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   Abstract 

Strategies for Tailoring the Mechanical Response of Lattices and Foams 

by 

Amanda Leigh Ruschel 

 

Cellular structures, including stochastic foams and ordered lattices, have been used 

extensively in a wide range of engineering applications. The nearly-constant crushing stress of 

stochastic foams make them particularly useful for energy absorption. Ordered lattices, on the 

other hand, are better suited for stiff and strong load-bearing components. Despite their higher 

strength, ordered lattices fail by internal buckling and exhibit concurrent strain softening 

during compressive loading, making them undesirable for energy absorption applications. The 

performance gaps between existing stochastic foams and ordered lattices appear large and 

motivate the current work.  

The overarching goal of this work is to identify design strategies for tailoring the 

compressive properties of cellular structures, targeting in particular concepts that provide 

combinations of high strength and high straining capacity. A two-pronged approach is 

employed. The first involves ordered bi-material lattices in which material choices are based 

on local mechanical requirements. The issues are addressed through a combination of 

analytical models, finite element simulations, and experimental studies on select lattice 

structures. Two broad classes of bi-material lattices are introduced: one in 2D and one in 3D. 

The study on 2D lattices focuses on identifying and analyzing a primitive structural motif and 

demonstrating the concept by printing and testing rudimentary 2D designs. The ensuing results 

yield guidelines for bi-material lattice design (to mitigate the most common failure modes) and 
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highlight deficiencies in the nature of macroscopic straining and in joint design. The study on 

the 3D versions addresses some of these deficiencies. The focus is specifically on design of 

joints to facilitate articulation over a wide rotational range and the morphology of structural 

elements that enable strain reversibility. It also examines the potential for tailoring the topology 

and morphology of the structural elements to improve load bearing capacity. Structures that 

combine struts with plate elements appear to exhibit the greatest potential. The studies on both 

2D and 3D bi-material lattices demonstrate how emergent multi-material printing capabilities 

can be exploited in expanding the design space for future lattice materials.  

 The second prong focuses on the connections between specific microstructural features 

of stochastic foams and mechanical response. This is done by computationally generating a 

large number of stochastic foams, analyzing various microstructural characteristics, and 

simulating their compressive response. Results indicate that cell size polydispersity governs 

the compressive response of foams. Foams with tight distributions in cell size exhibit stronger 

responses but are also more sensitive to boundary conditions and finite foam dimensions.  This 

work offers insight into variables that must be considered when tailoring the response of foams 

including cell size polydispersity, number of cells spanning a unit dimension, and boundary 

conditions. 
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Chapter 1  
 

Introduction 

1.1 Cellular Structures 

Cellular structures are made up of networks of interconnected struts or plates. They provide 

excellent energy absorbing capabilities when structural elements are distributed in a non-

periodic manner or when nodal connectivity is low 1. When elements are distributed in a 

periodic manner with high nodal connectivities, stiffness and strength of the structure can 

exceed that of a stochastic foam by a factor of 10 2. Due to advancements in additive 

manufacturing, cellular structures with precisely defined features are found in many 

applications. In biomedical products such as cellular bone implants 3, the structural stiffness of 

the implants can be tailored to match that of bone, thereby reducing stress shielding 4–6. Its 

open structure also allows for bone ingrowth, improving integration of bone into the implant 

5,7. In aerospace and automotive components, cellular structures are designed to lightweight 

parts leading to reduced fuel consumption 8–12. In athletic applications such as footwear, 

structures can be designed for improved running patterns 13 and can be customized for 

individual needs 14,15. These are only a few of the many applications.  

Cellular structures can be placed into one of four categories based on internal order and 

constituent structural elements. Structures made up of networks of randomly-oriented cells that 

are sealed off from their neighbors are closed-cell stochastic foams (Fig. 1.1a). In this case, 

thin plates make up each cell wall. When closed-cell structures have internal order, meaning 

they are created by a repeating unit cell, they fall under the category of closed-cell periodic 

lattices (Fig. 1.1b.). Cellular structures made up of randomly-oriented cells connected by open 

space are open-cell stochastic foams (Fig. 1.1c). In this case, cells are defined by collections 
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of struts instead of plates. Adding order to open cell structures results in periodic open-cell 

lattices (Fig. 1.1d).  

1.2 Open-cell Stochastic Foams 

Stochastic foams are commonly used for impact mitigation. When loaded in compression, 

open-cell foams exhibit, first, a linear elastic region, dominated by strut bending, and then a 

transition to a nearly constant crushing stress, useful for keeping stresses below critical levels 

to prevent injury or damage. Polymer foams are commonly produced by processes involving 

nucleation and growth of gas bubbles. Gas can be introduced into the polymer liquid by (i) 

chemical blowing agents that react with isocyanite groups to form CO2 or (ii) physical blowing 

agents like compressed gases and volatile liquids such as N2, CO2, ketones and alcohols that 

vaporize from the heat generated by the exothermic polymerization reaction 16.  Then, the 

nucleated gas bubbles grow and sometimes merge with another, especially when size 

differences between bubbles are large 17,18. Bubble growth is then stabilized by cooling or by 

the presence of surfactants 17. The scalability 19 of foam production coupled with the energy 

absorbing capabilities of foams make them widely used in applications such as cushioning and 

packaging 20,21 and sporting gear, including helmets, pads, and shoes 22–24.  

Estimates of foam properties can be obtained by analyzing unit cells of prototypical 

bending-dominated structures, e.g., hexagonal cells for 2D and cubic cells for 3D. From these 

analyses, the Young’s moduli of open-cell foams in axial compression are given by 

2* / sE E  for 3D foams and 
3* / 1.5sE E  for 2D foams. Here, *E  and sE are the Young’s 

modulus of the foam and constituent material, respectively. Relative density,   , is the ratio 

between the density of the foam, 
* ,  and the density of the constituent material, s  (
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* / s  = ). Scaling relations for elastic collapse are 
2

/ 0.05el sE   for 3D foams and 

3

/ 0.14el sE  for 2D 20. Here el is the stress that causes the foam to collapse by elastic 

buckling. While useful, these scaling relations neglect microstructural details found in real 

foams, resulting in discrepancies in the scaling coefficients obtained from experiment and from 

the analyses 20,25,26. Although the impact of cell structure on foam response is generally 

acknowledged, connections between microstructural features and mechanical response are 

poorly understood. 

Work to date on connecting foam microstructure to mechanical response has focused 

on simulating the response of representative volume elements (RVEs) of foams 27–34. Here, an 

RVE is a geometric model having the smallest dimensions or smallest number  of cells that 

produces results  representative of a continuum foam. Analyses of RVEs are useful for 

reducing the computational cost of nonlinear simulations and providing a sound understanding 

of microstructural effects in large foams. However, the utility of RVEs diminish when the 

number of cells that span a component dimension become small. In helmet liners and running 

shoes, for example, tens of cells can span part dimensions. This motivates studying the 

combined effects of microstructure, number of cells and boundary conditions on foam 

response. 

To capture random variations in foam microstructures, methods of computationally 

generating foams have been based on Voronoi tessellations made from points in 2D or 3D 

space coupled with a regularity parameter that governs the minimum allowable distance 

between the seed points in the point array 29–31,33,34. The degree of regularity has been shown 

to influence the mechanical response, especially in foams with low relative density (1-10%). 

At low strains, conflicting conclusions have been made about how irregularity impacts the 
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stiffness of a foam 30,34. For example, some studies have shown that foams with irregular 

microstructures exhibit stiffnesses between 25% 29 and 66% 30 higher than hexagonal 

honeycombs. Other studies have shown that foams with irregular microstructures exhibit 

stiffnesses from 3%34 to as much as 40%35 lower than ordered honeycombs.  At higher 

compressive strains, studies show wide agreement that as microstructure irregularity increases, 

the collapse stress decreases. For example, the elastic collapse stress of highly irregular foams 

has been shown to be about half that of ordered honeycombs 36. 

While many studies have demonstrated that regularity affects certain features of the 

compressive response 30,32–34,36–42, they have not precisely identified the governing 

microstructural features nor explained how they cause property differences. In one study, Zhu 

et al. 29 suggest that the effective Young’s modulus can be related to cell size distribution, 

although they do not explain the connection between this distribution and foam stiffness. 

Additionally, the authors state that other geometric properties may affect the response. Indeed, 

studies have shown that irregularity affects many different microstructural features including 

the number of struts per cell, cell interior angles, strut lengths, cell perimeters, and cell areas 

43. Studies investigating the effects of irregularity on collapse stress of foams also have not 

clearly identified governing microstructural features that cause differences in response. 

Instead, most studies explain that more irregular foams may behave similarly to springs in 

series 33,36,42, meaning, cells experience the same compressive stress but different compressive 

strains leading to a weaker response. However, the reason for this proposed behavior has not 

been elucidated.  

Complementary studies have examined the effects of specific microstructural features 

on the compressive response. Recently, a study looked at the effects of cell size polydispersity 
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on the response of open-cell 3D foams 44. The study concluded that as polydispersity increases 

both the elastic modulus and the collapse stress decrease. A foam with the largest variation in 

cell size exhibited a compressive strength 33% lower than a monodisperse foam 44. While the 

study further concludes that polydispersity in cell size leads to a stable response, connections 

between cell size and features like Young’s modulus and collapse stress were not investigated. 

The deficiencies in mechanistic understanding motivate the pursuit to better understand which 

specific features in regular and irregular microstructures govern the compressive response of 

foams. 

1.3 Open-cell Lattices 

Periodic lattices are useful alternatives to stochastic foams where high load bearing capacity is 

required. The structure of open cell periodic lattices can be defined by four characteristics. The 

first is strut morphology. This describes the length, shape, and cross section of the constituent 

struts (Fig. 1.2a). Strut morphology can include variations in cross section along the strut length 

(to minimize stress concentrations, for example 45,46), hollow struts (to improve buckling 

resistance 47,48), or composite struts consisting of thin-walled struts with a different material in 

the interior, to improve toughness 49 or damping 50. Strut morphology affects other features of 

a lattice such as strut slenderness ratio, /t l , where t  and l  are the thickness and length of 

struts.  

The second characteristic is node morphology. This describes the dimensions and shape 

of the connection points between constituent elements (Fig. 1.2b). Nodes in open cell lattices 

are key structural features as they transmit load between adjoining struts. They can be 

particularly susceptible to failure if there are no accommodations made for the reduced load 

bearing area of nodes relative to that of the struts. The nodes otherwise are sites of elevated 
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stress 51–54. Design features known to reduce stress concentrations include fillets between struts 

and nodes 51 and variations in strut cross section in which a disproportionate amount of material 

is placed near the nodes 45,46. Identifying design concepts to minimize stress concentrations at 

nodes while effectively transmitting loads through a lattice remains an important but relatively 

unexplored area of research. 

The other two lattice characteristics describe the ways in which struts and nodes are 

arranged. The first of these is network topology, defined by the number of connections at a 

node. Lattices with several different network topologies are illustrated in Fig. 1.2c-e. The 

second of these, network morphology, defines the spatial relationship between node locations 

and orientations and lengths of struts (Fig. 1.2f-h). To demonstrate the latter two 

characteristics, Figures 1.2c and 2f show lattices that have the same network topology (4 

connections at each node), but different network morphology. These characteristics are key to 

understanding connections between design and performance of periodic cellular structures.  

In design of lattices for structural applications, network topology is arguably the most 

important characteristic. Depending on the number of strut connections at a node, strut 

elements can bear loads in one of two ways: through bending or through stretching. A sufficient 

condition for stretch-dominated behavior is given by Maxwell’s criterion for static 

determinacy. It states that the unit cell of a 2D lattice with b  struts and j  frictionless joints 

will be stretch-dominated if 2 3 0b j− +  ; for a 3D lattice, the criterion is 3 6 0b j− +   2. For 

lattices with similarly situated nodes (meaning the internal structure appears identical from the 

vantage point of each node) the necessary and sufficient condition for stretch-dominated 

deformation is that the average connectivity Z  at each node is at least 6 for 2D lattices and at 

least 12 for 3D lattices 2. 
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Bend- and stretch-dominated lattices exhibit distinctly different mechanical responses. 

Bend-dominated lattices exhibit low stiffness and strength, but, if composed of materials with 

high ductility, can accommodate large strains at nearly constant stress 55. This is important for 

impact applications where stresses must be maintained below safe levels, e.g., crash protection, 

56, packaging, and helmets 57,58. In stretch-dominated lattices, loads are transmitted via axial 

tension/compression of the struts 55. These lattices exhibit higher stiffness and strength relative 

to bend-dominated lattices, making them better suited for applications that require high 

strength but not large straining capability. 

 The stiffness and yield strength of 3D stretch-dominated lattices scale linearly with 

relative density: * / sE E   and /pl y   . Here, pl  is the plastic collapse stress, and y  

is the yield stress of the constituent material. Bend-dominated lattices exhibit different 

scalings: 
2* / sE E   and 

1.5

/pl y   . These scalings reflect more compliant and weaker 

responses. The high strength of stretch-dominated lattices is usually offset by their limited 

straining capability. In stretch-dominated lattices made of ductile materials, compressive 

failure occurs by strut buckling which leads to rapid strain softening 55,59. This feature makes 

them undesirable for energy absorption applications. 

Improving the straining capability of stretch-dominated lattices has been an area of 

interest in the lattice community 52,60–63. The overarching goal has been to identify design 

concepts that lead to both high compressive strength and high straining capacity. Potential 

solutions may lie between two structure types: single-material stretch-dominated periodic 

lattices and bi-material stretch-dominated tensegrities. As previously noted, single-material 

stretch-dominated lattices exhibit high stiffness and strength but low strain capacity. 

Tensegrity structures consist of two dissimilar element types: stiff, discontinuous struts that 
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carry compressive loads and compliant, pre-stressed cables or springs that carry only tensile 

loads 64. To attain high macroscopic strains, the two structural elements are connected by 

pinned joints. Tensegrities generally exhibit a softer response (relative to periodic lattices) but 

can be deformed to higher strains. While experimental exploration of the intervening design 

space has been limited historically by manufacturing constraints, advances in 3D printing have 

enabled implementation of new concepts in multi-material lattice structures.  

1.4 3D Printing Methods  

Identifying, testing, and iterating on new lattice design concepts have been enabled by 

innovations in 3D printing. Focusing on polymer printing methods, photopolymer jetting, also 

known as Polyjet 3D printing, allows for multiple materials to be incorporated into a single 

print. Polyjet printers operate similarly to inkjet printers, but instead of using ink they use 

droplets of a photopolymer resin. After deposition, the droplets are cured by a trailing UV light 

65. Multiple print heads allow for multi-material printing of disparate types of polymers. An 

alternative method for 3D printing recently developed by Carbon (Carbon DLS™) involves 

Continuous Liquid Interface Production (CLIP), also referred to as Digital Light Synthesis 

(DLS). The method utilizes an oxygen-permeable window with an ultraviolet image projected 

into a liquid resin. What sets this printing method apart from methods based on 

stereolithography is the “dead zone” of uncured resin created by oxygen permeation through 

the window 66. Only tens of microns thick, the dead zone enables continuous printing without 

the conventional layer-by-layer printing. The high print speeds – 5 to 10 times greater than that 

of the fastest high-resolution printer 67 –  facilitate economical high-volume manufacturing. 

In addition to increased print speed, material advancements have been made in dual-

cure resins. These resins have a UV-curable component which is activated during DLS printing 
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and a thermally-curable component which is activated in a subsequent thermal bake 68. The 

thermally curable component is a critical innovation that yields material properties that are 

superior to those of single-cure resins. In some cases, UV curable resins are subjected to a 

second post-print “flood curing” which continues the same reaction. While this two-step 

single-mode curing method may provide some benefit to the manufacturing process and yield 

some property improvements, the resulting materials remain inferior to those made with dual-

cure resins.    

The combined advancements in print speed and print material make Carbon DLS 

printing well-suited for relatively large-scale production. Indeed, commercialized lattice 

products from companies like Adidas, Osprey, and Fizik have made it successfully to market. 

This is only the beginning. A new printing method, iCLIP, combines the rapid printing speed 

and incredible resolution of Carbon DLS with the multimaterial printing capabilities of Polyjet 

69. Additional advancements in 3D printing will undoubtedly help to reduce costs and increase 

manufacturing capacity while also enabling implementation of previously infeasible design 

concepts. However, lattice concepts that can fully exploit these technologies remain largely 

unexplored. 

1.5 Dissertation Objectives and Outline 

The goals of this research are twofold. The first is to identify design strategies for tailoring the 

compressive properties of lattices, targeting concepts that provide combinations of high 

strength and high straining capacity. The second goal is to establish connections between 

microstructural features of stochastic foams and resultant mechanical properties, including 

stiffness, collapse stress, and strain-dependent tangent modulus. These goals are pursued 

through a combination of (i) analytical mechanics models to predict compressive responses, 
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(ii) 3D printing to produce test samples, (iii) mechanical testing in conjunction with digital 

image correlation (DIC) to understand overall response and deformation mechanisms, and (iv) 

finite element analyses to interpret the experimental measurements and to probe a broader 

range of structures.  

The dissertation is organized in the following way: Chapter 2 focuses on identifying 

and analyzing 2D bi-material lattices that allow for high strength and straining capability. In 

this design, material choices are based on local mechanical requirements. To begin, a primitive 

structural motif that exhibits the desired response is identified and an analytical model is used 

to make connections between structural features and response. Then, the design is extended to 

multi-cell experimental samples that are printed, tested, and analyzed. Results of experiments 

are compared to analytical and numerical models in order to develop guidelines for design of 

bi-material structures that mitigate the most common failure modes. Experimental results also 

highlight deficiencies in the nature of macroscopic straining and in joint design. 

In Chapter 3, the bi-material concept is extended to 3D. Here, some of the deficiencies 

of the 2D lattice are addressed. The focus is specifically on design of joints to facilitate 

articulation over a wide rotational range and the morphology of structural elements that enable 

strain reversibility. Assessments of proposed structures are made by conducting experiments 

on 3D printed samples and comparing results to analytical models and finite element 

simulations. The successful performance of a strut-based unit cell affirms the importance of 

joint design in multimaterial lattices. The potential for tailoring the topology and morphology 

of the structural elements to improve load bearing capacity is also examined. The studies on 

both 2D and 3D bi-material lattices demonstrate how emergent multi-material printing 

capabilities may be exploited in the future in expanding the design space for lattice materials. 
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In Chapter 4, the focus shifts to stochastic foams, specifically the connections between 

microstructural features and mechanical response. This is done by computationally generating 

a large number of stochastic foams, analyzing various microstructural characteristics, and 

simulating their compressive response. Finally, conclusions and recommendations for future 

research are presented in Chapter 5. 
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Figure 1.1: Four categories of cellular structures: (a) closed cell stochastic foam, (b) closed 

cell periodic lattice, (c) open cell stochastic foam, and (d) open cell periodic lattice. Adapted 

from V.S. Deshpande, N.A. Fleck, and M.F. Ashby; J.B. Berger, H. N. G. Wadley, and R. M. 

