses suggest that the

regulatory role of ADR-1 is specific to certain adenosines (Fig 1A, Table 3.3).

Although dsRBPs are generally presumed to lack sequence specificity (Tian et al.,

2004), recent structural data suggests ADARs recognize specific nucleotides within

a dsRNA target (Stefl et al., 2010). Our RIP assay indicates that ADR-1 binds to

the lam-2 and pop-1 mRNAs to a similar extent in the presence and absence of adr-

2 (Fig 2D). Thus, at least for certain edited mRNAs, ADR-1 does not compete with

ADR-2 for binding sites in vivo. Consistent with this, the majority of the ADR-1

regulated sites identified in both the RNA-Seq datasets and the Sanger analysis

have enhanced editing in the presence of adr-1 (Fig 1A, Table 3.3), suggesting that

ADR-1 functions primarily to promote ADR-2 editing, not compete with ADR-2

for target adenosines. As editing is not required for ADR-1 to bind these mRNAs,

we postulate that, in vivo, ADR-1 first binds to target mRNAs and then either

alters binding of ADR-2 to specific regions and/or regulates the catalytic activity of

ADR-2 (See Graphical abstract). Interestingly, it was recently demonstrated that

human ADAR1 binding to mRNAs creates binding sites for another RNA binding

protein, HuR, which results in increased RNA stability of HuR-ADAR1 bound

transcripts (Wang et al., 2013). Similar to what was demonstrated for human

ADAR1-HuR, we detected an in vivo interaction between wild-type ADR-1 and

ADR-2, but not the ADR-1 ds1+2 mutant, which is consistent with ADR-1 and

ADR-2 interacting on target mRNA. Interestingly, it has previously been suggested

that human ADAR homodimerization on dsRNA is required for e�cient editing in

vitro (Jaikaran et al., 2002). Although our evidence indicates that ADR-1 utilizes

dsRNA binding to regulate editing by ADR-2, it is possible that this regulatory



43

function is due to e↵ects of ADR-1 on expression of other RNA binding proteins,

that in turn alter ADR-2 accessibility to target mRNAs. Future work aimed at both

identifying ADR-1 and ADR-2 binding sites on mRNAs in vivo and determining

the impact of ADR-1 on ADR-2 editing e�ciency on target mRNAs in vitro will

be needed to determine if there is a correlation between binding site specificity and

regulation of specific sites. In summary, our results indicate that ADR-1 utilizes

dsRNA binding to regulate A-to-I editing across the C. elegans transcriptome.

These studies not only suggest a potential biological function for the catalytically

inactive ADARs present in humans, but also unveil a potential mechanism for

other dsRBPs, such as Staufen, to regulate RNA editing levels.

3.5 Experimental Procedures

3.5.1 Maintenance of worm strains and Transgenics

Worm strains were maintained by growth on NGM plates seeded with Es-

cherichia coli OP50. Transgenic worm lines were generated by microinjection. A

detailed description of the injections and transgenic strains is given in the Extended

Experimental Procedures.

3.5.2 RNA Isolation and Editing Assays

Total RNA was isolated using Trizol (Invitrogen). RNA was further treated

with Turbo DNase (Ambion) and then isolated using the RNA Easy Extraction kit

(Qiagen). Editing assays were performed using Thermoscript RT (Invitrogen) for

reverse transcription and PFX Platinum DNA Polymerase (Invitrogen) for PCR

amplification with gene-specific primers (Table 3.4). PCR products were gel puri-

fied and subjected to Sanger sequencing. Editing was quantified using the program

BioEdit, which quantifies adenosine and guanosine peak heights. For all editing

assays, negative controls were conducted without Thermoscript RT to ensure that

all DNA subjected to Sanger sequencing resulted from cDNA amplification.
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3.5.3 Strand-specific RNA sequencing

Strand specific mRNA sequencing libraries were prepared as described pre-

viously (Parkhomchuk et al., 2009). Libraries were normalized to 2nM and se-

quenced for SE76 cycles on either HiSeq2000 (adr-1(-);adr-2(-)) or Illumina GAII

(all other strains).

3.5.4 Bioinformatics Pipeline

To achieve accurate identification of editing sites, we combined filters from

existing pipelines (Chen, 2013; Lee et al., 2013; Levanon et al., 2004; Ramaswami

et al., 2012) in a strand-specific manner. Accurate quantification was performed

by extending the existing Bayesian method for genomic variant calling used in

the 1000 Genomes project (Li et al., 2008) with a custom-designed prior on the

editing % (Figure 3.4). In addition to leveraging established considerations with

regards to read sequencing and alignment errors (Kleinman and Majewski, 2012;

Lin et al., 2012; Pickrell et al., 2012) our approach benefits greatly from using the

adr-1(-);adr-2(-) strain as a powerful filter for unannotated variants to maintain

low false positive rates while confidently identifying RNA editing sites. Detailed

steps of the pipeline and the Bayesian method for variant calling are described in

the Extended Experimental Procedures.

3.5.5 RNA Immunoprecipitation (RIP) Assay

After washing with IP Bu↵er (50mM HEPES, pH 7.4; 70mM K-Acetate,

5mM Mg-Acetate, .05% NP-40 and 10% glycerol), worms were subjected to 3J/cm2

of UV radiation using the Spectrolinker (Spectronics Corp.) and stored at -80C.

To obtain cell lysates, frozen worms were ground with a mortar and pestle on dry

ice. After thawing, the lysate was centrifuged to remove insoluble material and the

protein concentration was measured with Bradford reagent (Sigma). Five micro-

grams of extract was added to anti-Flag magnetic beads (Sigma) that were washed

with wash bu↵er (WB: 0.5M NaCl, 160mM Tris-HCl pH 7.5). After incubation

for 1 hour at 4C, the beads were washed with ice-cold WB, resuspended in low
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salt WB (0.11M NaCl), 1?l RNasin (Promega) and 0.5?l of 20mg/ml proteinase

K (Sigma) and incubated at 42C for 15 minutes to degrade protein and release

bound RNA. Protein samples were subjected to SDS-PAGE and western blotting

with a FLAG antibody (Sigma). RNA samples were isolated as described above.

Following DNase treatment, qRT-PCR for known editing targets was performed

as previously described (Hundley et al., 2008).

3.5.6 Flow Cytometry

Flow cytometry was conducted at the IUB Flow Cytometry Core Facility by

a dedicated technician using the COPAS Select (Union Biometrica) large particle

sorter. Parameters were adjusted manually to select either only adult worms for

non-transgenic strains or adult worms expressing GFP for transgenic lines.
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3.7 Figures
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Figure 3.1: (A and B) Editing levels at individual nucleotides within the 3 UTRs
were measured for 3 biological replicates. Error bars represent standard error of the
mean (SEM). Significant changes (p < 0.05) in editing levels between (A) wild-type
and adr-1(-) or (B) adr-1(-) and FLAG-ADR-1 are marked with an asterisk.



47

B!A! FLAG-ADR-1! adr-1(-)!
-!
-!

FLAG IP!
Prot. K! -!

+! +!
+!

α-FLAG!

-!
-! -!

+! +!
+!

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

lam-2 pop-1 C35E7.6 gpd-3

Re
la

tiv
e 

m
RN

A 
le

ve
ls

 in
 IP

/In
pu

t

0.016!
0.014!
0.012!
0.010!
0.008!
0.006!
0.004!
0.002!

0!
lam-2! pop-1! C35E7.6! gpd-3!

R
at

io
 to

 In
pu

t!

Endogenous transcripts!

Figure 2!

C!

α-FLAG!

Lysates! IPs!

D!

0.00

10.00

20.00

30.00

40.00

50.00

60.00

Laminin pop01 C35e7.6 gpd03

60!
50!
40!
30!
20!
10!

0!
lam-2! pop-1! C35E7.6! gpd-3!

Fo
ld

 e
nr

ic
hm

en
t!

Endogenous transcripts!

FLAG-ADR-1in adr-1(-)!
FLAG-ADR-1 in adr-1(-); adr-2(-)!

adr-1(-)!
FLAG-ADR-1!
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IP and treatment with Proteinase K (Prot. K). A portion of the untreated lysate
(IP-, Prot. K-), IP (IP+, Prot. K-) and beads after Prot. K treatment (IP+,
Prot. K-) were subjected to immunoblotting for the FLAG epitope. (B) cDNA
levels for the indicated endogenous mRNAs were measured using qRT-PCR. Values
from the IP samples of FLAG-ADR-1 in adr-1(-) and the negative control adr-1(-)
were divided by their respective input levels. Error bars represent SEM for three
biological replicates. (C) Lysates from the indicated worm lines were subjected to
immunoprecipitation with magnetic FLAG resin. A portion of the input lysate and
IPs were subjected to immunoblotting for the FLAG epitope. (D) cDNA levels for
the indicated endogenous mRNAs were measured using qRT-PCR. The ratios of
the cDNAs present in the IP samples of the indicated strains were divided by their
respective input levels and normalized to the negative control adr-1(-) to give a
fold enrichment. Error bars represent SEM for three biological replicates.
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Figure 3.3: (A) Schematic of ADR-1 protein with dsRBDs (grey ovals) and deam-
inase domain (patterned rectangle). Lysine (K) residues mutated are indicated
above each dsRBD. (B) FLAG Immunoblotting of lysates and IPs of the indicated
strains. (C) Ratio of the cDNA present in the IP samples divided by the input
cDNA levels for the indicated strains were divided by the IP:input ratio of the
adr-1(-) worms. Error bars represent SEM for three biological replicates. (D)
Calculated percent editing in the indicated strains for the endogenous mRNAs of
C35E7.6, lam-2 and pop-1. Error bars represent SEM of 3 biological replicates.
Significant changes (p < 0.05) in editing levels between FLAG-ADR-1 and FLAG-
ADR-1 ds1+2 mutant are marked with an asterisk.
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Figure 3.4: (A) Bioinformatics strategy depicting the major steps for processing
strand-specific RNA-seq data into A-to-I sites for each strain. (B) Distribution
of identified RNA editing sites within annotated transcriptome regions. (C) Nu-
cleotide preferences for the 270 candidate editing sites were calculated compared to
a randomized control. Enriched and depleted nucleotides are shown above and be-
low the axis, respectively. The level of conservation is represented by letter height.
Logos were generated using a t-test with p < .005 and no Bonferroni correction.
(D) Scatter plots of percent editing of quantified sites that overlap in the wildtype
(CEN2) and FLAG-ADR-1 datasets. The r

2 fit to the y = x line (black diagonal).
The margin (dotted line) between no-change and di↵erentially-edited sites equals
12 units of change in the edit % (one standard deviation). (E) Editing levels for
13 sites from the RNA-seq data where editing levels between adr-1(-) and FLAG-
ADR-1 and between FLAG-ADR-1 and FLAG-ADR-1 ds1+2 mutant were greater
than 12% (Table S3). Adenosines that had no observed editing are marked with a
zero above the x-axis. (F and G) Immunoblotting analysis of FLAG IPs from the
indicated strains. IPs were performed as previously stated except worms were not
subjected to UV-crosslinking and only light salt washes were employed.
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Figure 3.5: Identification of > 400 novel A-to-I editing sites, primarily within
noncoding regions. ADR-1 regulates editing of specific adenosines within 3 UTRs
of diverse transcripts. ADR-1 regulates RNA editing by directly binding to ADR-
2 target mRNAs. ADR-1 and ADR-2 do not form heterodimers, but co-occupy
transcripts in vivo.