McMeeking; C. Okolieocha, D. Raps, K. Subramaniam, and V. Altstädt 70–72 with permission 

from Springer Nature and  Elsevier. 
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Figure 1.2: (a and b) Examples of strut and node morphologies. (c-e) 2D lattice network 

topologies with various nodal connectivities. (f–h) Lattices with the same network topologies 

as those in (c–e) but with variations in network morphologies. Adapted from Zok 73. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

22 

Chapter 2  
 

A Bi-Material Concept for Periodic Dissipative Lattices 

 
Abstract 

 
1Structural periodic lattices made of two or more dissimilar materials can be viewed 

conceptually in terms of a spectrum of structure types, bounded by stretch-dominated lattices 

of a single material at one end and tensegrities of tensile and compressive struts at the other. 

The present chapter probes the unexplored domain within this lattice-tensegrity spectrum with 

a focus on dissipative bi-material lattices. To begin, a primitive structural motif that exhibits 

the desired behavior is identified and its compressive response is analyzed. A 2D multi-cell 

lattice based on the primitive motif is designed and several material variants are fabricated and 

tested. Analysis of test results addresses effects of finite node dimensions, constraints on strut 

rotation at the nodes, free edges, and friction with the loading platens as well as limits dictated 

by rupture of tensile struts or buckling or yielding of compressive struts. The study culminates 

with guidelines on design of bi-material lattices with high strength and high straining 

capability.  

2.1 Introduction 

The elastic and plastic responses of periodic lattice materials are dictated by: (i) network 

topology, characterized by the nodal connectivity Z of the constituent struts; (ii) network 

morphology, defined by the spatial relationships between nodal locations and hence 

 
1 The content of this chapter has previously appeared in the Journal of the Mechanics and 

Physics of Solids (A.L. Ruschel and F.W. Zok, A bi-material concept for periodic dissipative 

lattices, Journal of the Mechanics and Physics of Solids (2020)). Available at: 

https://doi.org/10.1016/j.jmps.2020.104144 
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orientations and lengths of the struts; (iii) strut morphology, characterized by strut length and 

shape and dimensions of strut cross-sections; (iv) node morphology, characterized by node 

shape and dimensions; and (v) properties of the constituent materials 1. When the nodal 

connectivity is low (Z < 6 in 2D and Z < 12 in 3D), some or all of the struts may deform through 

bending; when it is high, the struts deform by axial tension or compression 2. The former is 

exemplified by in-plane loading of a 2D hexagonal honeycomb (Z = 3) and the latter by in-

plane loading of a 2D triangular honeycomb (Z = 6). Hexagonal honeycombs exhibit low 

stiffness and strength but, if made of a ductile material, can accommodate large strains at nearly 

constant stress after yielding occurs3,4. Triangular honeycombs, on the other hand, exhibit high 

stiffness and strength; but, when they fail, typically by strut buckling (either elastically or 

plastically), they undergo rapid strain softening. One of the outstanding challenges involves 

identifying lattice designs that are stiff and strong and have the capacity for large macroscopic 

deformation. Viewed more generally, strategies for tailoring the compressive response – 

beyond that obtained in purely bend-dominated or purely stretch-dominated lattices – would 

enable design of lattice materials for specific requirements of engineering components 5.  

Design of lattices with high energy absorption capacity in particular has been of great 

interest, in part because of the wide range of applications requiring dissipative systems and in 

part because of the extraordinary developments in additive manufacturing that have greatly 

expanded the design options. One approach that has been pursued focuses on preventing or 

delaying buckling of compressive members in stretch-dominated lattices and exploiting the 

plastic straining capabilities of the strut materials while the struts are deformed in uniaxial 

compression 6. This strategy invariably leads to designs with stubby struts and hence high 

relative density. Alternatively, buckling of slender struts can be delayed by the addition of a 
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secondary structure comprising a low relative density foam or lattice at a finer length scale. 

Here the secondary structure provides lateral support to the struts and elevates the buckling 

load and, in turn, increases the propensity for axial yielding of the struts 7. But the addition of 

the secondary structure comes at the expense of an overall increase in relative density. Even if 

the tradeoffs between the addition of a secondary structure and the increased strength are 

favorable, plastic buckling is likely to intervene and lead to strain softening at larger strains.  

While the aim of the preceding approaches is to inhibit strut buckling, lightweight 

structures designed to exploit buckling instabilities for damping, dynamic energy dissipation 

or elastic energy trapping have also been pursued. The concept of utilizing instabilities for 

energy dissipation was first introduced by Lakes et al.8 in the context of damping in materials 

with negative stiffness inclusions. Subsequent work on structures that exhibit snap-through 

instabilities due to elastic buckling of constrained compressive members has been extensive 9–

25. Such structures can be designed to undergo reversible snap-through, whereby the structure 

returns to its original configuration upon unloading and exhibits enhanced damping upon 

dynamic cyclic loading. Alternatively, intermediate states following a snap-through event can 

be locked in, thereby leading to energy trapping.   

Yet another potential approach to tailoring properties of interest – especially stiffness, 

strength and energy absorption – involves integration of multiple materials into a single lattice 

structure. In essence, materials for the constituent struts would be selected to best match local 

mechanical requirements. The concept emerges from the recognition that, when periodic 

lattices are subjected to a macroscopically-uniform strain, the constituent struts experience 

strains that differ appreciably from the applied strain and differ among the various strut 

populations 3,26–28. For example, when a triangular honeycomb lattice is loaded elastically in 
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uniaxial compression, 2/3 of the struts (those inclined at 30° to the loading direction) 

experience uniaxial compression and a strain equal to 2/3 of the applied macroscopic strain; 

the remaining 1/3 (oriented perpendicular to the loading direction) experience uniaxial tension 

and a strain equal to -1/3 of the applied strain. When, instead, the material is loaded in uniaxial 

tension, 2/3 of the struts are in tension and 1/3 are in compression.  One of the implications is 

that, regardless of whether a stretch-dominated structure is loaded in tension or compression, 

some struts are always in tension while others are in compression. Consequently, compressive 

strength may be controlled by tensile rupture while tensile strength may be controlled by 

compressive buckling. In this context, the weaker of the two failure modes may dictate strength 

under both macroscopic tension and macroscopic compression. These behavioral 

characteristics suggest a bi-material strategy for attaining both high strength and high straining 

capacity for a prescribed loading (compression or tension). In this strategy, struts loaded in 

compression would be made from a stiff and strong material (to inhibit buckling) while those 

in tension would be made from a more compliant material with high tensile ductility. This 

strategy is the inverse of that used to generate snap-through instabilities in the sense that the 

macroscopic deformation is accommodated by internal strut stretching while buckling is 

prevented.  

From a broader perspective, structural lattices made of two dissimilar materials can be 

viewed conceptually in terms of a spectrum of structure types, bounded by stretch-dominated 

lattices of a single material at one end and tensegrities at the other (Fig. 2.1). Tensegrities 

consist of discrete (non-touching) struts that carry compression and pre-stressed wires or 

springs that carry only tension29. Together the constituents are mechanically stable and may be 

designed to exhibit a wide range of mechanical responses that could not be obtained by either 
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one of the two constituents alone. In the context of this conceptual lattice-tensegrity spectrum, 

a wide domain of material topology and material combination remains unexplored.  

The present work is motivated in part by the recognition that some additive 

manufacturing technologies are capable of integrating two or more dissimilar materials into a 

single print operation 30. But if bi-material lattices are to be made in one operation (not through 

assembly of printed parts), special attention will need to be focused on how the materials are 

connected to one another at the nodal locations. The challenge involves striking a balance 

between the mechanical integrity of nodes (and hence the ability to transmit forces) and the 

need for articulation, to accommodate large macroscopic strains and accompanying rotations. 

A potential node design is presented in due course. 

The main objective of this chapter is to present a bi-material concept for dissipative 

periodic lattice materials. To illustrate the behavioral type of interest, a primitive structural 

motif is identified, and its mechanical response is analyzed. The analysis yields insights into 

the trade-offs between structural properties (i.e. strength and straining capacity), geometry, and 

properties of the constituent materials. The primitive motif is used as the basis for design of a 

multi-cell 2D lattice. The design is implemented using additive manufacturing. Compression 

tests on lattices with several different material combinations along with high-resolution strain 

mapping via digital image correlation (DIC) are used to elucidate the nature of mechanical 

response both globally and locally. Analytical mechanical models (building on that for the 

primitive motif) are assessed through complementary finite element analyses (FEA) and are 

used both to interpret the experimental measurements and to identify designs that produce high 

strength and high straining capacity.  (A comprehensive list of symbols is presented in Table 

2.1.) 
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2.2 Bi-Material Lattice 

2.2.1 A Primitive Structural Motif 

A primitive 2D structural motif that exhibits the desired behavior is illustrated in Fig. 2.2. It 

consists of four inclined struts of equal length in a diamond pattern and a transverse strut 

joining two of the resulting nodes. The inclined struts are made of a stiff, strong material and 

the transverse strut from a highly extensible material. Under macroscopic compression (along 

the y-axis), load is distributed through axial compression of inclined struts and axial tension of 

the transverse strut.  

The following analysis of the compressive response of this structural motif is based on 

the assumptions that: inclined struts are much stiffer than the transverse strut, nodes are pin-

jointed, strut thicknesses are infinitesimal, and the transverse strut is elastomeric with linear 

stress-strain response. All results were checked by FEA with the same assumptions. Details of 

the analysis are present in Appendix 2.A1. The key results follow.  

The macroscopic response is given by  

( ) ( )( )
1 2

22

0 01 tan csc 1a a a   
− 

 = − − − −
  

                        (2.1) 

where a  is the normalized force, a a t tF E t  , aF  is the applied force (per unit depth), tE  

and  tt  are the Young’s modulus and the thickness of the transverse member, 0  is the initial 

strut inclination angle,  a  is the nominal compressive strain defined by 0a v H = , v  is axial 

displacement and 0H  is the initial height. The corresponding tensile strain t  in the transverse 

strut is 

( )
1 2

22

0 0tan csc 1 1at    −
 

= − −                           (2.2) 
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while the compressive force cF  within the inclined struts, expressed in the non-dimensional 

form c c t tF E t  , is: 

  ( )( )
1 2

22

0 0

1
sec 1 sin 1

2
c a  

− 
 = − − −

  
              (2.3) 

 The maximum values of t  and c  are obtained at 1a = ; they are max

0sec 1t = −  (from Eq. 

2.2) and ( )max

0sec 1 2c  = −  (from Eq. 2.3). (Full densification, i.e. 1a = ,  is obtained 

because of the assumed infinitesimal thicknesses of struts and nodes.)  

Absent failure, the structural response, ( )a a  , exhibits: (i) a rising portion with an 

initial stiffness of 3

0tana ad d  = ; (ii) a local maximum at a strain of 

( )
1 2

max 2 3

0 0o1 c c 1 c ssa  = −− and a force of ( )
3 2

max 2 3

0sec 1a = − ; and (iii) a softening 

portion ending at 0a =  at 1a =  (Fig. 2.3). The shape of the a – a  curves reflects two 

competing mechanisms: hardening due to stretching of the transverse strut and softening due 

to progressive reduction in inclination angle and hence reduced efficiency with which the 

tensile force in the transverse strut can be transmitted into macroscopic compression.  

Attaining the full response through to densification relies on the transverse strut having 

a high tensile ductility, *

t . If  tensile rupture is to be avoided, the initial inclination angle must 

be below a critical value of ( )* 1 *

0 sec 1 t −= +  (from Eq. 2.2, with 1a = ). Otherwise, if *

0 0 

, tensile rupture precedes densification and, from Eq. 2.2, occurs at an applied strain of 

 ( )
1 2

2
* 2 *

0 01 cos 11 csca t   −  − +
 

=


              (2.4)  



 

 

29 

Attaining full densification also requires that the inclined struts do not buckle or yield. The 

critical strut buckling force is buc buc

c c t tF E t  where 2 3 2 212buc

c c c cF E t K L=  (the Euler 

buckling force), cE  is the Young’s modulus of the inclined strut, ct  and cL  are strut thickness 

and length, respectively, and K is the effective length parameter. Combining these results 

yields a buckling force of buc

c =   where   is a non-dimensional buckling parameter defined 

by 2 3 2 212c c t t cE t E t L K  . Buckling is avoided when max buc

c c   or, equivalently,  

( )1

0 0 sec 2 1buc  − = + .  When 0 0

buc  , buckling occurs at an applied strain of 

 ( )
1 2

2

0 01 s c1 sc ec 2buc

a  
−

= −  − − 
 

              (2.5) 

Analogously, the critical strut yielding force is yield yield

c c t tF E t   where yield

c y cF t=  and y  

is the yield stress of the compressive strut material. Again, combining these results produces a 

yielding force of yield

c =   where   is a non-dimensional yielding parameter defined by

y c t tt E t  . Yielding is avoided when max yield

c c  or when ( )1

0 0 sec 2 1yield  − = + . 

When 0 0

yield  , yielding occurs at an applied strain of   

( )
1 2

2

0 0c 1 sec 21 scyield

a  
− − −

 
= −               (2.6) 

To demonstrate the trade-offs between structural properties, lattice geometry and 

constituent materials, the predicted force-displacement curves in Fig. 2.3a are augmented by a 

set of failure loci corresponding to tensile strut rupture (Eq. 2.4) and to inclined strut buckling 

(Eq. 2.5) and yielding (Eq. 2.6). The trade-offs that emerge highlight the need for concurrent 

selection of geometry and constituent materials for optimal lattice design. 
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2.2.2 Bi-material Lattice Based on the Primitive Motif  

 

A conceptual design of a 2D multi-cell lattice based on the primitive motif is illustrated in Fig. 

2.4a. With the expectation of large geometric changes accompanying macroscopic axial 

compression and thus the need for strut rotation, the nodes are designed (nominally) as ball-

and-socket joints. The balls are located at the ends of the inclined struts and the sockets are 

created within a circular common hub. A thin (ca. 250 µm) layer of the elastomeric material 

used for the transverse struts is placed between the surfaces of the balls and sockets. The same 

material envelops the hub and seamlessly transitions into the transverse struts to reduce stress 

concentrations 31,32. Flat spots on the hubs located at the external surfaces facilitate loading. 

A series of test specimens with the design in Fig. 2.4(a) were fabricated via multi-

material 3D printing (Objet500 Connex3, Stratasys). Print fidelity is evidenced by comparisons 

of the CAD drawings with photographs of the printed lattices (Fig. 2.4a and Fig. 2.5). In all 

cases, the inclined struts are made from a stiff acrylic-like material (VeroWhite). The tensile 

struts are made from one of four elastomers, designated Agilus 30A, 50A, 85A, and 95A by 

the manufacturer. (The numbers denote the nominal Shore A hardness.) The relative density 

of the lattice, calculated as the projected area of solids within a rectangular area defined by the 

centers of the four outermost nodes, is 0.40. The properties of the constituent materials were 

obtained from tensile tests on dog-bone specimens that had been printed in an identical manner. 

These properties are summarized in Fig. 2.6. To establish baseline lattice properties, single-

material lattices with the same design were also printed and tested (Figs. 2.5c and 2.5d). The 

latter lattices were made of VeroWhite, Agilus 50A and Agilus 85A.  
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2.3 Compressive Response 

2.3.1 Methods 

Lattices were tested in uniaxial compression using Teflon platens to reduce friction. Full-field 

displacement measurements of the entire lattice were made on the “front” surface using 2D 

digital image correlation (DIC). A more detailed displacement map of the center-most node 

alone was obtained on the opposing (“back”) face of the lattice. The tests included occasional 

unload-reload cycles to probe hysteresis intrinsic to the transverse struts and hysteresis due to 

friction between the external nodes and the loading platens.  

In preparation for testing, random speckles with a diameter of approximately 200 m  

were applied to the front face using aerosol paint. On the back face (where higher magnification 

displacement mapping of a single node would occur), speckles with a mean diameter of 50 

m were applied using an airbrush. Images were taken using two digital cameras (Point Grey 

Research Grasshopper), each with a CCD resolution of 2448x2048 pixels, at magnifications of 

14 and 90 pixels/mm on the front and back face, respectively. With this magnification, the area 

of the entire sample (1750 x 775 pixels) and the node (1900 x 1900) could be monitored during 

testing while maintaining a minimum of 3 pixels/speckle in subsequent analyses, as 

recommended for accurate correlation 33. The data were analyzed using incremental correlation 

with a subset size and step size of, respectively, 15 pixels and 3 pixels on the front face, and 

25 pixels and 3 pixels on the back face. The macroscopic compressive strain was obtained from 

the DIC data using five virtual extensometers spanning the node centers on opposing faces. 

The stress was computed from the measured force and the projected area of the test samples 

between the centers of the outer nodes on the loading platens.  
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Three local deformation metrics were computed from the DIC data: (i) von Mises 

equivalent strains, eq  , and (ii) axial strains in transverse struts t  within each strut as well as 

(iii) rotations  . Von Mises equivalent strains were found through x , y , and xy  strain 

components. Axial strains in transverse struts , t , were found from virtual extensometers on 

individual struts, neglecting portions residing within the node regions. Finally, rotations were 

calculated for each inclined strut at two locations: one at the center of the ball at the end of the 

inclined strut and one along the strut centerline 6 mm away.  

Corresponding finite element analyses (FEA) were performed using Abaqus/Standard 

(Version 2018, Dassault Systèmes, Providence, RI). In the model, each strut was discretized 

using 20 Timoshenko beam elements with rectangular cross-section and with dimensions 

matching those of the test specimens. Each hub was modeled using 6 beam elements connected 

to form a rigid hexagon, as shown schematically in Figs. 2.4b–d. Inclined struts were assumed 

to be linear-elastic with a Young's modulus obtained from the uniaxial tensile tests on the same 

material (e.g. 0 1.35E =  GPa for the VeroWhite). The tensile response of the transverse struts 

was assumed to be linear with Young’s moduli  obtained from the tensile tests. Loading platens 

were modeled using two-node, rigid-beam elements (RB2D2). 

The influence of friction was studied by assigning contact properties to the surfaces of 

discretely rigid platens and the external surfaces of top and bottom hexagonal hubs. The 

surface-based contact simulations probed two cases: one with a friction coefficient 0 =  and 

another with 0.12 =  . The latter value had been obtained by placing the lattice on a Teflon 

platen, placing a known mass on top of it, and measuring the lateral force needed for sliding 

using a force spring scale. In both contact scenarios, joints between lattice struts and the 

hexagonal hubs were modeled as pinned. Additionally, to maintain contact normals between 
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external nodes and platens, the hexagonal hubs were constrained against rotation. Rigid body 

motion of the lattice was prevented by fixing translational degrees of freedom of the center 

node at the bottom platen. The other nodes on this platen were constrained from displacement 

in the loading (y) direction, i.e., 0v = . Uniaxial cyclic compression was simulated by 

prescribing displacement to the top platen that varied as a function of time to match the loading 

cycles in the experiments. 

2.3.2 Measurements and Analysis of Single-Material Lattices 

The elastic modulus of all single-material lattices is about 0.13sE E =  where sE   is the 

modulus of the parent material (Fig. 2.7). By comparison, a mechanics analysis of this lattice 

(with 0 60 =   and thus c tL L L=  ) yields a modulus of  

( )

3 3

4 1 11

c

s c t

tE

E L t t
=

+
                   (2.7) 

(Derivations of moduli for this and other cases are presented in Appendix 2.A2.) Taking ct  = 

2 mm, tt =4 mm and L  = 27 mm (the distance between node centers as defined in Figure 2.4a),  

the predicted modulus is 0.092sE E = . The discrepancies between predicted and measured 

moduli are attributable to the finite node size (radius hR = 3.5 mm) and corresponding 

differences in strut lengths. Taking the effective strut length to be 2eff

hL L R= − = 20 mm (as 

illustrated in Figure 2.4b) and assuming the nodes to be rigid, the modulus becomes 

0.12sE E = , essentially the same as the measured values.  

Lattices of the elastomeric materials 50A and 85A exhibit peak stresses of 0.005 MPa 

and 0.017 MPa, respectively. The peaks are obtained at the end of the linear domain, at a 
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nominal strain of 0.05a  . Strain maps in Figs. 2.7a and 2.7b show that the strut buckling 

begins at the stress peaks. For comparison, the predicted applied stress for elastic buckling is 

given by 

2 3

0

* 2

11 sin

72 ( )

buc c
a

Et

L KL

 
 =                               (2.8) 

where, for fixed joints (assumed to be the case here), K = 0.5, and *L is the pertinent 

compressive strut length. Two values of *L  are considered: (i) the effective length, eff

cL  = 

20mm, which excludes the central hubs but includes the adjoining fillet region, and (ii) the 

length over which the strut thickness is uniform, which excludes both the hubs and the fillet (

*L  = 11 mm). Using these estimates, the predicted buckling stress for the 50A lattice falls in 

the range 0.0035–0.012 MPa while that for the 85A lattice falls in the range of 0.010–0.034 

MPa. Although somewhat broad, these ranges encompass the measured peak stresses.  

Beyond the stress peaks, the elastomeric lattices exhibit slight softening and attainment 

of a plateau, followed by rapid hardening once internal self-contact is made (at a strain of about 

0.3). The unloading-reloading loops show significant hysteresis but with the strain returning 

to nearly zero upon complete unloading. The transverse lattice strains remain negligibly small 

throughout. 

The failure mode of the acrylic lattice is somewhat ill-defined. The peak compressive 

stress is 4.1 MPa, obtained at a strain of 0.04. The predicted elastic buckling stress, computed 

using the parameter values presented above, falls in the range 5.2–17 MPa, somewhat above 

the measured value. Additionally, the predicted stress for strut yielding ( 011 sina yt L  = , 

with y  being the material yield strength) is about 5.3 MPa: close to the lower end of the 
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predicted buckling stress range but still somewhat above the measured peak (by about 30%). 

In light of the similarities in the predicted buckling and yield stresses, and recognizing that in 

the transitional domain between elastic buckling and yielding the failure stress is lower than 

that for either mode alone, we surmise that failure here involves nearly-concurrent yielding 

and buckling. Beyond the peak, the lattice exhibits rapid softening as the inclined struts 

undergo plastic collapse (Fig 2.7c).  Here again the transverse lattice strain remains negligible 

throughout. 

2.3.3 Experimental Measurements on Bi-Material Lattices 

 

The compressive responses of the bi-material lattices differ significantly from those of the 

single-material lattices and depend sensitively on the specific elastomer used for the transverse 

struts. The VeroWhite/50A typifies lattices with the softer elastomers (Fig. 2.8a). Here the 

forward loading curves exhibit characteristics that are qualitatively similar to those predicted 

for the primitive structural motif.  Notably, the stress rises non-linearly, reaches a peak at a 

strain of about 0.2 (comparable to that for the primitive motif with the same inclination angle, 

60°), and decreases gradually with further straining. But unlike the primitive motif, the 

experimental lattice attains a strain of only about 0.47. At this strain, transverse struts begin to 

rupture. The accompanying strain maps show that the macroscopic compressive strain is 

accommodated by extension of the transverse struts and rotation of the inclined struts up to 

strains of about 0.25 and by bending of the inclined struts at larger strains. These mechanisms 

give rise to large transverse strains in the lattice. The response of the lattice with the stiffer 

elastomer begins similarly, with higher stiffness, but terminates at a lower strain because of 

rupture of the transverse struts (Fig. 2.8b). This is qualitatively consistent with the trade-offs 

between strength and ductility in this series of elastomers, shown in Fig. 2.6. 
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Rotations of material elements near the central node yield insights into the efficacy of 

the ball-and-socket node design in facilitating rotation of the inclined struts. Both full-field 

rotations and a plot of the variation in rotation with applied strain at the two lattice locations 

of interest (at the ball center and at a point 6 mm away) are shown in Fig. 2.9. Predicted 

rotations based on a geometric model that assumes pinned joints are included for comparison. 

Although the rotations at short distances from the ball centers match the predicted values well, 

the rotations at the ball centers are considerably lower. The latter rotations are about 50%, 25% 

and 20% of the predicted values for the lattices with 30A, 50A and 85A elastomers, 

respectively. The differences in rotations at the ball centers are attributable to the stiffnesses 

of the constituent elastomers. That is, the lattice with the most compliant elastomer (30A) 

requires the lowest force to effect deformation and hence exhibits the greatest rotations among 

the three elastomers. Clearly, the rotation at the ball center is over-constrained by the 

surrounding elastomer.  

Unloading-reloading excursions of the bi-material lattices are accompanied by 

hysteresis, due in part to viscoelasticity of the elastomeric materials and in part to friction at 

the points of contact of the external nodes with the loading platens. One clear manifestation of 

friction is in the load drops obtained upon unloading; these are not accompanied by a change 

in axial strain and cannot be attributed to viscoelasticity.  

Further insights into friction effects emerge from the transverse node displacements 

during loading and unloading; two illustrative examples are shown in Figs. 2.10a and 2.10b. 

Upon loading, all surface nodes not located at the lattice center begin to slide laterally shortly 

after loading begins. Upon initial unloading, these nodes remain stationary; they begin to slide 

in the opposite direction only once the load decrement reaches a critical value. Treating these 
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nodes as Coulombic friction blocks with a critical transverse force lF  for forward sliding, it 

follows that the lateral force must drop by 2 lF  in order for reverse sliding to begin. Further 

assuming that the lateral forces are proportional to the applied force, the unloading decrement 

needed for reverse sliding would be twice that for forward sliding. These effects are borne out 

by the model predictions presented in the subsequent section. 

Friction does not appear to affect the tensile strains within the transverse struts. These 

strains are remarkably uniform across all struts, both internal to the lattice and adjacent to the 

loading platens, during both loading and unloading (Fig. 2.11). For the lattice with the 85A 

elastomer, the strains are consistent with the predicted strains from Eq. 2.2 (neglecting finite 

node size). For the lattices with the two softer elastomers, the strains are about 10–20% greater. 

These differences are reconciled by modifying the model to account for finite node size, as 

described below. 

2.3.4 Analytical model of bi-material lattice response 

The mechanics analysis of the primitive structural motif was extended to the multi-cell lattice 

in two ways. (To recapitulate, all analyses are based on the assumptions that inclined struts are 

much stiffer than transverse struts, nodes are pin-jointed, and transverse struts are elastomeric 

with linear stress-strain response).  

The first extension accounts for the finite number of cells and associated edge effects. 

The results are presented in terms of a normalized applied stress per unit depth, 

3a a t t tL E t  . (Note that a  for the lattice is closely analogous to a  for the primitive 

motif, differing mainly by the factor 3; this factor arises from the presence of 3 layers of 

transverse struts in the lattice and only a single layer in the primitive motif.) The predicted 
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nodal forces were obtained using the method of joints and confirmed via FEA; the results are 

summarized in the Appendix (Fig. 2.A1c). The resulting lattice stress-strain response is given 

by: 

( ) ( )( )
1 2

22

0 0

11
1 tan csc 1

12
a a a   

−   
 = − − − −     

             (2.9) 

This result differs from the one in Eq. 2.1 by the numerical coefficient 11/12. If the 

structure were infinite in width and could therefore be represented by a single unit cell, without 

edge effects, the numerical coefficient in Eq. 2.9 would be simply 1. The present test samples 

each comprise 4 unit cells but lack the central transverse struts that would otherwise be attached 

to neighboring cells in an infinite array.  The effect of these “missing” transverse struts is a 

reduction in stress by a factor of 11/12, i.e. the fraction of possible transverse struts present in 

the finite lattice. The tensile strain in the transverse struts is still given by Eq. 2.2.  

The second extension accounts for finite node size. The node size affects the length of 

inclined struts and their rotation, the effective length of transverse struts, and the densification 

strain (Fig. 2.4b-d). Here the hub of each node is assumed to be rigid with each inclined strut 

now pivoting about a point a distance equal to the hub radius hR  from the hub center. The 

normalized effective length of inclined struts is therefore 1 2eff

c c c h cL L R L   − . 

Additionally, each transverse strut begins at a point hR  from the hub center and thus its 

normalized effective length is 1 2eff

t t t h tL L R L   − . From geometry the ratio of effective 

lengths is 2 coseff eff

c t c t oL L   = . The inclination angle   and transverse strut strain t  are 

modified to read: 

( )1

0sin sin 1 a c   −= −                                                                                               (2.10) 



 

 

39 

and 

( )( )
1 2

22

0 0tan csc 1 1c
t a c

t




   


 
= − − −

  
              (2.11) 

 

Combining these modifications, the lattice stress-strain response becomes:  

            (2.12) 

The normalized compressive stresses in inclined struts, defined as 3c c t tF E t  ,  are: 

( )( )
1 2

22

0sec 1 sin 1
2

c
c o a c

t


   



− 
 = − − −

  
              (2.13) 

in the inner struts (i.e. those fully contained within the lattice), and  

( )( )
1 2

22

0sec 1 sin 1
3

c
c o a c

t


   



− 
 = − − −

  
            (2.14) 

in the outer struts. Neglecting constraints on node rotation, densification is assumed to occur 

when the initially inclined struts are horizontal, as illustrated in Fig. 2.4d. The densification 

strain is therefore c

den

a = . 

The maximum values of t  and c  are obtained at  and are given by  

S
a

=
11a

c

12a
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( )0max
sec 1c

t

t

 




−
=                  (2.15)

 
( )0max
sec 1

2

c

c

t

 



−
 =                 (2.16) 

Tensile rupture is therefore avoided when the initial inclination is below a critical value of 

( )* 1 *

0 sec 1 t t c   −= +  (from Eq. 2.15). Otherwise, tensile rupture occurs at an applied strain 

of  

( )( )
1/2

2
2 *

0 0

* 1 csc 1 cos 1 /c t t ca      
 

= − − + 
 

            (2.17) 

Similarly, buckling is avoided when the maximum stress in the inclined struts is less than the 

buckling stress, max 2/ 3 /buc buc

c c a t t cF E t    = =  , or, equivalently, 

( )1 3

0 0 sec 1 2buc

t c   −  +   (from Eq. 2.16). Otherwise buckling occurs at a strain of  

( )00

3
1 2

2

1 cs 21c secc t c

buc

a    
− −


 

= − − 


 



            (2.18) 

Lastly, yielding is avoided when the maximum stress in the inclined struts is less than the 

yielding stress, max / 3yield yield

c c a t tF E t   = =  , or, equivalently,  

( )1

0 0 sec 1 2yield

t c   −  +  .  Otherwise yielding occurs at a strain of  

( ) 
1 2

2

0 01 csc s1 ec 2yi l

t

e d

ca c    
−

− −





= −             (2.19) 



 

 

41 

To highlight the effects of these modifications, the predicted stress-strain curves and 

failure loci for finite lattices (Fig. 2.12) are compared with those for the primitive motif (Fig. 

2.3). The geometric parameters selected for these comparisons are representative of the present 

experimental lattices, with the inclination angle 0  being the one design variable. Here the 

lattice height, the effective inclined strut length ( 0.75c = ), and the densification strain (

0.75den

a c = = ) are held constant while the effective transverse strut length, t , is varied 

with 0  in order to maintain a fixed node size. To achieve full densification, lattices with finite 

nodes require the transverse strut material to have a higher ductility, because higher tensile 

strains are obtained in the shortened transverse struts at a given applied lattice strain.  

The shortened transverse strut has two other effects. First, it increases the applied stress 

required to deform the lattice to a prescribed strain. Second, it increases the compressive 

stresses in inclined struts and therefore increases the minimum value of the yielding parameter 

needed to attain densification without yielding (compare Figs. 2.3b and 2.12b). 

Additionally, despite the increased stress in the inclined struts, the required value of the 

buckling parameter   needed to reach densification without buckling decreases, a 

consequence of the reduction in the effective compressive strut length and hence an 

improvement in its buckling resistance (buckling strength being proportional to 21/ c ).   

2.4 Assessment of Analytical Models and FEA 

The analytical models and FEA results are assessed by comparing them with the various 

experimental measurements. The focus is on: (i) the stress-strain response in the initial stages 

of forward loading, (ii) the response at moderate strains, where significant geometric changes 
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occur, (iii) hysteresis upon loading/unloading, (iv) node displacements, and (v) failure 

initiation.  

The FEA results capture essentially all of the key features observed experimentally to 

varying degrees of accuracy. The predicted stress-strain curves up to strains of about 0.05 track 

reasonably well with the measured curves, albeit with somewhat softer response (by about 20-

40%). The anomalously soft response can be attributed to the assumption in the model that the 

nodes are pinned whereas the real ones have finite stiffnesses. Select FEA simulations of cases 

in which the nodes were assumed to be rigid yielded a stiffness for the VeroWhite/85A lattice 

that was 30% higher than the experimentally measured value while the result from the pin-

jointed simulation was 40% lower. These results bound the experimental values well. 

Additional simulations for the VeroWhite/50A lattice yielded stiffnesses that were higher than 

the experimentally measured value by a factor of 2.5. Evidently the disparity between the rigid-

node simulations and the experimental measurements increases as the stiffness of the 

transverse strut material decreases. 

One of the features found experimentally but not captured by FEA is progressive 

softening of the forward loading response following cyclic unloading-reloading, a 

consequence of the viscoelastic character of the elastomers (evident in the tensile test results 

in Fig. 2.6) and possibly damage to the material. Clearly this discrepancy is due to the 

assumption that the elastomer response in the FEA is linear-elastic. The predicted load drops 

during initial unloading and before the onset of reverse sliding of surface nodes are similar to 

those measured experimentally. Upon further unloading, the predicted stress-strain curves 

converge to the origin more rapidly, again a consequence of the hysteretic response of the 

elastomers. The nodal displacements from FEA match the experimental measurements well, 
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overestimating the magnitudes of the displacements by only about 10-20% (Figs. 2.10c and 

10d). Here again the discrepancy is attributable to the assumption regarding pinned joints in 

the model. Finally, predictions of failure, based on the attainment of a critical tensile strain in 

the transverse struts (namely the measured tensile failure strain) without consideration for 

cyclic effects, are only roughly in line with the measurements.  

The analytical prediction of the stress-strain response (neglecting friction) falls midway 

between the loading and unloading curves obtained experimentally and from FEA. Indeed, 

FEA simulations without friction (not shown) recover a result nearly identical to the analytical 

result. The slight deviation is due to the finite ratio between inclined and transverse strut 

material stiffnesses, /c tE E . The analytical model assumes a stiffness ratio of /c tE E =  

while the FE model uses experimentally measured stiffness ratios of / 1500c tE E   and 

/ 500c tE E   for the VeroWhite/50A and VeroWhite/85A lattices respectively. Having no 

inelasticity in the analytical model, the loading and unloading curves are identical. 

Additionally, the model predictions for node displacement (Figs. 2.10c and d) and for failure 

initiation (Fig. 2.8) are nearly identical to those from FEA.  

2.5 Summary and Conclusions 

The present study provides a quantitative framework for preliminary design of a family of 

structural bi-material lattices with potential for both high strength and high straining capability, 

incorporating both geometry and material properties. The mechanics analysis of the primitive 

structural motif yields a particularly useful baseline both for estimating the overall stress-strain 

response and for predicting failure initiation. Extensions of the analysis to lattices with multiple 

layers, boundaries, and finite nodes readily capture secondary (though not insignificant) effects 
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associated with implementation of the concept into a structural design. Even in their current 

form, the models could be used to begin optimization of the geometry to attain targeted 

properties. One as-yet unexplored aspect of the response of large bi-material structures of this 

type, with many unit cells in both directions, is the possibility of long-range deformation 

instabilities. The extent to which these might be controlled or even exploited remains to be 

studied. 

The specific lattice design examined experimentally has two shortcomings. The first is 

the need for large lateral displacements (with associated friction) to accommodate axial 

displacements. Variants on the design that enable the lateral displacements to occur entirely 

within the body of the lattice without global transverse displacement can be readily envisioned. 

Second, the node design yields excessive constraint on strut rotation at large displacements, 

especially with the stiffest elastomers. These effects could be mitigated through re-design of 

the size and shape of the ball-and-socket connection as well as selection of alternative 

elastomers for the intervening gaps. Remediation strategies of this type are the focus of current 

activities.  