Chapter 4

Single-cell analysis reveals

asymmetric T cell specification

during adaptive immunity

T lymphocytes responding to microbial infection give rise to e↵ector cells

that mediate acute host defense and memory cells that provide long-lived immu-

nity, but the fundamental question of when and how these cells arise remains

unresolved. Here we combine single-cell gene expression analyses with machine-

learning approaches to trace the transcriptional roadmap of individual CD8+ T

lymphocytes throughout the course of an immune response in vivo. Gene expres-

sion signatures predictive of eventual fates could be discerned as early as the first

T lymphocyte division and may be influenced by asymmetric partitioning of the

interleukin-2 receptor during mitosis. These findings underscore the importance

of single-cell analyses in understanding fate determination and provide new in-

sights into the specification of divergent lymphocyte fates early during an immune

response to microbial infection.
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4.1 Early specification of CD8+ T lymphocyte

fates during adaptive immunity revealed by

single-cell gene expression analyses

During a microbial infection, responding T lymphocytes give rise to two

distinct classes of cellular progeny, e↵ector cells that provide acute host defense

and long-lived memory cells that provide durable immunity 1. Terminally di↵er-

entiated, short-lived e↵ector cells (T
sle

) can be identified phenotypically by high

expression of the lectin-like receptor (KLRG1) and low expression of the interleukin

7 receptor (IL-7R)2. At least two distinct subsets of long-lived memory cells, cen-

tral memory (T
cm

) and e↵ector memory (T
em

), have been described and can be

distinguished on the basis of their proliferative capacity, cytotoxicity, anatomic

localization and expression of certain homing and chemokine receptors, including

L-selectin (CD62L) and CCR73,4.

Prior studies using single-cell adoptive transfer and genetic barcoding appro-

aches5,6 have elegantly demonstrated that a single nave CD8+ T lymphocyte can

give rise to more than one fate, and importantly, is capable of generating all of

the diverse cellular fates necessary for an immune response. The process by which

a single activated T lymphocyte yields e↵ector- and memory-fated progeny and

the timing at which these di↵erentiation pathways begin to diverge, however, re-

main unresolved. One possibility is that the progeny of an activated nave CD8+ T

lymphocyte progress along a linear di↵erentiation path, initially becoming e↵ector

cells, with a subset of these cells later acquiring the memory fate1,7,8. An alter-

native possibility is that the first CD8+ T cell division in vivo is asymmetric9,10,

thereby enabling lymphocyte fates to diverge early during an immune response

owing to unequal inheritance of certain determinants, such as the interferon �

(IFN-�) receptor and the T-box transcription factor, T-bet.

Tracing individual lymphocytes sequentially as they di↵erentiate in vivo

might distinguish whether lymphocytes progress along a linear di↵erentiation path-

way1,7,8 or diverge early during an immune response. While genomic profiling stud-

ies have begun to elucidate the transcriptional networks that control lymphocyte
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fate specification11-13, these studies have been based on analyses of bulk cellular

populations, making it impossible to discern cell fate decisions made by individual

T cells. Recent technological advances that have coupled microfluidics technolo-

gies with high-throughput qRT-PCR analyses have enabled detailed analyses of

cell fate decisions in C. elegans development, induced stem cell reprogramming

and cancer biology14-17. Here, we applied single-cell gene expression profiling to

investigate the ontogeny of e↵ector and memory CD8+ T lymphocytes during a

microbial infection in vivo, uncovering evidence for heterogeneity in gene expres-

sion within individual lymphocytes early after the initiation of an adaptive immune

response.

4.2 Results

4.2.1 Single-cell gene expression analyses of CD8+ T lym-

phocytes in vivo

In order to delineate the hierarchy and mechanism of CD8+ T cell dif-

ferentiation during an adaptive immune response at the single-cell level, we em-

ployed an experimental system that allowed us to interrogate the gene expression

of individual CD8+ T lymphocytes throughout the course of a microbial infec-

tion in vivo. CD8+ T cells transgenic for the OT-1 T cell receptor that recognize

a specific ovalbumin epitope were adoptively transferred into wild-type recipient

mice. Mice were infected intravenously 24 hours later with recombinant Liste-

ria monocytogenes bacteria expressing ovalbumin (Lm-OVA) and CD8+ T cells

were sorted throughout the course of infection for single-cell analysis (Fig. 4.1).

In addition, we selected for analysis terminally di↵erentiated short-lived e↵ector

cells (T
sle

, KLRG1hiIL-7Rlo)2, putative memory precursor cells (T
mp

, KLRG1loIL-

7Rhi)2, and central memory (T
cm

, CD44hiCD62Lhi) and e↵ector memory (T
em

,

CD44hiCD62Llo)3,4 cells (Fig. 4.1).

Quantitative real-time PCR analysis was performed using Fluidigm 96.96

Dynamic Arrays, enabling simultaneous measurement of expression for 96 genes
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in 96 individual cells . Among the 94 gene targets (Table 4.1 ) we selected for

analysis were transcriptional regulators previously reported to influence CD8+ T

lymphocyte di↵erentiation18-25; cytokines, chemokines, and their receptors19; and

molecules associated with tissue homing and survival19.

Table 4.1: 94 selected gene targets grouped according to their function.
Class Genes
Apoptosis Bnip2, Bnip3l, Casp3, Casp9, Cflar, Pdcd1
Cytokine/ Ccr5, Ccr6, Ccr7, Cxcr3, Ifngr1, Ifnar1, Il2ra,
chemokine receptors Il2rb, Il7r, Klrc1, Klrg1, Tnfrsf1, Tnfrsf9
Cytokines, Ccl3, Ccl4, Ccl5, Cxcl10, Gzmb, Ifng, Il2,
chemokines, Il3, Lif, Xcl1
granzyme
Polarity/proteasome Prkcz, Psmb1, Psmb7
Housekeeping Actb, Gapdh, Rn18s, Rpl35
Signaling, Bag2, Bmi1, Bmp2, Cd28, Cd4, Cd44,
proliferation, Cd69, Cd8a, Grap2, Hk2, Lag3, Lgals1,
self-renewal Mapk3, Mapk8, Mapk14, Mela, Mtor,

Myc, Ptprc, RelA, Sema7a, Serpinb6b,
Serpinb9, Setd7, Sell, Thy1

Transcription factors Atf1, Bcl11b, Bcl6, Bhlhe40, Eomes,
Foxo1, Foxo3, Foxp1, Foxp3, Gata3,
Hopx, Id2, Id3, Irf4, Irf8, Klf2, Lef1,
Nfatc1, Nfatc2, Prdm1, Rel, Runx1,
Runx2, Stat1, Stat4, Tbx21, Tcf3,
Tcf7, Tcf12, Tox, Zeb2, Zfp281

After excluding failed reactions, expression data from 1,300 single cells were

retained for in-depth analyses . Because expression of “housekeeping” genes has

been shown to vary substantially across cell types and states of di↵erentiation26,

the expression of each gene of interest was utilized without normalization for all

of the analyses performed herein.

We used principal component analysis (PCA) to visualize the expression

data globally. PCA is an unsupervised dimensionality reduction method that we

used to project the data into 2 dimensions by its coordinates in the first two

principal components (PC1 and PC2) that account for the largest variations in

the data. These PCs are linear combinations of the 94 original genes. PCA re-

vealed that nave, T
sle

, T
em

, and T
cm

cells are clustered distinctly (Fig. 4.2a).
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Expression of Sell and Tcf7, which encode the tra�cking molecule CD62L and

the transcription factor TCF-1, distinguished nave from T
sle

cells, consistent with

previous findings2,4. Though T
sle

cells formed a distinct cluster, these cells were

projected closest to T
em

cells (Fig. 4.2a), suggesting related gene expression pro-

files that may underlie some of their functional similarities, such as cytotoxicity

and secretion of pro-inflammatory cytokines27. This clustering was driven primar-

ily by Zeb2, a transcription factor expressed in T
sle

cells12. In addition, T
em

and

T
cm

cells occupied distinct clusters, with higher expression of Tcf7, Il2rb, Il7r,

Cxcr3 and Sell mRNA in T
cm

cells and higher expression of Zeb2 mRNA in T
em

cells accounting for the variance between these memory cell populations. Some of

the disparities observed at the transcriptional level were confirmed at the protein

level (Fig. 4.2b), supporting the finding that T
cm

and T
em

cells are molecularly

distinct. The higher expression of Il7r and Tcf7, regulators of T lymphocyte sur-

vival and longevity25,28, that we observed in T
cm

cells may underlie the superior

capacity of these cells to persist in vivo

29. Putative memory precursor (T
mp

) cells

did not form a distinct cluster but overlapped with T
sle

, T
em

and T
cm

cells (Fig.

4.2c). These results suggested that putative T
mp

cells are molecularly hetero-

geneous, raising the possibility that this population may not represent memory

precursor cells, but instead may be comprised of “mature” memory and terminally

di↵erentiated e↵ector cells. Together these findings suggest that T
sle

, T
cm

, and

T
em

cells, but not putative T
mp

cells, exhibit similar gene expression profiles at the

single-cell level.

4.2.2 Molecular heterogeneity at the single-cell level early

after infection

To assess whether single responding CD8+ T cells comprised distinct clus-

ters early after infection, we analyzed the gene expression profiles of individual

CD8+ T cells isolated throughout the course of infection (Fig. 4.3a). PCA re-

vealed substantial heterogeneity among cells isolated early after infection (division

1 and day 3) compared to cells isolated at later timepoints (day 5 and day 7, T
sle

,

T
cm

, and T
em

). The first two principal components captured 17% of the variance
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in our dataset, slightly lower than that previously observed15, likely a reflection

of a higher degree of heterogeneity in lymphocytes during di↵erentiation and the

greater number of genes analyzed in our study. In agreement with our findings us-

ing PCA, an alternative unsupervised method, t-distributed Stochastic Neighbor

Embedding analysis30, was also performed and showed similar results . To test

whether the heterogeneity observed using data from single cells could be recapit-

ulated using data from bulk cells, we formally compared the analyses using data

derived from single versus bulk populations (Fig. 4.3a). We found that the het-

erogeneity we observed at the single-cell level within putative T
mp

cells and cells

isolated early after infection was not apparent in the bulk analysis (Fig. 4.3a),

thus illustrating the power and necessity of using a single-cell approach.

To further evaluate the degree of heterogeneity within and between cell

populations at each time point, which was not previously possible using bulk anal-

ysis, we applied the Jensen-Shannon Divergence (JSD) metric, a non-parametric,

model-free measure of similarity between two empirical probability distributions.

In general, the intra-population JSD was lowest in nave cells and highest in cells

isolated early after infection (Fig. 4.3b) . We observed that the intra-population

JSD decreased as a function of time following infection, with the notable exception

of putative T
mp

cells (Fig. 4.3b). These cells exhibited a high degree of intra-

population divergence, consistent with the apparent heterogeneity of these cells by

PCA (Fig. 4.3a). Comparing JSD pair-wise between all cell populations (nave,

division 1, days 3, 5, and 7 post-infection, T
mp

, T
sle

, T
cm

, and T
em

) yielded similar

observations, with the greatest divergence found between cells isolated early ver-

sus late after infection (Fig. 4.3b . Importantly, the inter-population JSD metric

was not a↵ected by group size . Together these results demonstrate that CD8+ T

lymphocytes responding to microbe exhibit substantial molecular heterogeneity at

the single-cell level early after infection that diminishes with time.
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4.2.3 Distinct transcriptional signatures early after infec-

tion

We hypothesized that the heterogeneity observed within lymphocytes early

post-infection might reflect distinct gene expression patterns that are predictive of

more di↵erentiated cells. We reasoned that supervised classifiers trained on rela-

tively well-defined, di↵erentiated cellular fates, such as sorted T
cm

and T
sle

cells,

could be utilized to assess whether cells isolated early post-infection might be fated

towards specific CD8+ T lymphocyte subsets. Boosted decision trees31 were cho-

sen over other classification frameworks with similar performance characteristics

because the learned trees are easily interpretable. A decision tree that was built

from the data consisted of several predictive rules that compare the expression of

Ptprc, Sell, and Ccl5 to thresholds learned from that data to decide whether a

cell is more T
cm

- or T
sle

-like (Fig. 4.4a). Ensembles of decision trees were trained

with RobustBoost32 to generate a binary classifier that achieved misclassification

error of approximately 4% in leave-one-out cross validation which was split evenly

when distinguishing between T
cm

versus T
sle

cells (Fig. 4.4b . The classifier

revealed that Sel1 and Il7r were among the most predictive genes whose high ex-

pression accurately described T
cm

cells, whereas the lack of their expression, along

with high expression of Zeb2, defined T
sle

cells (Fig. 4.4c). Application of the

classifier to cells isolated at days 5 and 7 post-infection revealed that 49% and

57% of total CD8+ T cells at these timepoints were more like T
sle

than T
cm

cells

(Fig. 4.4d), consistent with the expected percentages of T
sle

cells at days 5 and

7 post-infection2.

We next asked whether the classifier could discern the fates of responding

lymphocytes isolated early during an immune response. It has been previously

suggested that asymmetric CD8+ T lymphocyte division yields immune synapse-

proximal (“proximal”) and synapse-distal (“distal”) daughter cells that are di↵er-

entially fated6, raising the possibility that these cells might already exhibit distinct

gene expression patterns that are predictive of their eventual fates as early as the

first cell division. To test this possibility, putative proximal and distal daughter

cells, which can be distinguished by their relative abundance of CD8 and CD11a9,
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were sorted and analyzed. The classifier revealed that most proximal daughter

cells more closely resembled T
sle

cells, while most distal daughter cells more closely

resembled T
cm

cells (Fig. 4.4d), suggesting that these cells may indeed be di↵er-

entially fated.

As further evidence that proximal and distal daughter cells display unique

molecular patterns that might drive their distinct fates, we observed that these

cells exhibited a pronounced disparity in the expression of genes associated with

the e↵ector or memory fates (Fig. 4.4e). Certain genes associated with the

memory fate in CD8+ T cells, including Eomes, Sell, Il7r, Il2rb, Tcf7, Id3, and

Bcl6

18,19,21,24,25, were more highly expressed in distal daughter cells. Conversely,

certain genes associated with terminally di↵erentiated e↵ector cells, such as Tbx21,

Prdm1, and Grzmb

19,20,22, were only detected in proximal, but not distal daughter

cells. While it remains possible that the gene expression patterns of early lym-

phocytes might change as the cells continue to di↵erentiate, together these results

are indicative of distinct molecular patterns, suggestive of a possible predisposi-

tion towards di↵erent fates, within cells that may have undergone an asymmetric

division in vivo.

4.2.4 Predicting temporal expression of key orchestrators

of CD8+ T cell fates

Having determined that the gene expression patterns of less di↵erentiated

cells could be utilized to predict their eventual fates, we next sought to develop

a simple generative model of CD8+ T lymphocyte fate specification that would

capture key genes involved in each step of the di↵erentiation pathway of an indi-

vidual nave cell. In contrast to the classifiers we trained on sort-purified cells to

discriminate between di↵erentiated cellular fates (T
cm

vs. T
sle

), we used a Hidden

Markov Model (HMM) trained on lymphocytes representing intermediate states of

di↵erentiation (division 1, day 3, day 5) between the nave state and the di↵eren-

tiated fates (Fig. 4.5a). HMMs have been applied to sequential and time-series

analyses in diverse fields and have been particularly useful for modeling “hidden”,

unobserved states during biological processes33,34. HMMs not only capture static
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expression profiles between subpopulations at a particular stage, but can also de-

tect dynamic expression changes responsible for the transitions between them. To

construct a temporal paradigm of T lymphocyte fate specification in vivo, we first

defined 6 linear and 12 divergent HMMs representing possible hypothetical states

(pre-T
sle

, pre-memory) into which an individual nave T lymphocyte could transi-

tion through prior to di↵erentiating into three observed fates (T
sle

, T
cm

, and T
em

).

To evaluate each HMM, all possible paths were analyzed for each individual cell .

Incorporating the single-cell measurements obtained serially within CD8+ T lym-

phocytes di↵erentiating in vivo, we calculated the likelihood of each of the possible

di↵erentiation paths for each defined linear or divergent HMM . To determine both

the significance and robustness of each HMM model, we randomly varied the initial

values of the transition matrices by 10% and computed the log likelihood for each

iteration. Our results showed that the divergent models generally outperformed

the linear models, and an early divergent model was identified as the most likely

pathway (Fig. 4.5b). The performance of this final model was further evaluated

by random ordering of the population labels of the cells as well as the associated

expression values. Importantly, the likelihood of the best model was significantly

(p=0.00034) higher than the likelihood for shu✏ed data, showing that the model

robustly indicated that an activated CD8+ T lymphocyte gives rise to cells that

transition through either a hypothetical pre-T
sle

or pre-memory state. Pre-T
sle

cells

can undergo further di↵erentiation to acquire the T
sle

fate, whereas pre-memory

cells can further diverge to give rise to T
cm

or T
em

cells. Together these findings

suggest that an early divergent model may be the most likely pathway underlying

lymphocyte fate specification in vivo.

We analyzed the changes in expression of all 94 genes during each of these

five unique transitions: nave to pre-T
sle

, nave to pre-memory, pre-T
sle

to T
sle

, pre-

memory to T
cm

, and pre-memory to T
em

(Fig. 4.5b,c) . This analysis revealed

both shared and unique molecular features of each transition. The nave to pre-T
sle

and nave to pre-memory transitions, for example, were both associated with in-

creased expression of Lgals1. Notably, however, the nave to pre-T
sle

transition was

associated with higher Il2ra and lower Cxcr3, Sell, and Tcf7 expression than the
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nave to pre-memory transition, raising the possibility that these genes might in-

fluence whether a cell proceeds along the pathway towards terminal di↵erentiation

or self-renewal. Like the early transitions from the nave state, the pre-memory to

T
cm

and pre-memory to T
em

transitions exhibited certain shared molecular regula-

tors, including increased expression of Ccl5 and decreased expression of Foxo1 and

Cxcr3. However, the pre-memory to T
cm

transition was uniquely associated with

increased expression of Tcf7, Il7r and Sell. By contrast, the pre-T
sle

to T
sle

tran-

sition was associated with increased Ccl5 and decreased Il2ra, Il2rb, and Foxo1.

Together these results provide evidence for temporal expression patterns of key

genes that influence the fates of CD8+ T lymphocytes responding to microbial

infection in vivo.

4.2.5 Asymmetric partitioning of IL2R↵ in is associated

with distinct cellular fates

The prediction, raised by our temporal model, that Ilr2a might represent

an early molecular switch promoting the pathway towards terminal di↵erentia-

tion was intriguing in light of recent work suggesting a role for IL-2 signaling

in CD8+ T lymphocyte di↵erentiation35-39. To determine how early in e↵ector-

versus memory-fated lineages a possible disparity in IL2ra could be detected, we

used flow cytometry to examine the expression of IL-2R↵ in CD8+ T cells that

had undergone their first division in vivo in response to microbial infection. We

observed that di↵erential abundance of IL-2R↵ on the cell surface distinguished

two populations of 1st daughter cells (Fig. 4.6a) and that IL-2R↵ abundance was

inversely correlated with CD62L expression (Fig. 4.6a), which is highly expressed

in T
cm

cells. Furthermore, cells with higher expression of IL-2R↵ also exhibited an

increased capacity for IFN-� and granzyme B production, characteristic of e↵ector

cells (Fig. 4.6b).