Finally, the present structural concept remains to be critically assessed against existing 

single-material concepts. This would require comparisons of the properties that can be attained 

using real structural constituent materials in the bi-material lattices and the properties that can 

be attained with single-material lattices. The growing spectrum of materials being developed 

for additive manufacturing and the expanding capabilities for printing multiple materials will 

facilitate these efforts. 
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2.A Appendix 

2.A1 Response of Primitive Structural Motif 

The following analysis of the structural response of the primitive motif is based on an energy 

method. When the structure is compressed, the work wU  done by the applied force  is equal 

to the elastic strain energy eU  in the transverse strut. The work done is  where 

v  is the axial displacement and the prime denotes a dummy variable. The height of the structure 

is reduced from  to 0H H v= − . The displacement v  is accommodated by rotation of the 

inclined struts from an initial angle to   and elongation of the transverse strut from a length 

 to 0W W u= + . The strain energy in the transverse strut is  

             (2.A1) 

where  is the force in the transverse strut. Setting e wU U= , the force-displacement relation 

( )aF v  is found to be 

 ( )
( ) ( )

0

tant t

a

E t u v du v
F v

H dv


=            (2.A2) 

From geometry,  

 ( ) ( )( )
1 2

22

0 0 0csc 1 cotau v H   = − − −              (2.A3) 

( ) ( )( )
1 2

22

0( ) 1 csc 1a adu v dv   
−

= − − −              (2.A4) 

and ( )1

0sin sin 1 a  −= −   . Combining the preceding equations yields Eq. 2.1 in the text.  
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2.A2 Young’s Moduli of Bi-material Triangulated Lattices 

 

Infinite triangular lattice  

The Young’s modulus of an infinite bi-material triangular lattice is obtained from analysis of 

the representative volume element shown in Fig. 2.A1a.  From consideration of mechanical 

equilibrium of the top node, the force per unit depth of in each inclined (compressive) strut is 

0csc 2c nF F =  where nF  is the axial force on the node, given by n a tF L= . The 

corresponding stress and strain are  

0csc 2c c c a t cF t L t  = =                (2.A5) 

0csc 2c a t c cL t E  = .               (2.A6) 

Similarly, from consideration of equilibrium of the bottom two nodes, the force in the 

transverse strut is 0cot 2t a tF L =  and thus the stress and strain are 

 0cot 2t t t a t tF t L t  = =                (2.A7) 

0cot 2t a t t tL t E  = .               (2.A8) 

The macroscopic  lattice strain, in turn, is 

   ( )( ),0 ,0 001 1a c cH L L HHH = − = −              (2.A9) 

where ,0cL  is the initial length of the compressive strut and, from geometry, ,0 0 0csccL H = , 

,0 1c c cL L = − , ,0 1t t tL L = + , and 0,0 ,0 cos2t cL L = , with ,0tL  being the initial length of the 

transverse strut, and with  

( ) ( ) ( ) ( ) ( )
2 2 2 2 2

,0 ,0 ,0 ,0 ,0 ,0 ,02 2c t c tc c c c t t cL L L L L L LL LH L L− −==       (2.A10) 
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Combining and making a small strain approximation yields an axial Young’s modulus E of  

  
( )

3
0

3
0

2 sin

1 cos

c

c t c c t t

tE

E L t E t E




=

+
           (2.A11) 

When 0 60 =  , c tt t t= = , 

 and the two materials are the same ( t c sE E E=  ), Eq. 2.A11 reduces to 

2 3 1.15sE E t L t L=   where t cL L L= = . The latter result is the same as that reported 

previously for this lattice geometry (Gibson and Ashby, 1997; Hunt, 1993). 

Semi-infinite two-layer triangular lattice  

Analysis of the semi-infinite two-layer bi-material lattice in Fig. 2.A1b proceeds in a similar 

manner. It differs from the preceding case only in that there are 3 transverse struts for a lattice 

with 2 layers (not one per layer as in the infinite lattice). The stress in each transverse strut (

0cot 3t a t tL t  = ) is 2/3 that in the infinite lattice while the stress in each inclined strut is 

the same as that in the infinite lattice (Eq. 2.A5). The resulting modulus is: 

 
( )

3
0

3
0

2 sin

1 2 cos 3

c

c t c c t t

tE

E L t E t E




=

+
           (2.A12) 

Finite two-layer triangular lattice  

For the finite lattice studied here (Fig. 2.A1c), the force acting on each of the 3 surface nodes 

in the central region of the lattice is 3 11 12 11n a a tF F L= =  (higher by a factor of 12/11 

relative to that in the infinite lattice) while the force on each of the outer surface nodes is 

11 4 11n a a tF F L= = . The stress in each inclined strut in the central region of the lattice is  
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0 03 csc 22 6 csc 11c a c a t cF t L t   = =           (2.A13) 

 while that in each inclined strut connected to the 4 outer surface nodes is  

0 0csc 11 4 csc 11c a c a t cF t L t   = = .           (2.A14) 

The tensile stress in each transverse strut is 

 0 0cot 11 4 cot 11t a t a t tF t L t   = = .           (2.A15) 

The resulting lattice modulus is   

 
( )

3
0

3
0

2 sin

1 8 cos 11

c

c t c c t t

tE

E L t E t E




=

+
          (2.A16) 

This result differs from that of the semi-infinite two-layer lattice (Eq. 2.A12) by a factor of 

( ) ( )3

011 12 1 1 11 8 cosc c t tt E t E + +
 

.  

For the parameter values used in the present experimental study, the modulus of the semi-

infinite two-layer single-material lattice (with t cE E= ) is predicted to be within about 0.4% of 

the value for the finite two-layer single-material lattice. Boundary effects are minimal in this 

case.  
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Table 2.1: Nomenclature 

t  Strut thicknes   Inclination angle 

u  Transverse displacement   Friction coefficient 

v  Axial displacement  
a  Applied stress 

lE  Young’s modulus of a lattice  
c  Compressive stress  

sE  Young’s modulus of parent material  
t  Tensile stress  

aF  Applied force per unit depth 
y  Strut material yield stress  

cF  Compressive force per unit depth   Rotation 

lF  Critical force for surface node sliding   Non-dimensional buckling parameter 

nF  Axial force on a node   Non-dimensional yielding parameter 

tF  Tensile force per unit depth 
a  Normalized applied stress per unit depth 

H  Primitive unit cell height 
c  Normalized compressive stress per unit 

depth 

K  Effective length factor 
a  Normalized applied force 

L  Strut length 
c  Normalized compressive force 

*L  Pertinent strut length   

hR  Node radius Recurring subscripts: 

eU  Elastic strain energy 0  Initial value 

wU  Work t  Tensile/transverse strut property 

W  Primitive unit cell width c  Compressive/inclined strut property 

  normalized effective strut length   

xy  shear strain  Recurring superscripts: 

a  Nominal compressive strain * Critical value for strut rupture 

den

a  Densification strain buc  Critical value for strut buckling 

c  Compressive strain  eff  Effective property 

eq  von Mises equivalent strain  max  Maximum value 

x  Strain in x-direction yield  Critical value for strut material yielding 

y  Strain in y-direction   
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Figure 2.1: Single-material lattices and tensegrities exhibit contrasting physical 

characteristics. Minimal tensegrities contain the fewest springs needed for stability; non-

minimal tensegrities contain more. In class 1 tensegrities, compressive struts do not touch one 

another 29.  

 

 

 

Figure 2.2: Compressive force applied to the primitive bi-material structural motif is 

distributed through compression of the inclined struts (orange) and tension of the transverse 

strut (green). Geometric changes are manifested in rotations of the inclined struts and 

stretching of the transverse strut. 
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Figure 2.3: Compressive response of the primitive structural motif depends sensitively on the 

inclination angle of the inclined struts. Loci of (a) constant tensile failure strain *

t  and (b) 

constant buckling parameter   and constant yielding parameter  illustrate trade-offs between 

properties, geometry, and materials. (Here the contours for critical values of  and are 

coincident with one another, as evidenced by Eqs. 2.5 and 2.6). 
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Figure 2.4: (a) The bi-material lattice design is based on the primitive structural motif. (b) The 

mechanics analyses assume that the struts are pinned to rigid hubs at the locations indicated. 

(c) Application of compressive force leads to stretching of the transverse struts and rotation of 

the inclined struts. (d) Densification is attained when the initially-inclined struts are horizontal. 

Pertinent dimensions of the test samples are:  0H = 46.8 mm,  tL = 27 mm,  tt = 4 mm,   cL = 

27 mm,   ct = 2 mm, hR  = 3.5 mm, 0 = 60°.   
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Figure 2.5: Photographs of a printed bi-material lattice showing (a) distributions of acrylic-

like material (white) and elastomeric material (gray), and (b) node geometry, including the ball 

and socket joint with a thin intervening layer of elastomer, as well as single-material lattices 

of (c) acrylic-like material and (d) elastomeric material. 

 

 

 

Figure 2.6: Tensile stress-strain curves of the acrylic-like material (VeroWhite) and two 

representative elastomers (Agilus 50A and 85A) demonstrate the vast differences in stiffness, 

strength, and ductility of the lattice constituents. While the VeroWhite exhibits a modulus of 

about 1.4 GPa and a tensile strength of about 40 MPa, the elastomers exhibit moduli that are 

about three orders of magnitude lower (several MPa) and strengths that are an order of 

magnitude smaller (also several MPa). 
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Figure 2.7: (a, b) Stress-strain curves of single-material elastomeric lattices and von Mises 

equivalent strain maps at select points reveal buckle initiation at the first stress peak and a 

subsequent nearly-constant crushing stress (characteristic of elastic buckling). (c) 

Corresponding results for VeroWhite show a much higher strength, dictated by elastic/plastic 

buckling, and subsequent strain softening due to collapse of the buckled struts. (Note the large 

differences in scales on the ordinates.  



 

 

59 

 

 

Figure 2.8: Compressive responses of bi-material lattices comprising VeroWhite and either 

(a) Agilus 50A or (b) 85A demonstrate the tradeoffs between stiffness and ductility of the 

constituent elastomers. Also shown are the results from the analytical model and the FEA 

simulations. Strain maps at select points during deformation show that macroscopic straining 

is accommodated by stretching of the transverse struts and rotation of the inclined struts. Most 

features here are captured by the FEA simulations. The role of damage is evidenced by the 

tests in (b). Here the strain attained in one cycle exceeded the strain at which strut rupture 

occurred on the next loading cycle. 
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Figure 2.9: (a) Rotations measured at short distances from the ball centers match the values 

predicted from a geometric model assuming pinned joints. In contrast, rotations at the ball 

centers are considerably lower, falling well below predictions, and vary significantly with the 

stiffness of the elastomer. (b) Full field rotation maps of the central nodes show increasing 

uniformity within the struts as the modulus of the elastomer decreases (from top to bottom). 

Dashed lines in the first of each series of maps denote the boundaries of inclined struts in their 

original (unstrained) position. 
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Figure 2.10: All surface nodes apart from the central ones begin to slide laterally essentially 

at the onset of loading. (a,b) Differences between predictions and measurements appear 

somewhat elevated when node displacements are plotted against load (rather than applied 

strain). (c,d) Predicted node displacements from FEA (dashed lines) and the analytical model 

(dotted lines) are broadly consistent with but of slightly higher magnitude than those measured 

in both 50A and 85A bi-material lattices (solid lines). 
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Figure 2.11: Tensile strains measured in the transverse struts of three bi-material lattices are 

more accurately predicted by an analytical model that accounts for the reduction in strut length 

due to finite node sizes. 

 

 

Figure 2.12: Predicted stress-strain curves and failure loci of bi-material lattices with finite 

node size and with edge effects are similar to those of the primitive structural motif (in Fig. 

2.3). Failure loci correspond to (a) transverse strut failure, at a strut strain *

t , (b) yielding of 

inclined struts, at a strut stress  , and (c) buckling of inclined struts, at a strut stress  . 
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Figure 2.A1: Geometries of triangulated lattices and forces acting on nodes and constituent 

struts subject to macroscopic compressive loading. Effects of boundaries on nodal and strut 

forces in the finite two-layer lattice (in (c)) are indicated by red font. Figure 2.13 
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Chapter 3  
 

A 3D Bi-material Lattice Concept for Tailoring Compressive 

Properties 

Abstract 

 
2The current chapter explores 3D bi-material lattice concepts for tailoring compressive stress-

strain response. The unit cells of the lattices consist of six stiff inclined struts that together 

form the edges of two stacked tetrahedra. The central plane (between the two tetrahedra) 

contains elastomeric elements that stretch when the lattice is compressed. The geometric 

configurations of the elastomers examined here include: (i) straight struts between each node 

pair within the central plane, (ii) multiple struts between each node pair, including one straight 

strut and one or more curved struts, and (iii) flat sheets, either uniform or graded in thickness, 

connected at the mid-plane nodes. Assessments of the concepts are made using analytical 

models, finite element simulations, and experiments on lattices fabricated by 3D printing. The 

experimental results affirm the understanding of mechanical response gleaned from the models 

and highlight the importance of joint design in attaining large straining capacity and strain 

reversibility. Measured responses from each structure demonstrate the benefit of implementing 

a sheet-based design over a strut-based design as the load bearing capacity nearly doubles. 

Sheet-based unit cell results also raise the prospects for computational design optimization for 

maximum efficiency in material use.    

 
2 The content of this chapter has previously appeared in Materials and Design (Ruschel, 

Amanda L., et al. "A 3D Bi-material Lattice Concept for Tailoring Compressive Properties." 

Materials & Design (2022): 111265.). Available at: 

https://doi.org/10.1016/j.matdes.2022.111265  
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3.1 Introduction 

The advent of multi-material 3D printing has greatly expanded the design landscape for 

periodic lattice materials. For single-material lattices, the core features of that landscape 

include (Fig. 3.1): (i) network topology, describing the nodal connectivity of the constituent 

struts; (ii) network morphology, defined by the spatial relationships between node locations; 

(iii) properties of the constituent strut material; (iv) strut morphology, characterized by strut 

shape and dimensions; and (v) node (or joint) morphology, characterized by shape and 

dimensions 1. Extending this to multi-material lattices introduces a plethora of additional 

design options, some of which are shown schematically in Fig. 3.1. The recent literature is 

replete with examples illustrating the rich diversity of possibilities 2–16. 

In one case, a lattice with a core-shell strut structure was produced using a hard but 

brittle epoxy (for the shell) and a soft, ductile epoxy (for the core) (Mueller et al., 2018). With 

appropriate tailoring of the interface between the two epoxies the core-shell struts were shown 

to be twice as strong as and yet comparably ductile to struts made from the soft epoxy alone. 

Lattices made from the core-shell struts showed similar strength improvements without a 

significant debit in straining capacity. In another case, lattices were fabricated using two 

polymers with dissimilar glass transition temperatures 14. At ambient temperature the 

stiffnesses of the two polymers were the same as one another and thus the stiffness of the lattice 

was same as that of a single-material lattice. At elevated temperature – between the two glass 

transitions – the stiffness of one population of struts dropped by several orders of magnitude 

while that of the remaining struts remained almost unchanged. The lattice properties changed 

accordingly, though the process was fully reversible upon return to ambient temperature. 

Materials with disparate glass transition temperatures have also been used in lattices to control 
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deformation modes 16 and undergo reversible shape morphing 9,15. Yet other studies have 

probed additional properties and materials design strategies, including: use of multi-material 

multi-layered struts for lattices with tailorable negative swelling ratios 4; struts comprising 

sandwich structures of materials with highly disparate damping characteristics for lattices with 

tailored dynamic damping properties 5; and macroscopic spatial distributions of stiff and 

compliant struts for tailoring stiffness and Poisson’s ratio 7. In another case, a bi-material lattice 

was designed such that struts that were to carry compressive loads were made from a stiff, 

strong material while those to carry tension were made from a highly extensible material 6. The 

latter example sets the foundation for the current study. 

The introduction of multiple materials into a single lattice structure highlights the 

importance of joint design (Fig. 3.1m). Viewed broadly, joint (or node) design for lattices – 

whether single-material or multi-material – remains a sparsely explored field, despite the 

recognition that joints are often the weak links in the structure 17–19. When dissimilar materials 

are combined, the adhesive strength of interfaces between them is the primary concern 12,20; 

stress concentrations associated with elastic property mismatch are also likely to strongly 

promote failure. Going beyond the intrinsic interface properties, joint design involves the 

geometric configurations of the two materials in the joining regions. Simple straight joints 

(e.g., butt or lap joints) are likely to be the least robust and probably undesirable in cases where 

the macroscopic lattice strains are large, and the joints undergo large local displacements. With 

the flexibility of modern multi-material printers, innovative solutions derived from related 

fields of engineering or biology can be used to design joints with the requisite mechanical 

characteristics. For example, in human joints, articular cartilage and synovial fluid reduce both 

friction and contact forces between bones 21. Analogous effects have been obtained using 



 

 

67 

compliant elastomer interlayers between hard contacting surfaces within articulating joints in 

lattice materials (Wang et al., 2015; Ruschel and Zok).  

 The objective of the current article is to present a concept for a 3D bi-material lattice 

with tunable compressive stiffness and strength combined with high straining capacity and 

strain reversibility. The concept builds and improves upon an analogous 2D version presented 

earlier 6. The resulting design is guided by three principles:  

(i)  Where printing capabilities allow, material selection is guided by local mechanical or 

functional requirements.  For example, materials for structural members that are to carry 

compressive loads should be stiff and strong, to inhibit buckling and yielding; maximum 

straining capacity (especially in tension) is a secondary consideration. In contrast, 

materials for members to be loaded in tension should have high straining capacity 

without instabilities (i.e., necking). The latter requirement combined with strain 

reversibility led to the selection of elastomers as the materials of choice.   

(ii)  Joints between dissimilar materials must ensure effective load transfer without excessive 

stress concentrations and without undue constraints on strut deformation and rotation. 

That is, tensile members ideally should be loaded in uniaxial tension while compressive 

members should be loaded in uniaxial compression, even following large macroscopic 

deformation. These goals lead to the requirement that struts at joints articulate freely, 

avoiding rotational constraints that induce bending of adjoining members. In the 2D 

concept presented previously 6, limited articulation was facilitated by hinged joints 

containing thin compliant interlayers between hard contacting surfaces. While this 

approach was somewhat effective in allowing large macroscopic deformation without 

rupture, the constraints on articulation were excessive, as manifested in strut bending.  
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(iii)  The intended deformation and rotation of constituent members should be attainable 

under macroscopic 1D straining (the condition most frequently encountered in energy 

absorbing systems). In this regard the previous 2D design was deficient; large 

macroscopic compressive strains led to large transverse tensile strains with a plastic 

Poisson’s ratio near 1. These strains were accommodated by frictional sliding at the 

interfaces between the external lattice faces and the loading platens. Preferred lattice 

designs would accommodate all lateral deformation internally within the structure with 

a plastic Poisson’s ratio near 0.3 

The article is organized in the following way. A primitive structural motif of a 3D bi-

material strut-based lattice with the desired characteristics (described above) is presented and 

analyzed in Section 3.2. Details of implementation and assessment of the concept are presented 

in Section 3.3. The assessment methods include analytical mechanics models, finite element 

simulations, and mechanical tests on structures made by 3D printing.  Building on the results 

for lattices with straight struts, two design variants are explored: one based on the addition of 

curved struts to the straight struts connecting midplane nodes and another with triangular sheets 

in place of struts in the midplane. Both are described in Section 3.4. Key conclusions are 

summarized in Section 3.5. 

 
3 The plastic Poisson’s ratio is viewed with respect to the two face sheets enclosing 

the lattice. For the 2D structure cited, deformation internal to the lattice is 

accompanied by transverse straining of the face sheets; a finite (large) plastic 

Poisson’s ratio is obtained. Consequently, uniaxial compression leads to frictional 

sliding at the external boundaries. A zero plastic Poisson’s ratio is obtained when the 

internal lattice deformation does not lead to straining of the face sheets. In this case 

the structure as a whole does not experience transverse strains when loaded in 

uniaxial compression. In principle, this goal is achievable with the concepts described 

herein. 
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3.2 Bi-material Lattice Design 

3.2.1 Primitive Motif and Mechanics Analysis 

A primitive 3D structural motif that exhibits the desired behavior is illustrated in Fig. 3.2. It 

consists of six inclined struts and three transverse struts that together form the edges of two 

stacked tetrahedra. The struts are assumed to be connected by pinned joints. The inclined struts 

are made of a stiff, strong material and the transverse struts from a highly extensible material. 

Under macroscopic compression (along the y-direction), the load is distributed through axial 

compression of inclined struts and axial tension of the transverse struts. As the structure is 

compressed, inclined struts rotate to allow for transverse strut stretching. In principle this motif 

could be repeated in space, with due consideration for cell spacing and cell shape when the 

structure is compressed to the limit, thereby forming a large multi-cell structure with 1D 

straining capability. 

At the simplest level, the compressive response of the structural motif is modelled 

assuming that inclined struts are rigid, strut thicknesses are infinitesimal, and transverse struts 

are elastomeric with linear engineering stress-strain response. (Details of the analysis are in 

Appendix 3.A1. All results were checked by finite element analysis.) The predicted 

macroscopic response is given by  

( ) ( )( )
1 2

22

0 0

3
1 tan csc 1

3 2

a
a a a

t t

F

E A
   

− 
  = − − − −

  
            (3.1) 

where a  is a normalized force; aF  is the applied force; tE  and tA  are the Young’s modulus 

and the cross-sectional area of the transverse strut, respectively; 0  is the initial strut inclination 

angle;  a  is the nominal compressive strain, defined by 0a v H = ; v  is axial displacement; 
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and 0H  is the initial height. (The factor 3 in the normalized force accounts for the presence of 

three transverse struts.) The results are plotted in Fig. 3.2b for several values of q0.  

Absent tensile rupture of the transverse struts or buckling or yielding of compressive 

struts, the structural response, ( )a a , exhibits: (i) a rising portion with an initial stiffness of 

( ) 3

03 2 tana ad d  = ; (ii) a maximum at a strain of ( )
1 2

max 2 3

0 0o1 c c 1 c ssa  = −− and 

a force of ( )( )
3 2

max 2 3

0sec3 2 1a  −= ; and (iii) a softening portion ending at 0a =  when 

1a = . The shapes of the curves are the result of two competing mechanisms: hardening due 

to increasing transverse strut stretching and geometric softening due to decreasing inclination 

angle of the inclined struts. 

Achieving this response without failure relies on judicious selection of strut materials, 

strut dimensions and cell geometry. Guidelines for designing lattices against the most 

ubiquitous failure modes  (strut rupture, buckling, and yielding) are given in Appendix 3.A1. 

These guidelines serve as the basis for the following lattice designs and the selections of strut 

materials. 

3.2.2 Concept Implementation 

The design of a 3D bi-material structure based on the primitive motif is shown in Fig. 3.3a. 

Hinged knob-and-socket joints are used to facilitate strut rotations within a single plane without 

strut twisting. To this end, cylindrical knobs are integrated into the ends of the inclined struts. 

Each knob is mated and interlocked within a corresponding cylindrical socket in a hard 

knuckle. Each of the stationary knuckles, at the top and bottom of the structure, is designed to 

accept three struts. The interlocking design ensures that the knobs cannot be easily extracted 



 

 

71 

from the sockets. Each of the three central joints comprise a knuckle that accepts two inclined 

struts. The knuckle is partially encapsulated by the elastomeric material which then smoothly 

transitions into the transverse struts. These joints allow simultaneous rotation of inclined struts 

and stretching of transverse struts with minimal bending.  

Multiple test specimens of the structure (Fig. 3.3b) were fabricated in a single print 

operation using a multi-material 3D printer (J750, Stratasys). Inclined struts were made of a 

stiff, acrylic-like material (Vero) and transverse struts were made of an elastomer (Agilus 

30A). The ductility of the elastomer was high enough to prevent strut rupture when the lattice 

was fully compressed (i.e. * 0.83t  , calculated from Appendix 3.A2). A thin (ca. 250 µm) 

layer of fugitive support material was placed between the knob surface and the corresponding 

socket surface; its removal after printing (via immersion in a suitable solvent) produced a gap 

that prevents fusion of the knob to the socket (Fig 3.3a black boxes). 

The mechanical properties of the constituent materials reported by the material 

manufacturer were augmented with results from independent tensile tests on dog-bone 

specimens printed in the same way. Elastomeric samples (Agilus 30A) were designed 

following ASTM D412 standards, and acrylic-like (Vero) samples were designed following 

ASTM D638 standards. Each sample was tested in uniaxial tension at a strain rate of 10-4 s-1. 

Results from these tests are provided in Fig. 3.4.  

3.3 Concept Assessment 

3.3.1 Materials and Test Methods  

The printed structures were tested in uniaxial compression at a nominal strain rate of 

10-4 s-1. Mechanical tests were accompanied by 3D digital image correlation (DIC) (VIC-3D, 

Correlated Solutions, Inc, Irmo, SC) to track displacements, strains, and rotations. Prior to 
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testing, test specimens had been coated with aerosol paint to create random speckle patterns. 

Specimen preparation and image analysis were done following the guidelines laid out 

previously 22,23. Specimens were imaged with a scale factor of 42 µm/px. Images were analyzed 

using incremental correlation with a subset size of 21 pixels (880 µm) and a step size of 2 

pixels (84 µm). The macroscopic compressive strain was obtained from the DIC data using 

three virtual extensometers spanning the distance between the centers of top and bottom nodes. 

The force was obtained from a load cell. Several unload-reload cycles were performed to probe 

hysteresis effects.   

3.3.2 Finite Element Simulations 

Corresponding finite element simulations were performed using Abaqus/Standard (Version 

2018, Dassault Systems, Providence, RI). The model geometry was based on the CAD file 

used for printing. To improve computational efficiency, only one-third of the cell was modeled, 

utilizing the threefold rotation symmetry about the y-axis. The model contained a total of  

>27,000elements (with a density of about 14 elements/mm3). Acrylic-like material components 

were meshed using hexahedral elements (C3D8R) and elastomeric components were meshed 

with hybrid tetrahedral elements (C3D10H). Tetrahedral elements were used because of the 

complex geometry of the structure, and hybrid elements were used because the material was 

modeled as incompressible. A mesh convergence study indicated that the model resolution was 

sufficient to accurately capture the macroscopic load-displacement response.  

The material for the inclined struts and the adjoining knuckles was treated as linear 

elastic with Young’s modulus Ec = 1.35 GPa and Poisson’s ratio 0.3 (Fig. 3.4a). The material 

for the transverse strut was modeled using the Arruda-Boyce incompressible hyperelastic 

constitutive law, calibrated to the measured stress-strain curves (Fig. 3.4b). Details of the 
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constitutive law and its calibration are given in Appendix 3.B. Contact interactions within the 

knuckle were described by a friction coefficient of 0.5 = ; this value lies within the range of 

coefficients reported for acrylic surfaces 24. Cyclic compression was simulated by prescribing 

top-surface displacement profiles that follow those used in the experiments (three 

progressively larger cycles of loading and unloading) while the bottom was held fixed.  

3.3.3 Analytical Model 

The experimental measurements and FEA results were also compared with the predictions of 

an expanded version of the analytical model for the primitive structural motif. Specifically, the 

model leading to Eqn. 3.1 was modified to account for the finite dimensions of the printed 

structure (especially in and around joints). Here again the inclined struts are assumed to be 

much stiffer and stronger than the transverse struts and the joints are assumed to be hinged.  

The main effect of finite joint size is to reduce the effective length of inclined and 

transverse struts, eff

cL  and eff

tL , respectively (Fig. 3.5). Normalizing these by the respective 

distances between node centers, cL  and tL , yields the non-dimensional strut lengths 

eff

c c cL L  and / t

e f

t t

fL L  . Incorporating these effects in the mechanics analysis, the lattice 

response becomes:   

1/2
2

2
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tan csc 1

3 2

a c a a

t t t c
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E A

  
 

 

−     −     = − − −          

            (3.2) 

Additional details of the analysis are in Appendix 3.A2. The analysis can be refined 

further to account for the hyperelastic constitutive law, as described in Appendix 3.B. While 

this refinement enables somewhat more accurate predictions of lattice response, it yields no 

additional insights into the mechanics of lattice deformation.  
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3.3.4 Experimental Measurements and Analytical Model Predictions 

The measured response of the printed structure (Fig. 3.6) resembles the analytical model 

predictions. Upon loading, the stress rises nonlinearly and attains a peak at a strain of about 

0.32. The accompanying strain maps in Fig. 3.6c illustrate the geometric changes and highlight 

the large strains in the transverse struts and negligible strains in the inclined struts. Cycling 

occurs without failure and the structure recovers to its initial state upon unloading. 

Although the two responses are similar, they differ in two ways. First, the measured 

loading and unloading curves exhibit hysteresis, manifested as load changes at almost constant 

displacement during the initial stages of load reversal. The analytical model prediction, in 

contrast, is equivalent for both loading and unloading. Interestingly, the model prediction falls 

nearly midway between the measured loading and unloading curves. This behavior is a clear 

indication of internal friction. Second, at a strain of about 0.26 = , the tangent modulus of the 

measured curve exhibits a sudden increase; the stress subsequently reaches a second peak, at a 

strain of 0.30-0.34, and then gradually diminishes. The predicted response lacks this feature. 

Both effects are addressed in the following section.  

Additional insights are gleaned from the rotations. Rotations were measured from the 

DIC data at two points along each inclined strut and two points along the centerline of adjoining 

knuckles (along the midplane of the structure). Measurement locations are indicated by filled 

circles on Fig. 3.7c and the measurements plotted on Fig. 3.7a. The two struts rotate at similar 

rates, one clockwise and the other counterclockwise. Both coincide closely to the predicted 

rotations. However, while the model assumes that the knuckles joining the inclined struts to 

the transverse struts remain stationary (indicated by the dotted lines in Fig. 3.7), the 
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measurements show that, in fact, knuckle rotation initially proceeds similarly to one of the two 

adjoining struts. That is, rather than the two struts rotating past the knuckle in a symmetric 

fashion, one of the struts “sticks” to the knuckle for some period of loading. At a critical point, 

the knuckle becomes “unstuck” and begins to rotate in the opposite direction. The pattern is 

repeated at the same point during each unloading/reloading cycle. This, too, is addressed in the 

following section. 

3.3.5 Finite Element Analysis  

The FE model predictions are assessed by comparing them with the measured stress-strain 

curves, including the hysteresis upon loading/unloading and the rotations of the struts and 

knuckles at the joints. At low strains (to 0.03 = ), the stiffnesses from the measurements and 

the finite element simulations are within 10% of one another in the first loading cycle. 

Additionally, the sudden increase in stiffness at 0.26 =  in the measured response is captured 

by the FE model, albeit at a slightly higher strain ( 0.31 = ). The origin of this stiffening 

emerges from an examination of joint and strut rotations during deformation, plotted on Figs. 

3.7a-b.  

For both the experimental measurements and the FE simulations, the joints begin to 

rotate almost immediately after loading (at about 0.02 = ). Key points in the rotational 

response are illustrated by cross-sections through the joints and the struts from the FE model 

in Fig 3.7c. At the onset of loading, at the point labelled 1, the compressive force lines run 

through the two inclined struts and intersect along the centerline of the knuckle. Similarly, the 

tensile force line in the horizontal strut (indicated by the horizontal arrow) also passes through 

the knuckle centerline. The implication is that no bending moment is exerted on the knuckle. 

But, as the structure is compressed to a finite strain, asymmetric strut rotation occurs; at point 
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2, the bottom strut has rotated about 25% more than the top strut. Because of this asymmetry, 

the compressive force lines no longer intersect at the knuckle centerline and thus a bending 

moment is generated in the knuckle. This is an inherent instability in the design: for frictionless 

contacts, even an infinitesimal misalignment of the struts would lead to one strut beginning to 

rotate before the other. The knuckle and the top strut then remain stuck together and rotate in 

tandem. At the same time, an opposing moment is generated because of the resulting 

misalignment of the tensile force in the transverse strut (see point 3), but evidently this moment 

is insufficient to arrest continued knuckle rotation.  At a critical strain, indicated by point 4, 

the external surface of the knuckle (near the start of the socket) makes contact with the strut at 

the base of the knob, causing the joint to temporarily “lock up”. This marks the onset of 

stiffening, at a strain of 0.31 = . With additional applied force, the contact between the bottom 

strut and the inner knuckle creates a moment that rotates the knuckle in the opposite 

(clockwise) direction. This continues up to high strains until, near the point at which the entire 

structure locks up, the knuckle has rotated back to its origninal configuration. Upon unloading, 

rotation follows the same path as it did during loading, reversing direction at the same strain. 

This sequence continues through the subsequent loading/unloading cycles.  

As noted, knuckle rotation is a result of an inherent mechanical instability. Performing 

the same FE simulations assuming frictionless contacting surfaces yields the same knuckle 

rotation history and similar macroscopic response, with stiffening occurring at the same strain. 

Whether this instability has substantive consequences in the structural response upon repeated 

loading and unloading remains to be ascertained. 

Each load reversal is accompanied by a change in load with only a small change in 

macroscopic strain. This leads to the characteristic hysteresis loops shown in Fig 3.6. As noted 
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previously, the hysteresis is attributed to internal friction between the knobs at the ends of the 

inclined struts and the knuckle sockets. Incorporating friction into the finite element model and 

using a friction coefficient of 0.5 =  yields predictions that accurately capture the magnitude 

of the load drops ( 0.08a  ) and the resulting hysteresis. These results highlight the 

importance of joint design in multi-material lattices.  

3.4 Concept Variations   

3.4.1 Preliminaries 

Building on the preceding lattice design, two additional concepts were identified and assessed. 

The design modifications reflect the understanding that the stress-strain response of the current 

lattice is dictated largely by the elastomeric material and its geometric configuration. 

Accordingly, the new designs focus on the elastomeric components.  

In one design, curved struts are added to the three straight struts in the existing design. 

The goal is to extend the hardening regime in the macroscopic response through structural 

elements that initially bear little load but progressively stiffen and begin to bear substantial 

load at large applied strains. In the second design, struts are replaced by a single sheet of 

elastomeric material. This design enables high energy absorbing capacity by exploiting the 

stiffer response of elastomers when loaded in biaxial tension relative to that in uniaxial tension.  

3.4.2 Lattices with Curved Struts 

The design of a lattice with curved struts is shown schematically in Fig. 3.8a. Its effectiveness 

was assessed using an extension of the analytical model presented in Section 3.3.3. Here the 

center-line of the curved strut is assumed to follow a trajectory defined by  
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( )2sin /t ty AL x L=  where x and y are coordinates parallel and perpendicular to the line 

joining the two nodes, respectively, and  A  is a normalized amplitude, / tA L  . When the 

structure is initially compressed, only the straight struts stretch with a tensile force, 1tF ; the 

macroscopic response of the cell is then ( ) 13 3 / 2 tana tF F = .  The curved struts are assumed 

to straighten without bearing load; only when straight do they begin to stretch and bear axial 

load. Once curved struts have straightened, the macroscopic applied force required to continue 

compressing the cell is augmented by the additional tensile force required to stretch the two 

initially-curved struts. The macroscopic applied force then becomes 

( )1 23 3 / 2 2 tana t tF F F = +  where 2tF is the tensile force required to stretch curved struts. 

The point at which curved struts are activated can be controlled by selecting the amplitude A

; when A  is small, the struts straighten sooner and contribute to the macroscopic response at 

lower compressive strains. In principle the transition point could be tailored to coincide with 

the onset of geometric softening that would otherwise occur. 

A rudimentary mechanics analysis demonstrates the potential of additional curved 

struts for tailoring the lattice stress-strain response. Analytical predictions of a structure having 

two curved struts between each node pair, with amplitude of A =0.3 or 0.5, are plotted on Fig. 

3.8b. (Details are in Appendix 3.C.) In both cases, the initial response (before straightening is 

complete) is the same as that of the baseline structure (with only straight struts). An abrupt 

jump in tangent modulus (once straightening is complete) occurs at strain of 0.08 =  and 0.23 

for 0.3A =  and 0.5, respectively. Hardening continues until a peak is attained, at strains 
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0.28 =  and 0.33 and stresses 0.46a =  and 0.27 for 0.3A =  and 0.5, respectively. By 

comparison, the critical values for the baseline structure are 0.24 =  and 0.23a = .  

 To further assess the curved-strut concept, test specimens with ˆ 0.3A=  and ˆ 0.5A=  

were fabricated and tested, using materials and test methods described earlier (for the baseline 

lattice with only straight struts). Typical parts are pictured in Fig. 3.8c while the measured 

responses (upon loading) are in Fig. 3.8d for lattices both with and without curved struts. The 

full loading/unloading compression curves and strain maps are in Fig. 3.9.     

Here the experimental stress-strain curves are in broad agreement with the analytical 

predictions with a few minor exceptions. With the addition of curved struts, the strain at peak 

stress increases somewhat while the peak stress increases by a significant amount.  The peak 

stress ratios (relative to the original lattice) are approximately 1.9 and 1.2 for ˆ 0.3A=  and 

ˆ 0.5A= , respectively4. Upon closer inspection, the curves differ in a few subtle ways: 

(i)  First, the initial stiffness is underestimated by the model, a consequence of neglecting 

the load carried by the curved struts as they straighten. The bending contributions are 

more apparent in the lattice with a small amplitude in the curved struts (Fig. 3.9a). The 

effects are also manifested in the measured strains in the curved struts as they straighten 

(Fig. 3.9c).  

(ii)  Engagement of the curved struts occurs progressively and thus the tangent modulus does 

not exhibit an abrupt change at the point predicted by the model. Instead, the most 

apparent changes in tangent modulus are obtained at points where lock-up in the knuckle 

 
4 As a cautionary note, interpretation of the stress elevations must take into consideration the 

fact that the volume of stretching material in the lattices with curved struts is more than 3 

times that in the lattice with straight struts. More importantly, the intended goal of the curved 

strut design – to extend the hardening domain – is only moderately successful. 
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occurs during joint rotation. This is confirmed by rotation measurements plotted on Fig. 

3.9e and 3.9f.  

(iii) The model predicts extensions of the hardening regime that are somewhat greater than 

those seen in the experiments. The differences are due to a combination of friction within 

the joints (which gives rise to an elevation in applied force during the forward loading 

cycle) and the lock-up of the joints at strains comparable to those near the predicted 

peak.  While the lattice design and the corresponding model could be refined to account 

for the latter effects, the scope for such designs appears to be rather limited. Indeed, as 

we show next, a greater expansion of the design and property space is attainable using 

sheets in place of struts (straight or curved).  