To test the hypothesis that the amount of IL-2R↵ expression conferred

a distinct predisposition towards the e↵ector or memory lineages, we sorted IL-

2R↵

hiCD62Llo or IL-2R↵

loCD62Lhi cells that had undergone their first division in

vivo. Cells were then adoptively transferred into recipient wild-type mice that



61

had been infected 48 hours previously with Lm-OVA. We tracked the progeny of

adoptively transferred cells at multiple time points throughout the course of the

primary response and found that the progeny of both IL-2R↵

hiCD62Llo and IL-

2R↵

loCD62Lhi cells were detectable following infection . Notably, however, the

progeny of the transferred IL-2R↵

lo cells exhibited a 4-fold increased capacity to

give rise to CD62Lhi central memory cells, compared to the progeny of transferred

IL-2R↵

hi cells (Fig. 4.6c). To confirm functionally that these cells were indeed

memory lymphocytes, we tested their ability to respond to microbial re-challenge.

Recipient mice were re-challenged with Lm-OVA at day 50 after primary infection.

We observed a 10-fold increased expansion by the progeny of transferred CD8+

T cells in recipient mice that had received IL-2R↵

loCD62Lhi cells compared to

mice that received IL-2R↵

hiCD62Llo cells (Fig. 4.6d), suggesting that these cells

exhibit a di↵erential capacity to give rise to memory lymphocytes.

Because certain cytokine and immune receptors can undergo unequal par-

titioning during cell division9, we hypothesized that asymmetric segregation of

IL-2R↵ and CD62L during mitosis might provide a mechanism underlying their

di↵erential abundance on daughter cells that had undergone their first division in

vivo. We used an experimental system that has previously allowed us to examine

T cells preparing for their first division in response to a microbe9. OT-1 CD8+ T

cells were labeled with CFSE and adoptively transferred into recipient mice that

were infected 24 hours previously with Lm-OVA. Undivided donor CD8+ T cells

were isolated by flow cytometry at 36 hours after transfer and examined by con-

focal microscopy. We observed that IL-2R↵ and CD62L exhibited a pronounced

asymmetric distribution in cells that were preparing for division (Fig. 4.6e).

Taken together, these results suggest that the asymmetric segregation of IL-2R↵

and CD62L during the first CD8+ T lymphocyte division in vivo may influence

the transcriptional profiles of the nascent daughter cells and their eventual fates.
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4.3 Discussion

Recent advances in high-throughput single-cell gene expression profiling

have enabled their utilization in such diverse fields as embryonic development,

hematopoiesis, stem cell reprogramming and cancer biology14-17. These advances,

coupled with computational modeling approaches, enabled us to investigate, on

a level of molecular detail not previously possible, the ontogeny of e↵ector and

memory lymphocytes during a microbial infection in vivo. We find evidence for

considerable heterogeneity in gene expression within individual CD8+ T lympho-

cytes early after the initiation of a microbial infection. Importantly, we demon-

strate that this heterogeneity cannot be revealed using traditional bulk population

analyses and that many of the computational analyses performed herein, including

JSD, classifier and HMM, are possible only with data derived from single cells.

These observations provide a compelling argument for the integration of single-cell

approaches into future studies of immune cell fate specification.

Using sequential single-cell gene expression measurements within activated

lymphocytes during the course of a microbial infection in vivo, we constructed a

temporal model that enables us to predict the timing and changes in the expression

of key genes within individual lymphocytes as they transition from the nave state

towards each of several cellular fates. We provide experimental evidence supporting

an important prediction of this temporal model– that di↵erential expression of IL-

2R↵ may reflect one of the earliest molecular determinants influencing the memory

versus e↵ector fate decision. Moreover, we demonstrate that unequal partitioning

of IL-2R↵ during the first asymmetric division in vivo may result in its disparate

abundance in daughter lymphocytes, potentially contributing to their acquisition

of distinct gene expression profiles and cellular fates.

Along with prior evidence that other critical signaling molecules, such as

IFN-�R, can be unequally partitioned9, these results suggest that asymmetric seg-

regation of cytokine receptors during lymphocyte division may result in increased

IL-2 and IFN-� signaling encountered by proximal daughter cells relative to dis-

tal daughters. As IL-2 has previously been shown to induce Prdm1 and repress

Bcl6 and Il7ra

37,38, while IFN-� is known to induce Tbx21

40,41, di↵erential cy-
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tokine signaling encountered by proximal and distal daughter cells may initiate a

pre-e↵ector or pre-memory gene expression program, respectively, consistent with

our experimental observations and with prior work showing that cells that receive

prolonged IL-2 signals acquire characteristics of terminally di↵erentiated e↵ector

cells37. Continued changes in gene expression patterns, influenced by environmen-

tal signals, may enable lymphocytes to continue along distinct pathways towards

terminal di↵erentiation or self-renewal.

Recent reports describing additional subsets of memory T lymphocytes,

however, raise the possibility that the e↵ector or central memory lineages may

not be the exclusive fate choices adopted by the progeny of IL-2R↵

hiCD62Llo and

IL-2R↵

lo CD62Lhi cells. Tissue-resident memory T cells42,43 do not circulate and

instead remain in the peripheral tissues after pathogen clearance, while so-called

“e↵ector-phenotype” memory T cells share certain phenotypic characteristics with

terminally di↵erentiated e↵ector cells and mediate robust immune protection in

certain infectious settings despite exhibiting poor proliferative recall responses44.

Indeed, the progeny of IL-2R↵

hiCD62Llo cells appear to give rise to a population of

lymphocytes that, while poorly proliferative in response to microbial rechallenge,

persist in vivo, reminiscent of e↵ector-phenotype memory cells. Thus, it remains

possible that the first cellular division, in addition to mediating a divergence of the

e↵ector and memory fates, may also facilitate the specification of distinct memory

cell subset fates.

Although the generation of long-lived memory lymphocytes is an essen-

tial feature of an adaptive immune response, the fundamental question of when

and how these cells arise has remained controversial. Resolving whether lympho-

cytes progress along a linear di↵erentiation pathway, or diverge early during an

immune response, owing to asymmetric cell division, necessitated tracing indi-

vidual lymphocytes as they undergo di↵erentiation in vivo. By interrogating the

gene expression patterns of individual lymphocytes during an immune response to

microbial pathogen, we have been able to reconstruct the lineage path of single

lymphocytes as they di↵erentiate in vivo. This approach has yielded new insights

underlying lymphocyte fate specification and provides new evidence supporting an
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early divergence of lymphocyte fates, via asymmetric division, during an adap-

tive immune response to a microbial infection. More broadly, we anticipate that

single-cell gene expression approaches undertaken by investigators across scientific

disciplines, along with ever-improving advances in such technologies as single-cell

RNA sequencing45,46 and single-cell mass cytometry47, will continue to provide

unprecedented molecular insights into cell fate specification in diverse biological

settings, including immunity, development, and cancer.

4.4 Methods

4.4.1 Mice

All animal work was done in accordance with Institutional Animal Care

and Use Guidelines of the University of California, San Diego. All mice were

housed in specific pathogen-free conditions prior to use. Wild-type C57/BL6J

mice were purchased from the Jackson Laboratory and OT-1 TCR transgenic mice

recognizing ovalbumin peptide SIINFEKL (residues 257-264)/Kb were used.

4.4.2 Adoptive cell transfers and infections

5 x 103 OT-1 CD45.1+ CD8+ T cells were adoptively transferred into con-

genic wild-type CD45.2 recipients, followed by infection intravenously one day later

with 5 x 103 colony-forming units (CFU) of Listeria monocytogenes expressing

full-length chicken ovalbumin (Lm-OVA). Splenocytes were isolated from recipient

mice at 5, 7, or 45 days post-infection. To isolate cells at 3 days post-infection,

2 x 104 OT-1 CD8+ T cells were adoptively transferred. To isolate cells that had

undergone their first division, 2 x 106 OT-1 CD8+ T cells were first labeled with

carboxyfluorescein diacetate succinimidyl ester (CFSE) prior to adoptive transfer

and recipient mice were sacrificed at 48 hours post-infection. Cells were stained

with fluorochrome-labeled antibodies against CD8, CD44, CD4, CD11b, CD11c,

and F4/80, and sorted on a MoFlo (Beckman Coulter) or FACS Aria II (BD Bio-

sciences) flow cytometer.
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4.4.3 Microbead-based enrichment

Magnetic bead-based enrichment was performed as previously described48.

Single cell suspensions were prepared from infected mice that had received OT-1

CD8+ T cells, stained with PE-conjugated anti-CD45.1 antibody, washed, stained

with anti-PE magnetic microbeads (Miltenyi Biotec), and enriched through a mag-

netic column. Cells were then stained and sorted as described above.

4.4.4 Lymphocyte fate tracking experiments

Splenocytes from infected recipient mice that had received CFSE-labeled

OT-1 CD8+ T cells were stained with fluorochrome-conjugated antibodies against

CD8, CD62L, and IL-2R↵. Cells that had undergone their first division (rep-

resented as the second brightest CFSE peak) were electronically gated, and IL-

2R↵

hiCD62Llo or IL-2R↵

loCD62Lhi cells were sorted. 350 cells of each phenotype

were adoptively transferred into separate infection-matched CD45.2+ wild-type re-

cipient mice. The progeny of transferred CD45.1+ T cells were monitored through-

out the primary response by serial bleeding. At 50 days post-infection, recipient

mice were re-challenged with 5 x 105 CFU of Lm-OVA and expansion of the progeny

of donor CD45.1+ T cells tracked in the peripheral blood.

4.4.5 Antibodies and flow cytometry

The following antibodies were used: CD8a (53-6.7), CD45.1 (A20), CD62L

(MEL-14), KLRG1 (2F1), IFN-� (XMG1.2), CD44 (1M7), IL-2R↵ (PC61), V↵2

(B20.1), CD4 (RM4-5), B220 (RA3-6B2), CD11b (M1/70), CD11c (N418), F4/80

(BM8), IL-7R (A7R34), and F(ab0)2 anti-rabbit anti-IgG and were obtained from

Biolegend or eBioscience. Rabbit anti-TCF-1 (C63D9) antibody was obtained

from Cell Signaling Technology. Anti-human PE-conjugated Granzyme B (GB11)

was obtained from Life Technologies. For intracellular detection of IFN-�, CD8+

T cells were stimulated ex vivo with 0.25 ng/ml SIINFEKL in the presence of

Brefeldin A (Sigma) for 4 hours at 37C; cells were fixed in 4% paraformaldehyde

(Electron Microscopy Services) and permeabilized prior to staining. All samples
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were analyzed on an Accuri C6 or FACS Canto (BD Biosciences).

4.4.6 Single-cell gene expression assays

Inventoried TaqMan assays (Life Technologies) were pooled to a final con-

centration of 0.2X for each of the 94 gene expression assays. Single CD8+ T cells

were sorted directly into RT-PreAmp Master Mix (Life Technologies) containing

the pooled assays. Cell lysis, sequence-specific RT, and sequence-specific amplifi-

cation of cDNA were performed as previously described14, and analyzed in 96.96

Dynamic Arrays on a BioMark system (Fluidigm). Ct values were calculated from

the BioMark system software. Cells in which both Actb and Rn18s mRNA expres-

sion were detected were retained for further analyses.

4.4.7 Statistical analysis

For statistical analysis, the Kolmogorov-Smirnov test was used for model-

free comparisons involving two groups (Figs. 4.2b, 4.6b,c,d). Di↵erences at P

< 0.05 were considered significant.

4.4.8 T lymphocyte confocal microscopy

Immunofluorescence of T cells was performed as previously described9 with

the following antibodies: anti-�-tubulin (Sigma); anti-IL-2R↵(PC61.5), anti-CD62L

(MEL14) (eBioscience); and anti-mouse Alexa Fluor 488 and anti-rat Alexa Fluor

647 (Life Technologies). DAPI (Life Technologies) was used to detect DNA. Cells

undergoing cytokinesis were identified by dual nuclei and pronounced cytoplas-

mic cleft by brightfield. Acquisition of image stacks was performed as previously

described9 using a FV1000 laser scanning confocal microscope (Olympus). The

volume of 3D pixels (voxels) containing the designated receptor fluorescence was

quantified within each nascent daughter in cytokinetic cells as previously described9

using ImageJ software.
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4.4.9 Data and pre-processing

The log expression of each gene g was computed as follows log Eg,c = 40�
Ctg,c where c is the cell and Ctg,c is the Ct value obtained from the Biomark

(Fluidigm). Cells c

0 with undefined Ct values (Ctg,c0 = 999) for both g =Rn18s

and g = Actb, or cells c

00 with at least 60 
P

94

g=1

1{Eg,c00  0} unexpressed

genes were also removed from our analyses. The remaining ”good” cells in each

population were deemed su�cient for all subsequent analyses since they exceed the

number of free parameters for any supervised model by a factor of at least 5.

4.4.10 Principal component analysis (PCA)

We used principal component analysis (PCA) to reduce dimensionality of

the data with a linear transformation and projected the data X from its original

94 dimensions down to the first two principal components. PCA was performed in

Matlab using the function pca. In order to visualize the clustering of populations,

we projected the cells from their original 94-gene space to the first two principal

components of X. Each principal component, also known as eigen-gene, captures

some percentage of the total variance in X proportional to its corresponding eigen

value in the singular value decomposition of X. The first two eigen-genes have

the largest eigen values. In order to visualize the contribution of each original

dimension to these eigen-genes, we project the 94 unit vectors on to the 2D space

spanned by the principal components. These projections combine into the scatter

& spike plots in Figs. 2a, 2c, 3a.

4.4.11 T-distributed stochastic neighborhood embedding

(tSNE)

To confirm our unsupervised clustering results, in addition to PCA we

have also performed t-distributed Stochastic Neighborhood Embedding (tSNE)29

, which is one of the most powerful dimensionality reduction methods, on our

dataset. tSNE is specifically designed for visualization of high-dimensional data

and has been shown to capture more useful variance and more complex clustering
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patterns in the data by attempting to preserve the distances between datapoints

from high to low dimension without any prior assumptions on the distribution of

the data. In contrast, PCA only captures linear relationships between genes and

principal components and assumes a single homoscedastic (spherical) Gaussian dis-

tribution for the entire dataset. The results of tSNE are shown in Supplementary

Fig. 2.

4.4.12 Jensen-Shannon divergence

To quantify the di↵erences between the populations and heterogeneity with-

in each population, we use the Jensen-Shannon Divergence (JSD), a symmetric

version of the Küllback-Liebler (KL) divergence which is a parameter- and model-

free metric of the distance between empirical distributions. Given two sets of

experimental measurements, {x
1

, x

2

, . . . , xm} and {y
1

, y

2

, . . . , yn}, such as expres-

sion profiles for individual cells from the T
cm

vs T
em

populations (in this case

xi 2 R94), we use the JSD to characterize the distance between the two empirical

distributions Px and Py implied by the T
cm

and T
em

cells, respectively.

JS(Px, Py) =
1

2
KL(PxkM) +

1

2
KL(PykM) (4.1)

KL(PkM) =

Z

z

P (z) ln
P (z)

M(z)
(4.2)

where M = (Px + Py)/2 is an equal mixture of the two distributions and the

KL divergence can be approximated over discretized histograms of its two input

distributions

Px ⇡ P̂x(i) =

Z i+1

i

Pxdx and Py ⇡ P̂y(i) =

Z i+1

i

Pydy

This is the common form of JSD, which does not take into account the group

sizes m and n. In lieu of using the more general form which allows for arbitrary

re-weighting of the contribution from each distribution, we randomly sub-sampled

the larger group and concluded that the common form we used is not sensitive to
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group size di↵erences when those sizes are within a factor of 2, i.e.

min(m, n) � max(m, n)/2

We interpret each cell’s expression profile as a sample from a 94-dimensional

empirical distribution of its population. Expression values for each of the 94 genes

is discretized in the same bins, so we can simply add the single-dimensional JSD

between the two populations for each gene. Moreover, we can identify the most

and least di↵erentially expressed genes between the two populations which need

not match the PCA results exactly since the JSD analysis does not make the simple

linear modeling assumption that PCA does. Finally, to quantify the heterogeneity

within a single population, we partitioned it in half randomly and measure the

JSD between the two halves. Averaging this intra-population JSD for multiple

random partitions gives an estimate of the true variation in each population.

This approach is more principled than a previous application14 of JSD to

measure single cell diversity which arbitrarily converts each cell’s expression profile

into a separate probability distribution over RNA molecules. This is a misrepre-

sentation of the BioMark’s output which does not distribute a fixed budget of

expression units over the 94 genes of interest but rather measures the doubling

times for each PCR primer, and can be justified only for single cell RNA-seq ex-

periments where comparable numbers of reads are produced for each cell.

4.4.13 Rationale for approach to supervised analysis of

gene expression data

PCA and other unsupervised dimensionality-reduction methods aid in un-

derstanding the structure of a cell population. However, these determinations are

performed by visual inspection. Suppose we are given a heterogeneous (unsorted)

population of cells X

0. In order to classify a new cell, i.e. to identify which sub-

population it belongs to, we could co-cluster the new samples with existing labeled

data in X. This approach is suboptimal for two reasons: e�ciency and accuracy.

The co-clustering approach is not e�cient because in order to classify even one
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new cell x

0 in X

0, we need to re-run PCA on the original data X extended by a

single row x

0. More importantly the accuracy of this approach depends not only

on the quality of X, but also on that of x

0, which we are trying to assess. Suppose

that some of the new samples in X

0 contain bad or noisy readings that are not

filtered by our criteria for X. Then the variance inherent in X

0 will eclipse the

useful structure observed in X and the co-clustering result will be unrelated to,

or even worse, counter to the original clustering of X. To resolve both of these

problems, we decided on a supervised analysis which learns to distinguish between

sub-populations of the labeled data X in the form of boosted classifiers and applies

the classifiers to the remainder of the cells in X.

4.4.14 Robust boosting

We used RobustBoost31 to train an ensemble of decision trees at depths

 20. We chose boosting over other classification frameworks because the models

that are learned are easily interpretable. For example, the Alternating Decision

Tree (ADTree)30 for the T
cm

vs T
sle

classifier consists of simple rules where the

expression of Ptprc, Sell, and Ccl5 are compared to thresholds learned from the

data. The classifier’s confidence is measured by the margin of each prediction (see

red bars in Fig. 4d). We evaluate the performance of the classifier by its prediction

accuracy in leave-one-out cross-validation, where the m classifiers b

1

, b

2

, . . . , bm are

each trained on a di↵erent subset of m� 1 cells. Each classifier bi is tested on cell

xc, which corresponds to the c

th row of the data matrix X, after being trained on

the remaining cells X�c = {x
1

, x

2

, . . . , xc�1

, xc+1

, . . . , xm}. This cross-validation

produces a group of m classifiers that provides an estimate of the generalization

error ✏ =
Pm

c=1

bc(xc)/m on the validation examples. This also generates an overall

margin � =
Pm

c=1

�c on the training examples by tallying the predictions of m� 1

informed and 1 uninformed classifier for each of the m cells, where �c = kb
1...m(xc)�

lck and lc is the label of cell c (in this case lc = �1 means T
cm

and lc = 1 means

T
sle

).
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4.4.15 Temporal model of CD8+ T cell di↵erentiation

Akin to the Heisenberg uncertainty principle, the problem of observing a

cell’s gene expression is that we must modify (i.e. destroy) the cell in order to

observe its gene expression. While not a concern in the single-cell analysis of

static populations, this is a limitation in capturing the dynamics of tracing the

lineage of the cell. We propose a statistical modeling approach to overcome this

limitation with approximate single-cell histories sampled from the available time-

series gene expression data32 . Briefly, we constructed hypothetical di↵erentiation

paths and trained a hidden markov model (HMM) on the resulting expression

time-courses. Starting from each Näıve cell, we sampled cells in successively more

mature stages whose expression profiles satisfy an ensemble of predictors for one

of the terminal fates, matched these samples in the early di↵erentiation stages

(day 1 and day 3), connected both ends of each path, and finally estimated the

transition and observation parameters of a 6-state HMM in order to learn the state-

to-state transition probabilities and in-state mixture components that capture the

dynamics of gene expression in the hypothetical histories.

Input data

To capture the temporal structure of T cell di↵erentiation in our time-course

gene expression data from single cells, we developed a semi-supervised method

based on the fate classifier predictions in early heterogeneous populations from

Fig. 4e and on the expression profiles of putative pre-memory and pre-e↵ector

cells sort-purified from Tmp and T
sle

populations in day 5 after infection. Then,

we constructed hypothetical di↵erentiation histories of single cells starting from

the Näıve population, going through an intermediate stage and ending in one of

the three terminal fates: T
cm

, T
em

, or T
sle

. To approximate the real distribution

of proliferation transitions between these stages, we used 1,000 bootstrap samples

from each sub-population stringed along one of the three main paths according

to their classifier scores. This resulted in an empirical distribution over early

transitions: Näıve! pre-T
sle

, Näıve! pre-Memory; and another distribution over

late transitions: pre-memory ! T
cm

, pre-Memory ! T
em

, pre-T
sle

! T
sle

. The



72

early transitions were connected to the late transitions by cells at the intermediate

states as shown in Fig. 5a.