3.4.3 Preliminary Analysis of Sheet-based Designs 

Elastomers are generally stiffer under biaxial tension than in uniaxial tension. The effects are 

illustrated in Fig. 3.10a. Here the responses of notional elastomers are computed using the 

Arruda-Boyce constitutive model 25. The key material parameter governing the biaxial/uniaxial 

stiffness is the limiting network stretch ratio, L . The results on the figure cover the range 1 ≤ 

𝜆𝐿 ≤ ∞ (the latter representing Neo-Hookean behavior). Fig. 3.10a shows the stress-strain 

response while Fig. 3.10b shows the corresponding ratio of stress magnitudes. Elastomers with 

low values of L  show particularly large differences between biaxial and uniaxial tension. 

Fitting the tensile response of the elastomer used in this study yields a limiting stretch ratio, 

1.6L = . For this case the biaxial/uniaxial stress ratio ranges from 1.5 to 2.2 over the strain 

range of 0 to 1.  
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In the first sheet-based design, pictured in Fig. 3.11a, a triangular sheet with uniform 

thickness (2mm) is connected to the three midplane nodes. Intersections between the sheet and 

the nodes are filleted with a radius of 1mm. A preliminary assessment of the design was made 

using finite element simulations of the sheet and the three inner knuckles subject to equal in-

plane displacements at the knuckle locations. For comparison, simulations were also performed 

on the strut-based design using the same volume of elastomeric material. Material properties 

and element types were the same as those described in Section 3.3.2. The model was meshed 

to yield an average element density of 14 elements/mm3 and 4-5 elements through the thickness 

of the sheet. The results shown in Fig. 3.12 are couched in terms of the local strain energy 

density 𝑈̃ normalized by the Young's modulus E. The magnitude of 𝑈̃ 𝐸⁄  is used as a metric 

of the local efficacy of material use with respect to load-bearing capacity while the distribution 

of 𝑈̃ 𝐸⁄  addresses the efficacy of the overall design. Locations where 𝑈̃ 𝐸⁄  is particularly high 

are sites where failure might be expected to initiate. Results in Figs. 3.12a and b correspond to 

macroscopic compressive strains 0.25,0.50,0.75 = . Histograms on the right side of the figure 

show the distributions of 𝑈̃ 𝐸⁄  at the last step ( 0.75 = ).  

In the strut design, 𝑈̃ 𝐸⁄  is mostly uniform within the struts, although some 

concentrations are evident near the nodes. In the sheet design, higher values of 𝑈̃ 𝐸⁄  are 

consistently localized near the nodes while lower values are located at the center of the sheet, 

indicating inefficient material use. On average 𝑈̃ 𝐸⁄  in the strut design (0.12) is lower than 

that in the sheet design (0.21), implying a softer response in the former. However, the 

distribution of 𝑈̃ 𝐸⁄  for the strut design is tighter with peak values about 60% lower than those 

in the sheet. This suggests that the strut design may be less prone to failure than the sheet 

design. While encouraging with respect to energy density and hence load-bearing capacity, the 
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analysis reveals weaknesses in the sheet design with respect to efficacy of material use and 

potential failure.  

The deficiencies of the sheet design can be partly mitigated in two ways. The first is to 

add material to the node regions, to reduce the likelihood of failure there. The second is to 

move material within the sheet from regions of low 𝑈̃ 𝐸⁄  to regions of high 𝑈̃ 𝐸⁄ .  To this 

end, in a second design iteration, the sheet thickness was graded from smallest at the center 

(1.4 mm) to largest at the nodes (3.4 mm) to improve the efficacy of material use and to 

mitigate failure initiation at the nodes. The volume of elastomeric material was kept constant. 

The results for the graded sheet design are plotted on Fig. 3.12c. In this case the graded design 

yields a tighter distribution of 𝑈̃ 𝐸⁄  and higher average value compared to those of the uniform 

sheet (0.23 vs 0.21). While modest, the improvements suggest that further design optimization 

is possible.  

3.4.4 Implementation and Assessment of Sheet-based Designs 

Lattices incorporating each of the two sheet designs were fabricated and tested in cyclic 

compression. In one set of tests the targeted strains in each loading cycle were 0.25, 0.50, and 

0.75, and in a second set they were 0.25, 0.35 and 0.75. Pictures of the test specimens and 

results from both the compression tests and the FEA are presented in Fig. 3.11. To facilitate 

direct comparison with the strut-based lattice, loads are normalized by the volume of 

elastomeric material outside of the knuckles (i.e. material being stretched). Relative to the 

strut-based lattice, the sheet-based lattices exhibit a stiffer response at moderate strains and 

higher peak loads, by factors of 1.85 and 1.94 for lattices with uniform sheets and graded 

sheets, respectively.  The ranking of the three on the basis of their respective peak loads is the 
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same as the ranking in their mean energy density at a macroscopic strain of 0.75: 𝑈̃ 𝐸⁄  = 0.23, 

0.21, and 0.12 for the graded sheet, uniform sheet, and struts, respectively.  

The behaviors of both sheet-based lattices differ qualitatively from those of the strut-

based lattices in two respects. First, knuckle rotations in these cases are significantly lower, as 

evidenced by the results in Figs. 3.11e and f, and lock-up does not occur. Consequently, the 

abrupt rise in tangent modulus otherwise obtained following lock-up is absent. Evidently the 

higher loads transmitted through the sheets to the joints stabilize knuckle rotation and prevent 

lock-up from occurring.  

Second, while the strut-based lattices were successfully loaded cyclically to 

densification (to a strain of about 0.70) and recovered to their original state upon unloading, 

the sheet-based lattices ruptured before the completion of loading. Rupture occurred in the 

uniform-sheet lattice either during unloading in the second cycle or upon loading in the third 

cycle; rupture of the graded-sheet lattice was delayed somewhat, in one case occurring during 

unloading from the third cycle. Rupture consistently initiated near one of the midplane nodes, 

either at the root of the fillet (in the uniform-sheet, Fig. 3.13c) or at the bi-material interface 

(in the graded-sheet, Fig. 3.13d). Initial tears quickly spread to the outer edges of the sheet 

separating the knuckle from the sheet.  

The propensity for rupture in both strut-based and sheet-based lattices can be 

understood in terms of computed strain energy density distributions (Fig. 3.12). The tail of this 

distribution (at high values of 𝑈̃ 𝐸⁄ ) extends furthest in the uniform-sheet lattice; it is 

somewhat shorter for the graded sheets and shorter yet for the strut-based lattice. The trends in 

these distributions (in the histograms) along with the evident locations of the “hot spots” (in 

the contour plots) are in accord with both the rankings in terms of ductility and the locations 
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of rupture initiation. The results suggest the possibility that design optimizations could be used 

to identify geometric configurations of the elastomeric material that produce a high mean value 

of 𝑈̃ 𝐸⁄  along with a narrow distribution in 𝑈̃ 𝐸⁄ , thereby yielding lattice designs with high 

strength and high ductility.    

3.4.5 Tiling Concepts 

In principle the bi-material lattice concepts can be expanded to larger multi-cell structures. 

This would entail tiling of unit cells (of the type used here) between pairs of face sheets. One 

potential design and its response are shown in the video in Supplementary Information. Here 

the cells are arranged on a periodic triangulated lattice that reflects the symmetry of the 

initial (triangular) cell shape. The cells are oriented so that the transverse struts of 

neighboring cells are parallel to one another and are spaced so that struts within one cell do 

not make contact with those in neighboring cells even at full densification. With this 

configuration the structure exhibits a plastic Poisson’s ratio of zero. That is, uniaxial 

compressive stressing is accommodated entirely by uniaxial straining. With current multi-

material additive manufacturing technologies, such structures could be made in a single print 

operation. 

3.5 Conclusions 

The current study has explored several 3D bi-material lattice concepts for tailoring 

compressive stress-strain response. Assessments have been made on the basis of analytical 

models, finite element simulations, and instrumented mechanical tests on fabricated lattices. 

The key conclusions follow. 
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1. Bi-material lattices with the baseline strut design exhibit stress-strain characteristics 

that are consistent with those predicted by the models, including hardening and stable 

softening domains. The two domains are manifestations of the competition between the 

progressive reduction in inclination angle of the compressive struts (leading to 

softening) and the increasing loads carried by the stretching struts (leading to 

hardening). Secondary effects of lock-up within the knuckles are manifested in 

somewhat abrupt but transient changes in both the tangent modulus and the direction 

of knuckle rotation. The strut-based lattices show strain reversibility even after 

compression to nearly-complete lattice densification. 

2. The lattice response can be tailored by adding curved struts between node pairs. The 

loads carried by these struts are initially small (while the struts are straightening). 

Beyond a critical point, dictated by strut curvature, the curved struts begin to contribute 

significantly to the forces between node pairs. Elevations in peak stress and (to a lesser 

extent) strain at peak stress have been demonstrated. 

3. Sheet-based designs provide an even more effective way to increase load-bearing 

capacity of bi-material lattices. The designs exploit the higher stiffness of elastomers 

in biaxial tension (by a factor of about 2) relative to that in uniaxial tension. 

4. The graded sheet design produces a slightly higher peak stress relative to that with the 

uniform sheet while also yielding greater straining capacity prior to rupture. These 

trends are consistent with the computed strain energy density distributions. The results 

suggest that sheet-based lattices may be amenable to design optimization, with the 

ultimate goal of identifying the most efficient distribution of material to maximize 

stiffness and strength while also mitigating rupture.  
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3.A Appendix: Deformation and Failure Analysis of Lattices with Straight Struts 

3.A1 Primitive Structural Motif 

The following analysis of the structural response of the primitive motif is based on an energy 

method. When the structure is compressed, the work wU  done by the applied force aF  is equal 

to the elastic energy eU  in the transverse strut. The work done is ( )' '

0

v

w aU F v dv=    where v  

is the axial displacement and the prime denotes a dummy variable. The height of the structure 

is reduced from 0H  to 0H H v= − . The displacement v  is accommodated by rotation of the 

inclined struts from an initial angle 0 to   and elongation of the transverse struts from a length 

0W  to 0W W u= + . The elastic energy in the three transverse struts is  

   ( )
'

' ' '0

0 0
0

2 tan
3 3

3

u u
t t

e t

E Au
U F u du du

H


= =                 (3.A1) 

where  is the force in each transverse strut. Setting e wU U= , the force-displacement relation 

( )aF v  is found to be 

  ( )
( ) ( )0

0

6 tan

3

t t

a

E A u v du v
F v

dvH


=             (3.A2) 

From geometry,  

   ( ) ( )( )
1 2

22

0 0 0

3
csc 1 cot

2
au v H    

= − − −
  

           (3.A3) 

  ( ) ( )( )
1 2

22

0

3
( ) 1 csc 1

2
a adu v dv   

− 
= − − −

  
           (3.A4) 

where a is the macroscopic applied strain defined by 0/a v H = . Combining the preceding 

equations yields  

tF
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  ( ) ( )( )
1 2

22

0 0

3
1 tan csc 1

3 2

a

a a a

t t

F

E A
   

−

  = − − − − 
  

                    (3.A5) 

This is equivalent to Eqn. 3.1 in the text.  

  The corresponding tensile strain t  in the transverse struts is 

  ( )
1 2

22

0 0tan csc 1 1at    −
 

= − −             (3.A6) 

while the compressive force cF  within the inclined struts, expressed in the non-dimensional 

form 3c c t tF E A  , is: 

  ( )( )
1 2

22

0 0

3
sec 1 sin 1

6
c a

  
−

 = − − − 
  

           (3.A7) 

 The maximum values of t  and c  are obtained at 1a = ; they are max

0sec 1t = −  (from Eqn. 

3.A6) and ( )max

03 sec 1 6c  = −  (from Eqn. 3.A7). (Full densification, i.e. 1a = ,  can be 

attained because of the assumed infinitesimal thicknesses of struts and nodes.)  

Attaining full densification requires that the transverse strut material have sufficiently high 

tensile ductility: * max

0> sec 1t t  = −  (from Eqn. 3.A6, with 1a = ).  Tensile rupture is 

therefore avoided when the initial inclination angle is below a critical value, ( )* 1 *

0 sec 1 t −= +

. Otherwise, when *

0 0  , tensile rupture precedes densification and, from Eqn. 3.A6, occurs 

at an applied strain of 

   ( )
1 2

2
* 2 *

0 01 cos 11 csca t   −  − +
 

=


              (3.A8)  

Attaining full densification also requires that the inclined struts do not buckle or yield. The 

critical strut buckling force is 3buc buc

c c t tF E A  where 2 2 2 212buc

c c c c cF E A t K L=  (the Euler 

buckling force), cE  is the Young’s modulus of the inclined strut, cA , ct  and cL  are strut cross 
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sectional area, thickness and length, respectively, and K is the effective length parameter. 

Combining these results yields a buckling force of buc

c =   where   is a non-dimensional 

buckling parameter defined by 2 2 2 236c c c t t cE A t E A L K  . Buckling is avoided when 

max buc

c c   or, equivalently,  ( )1

0 0 sec 2 3 1buc  − =  + .  Analogously, the critical strut 

yielding force is 3yield yield

c c t tF E A   where yield

c y cF A=  and y  is the yield stress of the 

compressive strut material. Combining these results produces a yielding force of yield

c =   

where   is a non-dimensional yielding parameter defined by 3y c t tA E A  . Yielding is 

avoided when max yield

c c  or, equivalently, when ( )1

0 0 sec 2 3 1yield  − =  + .  

3.A2. FiniteLattice Structures 

Incorporating finite node dimensions into the analysis, the predicted macroscopic response is 

given by 

( )
( ) ( )0

0

6 tan

3

t t

a

t

E A u v du v
F v

dvH




=              (3.A9) 

This differs from Eqn. 3.A2 with the addition of t , the non-dimensional transverse strut 

length: / t

e f

t t

fL L  . From geometry, ( ) 0u v H and ( )du v dv are modified to yield:  

( )

1 2
2

2

0 0 0

3
csc 1 cot

2

c a

c

u v H
 

 


     = − − −      

         (3.A10)  

1 2
2

2

0

3
( ) 1 csc 1

2

a a

c c

du v dv
 


 

−       = − − −          

        (3.A11) 
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where c  is the non-dimensional inclined strut length eff

c c cL L  . Substituting Eqs. 3.A10 

and 3.A11 into 3.A9  yields Eqn. 3.2 in the text.  

Here the inclination angle, the transverse strut strain, and the compressive stress in 

inclined struts are: 

( )1

0sin sin 1 a c   −= −                                                                                             (3.A12) 

( )( )
1 2

22

0 0tan csc 1 1c
t a c

t




   


 
= − − −

  
                     (3.A13) 

1 2
2

2

0 0

3
sec 1 sin 1

6

c a
c

t c

 
 

 

−      = − − −      

          (3.A14) 

Densification is assumed to occur when the initially inclined struts are horizontal and thus the 

inclination angle is 0 =  . The densification strain (from Eqn. 3.A12) is therefore c

den

a = . 

The maximum values of t  and c  are obtained at  and are given by  

( )0max
sec 1c

t

t

 




−
=                         (3.A15)

 
( )0max

3 sec 1

6

c

c

t

 



−
 =                       (3.A16) 

Tensile rupture is avoided when * max

t t  . This condition is satisfied when the initial 

inclination angle is below a critical value, ( )* 1 *

0 sec 1 t t c   −= +  (from Eqn. 3.A13). 

Similarly, buckling is avoided when max 2/ 3 /buc buc

c c a t t cF E A    = =   or, equivalently, 

e
a

= e
a

den = a
c
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( )1 3

0 0 sec 1 2 3buc

t c   −  +   (from Eqn. 3.A12). Lastly, yielding is avoided when 

max / 3yield yield

c c a t tF E A   = =   or, equivalently,  ( )1

0 0 sec 1 2 3yield

t c   −  +  . 

3.B Appendix: Arruda-Boyce Hyperelastic Constitutive Law 

Assuming incompressibility, the uniaxial tensile stress-strain response ( )t t   from the 

Arruda-Boyce hyperelastic constitutive law is given by 25: 

( )

1
5

1

1 12 2
1

1 1
2 1  

1

i

i

t t i

i Lt

C i I  


−

−

=

    
 = + −    +      
           (3.B1) 

where 1C  is a material constant, i is the ith term in the inverse Langevin function, 

{1/ 2,  1/ 20,  11/1050,  19 / 7000,  519 / 673750}ia = , L is the limiting network stretch and 1I  

is the first invariant of the right Cauchy-Green tensor ( ( ) ( )
2

1 1 2 1t tI  = + + + ). The 

incompressibility assumption is supported by the transverse and longitudinal strains measured 

in the tensile tests (Fig. 3.4c). The shear modulus is 1G C=   where  

2 4 6 8

3 99 513 42039
1

5 175 875 67375L L L L   
 = + + + +                       (3.B2) 

Fitting the measured stress-strain curves to Eqn. 3.B1 yields the parameters 1C  = 0.12 MPa, 

L = 1.59 and G = 0.17 MPa. 
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3.C Appendix: Analysis of Lattices with Curved Struts 

3.C1 Primitive Structural Motif 

The energy method described in Appendix 3.A is used to analyze the response of a unit 

cell having curved struts. This model accounts for finite node size and uses a linear elastic 

constitutive model. When the unit cell is compressed, the total energy stored in straight and 

curved struts is 1 23 6e e eU U U= + where 1eU  is the elastic energy stored in the straight struts 

and 2eU  is the energy stored in the curved struts. (The numerical coefficients capture the 3 

straight struts and 6 curved struts in the design.) The first energy term is: 

( )
'

' ' '0
1

0 0
0

2 tan

3

u u
t t

e t

E Au
U F u du du

H


= =               (3.C1) 

Curved struts are assumed to carry zero load until they have fully straightened. The energy 

stored in these struts is given by:  

( )
( )

2

'

' ' '

2
0 0

0

0                                                                     ,

2 tan
   ,

3

e st

u u t t st st

e t st

U u u

E A u u
U F u du du u u

H



= 

−
= =  

                           (3.C2) 

where stu  is the lateral displacement between midplane nodal locations required for the curved 

struts to fully straighten. Eq. 3.C2 differs from Eq. 3.C1 in that the transverse displacement 𝑢 

is replaced by 𝑢 − 𝑢𝑠𝑡 and the initial inclination angle, 0 , is replaced by the angle at which 

curved struts have fully straightened, st . The transverse displacement and inclination angle at 

which curved struts straighten are given by: 

( )0
0

3 cot
/ 1

2
stu H S


= −              (3.C3) 
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2
1 2

0sin 1 cosst S −  
= − 

 
                        (3.C4) 

where S  is the normalized length of the curved strut ( / tS L ) given by

( ) ( )
1

2 2
2 2

0

2
1 sin 2S A x dx EllipticE A  


 = + = −
   . Setting the total elastic energy, eU , 

equal to the work done, ( )' '

0

v

w aU F v dv=  , the normalized response of a unit cell having curved 

struts is 

  

( ) ( ) ( )

( ) ( ) ( )( ) ( )

0

0

0

0 0

2
tan                                        ,

3 3

22
tan tan   ,

3 3

a

st

t t

sta

st st

t t

F v u v du v
u u

E A H dv

u v uF v u v du v
u u

E A H H dv



 

 
=  

 

 −
= +  

 
 

        (3.C5) 

where 
( )

0

u v

H
 and 

( )du v

dv
are given by Eqns. 3.A3 and 3.A4. 