Model structure

Since the di↵erentiation dynamics of individual proliferating T cells are not

yet well described, we used an HMM to model the data because of its simple, yet

powerful structure which decouples uncertainty in the lineage reconstruction (state

transitions) from measurement noise (observations/emissions). We constructed a

HMM with 6 states: Näıve, pre-memory, T
cm

, T
em

, pre-T
sle

, T
sle

, to capture the

signal in each empirical distribution from our temporal approximation input. Each

state emits gene expressions from a mixture of two 94-dimensional Gaussians with

full covariance matrices.

Due to concerns over our model’s sensitivity to initialization, we constructed

18 biologically plausible di↵erentiation pathways (6 sequential and 12 bifurcating,

whose structures are shown in Supplementary Figs. 8 and 9, respectively) and fixed

the transition parameters to the corresponding adjacency matrix of each structure

in turn. Using the learning algorithm described below, we calculated the posterior

log likelihood of each pathway. To address any further concerns over the robustness

of these results, we reinitialized each structure twice more with 10% random noise

drawn from the Uniform[0,1] distribution, which also ensured that there are no

zero-probability transitions between any two states.

Transition parameters

For a cell c in state f , the probability of transitioning to state t is T

c
f,t.

We assume that other cells whose expression profile in state f is similar to that

of cell c will have similar di↵erentiation potential and in particular have similar

probability of transitioning to state t. This assumption lets us share the parameters

Tf,t = P (f ! t) which gives the probability of any cell in state f to proliferate to

state t.
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Observation parameters

Due to the bimodal nature of the violin plots in Fig. 4f, we model the

observed expression x of cell c in state i, as a mixture model of two Gaussians

with 94-dimensional means µ

c
i and ⌘

c
i , and 94⇥ 94 full covariance matrixes ⌃c

i and

⌅c
i . Like the transitions, parameter sharing between cells allows us to simplify the

observation parameters, so we can write down the observation model:

P (x|s = i) / aiN (x; µi, ⌃i) + biN (x; ⌘i, ⌅i)

Learning algorithm

First, we initialized the model parameters to their prior distributions. Specif-

ically, the transitions P (f ! t) were initialized to the matrix T

0

f,t shown in Fig.

5b. The emission parameters for the Näıve, T
sle

, T
cm

, and T
em

states were initial-

ized to the maximum likelihood fit for a mixture of two Gaussians to the empirical

histograms of gene expression for the respective population. The emission param-

eters in the intermediate states: pre-memory and pre-T
sle

were fit to the empirical

histograms accumulated over all intermediate states. The transition parameters

were fixed throughout the duration of each learning run, but were randomized with

up to 10% noise as detailed above.

Finally, we optimized the parameters of the HMM using the Expectation

Maximization algorithm implemented in pmtk3, the probabilistic modeling toolkit

for Matlab/Octave 33. The learned emission parameters were used to identify the

genes whose relative expression changed the most during each transition, as shown

in (Fig. 4.5b) and summarized in (Fig. 4.5c). While we did not learn the

transition probabilities, we did re-sample them from 18 plausible structures and

picked the most likely structure whose transition matrix is shown in Supplementary

Fig. 10 and whose adjacency graph is on the far right of Supplementary Fig.

9. To determine the most likely structure, we calculated the posterior likelihood

of each model (in each of its 3 re-initializations) and compared them visually

using box plots in Supplementary Figs. 8 and 9. To further gauge the statistical

significance of the best model, we randomly shu✏ed the input data 20 times and
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built a background distribution of the resulting log-likelihoods. This background

approached a normal distribution with mean log-likelihood of -1.13e+06, which is

2.53 standard deviations worse than the average log-likelihood of the best model,

-1.02e+06.
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4.6 Figures
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Figure 4.1: Gating strategy and experimental approach for single-cell gene
expression analyses of CD8+ T cell subsets isolated from uninfected (nave,
CD8+CD44loCD62Lhi) or CD45.2 recipient mice infected with Lm-OVA 24h after
intravenous adoptive transfer of unlabeled or CFSE-labeled CD45.1+OT-1 CD8+

T cells. CD8+ T cell subsets were isolated at various time points post-infection:
division 1 (CD8+CD45.1+CD44hi cells within 2nd brightest CFSE peak); days
3, 5, and 7 post-infection; day 7 T

sle

(CD8+CD45.1+CD44hiKLRG1hiIL-
7Rlo), day 7 putative T

mp

(CD8+CD45.1+CD44hiKLRG1loIL-
7Rhi), day 45 T

cm

(CD8+CD45.1+CD44hiCD62Lhi), and day 45
T

em

(CD8+CD45.1+CD44hiCD62Llo). Data are representative of three ex-
periments. Data analysis approaches included unsupervised Principal Component
analysis (PCA), and Jensen-Shannon Divergence (JSD), and supervised binary
classifier and Hidden Markov Model (HMM).
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Figure 4.2: E↵ector and memory CD8+ T lymphocyte subsets are molecularly
distinct on a single-cell level. (a) Principal component (PC) projections (PC1,
horizontal axis; PC2, vertical axis) of single-cell gene expression data derived from
individual lymphocytes from the indicated populations. Each circle represents an
individual cell of the indicated population: nave (gray), T

sle

(green), T
cm

(orange),
and T

em

(purple) cells. Each vector emanating from the origin represents an indi-
vidual gene. PC1 and PC2 account for 11% and 9% of the variance, respectively.
(b) Mean fluorescence intensity (MFI) of CD8 (Cd8a), TCF-1 (Tcf7 ), CD62L
(Sell), and IL-7R (Il7r) protein expression in T

cm

and T
em

cells, assessed by flow
cytometry. * P < 0.05, ** P < 0.01 (Kolmogorov-Smirnov test). Data are repre-
sentative of two experiments with at least 3 mice in each experiment (error bars,
s.e.m.). (c) PC projections of single-cell gene expression data derived from indi-
vidual lymphocytes from the indicated populations: T

mp

(pink), T
sle

(green), T
cm

(orange), and T
em

(purple) cells. Each vector emanating from the origin represents
an individual gene. PC1 and PC2 account for 11% and 6% of the variance.



77

Figure 4.3: Early heterogeneity of gene expression exhibited by individual CD8+

T lymphocytes during an immune response. (a) Projections of single-cell gene
expression data derived from individual lymphocytes from the indicated popula-
tions (top). Each circle represents an individual cell of the indicated population
representing: nave (gray), division 1 (brown), day 3 (yellow), day 5 (light green),
day 7 (green), T

mp

(pink), T
sle

(teal), T
cm

(orange), and T
em

(purple) cells. PC1
and PC2 account for 10% and 7% of the variance, respectively. Analysis derived
from pooled “bulk” samples from each experimental condition, shown as colored
stars (bottom). Stars filled with each color represent “bulk” nave (gray), divi-
sion 1 (brown), day 3 (yellow), day 5 (light green), day 7 (green), T

mp

(pink),
T

sle

(teal), T
cm

(orange), and T
em

(purple) cells with grayed-out single-cell data
points in the background for clarity. (c) Intra- (left) and inter-population (right)
Jensen-Shannon Divergence (JSD) of mean gene expression within and between
the indicated CD8+ T cell populations is shown.
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Figure 4.4: Classifier analysis predicts eventual fates of individual CD8+ T lym-
phocytes. (a) Decision tree built from the data consisting of several predictive rules
comparing expression of Ptprc, Ccl5, and Sell to decide whether a cell is more T

cm

-
or T

sle

-like; two terminal nodes labeled “...” depict a continuation of the decision
tree. (b) Predictions by the classifier on sort-purified T

cm

and T
sle

cells that were
cross-validated during training. Horizontal red lines indicate the voting margin for
each individual cell and internal confidence of the classifier’s prediction for that
cell; percentages indicate rate of misclassification of a T

sle

as T
cm

and of a T
cm

as
T

sle

. (c) Binary classifier trained to distinguish between a pair of di↵erentiated cell
fates (T

cm

vs. T
sle

). Single vertical lines along the x-axis represent each individual
sort-purified T

cm

or T
sle

cell and its expression of each gene. (d) Individual CD8+

T cells (horizontal blue lines) from the indicated populations (cells isolated at day
5 or 7 post-infection; proximal (“prox”) or distal daughter (“distal”) cells at the
first division) were interrogated by the classifier and predictions were sorted by
confidence from the most T

cm

-like to most T
sle

-like cells. Percentages indicate pro-
portion of cells predicted to be more T

cm

-like (left) or T
sle

-like (right) within each
cell population. (e) Violin plots showing expression levels of the indicated genes
by first division proximal (blue) and distal daughter (red) cells. Black crosses and
squares represent mean and mode values, respectively.
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Figure 4.5: Temporal model predicts the di↵erentiation paths of individual CD8+

T lymphocytes. (a) Cells in early states of di↵erentiation (division 1, day 3, day
5) were ranked by their T

sle

- or memory-like expression profiles (green to purple
gradient in middle row). Cells were then linked to sorted nave (black top row) and
sorted T

sle

, T
em

and T
cm

cells (green to purple to orange gradient in bottom row)
in a random fashion, forming hypothetical di↵erentiation paths (black lines) that
were analyzed with a Hidden Markov Model. (b) Most likely model of CD8+ T
lymphocyte di↵erentiation with key gene expression changes associated with each
of 5 unique transitions: nave to pre-T

sle

, nave to pre-memory, pre-T
sle

to T
sle

, pre-
memory to T

cm

, and pre-memory to T
em

. Colored circles represent each cell state
or fate. (c) Summary of key changes in gene expression during each transition
phase predicted by temporal model of CD8+ T lymphocyte di↵erentiation.
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Figure 4.6: Asymmetric segregation of IL-2R↵ during T lymphocyte division
influences the eventual fates of the daughter cells. (a) IL-2R↵ and CD62L expres-
sion (left) by OT-1 CD8+ T cells undergoing their first division following adoptive
transfer into recipients and subsequent infection with Lm-OVA 24h later. Frequen-
cies of IL-2R↵

loCD62Lhi and IL-2R↵

hiCD62Llo cells (right); each circle represents
an individual mouse and lines indicate the mean. (b) Frequencies of IFN-� and
granzyme B expression by IL-2R↵

loCD62Lhi and IL-2R↵

hiCD62Llo cells as in (a).
(c) CD62L expression (left) on d49 post-infection by CD45.1+CD8+ T cells in
CD45.2+ mice (n=13) that had been previously challenged with Lm-OVA and
injected with sort-purified 1st division IL-2R↵

loCD62Lhi or IL-2R↵

hiCD62Llo cells
48h later. Frequencies of CD62L+ cells (right); each circle represents an indi-
vidual mouse and lines indicate the mean. (d) Expansion of CD45.1+CD8+ T
cells, assessed by serial bleeding, in mice depicted in (c) that were subsequently
re-challenged with Lm-OVA at d50 post-primary infection. (e) Morphology of
IL-2R↵ or CD62L (green), �-tubulin (red), and DNA (blue), assessed by confocal
microscopy, in sorted OT-1 CD8+ T cells undergoing their first division follow-
ing adoptive transfer into LM-OVA-infected recipients. Asymmetric segregation of
IL-2R↵ and CD62L was observed in 60% (n=96) and 62% (n=74) of cells, respec-
tively. Data are representative of 2 (c, d) or 3 experiments (a, b, e); error bars
represent s.e.m. *P < 0.05, **P < 0.01, ***P = 0.0002 (Kolmogor-Smirnov test).



Chapter 5

Discussion and Future Directions

5.1 Biology and statistics in the era of big data

The problem with single-hypothesis investigation is that when your hy-

pothesis turn out to be incorrect, often that is the end of the project. Even if the

incorrectness of the hypothesis is somehow significant by itself and may be noted

in a publication, the data collected to invalidate it will not usually be useful in

other studies. In contrast, with high-throughput technologies, it is now possible to

design multi-hypothesis experiments from the start. Even if the initial motivation

for collecting that data is a particular hypothesis and it turns out to be incorrect,

a high-throughput dataset can enable both its creators and other investigators to

check many other hypotheses when the dataset is shared with the broader scientific

community. However, there is a limit to the size of the class of hypotheses that

a single experiment can entertain. This limit is imposed by the technological and

budget limitations. Practically, there is a limit to the amount of resources such

as reagents and time that can be devoted to a single experiment, no matter how

broad-reaching its results might be. Therefore, most high-throughput technologies

are designed to trade accuracy for scale. For example, in the contrast between

RNA-seq and RT-PCR, the former has much larger scale and is seen as an ex-

ploratory method, while the latter is a lot more accurate and is seen primarily as

a validation method. That is true, until the introduction of targeted sequencing

which can adjust the tradeo↵ between scale and accuracy more smoothly. Now,

81
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the original methods are perceived simply as two extremes on the spectrum of

accuracy-scale settings. Novel iterative experiment designs that start on the ex-

ploratory end of that spectrum and work toward the accuracy end (Fig. 5.1)

are already being adopted by many labs, including ours. They allow a smoother

transition from general exploration to focused investigation, which is especially

relevant for single-cell transcriptomic studies.

scale

accuracy

RT-PCR

RNA-seq

Targeted
RNA-seq

Pooled/bulk
Single-cell

Figure 5.1: Approximate tradeo↵ curve depicts the smooth transition between
ledge scale, less accurate assays versus smaller-scale but more accurate assays.
Tradeo↵ curve is steeper for pooled/bulk samples (red) than for single-cell samples
(blue) because the former can utilize high-coverage libraries representing a wider
range of transcripts pooled from multiple cells, but the inherent averaging of pool-
ing decreases the maximum possible accuracy of pooled-cell assays. On the other
hand, the scale of single-cell experiments is still limited to hundreds of cells at a
time by the current microfluidic technology; however, single-cell RT-PCR provides
the most accurate measurement of gene expression possible with current tools.

Just as the properties of experimental design are becoming more flexible, so

is the intellectual border in computational and scientific training for biologists. In

the past 8 years, interdisciplinary collaborations in which I have participated have
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gotten cozier in both physical and intellectual space. During my first collaboration,

I re-analyzed proteomics data which had already been published independently of

the original authors and only sent them predictions after months of computational

experimentation. Accordingly, the turn-around time for the follow-up publication

was 3 years. In the first half of my PhD career, I worked in a closer collaboration

with monthly check-in meetings on a mixed dataset of published and novel results.

The total time to publication was halved to one and a half years. I currently work

in a hybrid wet/dry lab and have tight-knit collaborations with experimental biolo-

gists with weekly meetings where I can participate not only the the post-production

data analysis, but also in the experimental design. This enabled me to work on

two projects simultaneously, each about 1 year long. There is a clear trend which

converges on a logical conclusion–biological research will be increasingly computa-

tional/statistical not only in its analysis but also in its design. Encapsulating the

full experimental loop into a single mind or at least a single tight-knit group cuts

down on communication overhead and standardizes the stages for each scientific

project so that any of the participants will eventually play the role of experiment

design, data generation and analysis, and hypothesis evaluation. As new biologists

are trained to be increasingly computationally and statistically literate, eventually

the specialized role of bioinformatician/biostatistician will hopefully disappear as

it has for computational physicists (now simply called physicists). However, sim-

ply combining twice the knowledge into the mind of a single biology expert is

not only logistically challenging, but also risks producing ”jack-of-all-trades” gen-

eralists who may not have deep enough understanding of either field to advance

the state of the science. To mitigate this risk, we must borrow robust abstrac-

tion and automated testing techniques from the computing hardware field, where

a software developer relies on the expertise of language and compiler designers,

who rely on the expertise of electronic hardware engineers, who in turn rely on

the expertise of materials scientists to enable their increasingly powerful designs

without increasing their complexity. Similar semi-automated systems will be de-

veloped in biology for prioritizing experimental conditions, evaluating hypotheses,

and order-ranking validations. Large multi-national consortia such as ENCODE
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have already started to realize this, and some of their most-computationally gifted

members are shifting their focus away from data analysis improvements with di-

minishing returns to choosing how to fill out their sparsely-populated experimental

matrix (of condition-by-assay) in an optimal way from information-theoretic and

resource-practical viewpoints.

5.2 From read-only to read+write biology

Virtually all of the analysis methods presented in this dissertation were de-

signed for a read-only experimental paradigm in which the study design is already

or mostly completed by biologists and data are either already or in the process of

being generated, so the only thing left for a computational expert is to analyze said

data and make novel predictions about the system. I call this analytical paradigm

read-only bioinformatics because the main information only flows from the wet

bench, through the sequencing center, to the compute cluster. There are many

great discoveries have been made in this mode of operation. Note that exclusively

human scientists were involved with the first stage, experimental design, and last

stage, result interpretation and validation, of these studies. However, there is a a

lot to be gained from closing this experimental loop and partially automating even

these steps which have been reserved for humans. For example, in addition to rank-

ing its predictions by confidence, a computational system can automatically design

the validation studies, perform some of them, check how far o↵ its predictions were

and re-analyze the original data based on this new domain knowledge and adjust

its predictions, coming full circle and perhaps repeating for a few more iterations

until it appears to match the human intuition of which results are scientifically

valid and interesting. Eventually, automated systems will be able to optimize and

perform much of the experimental design and I call this experimental paradigm

read+write bioinformatics, and hope/believe that it is the future of our field.

This may seem like overly-optimistic dreaming by a computational biologist

not fully aware of the practical di�culties and physical limitation of actual exper-

iments. However, after spending a very educational and humbling two months in
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the wet lab trying to make simple RT-PCR work, I can guarantee that my opti-

mism is not due to oversimplifying the unfamiliar. On the contrary, I believe that

my optimism is necessary for us to make the next leap in progress. Our current

read-only paradigm is akin to observing a lightly-biased coin come up with more

successes than failures, but in order to accelerate the rate of success, we have to

scale the rate of coin flipping accordingly. Instead of restricting ourselves to pas-

sive observation, a much better approach is to actively increase the success bias

of the coin. Several statistical frameworks such as active learning and Bayesian

optimization already exist that readily take into account both observational and

interventional experiments. On the laboratory side of biology, there are two fields

which have already stated building high-throughput interventional tools and mov-

ing in this direction. They are genome editing and synthetic genomics.

5.2.1 Synthetic Genomics

Synthetic genomics is a relatively new field that engineers organisms to ac-

quire a specific property, gain a specific function, or produce a specific compound

by explicitly re-programming their genomes. It is distinguished from agricultural

practices of breeding animals or plans with desirable properties in that the generic

changes are pre-selected, monitored, and tightly controlled. Most successfully, it

has been applied to modify or optimize microbial metabolism for the production

of biofuels or other valuable compounds. One of the most significant and pop-

ular achievements in synthetic genomics was the creation of a ’new’ organism,

micoplasma laboratorium, whose genome was synthesized by scientists at the J.

Craig Venter Institute based on one of the simplest existing microbes, micoplasma

genitalium. Even though I had no expertise in synthetic genomics at the time,

I quickly realized the potential for this approach not only in designing custom

genomes for the synthetic genomics community but also for organizing useful mod-

ules of genes based on similarity along the phenotype of interest. There are two

roadblocks to using synthetic genomics as the ”write” part of the design-data-

analyze-validate-intervene experimental loop. First, the size of synthetic genomes

currently achievable is only suitable for prokaryotic organisms, while most of the
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interesting transcriptomic variations (such as splicing and editing) are only present

in eukaryotes. Second, to reach the full potential of this technology, molecular bi-

ologists will need to construct a combinatorial number of synthetic genomes with

every RBP binding motif or splice/edit site modified in combination with others.

This is truly not achievable, limiting the utility of synthetic genomics for tran-

scriptome studies to reporter systems and tags to be inserted via plasmids and

activated conditionally by environmental factors for all cells in a given condition.