3.C2. Finite Lattice Structures  

Incorporating finite node dimensions into the analysis, the macroscopic response becomes: 

( ) ( ) ( )

( ) ( ) ( )( ) ( )

0

0

0

0 0

2
tan                                        ,

3 3

22
tan tan   ,

3 3

a

st

t t t
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st st

t t t

F v u v du v
u u

E A H dv

u v uF v u v du v
u u

E A H H dv




 


 
=  

 

 −
= +  

 
 

        (3.C6) 

Here, 
( )

0

u v

H
 and 

( )du v

dv
are given by Eqns. 3.A10 and 3.A11. The transverse displacement and 

inclination angle at which curved struts straighten are modified accordingly: 



 

 

93 

( )0
0

3 cot
/ 1

2

t
stu H S

 
= −              (3.C7) 
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
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 
 
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Figure 3.1: Incorporating multiple materials into lattice design extends lattice characteristics 

beyond those applicable to single-material designs (a-f and l) to include new definitions of 

characteristics (j and k) as well as new characteristics (g-i and m). 
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Figure 3.2: (a) The primitive bi-material structural motif is composed of stiff struts (red) and 

compliant, extensible struts (blue) connected by pin joints. When the cell is compressed, 

inclined struts rotate to accommodate stretching of transverse struts. (b) The compressive 

response of the primitive motif is strongly influenced by the initial strut inclination angle. 

 

 

 

 

 

 

Figure 3.3: Concept implementation: (a) A cutaway shows one third of the structure as well 

as the knob-and-socket joint design. (b) The entire structure, including the interlocked parts in 

the joint, are made in a single print operation. 

 

 

 



 

 

99 

 

Figure 3.4: Stress-strain curves of (a) acrylic-like material and (b) elastomeric material 

obtained from tensile tests. The results in (b) were used to calibrate the hyperelastic constitutive 

law. The grey dashed lines in (b) indicate the true (small-strain) elastic modulus and an 

effective modulus over the strain range 0 to 1. The latter is the pertinent modulus for use with 

the analytical model. (c) Measurements of in-plane strains in the elastomer support the 

incompressibility assumption. 

 

 

 

Figure 3.5:  Finite node sizes in the bi-material structure reduce the effective strut lengths, 

from tL  to eff

tL and cL  to eff

cL . (Pertinent dimensions are: 32.6tL mm= , 32.3eff

tL mm= ,

33.8cL mm= , 27eff

cL mm= , and 0 60 = .) 
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Figure 3.6: (a, b) Stable and reversible compressive response of the bi-material lattice.  Also 

shown are the results from the analytical model and the FE simulations. Since the analytical 

model is based on a modulus that represents the response of the elastomer over the entire strain 

range of interest (roughly 0 to 1) – not the true small-strain modulus – the results for the 

analytical model are normalized accordingly, i.e. scaled by the ratio of the effective modulus 

to the real modulus (indicated by the grey lines in Fig. 3.4(b)). The scaling factor is about 0.78. 

The same normalizations are employed in the analytical model predictions in Figs. 3.8 (b) and 

3.9 (a, b). (c) Strain maps at select points during compressive loading show that macroscopic 

straining is accommodated by stretching of the transverse struts and rotation of the inclined 

struts.  
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Figure 3.7: (a) Measured rotations of inclined struts (solid orange and blue lines) are 

represented well by the analytical model (dotted orange and blue lines). In contrast, measured 

joint rotations (solid green lines) differ from the predictions (dotted horizontal green line). (b) 

The FEA simulations capture both the strut and the joint rotations. (c) Schematics show 

changes in geometry and forces that lead to the moments which in turn cause joint rotation. 

The direction of rotation reverses once contact is made between the edges of the knuckle and 

the strut surfaces (at point 4). 
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Figure 3.8: (a) The bi-material lattice is modified to include curved struts that initially 

straighten before stretching. (b) Analytical model predictions show effects of amplitude of 

curved struts in the post-straightening domain. (c) Two types of bi-material lattices were 

printed, distinguished by amplitude of curved struts. (d) Compressive responses of lattices with 

and without curved struts. For clarity the unloading loops (presented in Fig. 3.9a,b) have been 

removed.  Circled numbers denote cycle numbers. 

 



 

 

103 

 

Figure 3.9: (a, b) Macroscopic responses of bi-material lattices having curved struts are 

compared to analytical predictions. (c, d) Strain maps at select points during deformation show 

that macroscopic straining is accommodated by stretching of the straight struts from the outset 

as well as straightening and subsequent stretching of the curved struts. (e, f) Pairs of 

compressive (inclined) struts rotate symmetrically about the central plane, as predicted by the 

analytical model and the FEA. Joint rotation, on the other hand, follows a more complex 

trajectory, including a critical point at which the direction of rotation reverses.  
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Figure 3.10: (a) Stress-strain responses of Arruda-Boyce elastomers (having different limiting 

stretches) show the potential increases in stress that can be attained when loading an elastomer 

in uniaxial and equibiaxial tension. (b) Elastomers having low limiting stretches have the most 

drastic stress increases in stress when loaded in equibiaxial tension vs uniaxial tension. 

 

 

 

Figure 3.11: (a, b) Photographs of lattices with the two different sheet designs. Experimental 

and FE results of (c, d) stress-strain response and (e, f) strut and joint rotations. Sheet rupture 

in (c, d) is indicated by an “o” or an “x”. Results are shown for two tests on each lattice design. 
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Figure 3.12: Energy density maps for tensile members composed of (a) straight struts, (b) 

uniform sheet, and (c) graded sheet are shown at progressively increasing macroscopic 

compressive strains. Accompanying histograms show strain energy density distributions at the 

largest compressive strain ( 0.75 = ). 
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Figure 3.13: Photographs of (a) uniform sheet and (b) modified sheet show rupture initiating 

in the fillet region and spreading to the edges of the sheet (indicated by red arrows). (c-f) 

Viewed from a different perspective, images show one of two rupture paths (indicated by 

dashed red lines). Part of the white inner knuckle is visible in (d). 
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Chapter 4  
 

Effects of Microstructure on the Deformation and Mechanical 

Response of Elastomeric Foams 

 

Abstract 

The current chapter investigates the effects of microstructural regularity, number of cells across 

a part or specimen, and boundary conditions on the compressive response of elastomeric 

foams. Various foam microstructures are generated using both a Voronoi tessellation method 

with a prescribed regularity parameter and a novel bubble growth algorithm. Microstructures 

of real foams and model foams are compared on the basis of cell size, cell interior angles, and 

number of struts per cell. Distributions of these features are represented using multivariate 

plots. A computationally efficient finite element method is then used to simulate the 

compressive response of the model foams. Results indicate that polydispersity in cell size 

affects the strain energy distribution across cells and in turn affects the compressive response. 

Specifically, foams with tight distributions in cell size exhibit stronger responses than those 

with wider distributions due to more uniformly distributed strain energy.  

4.1 Introduction 

Flexible elastomeric foams with stochastic microstructures are widely utilized to mitigate 

impact forces during human/solid interactions, notably in shoes, helmets and athletic mats 1–3. 

While structured foams with periodic cell arrangements offer exciting opportunities for 

improved performance4–6, manufacturing at scale remains a persistent challenge. As such, a 

detailed understanding of structure-property relationships in stochastic foams continues to play 

a critical role in tailoring materials to enhance performance.  
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 While the broad scaling relationships of stochastic foams are well-known7,8, the range 

and complexity of dynamic human/solid impact imply that the details of stress-strain response 

play a critical role in performance. Running shoes provide an excellent illustrative example; 

flexible polyurethanes widely used in soles often exhibit softening that can be characterized 

by a tangent modulus tE  that is a relatively small fraction of the initial modulus 0E  9–11. The 

softening reflected by the tangent modulus plays a critical role in foot strike forces prior to 

foam densification; though foot strike forces are complicated and involve many physiological 

factors, the magnitude of deceleration and duration of foot strike strongly impact comfort and 

stability of running.  

 In this context, the implications of tangent modulus can be illustrated with a simple 

model involving a fixed mass impacting a foam with a prescribed initial velocity. For 

simplicity, consider a bilinear foam response that neglects the role of densification. The initial 

stiffness of the foam sets the initial rise of the deceleration-time response of the impact; the 

tangent modulus limits deceleration and extends the duration of the foot-strike. For decreasing 

tangent modulus, the average deceleration of the foot-strike decreases, while the maximum 

compression of the foam increases.   

 For a range of impact energies, the trade-off in average acceleration and foam 

compression can be as high as a factor of five as the tangent modulus varies from zero to values 

equivalent to the initial modulus of the foam. That is, the average acceleration can decrease by 

a factor of four when switching from a purely linear material to one with an elastic-perfectly 

plastic response, while the compressive stress increases by a factor of six. In light of this and 

the diversity of foot-strike characteristics that stems from both physiology and application (i.e., 
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prolonged walking vs. competitive running), controlling tangent modulus through variations 

in stochastic microstructure is of central interest for material and processing development.  

 Simply put, the shape of the “knee” in the compressive stress-strain curve of a foam 

(over 0~25% strain) plays an important role in determining the foot strike dynamics. Figure 

4.1 provides a schematic of typical stress-strain curves and parameters used to characterize the 

“knee”. While the shape of the curve can be characterized in many ways, the simplest approach 

is to define an initial modulus (at zero strain) 0E , a tangent modulus at a prescribed strain of 

interest tE , and a characteristic stress c . As illustrated in Figure 4.1, the characteristic stress 

is found from the intersection of lines tracing the small-strain response and the tangent modulus 

at the prescribed higher strain. Clearly, the characteristic stress will be somewhat sensitive to 

the prescribed strain used in the construction, and the sharpness of the softening transition is 

not fully captured by the initial modulus and the characteristic stress. In the absence of a 

rigorous methodology to characterize the traits, we use initial modulus, tangent modulus, and 

characteristic stress to characterize stochastic foams and discuss the implications of foam 

microstructure on these parameters. 

 In contrast to fully dense materials, for which 3D characterization has been elevated to 

encompass exquisite, quantitative details of grain size and shape, experimental characterization 

of foam microstructure has been sparse and limited to 2D sectioning. Only few high resolution 

CT scans are available 12–14; to date, these have not yielded large datasets that have been 

segmented to establish statistical distributions of cell size, cell interior angles, or number of 

cell sides. As a result, the majority of previous studies have attempted to connect 

microstructure to mechanical response have relied on synthetic foam microstructures 

constructed using some variant on the Voronoi tessellation technique with some prescribed 
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“regularity” 15–23. Connections between synthetic microstructures and real microstructures are 

tenuous; while Voronoi foams “look like” real foams and regularized Voronoi foams “look 

more like” real foams, connections between foam “regularity” and foam compressive response 

have proven to yield conflicting conclusions regarding properties (see Table 4.1). Connections 

between specific microstructural features and compressive response have not been fully 

elucidated. 

 One goal of this work is to compare statistical distributions obtained from micrographs 

of real foams, regularized Voronoi foams, and a new ‘bubble growth’ algorithm inspired by 

the geometry of void coalescence. We illustrate that a narrow range of regularity parameters 

yields results that are consistent with a broad range of foams fabricated using gas-expansion 

and that the bubble growth algorithm produces statistical distributions of cell size, interior 

angles and cell sides that are comparable to real foams. While only a narrow range of regularity 

parameters are suitable for capturing the microstructure of real foams, using the full range of 

regularity values (from 0 to 1) creates an attractive opportunity to easily transition from purely 

stochastic foams to regular honeycombs, as will be illustrated.  

 It should be noted that the present study is limited to two-dimensional foams. Previous 

studies of 2D and fully 3D foams illustrate that there is strong similarity in the response, 

provided suitable scaling relationships are employed to adjust cell size by relative density 

7,15,16,24. While this is naturally a first step towards understanding the roles of statistical 

distributions of cell size, future work will be needed to ensure the structure-property 

relationships illustrated here will translate to both open-cell and closed-cell 3D structures. 

 Comparisons of foams with various statistical distributions in cell size, interior angles 

and number of cell sides provide insight into several fundamental questions regarding the effect 
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of microstructure on mechanical response. (These have been touched upon in previous 

studies16–23,25,26, but are significantly expanded upon by the present calculations.) For example, 

what is the difference between a ‘geometrical’ representative volume element (RVE) and the 

‘mechanical’ RVE?  The former addresses the number of cells needed to reproduce 

microstructural characteristics that are representative of a much larger sample; the latter 

addresses the number of cells needed to reproduce mechanical behaviors that are characteristic 

of a larger sample. Previous studies have not yielded a consensus on what constitutes an 

appropriate mechanical RVE and have not characterized microstructural features of samples 

with differing size or established protocols for determining a geometric RVE (Table 4.1).  

 The current chapter is organized as follows. A study of real foams and computationally 

generated foams (obtained with different generation algorithms) is outlined in Section 4.2. 

Strategies to process micrographs and to develop computer-generated foam microstructures 

are described. Methods used to predict the mechanical response of these foams are described 

in Section 4.3.  In Section 4.4, statistical descriptions of foam microstructure are presented and 

discussed in terms of their similarities and differences. Section 4.4 illustrates the impact of 

microstructure on mechanical response and the impact of local cell collapse on macroscopic 

behavior. Section 4.5 provides a summary and conclusions. 

4.2 Foam Microstructures 

Three metrics are used to characterize stochastic foam microstructures: cell area, interior 

angles between cell walls, and the number of cell walls. Statistical distributions of these metrics 

are computed for three types of foam microstructures: (i) those measured of real foams, (ii) 

those generated via regularized Voronoi algorithms, and (iii) those generated using a new 

‘bubble growth’ algorithm inspired by void coalescence (introduced in Section 4.2.3). In this 
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section, we first outline the methods used to characterize real foams and introduce multivariate 

density plots to illustrate the relationships between the three metrics. We then outline the 

algorithms to generate artificial foams; a comparison of the statistical distributions from real 

and artificial foams is presented in Section 4.4.  

4.2.1 Real Foam Microstructures 

 

Microstructural characteristics for real foams were obtained by processing images published 

elsewhere, using the following procedure. Figure 4.2a shows the cross section of a 

polyurethane foam from Brondi et al. 27; ImageJ was used to binarize the image (Fig. 4.2b). 

The resulting image was manually edited to ensure traces of cell walls produced closed loops. 

Centroids of each cell were then found using the function “regionprops”  in Python (Fig. 4.2c). 

The centroid coordinates were used to generate a Voronoi mesh, which yields a reasonable 

representation of microstructure (Fig. 4.2d). Distributions in cell size, cell interior angles and 

number of sides (or struts) were then extracted from the Voronoi mesh.  This process was 

repeated for a different closed-cell polymer foam 27 and a closed-cell metal foam 28.  Since the 

distributions of cell characteristics for these three foam images proved to be similar (cell size 

coefficient of variation (CV) ranged from 0.32-0.42 and cell interior angle CV ranged from 

0.15-0.19), the datasets were merged to increase the number of cells and establish 

representative distributions for gas-expansion foams. Individual datasets are presented in 

Appendix 4.A.  

 Cell areas, interior angles, and number of struts per cell were extracted from the 

segmented images; cells that intersect with the boundary of the images were ignored. Figure 

4.3 illustrates resulting distributions of these characteristics, in the form of a bivariate 
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scatterplot with cell areas and interior angles as the two axes. Marginal plots outside of the 

scatterplot show the fitted probability density functions of each characteristic. 

 To illustrate coupling between the three cell characteristics, the number of struts per 

cell is indicated using conditional colors (Fig. 4.3b). Orange, blue, and green points correspond 

to cells having 3-4, 5-7, and 8+ struts per cell respectively. As illustrated in Figure 4.3, smaller 

cells are more likely to have low interior angles and low number of struts per cell (3-4 struts). 

Larger-than-average cells are more likely to have 8+ struts and are linked to higher interior 

angles.  

 To show the prevalence of different combinations of cell characteristics, namely cell 

size, cell interior angles, and number of struts per cell, Figure 4.3c shows the full plot of cell 

characteristics, while Figure 4.3d shows a separate plot for cells with 3-4 and 8+ struts with a 

magnified view of the marginal plots. The exact fractions of each group are also included. 

These plots illustrate that real foams generally do not have many cells with fewer than 4 struts 

or with interior angles 90   . The average normalized cell size is 1 (naturally) with a 

coefficient of variation (CV) of 0.36. The average cell interior angle is 120  with a CV  of 

0.17. These results are subsequently used to assess the suitability of computationally generated 

foam microstructures, as discussed in Section 4.4.  

4.2.2 Regularized Voronoi Foams  

 

Both foam generation methods used in this work are grounded in the Voronoi tessellation 

technique. This method has been used extensively to create foams with irregular 

microstructures 16,17,21,23,29,30. To begin, Nseed  points are assigned randomly to a square of  

dimensions 0W x 0W . The perpendicular bisectors to lines connecting each pair of adjacent 

points are generated, and each bisector is truncated at the two closest intersection points. Each 
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bisector represents a wall in the foam. The resulting average cell area is 2

0 /cell seedA W N = , 

the average area-equivalent cell diameter is: 

2

02 2cell

seed

A W

N


 

 
= =                  (4.1) 

and the average number of cells that span the width of a foam is 0 /W  . To remove mesh-

generated edge effects in the Voronoi tessellation, the foam edges are trimmed to produce a 

smaller foam with dimensions W x H .  

 The structure resulting from random seeds and Voronoi tessellation can be made more 

regular using the method introduced by Zhu et al 15. First, define 0d  as the distance between 

any two adjacent seed points for purely identical hexagonal cells, constructed with the same 

number of seed points in the square area 2

0W . This is given by: 

2

0
0

2
  

3seed

W
d

N
=                   (4.2) 

 Then, a regularity parameter,  , is defined as 0/ d = , where   is the minimum 

allowable distance between the seed points. As seed points are generated sequentially, they are 

either accepted or rejected based on the minimum allowable distance, as defined through the 

regularity parameter. For a completely random Voronoi foam, 0 = ; any random seed is 

accepted regardless of how close it is to existing points. When 1 = , all points not 

corresponding to hexagonal packing are rejected, resulting in a regular hexagonal honeycomb.  

4.2.3. Bubble Growth Algorithm 

 

The bubble growth algorithm is an alternative method to generate more ordered foam 

microstructures. This new method is based on the growth and coalescence of randomly placed 
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bubble ‘seeds’. At present, the bubble growth algorithm is purely geometric; bubble growth 

rates are arbitrary, and coalescence occurs when two circular bubbles intersect. One can 

envision future embellishments to capture the physics of gas-expansion and necking of cell 

walls for impinging voids.  