5.2.2 Genome Editing

Genome editing is a very new field that enables molecular biologists to

make certain modifications to specific loci in existing genomes. The locus comple-

mentarity is achieved through DNA-binding domains and sequence-recongnition

molecules on proteins in one of three main families: Zinc fingers, TALENs, or

CRIPRs. Discovered in that order, these genome recognition systems evolved as

anti-intrusion adaptations in bacteria. In the hands of molecular bioengineers,

they have become increasingly more e↵ective at editing and specific in targeting

the intended loci. The CRISPR/Cas9 system is the latest and most e�cient for

genome editing in general, not only because of its increased span (it can target

any sequence of nucleotides, unlike zinc fingers and TALENs), but also because

of it’s increased specificity to that sequence through the use of a complimentary

guide RNA. Genome editing is relevant to transcriptomics not only as the inter-

ventional part of the experimental cycle, but also as the potentially therapeutic

part of translating disease studies into medicine. For example, genome editing can

be used to rescue the RNA editing deficiency in aging neurons of ALS patients by

mutating the GRIA2 Q/R site directly. Because the CRISPR/Cas9 system acts

in vivo, and infecting a patient’s brain with lentivirus is not yet considered safe,

the most likely method of delivering the benefits of genome editing to the clinic

is through the use of patient-derived induced pluripotent stem (iPS) cells. Be-

cause patient-derived iPS cells contain the original genome, they can be directed

to neural lineages to model the particular disease, and to screen classic drugs, and

novel therapies such as permanent genome editing or transient siRNA-, shRNA-,
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or Cas9-mediated gene silencing.

5.2.3 Open questions on RNA editing

How essential is RNA editing in the brain, really? As mentioned in Chapter

1, ADAR proteins are essential. Knocking out either of them results in abnormal-

ities for worms, or embryonic lethal in mammals. RNA editing of well-known

targets is also essential. However, if the well known GRIA2 Q/R site is manu-

ally edited by mutating the genome, and both ADAR genes are knocked out, the

mutation seem to rescue the The resultant mutant/knockout mice survive into

adulthood with mild but peculiar behavioral

5.3 Disease Diagnostics

RNA biology is worth pursuing not only for a fundamental understanding

of life, but also for discovering was to better that life. Even more exciting than

exploring the regulation of RNA expression, splicing, and editing, is determining

the causes and e↵ects of their misregulation in disease. With increased knowledge

of the working system comes the potential to understand its faults, and a promise

to engineer a cure for them.



Appendix A

Open thoughts on science

Asking the right questions has never gone out of style, but how do we

define right a priory? In hindsight, it’s easy to see which questions were right

because the background was complete enough, the experimental methods were

perfected enough and the question had a large enough audience that its answer

made a significant impact. These are a lot of aspects to get just right, without fully

understanding the scientific, technological, and even political forces that govern a

given contribution. It gets so complicated that a lot of smart people, including

seasoned professors throw up their hands and sometimes attribute to luck all of

the aspects they cannot account for, much less control for. However, this is a

very unscientific approach and I would like to propose a more principled way of

exploring this issue.

How could we define these intuitive metrics of ”rightness” and write an

objective function in these terms. To keep it simple, let’s restricts ourselves to the

set of predictions from one of our existing high-thoughput dataset analyses. The

questions we can ask are limited to: 1) is this a valid RNA edit or splice event,

and 2) does it vary between healthy and diseased samples. We can ask these two

questions of every predicted edit/splice event and validate the answer with RT-

PCR. For thousands of edit sites and tens of thousands of splice events, this is

prohibitively expensive. So, we usually draw an arbitrary confidence cuto↵ and

validate the top 100 most-confident predictions.
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Appendix B

RNA editing math

B.1 Introduction

To understand the functional roles of ADAR1 and ADAR2, RNA editing

sites must be identified and quantified accurately with ssRNA-seq data from each

of the single- and double-knockout strains and compared to wild type worms. We

achieve accurate identification by combining filters from existing pipelines [?, ?,

?, ?] in a strand-specific manner and accurate quantification by extending the

existing Bayesian method for genomic variant calling used in the 1000 Genomes

project [?]. In addition to leveraging established considerations with regards to

read sequencing and alignment errors [?], our approach benefits greatly from using

the ADR1-/ADR2- double-knockout strain as a powerful filter for unannotated

variants to maintain low false positive rates while confidently identifying RNA

editing sites.

B.2 Pipeline description

1. ssRNAseq: The ADR1-/2- double-knockout sample was sequenced on one

lane of Illumina’s HiSeq 2000 yielding 216 million single-end 76nt reads. Each

other sample was sequenced on a lane of Illumina GAII yielding between 37

and 42 million reads of the same type.
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2. Mapping: Sequenced reads were mapped to the C. elegans reference genome

(ce10, WS220) with the spliced aligner TopHat (version 2.0.6) allowing only

uniquely-mapped reads with up to two mismatches each with command line

options -Mx 1 and -N 2.

3. variant calling: sites with RNA-DNA di↵erences were identified by SAMtools

mpileup (version 0.1.18) tallying up to 1000 alignments per site. Additional

command line options used were -D -I and -g.

4. Site filters: Annotated SNPs were obtained from Illumina’s iGenomes col-

lection for C. elegans (ce10) and unannotated variants were extracted from

the ADR1-/2- double-knockout strain. These genomic variants were filtered

from the putative sites in all other strains reducing the number

5. Read filters: Each read aligned to one the remaining putative sites was fil-

tered out if: a) it was a suspected PCR duplicate, according to SAMtools

rmdup (version 0.1.18) b) it had a junction overhang of less than 10nt ac-

cording to its SAMtools CIGAR string c) it had more than one non-A2G or

non-C2T mismatch or any short indel, according to its SAMtools MD tag.

d) it had a mismatch less than 25nt away from either end of the read (this

was changed to 5nt in the relaxed version used for quantification)

6. Identify sites: Putative RNA editing sites were identified from A2G variants

on the sense strand and T2C variants on the antisense strand that were

covered by more than 5 reads which passed the filters in step 5, including

the stringent 25nt threshold for filter 5d).

7. Quantify sites: The extent of editing at each site and our confidence in

that prediction were quantified by a novel extension of the classical Bayesian

model used for genomic variants, which is described in more detail in the

next section.

8. To increase the accuracy and confidence of our predictions, we used additional

reads from the relaxed version of filter 5d) that overlap the sites identified in

step 6. Moreover, we dropped sites which exhibited editing in 100% of the
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reads (suggesting a genomic variant not filtered out by step 4) and those with

very low editing (less than 10%), which would have been hard to distinguish

from sequencing errors.

9. The predicted RNA editing sites from each strain were characterized accord-

ing to their position in annotated genic regions (introns, exons, 3’/5’ UTRs,

etc.) and according to their overlap with other strains. Finally, 50 out of

over 400 sites predicted in the ADR1- or CEN2 strains were validated by

Sanger sequencing.

B.3 Details of Bayesian quantification model

Also known as the “inverse probability model” in the SNP calling commu-

nity [?], a Bayesian model for identifying DNA polymorphisms from error-prone

sequencing data has been shown to perform favorably to other discrete and dis-

criminative models [?, ?]. In general, the power of a Bayesian approach is its

combination of prior knowledge and observed data into a posterior estimate. The

prior knowledge encodes general domain-specific information like biases in the se-

quencing technology, while the observed data contain signals specific to editing

sites in a particular experiment. In this exposition, we will use a simple context-

independent prior for all editing sites, which consist of pseudo-counts of edited

and non-edited reads: � and ↵, respectively. For sequence alignments in par-

ticular, the benefit of a Bayesian approach is that even low-coverage regions can

give reasonable posterior estimates of the editing e�ciency with low confidence,

while high-coverage regions will give very accurate posterior estimates with high

confidence.

For example, consider two candidate editing sites: site L has low coverage

and site H has high coverage. Let the number of reads from edited (g) and unedited

(a) transcripts containing those sites be: gL = 1, aL = 9 for site L and gH =

10, aH = 90 for site H. The observed counts suggest that both sites are edited with

10% e�ciency, but we are inclined to believe that site H really is edited while site

L is not and its single edited read could have easily been produced by a sequencing



92

error. While filter-based approaches require manual fine-tuning to be able to filter

out site L while keeping site H, the Bayesian approaches will simply have a lot

more confidence that site H is edited. To formalize the notion of confidence, we

introduce a latent binary variable � which indicates whether a nucleotide is edited

� = 1 or not � = 0. Given a prior belief in the occurrence of RNA editing P (�S) =
��S+↵(1��S)

↵+�
at a particular site S (which is currently site-independent but can be

extended to di↵er depending on the genomic context or read position of S), and the

likelihood of observing the RNA-seq reads at site S conditioned on the hypothesis

of editing P (a, g|�S = 1) versus no editing P (a, g|�S = 0) which captures the

probability of a sequencing error ✏, Bayesian models for DNA-RNA di↵erences use

the “inverse probability” rule to produce a posterior belief on whether site S is

edited or not:

P (�S|a, g) =
P (�S)P (a, g|�S)

P (a, g|� = 0) + P (a, g|� = 1)
=

1

✏

a + (1� ✏)g

8
<

:
↵(1� ✏)g if �S = 0

�✏

a if �S = 1

(B.1)

Thus, instead of relying on a stringent threshold on the coverage to identify

editing sites or completely excluding particular genomic loci such as splice junc-

tions, we will compare our confidence in the editing hypothesis P (�S = 1|a, g) to

that of the no-editing hypothesis P (�S = 0|a, g). A convenient way to measure the

di↵erence in these two hypotheses as a particular genomic site S is to take their

log-ratio, which causes the partition function P (a, b) = ✏

a + (1� ✏)g to cancel out

from top and bottom:

LLR(a, g) = log
P (�S = 1|a, g)

P (�S = 0|a, g)
= log

↵(1� ✏)g

�✏

a
(B.2)

This measure depicted by the heatmap in (Fig. B.1) has the desirable

property of extracting the maximum confidence from the coverage at a given edit-

ing site. However, LLR alone is not su�cient to accept or reject either hypothesis

in the way p-values are often used and misused [?]. However, it is very useful in

ranking di↵erent sites in order of relative confidence that editing occurs at each.
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Given a ranked list of potentially edited sites, this approach still requires a cuto↵

in order to make actual predictions subject to validation. However, compared to

the multiple thresholds for each filter in pipeline-based approaches, it is easier to

manually pick or learn this parameter from training data. We tried three confi-

dence cuto↵s (0.95, 0.995, and 0.999) and chose the 0.995 based on two factors:

the number of sites predicted in the ADR1- and CEN2 strands (141 and 59, re-

spectively) was su�ciently large, but the number of sites in the ADR2- strand

remained relatively low (only 6).

Figure B.1: A heat map of the prior distribution that captures the confidence at
various any valid combination of expression (y-axis) and editing % (x-axis)
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