 The growth algorithm is shown schematically in Figure 4.4 To begin, Nseed points are 

randomly assigned within a 0W x 0W  square. Here, the seed points represent centroids of 

circular bubbles with a given size. Bubble radii are then increased incrementally; when two 

bubbles overlap to within some small tolerance (e.g., 1% of the average bubble size), they are 

replaced with a single bubble. The size of the new bubble is dictated by the total area of the 

two bubbles that have coalesced. The centroid ( , )n nx y  of the new bubble is a weighted average 

of the centroids of the original two bubbles, described by:     

 1 2
1 1 2 2( , ) ( , ) ( , )n n

n n

A A
x y x y x y

A A
= +                 (4.3) 

where 1A  and 2A  are the areas of the two respective bubbles and nA  is the sum of the two areas. 

A foam can be defined by the Voronoi tessellation of the bubble centroids after any step in the 

growth algorithm.  

  Foams were generated using this algorithm as follows. For regular seeding, the 

maximum amount of growth from a seed is the area-equivalent diameter,  . The growth rate 

(increase in the bubble radius per step) was fixed to be / 2 totalG n= , where ntotal is a prescribed 

number of steps, taken here to be 40.  As the algorithm progresses and bubbles coalesce, the 

distribution in bubble sizes is recorded and used to examine the evolution of foam 

characteristics. Representative results that illustrate the outcome of this process are illustrated 

in Figure 4.5, which shows coefficients of variation of cell size, struts per cell, and fraction of 
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small interior angles as functions of growth steps. The results indicate that the foam collapses 

into just a few cells in ntotal steps, as one would expect from the prescribed growth rate. 

Interestingly, the most regular foams (i.e., those with the lowest coefficients of variation) are 

consistently obtained at 60-70% of the number of steps needed to collapse the foam. This result 

is obtained regardless of whether more steps (i.e., slower growth rates) are used; subsequent 

‘bubble growth foam’ microstructures correspond to this point in the growth process, i.e., when 

variations in bubble size, the struts per cell and fraction of low interior angles are at their 

minimum.    

4.3 Scope of the Study and Numerical Approach 

 

Having defined a microstructure, the mechanical response of the foam is simulated as follows. 

The simulation framework models cell walls using one-dimensional beam elements of uniform 

thickness t ; it assumes small strains but allows for large rotations. That is, deformation of cell 

walls and cell wall intersections is sufficiently small to ignore changes in mechanical response 

arising from large material deformations, while large structural deformations are fully 

captured.  The formulation ignores shear deformation in the cell walls and utilizes Bernoulli-

Euler beam kinematics; this is appropriate for cell wall aspect ratios (thickness to length) that 

are less than roughly 0.2, which corresponds to relative densities that are less than about 30%. 

The cell wall material was modeled as linear elastic. The element size was selected to be 1/3 

the average length of a strut. A mesh convergence study indicated that this element size was 

sufficient to accurately capture the macroscopic load-displacement response. Results of the 

mesh convergence study are presented in Appendix 4.B. Simulations are terminated at 

macroscopic strains of 20%, which roughly corresponds to the onset of cell wall contact, i.e., 

at the onset of densification.  
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 (It should be noted that densification typically manifests at much larger strains, when 

the volume density of cell wall contacts is dramatically higher at about 50% strain. As such, 

the present results can likely be extrapolated to somewhat higher macroscopic strains, although 

the extent of such extrapolations is undoubtedly dependent on microstructure and as such are 

not considered here.) 

 The mechanical response reported here corresponds to uniaxial compression of square 

specimens between rigid platens, with no sliding along the platens and no rotations of elements 

whose ends contact the platens. The rationale for this approach is that many foams have high 

coefficients of friction with metals and/or have  dense ‘skins’ along their surface resulting from 

the foaming process. For sufficiently large foams (i.e., those larger than the mechanical RVE), 

the response is independent of the boundary conditions.  It should be noted that the response 

of foams whose width is much larger than the length in the compression direction may be 

different; in these instances, lateral constraints imposed by the specimen aspect ratio may 

significantly alter the response. Essentially, the present calculations are plane stress, while 

relevant stress states for ‘foam strips’ may be closer to plane strain. This is briefly discussed 

in Section 4.4.  

 Finite element simulations were conducted using our in-house code (details included 

in Appendix 4.B). The upshot of the numerical formation is that the present framework 

produces identical results to Abaqus for a given structure, with computational speeds that are 

102-103 faster. For reasons we have not fully identified, the adopted co-rotational formulation 

provides a more robust convergence. That is, the fraction of simulations that run to completion 

(before errors associated with Newton-Raphson iteration terminate the algorithm) is close to 

90%.  This greatly facilitates the study of stochastic microstructures, which requires numerous 
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simulations of different structures with the same global characteristics. The present results 

discard simulations that crash prior to macroscopic strains of 20%, with additional calculations 

to ensure that at least 10 microstructures drawn from the same distribution are used to illustrate 

mechanical response.  

 Foam models with 100, 225, 400, and 900 cells per unit area were generated using the 

various foam generation techniques outlined in Section 4.2. These are referred to as 10x10, 

15x15, 20x20, and 30x30 cell foams. Images of each foam type are pictured in Appendix 4.B. 

Three relative densities were selected for this study:  =0.05 (
true = 0.049), 0.15 (0.144), and 

0.25 (0.235). Relative density is calculated as 

 ( )
1

1/
N

i

i

WH l t
=

=                                                     (4.4) 

where t  is the thickness of all struts, W and H are the width and height of the foam, N is the 

total number of struts in the foam, and il is the length of the thi strut in a foam. True relative 

density, indicated in parenthesis after each relative density, is calculated by accounting for the 

overlap of material at the nodes: 

  
2 2
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WH l t t Mt
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= − +  

  
                 (4.5) 

 Here, M is the total number of nodes in the foam and 2t is the area of overlapping strut material 

(initially subtracted from all struts and added back in for the total number of nodes).  

 A second finite element study was conducted to probe effects of microstructure, foam 

aspect ratio, and boundary conditions on the compressive response. Foam models were 

generated using the same techniques mentioned above but with dimensions that yielded aspect 



 

 

119 

ratios of 1:1, 2:1, and 4:1. Foam models are pictured in Appendix 4.B. This set of foams had a 

relative density of 15% (14.4%).   

4.4 Results and Discussion 

4.4.1 A Comparison of Cell Geometry Distributions of Different Foam Types 

 

Figure 4.6 provides a comparison of regularized Voronoi and bubble growth foam 

characteristics, presented in the same format as the results for real foams shown in Figure 3. 

Results are shown for foam sections that measure roughly 30 cells per side. It is clear from 

these results that the bubble growth algorithm (Fig. 4.6f) produces similar results to the 

regularized Voronoi foams with 0.5 =  (Fig. 4.6c). Both of these synthetically-generated 

foam microstructures produce cell characteristics that are close to those of real foams. Focusing 

on bubble growth foams, the coefficient of variation (CV) for cell areas is 0.31 (CV=0.36 for 

real foams), and the CV for cell interior angles is 0.19  (CV=0.17 for real foams). Fractions of 

cells with 3-4, 5-7, and 8+ struts (5.7%, 86.4%, 7.9% respectively) are also very similar to 

those measured in real foams (5.9%, 87.9%, and 6.2%). In contrast, foams generated with 

lower regularity parameters exhibit a larger area fraction of outsized and oddly-shaped cells 

and, as a result, contain ‘sharp’ cells with much lower interior angles. (Note that physical foams 

have minimum interior angles of more than 60o.) Similarly, regularized foams with regularity 

parameters above 0.5 =  have a relatively small fraction of cells with number of sides outside 

the range 5-7. A key implication is that results for pure Voronoi foams (with 0 = ) have 

feature distributions that are quite unlike real foams.      

 The ability to generate synthetic foam microstructures provide an opportunity to 

identify a ‘geometric representative volume element (RVE)’, by comparing the distributions 

of foam ‘samples’ with different numbers of cells. Interestingly, Figure 4.7 illustrates that only 
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approx. 100 cells are needed to get representative distributions of cell characteristics. While 

changes in the distributions of cell characteristics are observable for specimens with 100 and 

400 cells (10x10 and 20x20 cells on the sides), they are rather modest. For bubble growth 

foams, the CV for cell size decreases from 0.32 to 0.31 as the number of cells increases while 

the CV for cell interior angles stays the same (0.19). For Voronoi foams, the CV for cell size 

decreases from 0.53 to 0.51 as the number of cells increases, and the CV for cell interior angles 

stays the same (0.25). This has the critical implication that micrographs of real foams such as 

those used to generate Figure 4.3 are more than likely sufficient to identify meaningful 

distributions of geometric properties. Naturally, this conclusion may not strictly hold for 

stochastic anisotropic foams, but it is likely a useful guideline regarding the requisite number 

of cells along the edges.   

4.4.2 Mechanical Response of Different Foam Types  

 

A comparison of the compressive mechanical response of various types of foams are shown in 

Figure 4.8. The stress-strain curves represent the average of 10 simulations with standard error 

bars included. The foam stress is normalized by 
3

sE  , the theoretical result that eliminates the 

role of the relative density and the modulus of the constituent material for bending-dominated 

structures. For comparison, the responses of regular hexagonal honeycombs are shown for two 

different cell orientations. The impact of specimen size (number of cells along the edges) is 

illustrated using different color shading.  

 The results in Figure 4.8 clearly illustrate that the mechanical RVE for realistic 

stochastic foams is distinct from the geometric RVE. That is, while a specimen with 10x10 

cells produces relatively accurate distributions of cell geometries, it exhibits a softer response 

than a larger sample (30x30) with cell property distributions that are comparable. The root 
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cause of this difference is the constraint introduced by the top and bottom boundary conditions 

on the macroscopic sample, i.e., the use of fixed platens. Additional calculations (included in 

Appendix 4.B) with frictionless platens exhibit a weaker dependence on cell density, although 

the impact of boundary conditions still persist to a sample size of 30x30 cells. Across a variety 

of boundary conditions for square specimens, a minimum of 30x30 cells produces results that 

are independent of the specimen size. This result is consistent with previous studies 24. For 

unrealistic microstructures, i.e., those produced via Voronoi tessellation of random points, the 

mechanical response is relatively insensitive to the number of cells, such that geometric and 

mechanical RVEs appear to coincide. The response is likely softer than real foams, however, 

due to the presence of undersized and oversized cells and anomalously low cell angles. 

 It appears from the comparisons in Figure 4.8 that the upper bound on ordered cells 

(i.e., disordered foams with a high degree of regularity) approaches that of the 90o honeycomb, 

which has struts oriented 90o to the loading direction. Honeycombs with no struts that are 

perpendicular to the loading direction produce slightly stiffer responses and a lower tangent 

modulus associated with a distinct ‘collapse’ stress. Although the analysis of honeycombs is 

outside of the scope of this work, additional details on honeycomb responses are provided in 

Appendix 4.C.  

 In Figure 4.9a, stress-strain results for 30x30 cell foams generated using different 

regularity parameters ( =0.25, 0.5, and 0.75) are compared to results from Fig. 4.8b. It is 

interesting to note that the stresses for fixed strain rise nearly linearly with the regularity 

parameter, from the softest response of purely random Voronoi foams to the hardest response 

associated with 90o hexagonal honeycombs. As with the statistical distributions of geometric 

metrics, the mechanical response of a bubble growth foam is virtually identical to a regularized 
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Voronoi foam with 0.5 = .  Simply put, bubble growth foams and regularized foams with 

0.5 = a re the same with respect to geometry and mechanical response. Figure 4.9b compares 

two sets of results for regularized foams: 10x10 and 30x30 cell foams. These results 

demonstrate that differences in response increase monotonically with increasing regularity (a 

trend also seen when comparing 10x10 and 30x30 cell Voronoi foams to results of bubble 

growth foams). 

 The scaling of elastic modulus and characteristic stress with relative density is shown 

in Figure 4.10 for 10x10 cell and 30x30 cell foams. The characteristic stress is defined by the 

intersection of the elastic modulus tangent and the instantaneous tangent modulus at   = 0.2. 

Results are shown for small specimens – arguably the minimum specimen size with a 

geometric RVE – and large specimens whose mechanical response is independent of the 

number of cells. In all cases, the scaling of stiffness and characteristic stress follows the 
3



scaling characteristic of bend-dominated foams. However, the geometric RVE samples (10x10 

cells) are noticeably stiffer than those with more cells associated with the mechanical RVE. 

The influence of foam microstructure is perhaps surprising. Realistic foams (i.e., bubble 

growth foams and regularized Voronoi foams with 0.5 = ) exhibit 20% higher stiffness and 

35% higher characteristic stress than purely random Voronoi foams. In light of the importance 

of the ‘knee’ in the stress-strain curve for some applications, these differences may be 

important. 

 Differences associated with each foam model are further illustrated in Figure 4.11. Here 

the instantaneous tangent modulus is plotted against compressive strain at strain increments of 

0.02 = . The curves reflect the range in values obtained from 10x10 to 30x30 cell foams for 

each foam type. Open and closed circles, plotted at increments of  0.05 = , show 
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measurements for 10x10 and 30x30 cell foams. The range of observed tangent moduli for each 

foam type is significant, pointing to the importance of features in the microstructure that have 

an outsized impact on response. (This is the focus of the following section). As one might 

expect, the perfect regular hexagonal honeycombs exhibit higher tangent moduli at all strain 

levels. The difference in tangent moduli at 5-10% strain exhibited by purely random Voronoi 

foams and realistic ‘bubble growth’ foams can be substantial. This speaks to the importance of 

microstructure in the response near the ‘knee’ of the stress-strain curve. For example, the 

average tangent modulus of the bubble growth foam at 5% strain is twice that of the Voronoi 

foam. Notably, the tangent moduli at 20% strain are apparently independent of foam 

microstructure (excluding the ordered hexagonal foam); however, the stress levels at these 

strains can differ by as much as 50%, as indicated by the results in Figure 4.8. The origin of 

these differences is of central interest, as discussed in the next section.  

4.4.3 Microstructural Features that Impact Foam Response 

 

The microstructural origins of the differences highlighted in the previous section appear to 

stem from outlier cells, i.e. ones with extremes in interior cell angles, cell size or the number 

of cell walls5. To gain insight into the role of these ‘outlier’ cells, the mechanical response of 

the foams was analyzed as follows.  The energy contribution of an interior cell—a cell not 

containing any struts at the edges of the foam—was computed as 
1

1

2

N

cell i

i

U U
=

=   where iU  is 

the strain energy of the thi element of a cell, and N is the number of elements in the cell. (The 

coefficient ½ is used because all interior cells share a strut with one other cell, so the energy is 

 
5 It was also confirmed that differences in response did not arise from differences in energy 

partitioning (bending vs stretching). These results are included in Appendix 4.D. 
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split between the two.) The total strain energy contribution of a cell at a foam edge is computed 

as 
1 1

1

2

N M

cell i i

i i

U U U
= =

= +  where the first half of the equation sums up strain energies from N

total elements that are shared with neighboring cells, and the second half of the equation sums 

strain energies from M elements of the cell that are located at the edge and not shared with 

other cells. Strain energies were computed for three compressive strains: 0.05 = , 0.10 , and 

0.15. 

 To determine how efficiently individual cells contribute to the macroscopic response, 

the strain energy of each cell, cellU , is normalized by a nominal cellular strain energy, 

nom cell totU f U=  where cellf  is the volume fraction of a cell and totU is the total strain energy 

measured in the foam at a given compressive strain. The nominal strain energy is the energy 

that a cell would theoretically contribute if all cells uniformly deformed during compression. 

Ideally, normalized cell energies would be equal to 1, indicating that each cell contributed 

equally to the macroscopic mechanical response. Values less than 1 indicate that a cell 

contributes less strain energy for its size while values greater than 1 indicate the opposite. The 

average normalized cell energy in a foam, ( )
1

/ /
N

cell cell total

cell

U f U N
=

 , indicates how close the 

deformation of cells in a foam is to the ideal case of uniform deformation. Here, N  is the total 

number of cells in the foam. 

 Contributions of individual cells are plotted in Figure 4.12a, with fitted probability 

density functions. Figures 4.12b-4.12d show the evolution of cellular strain energy within each 

foam (representative foams are chosen for Voronoi and bubble growth cases). At each of the 

three compressive strains, the PDF for Voronoi foams is skewed right indicating that a large 

fraction of cells contribute minimally to the total strain energy. Cells with very low strain 
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energies, / 0.3cell nomU U  , appear as white cells in Figure 4.12b. These cells make up 28-36% 

of total cells at each compressive strain. The large fraction of minimally contributing cells 

results in the lowest mean normalized cell energy of each foam type, / 0.62cell nomU U = = . 

The inefficient energy contributions from individual cells explain why this type of foam 

exhibits the weakest stress-strain response. The PDF for bubble growth foams is still skewed 

right, but fewer cells (21-25%) have very low normalized cell strain energies, and a higher 

fraction of cells have normalized energies close to the ideal value of 1. This results in a mean 

normalized cell energy of / 0.71cell nomU U = = . The more efficient energy contributions of 

cells result in a stronger stress-strain response compared to random Voronoi foams. The 

probability density curve for the honeycomb is significantly different from those of bubble 

growth and Voronoi foams. This curve has a peak around / 1cell nomU U =  and has fewer low 

energy cells than the other foam types (only 5-10%). Additionally, the average normalized cell 

energy is / 0.82cell nomU U = = . More uniform and hence more efficient distributions of cell 

energies lead to a stronger stress-strain response.  

 Analyzing the energy maps in Fig 4.12b-d helps to identify the specific microstructural 

features causing differences in energy distributions. Cell energies mapped onto the Voronoi 

foam (Fig. 4.12b) show distinctive clusters of very low normalized cell energies (white) and 

very high energies (dark red). As the foam is compressed, most deformation is accommodated 

by a few clusters of cells that deform significantly more than other cells while many cells 

remain nearly undeformed (especially at top and bottom boundaries). The cells contributing 

significantly more energy than expected ( / 1.5cell nomU U  ) have an average cell size of 

/ 1.22cell cellA A =  while very low energy cells ( / 0.3cell nomU U  ) have an average size of 
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/ 0.83cell cellA A = . For the Voronoi foam, a wide distribution in cell sizes leads to larger than 

average cells accommodating compressive strain while smaller cells contribute less. Figure 

4.13 shows the relationship between cell size and normalized cell energy for 30x30 cell 

Voronoi foams at three compressive strains ( =0.05, 0.1, and 0.15). For these plots, energies 

of cells at the top and bottom boundaries were not counted. At each compressive strain, cell 

size and cell energy are positively correlated, and the strength of correlation increases with 

compressive strain. It was also found that across each compressive strain, about 73% of 

smaller-than-average cells ( / 1.0cell cellA A  ) with higher-than-average normalized energies (

/ 1cell nomU U  )  have at least one large-cell neighbor ( / 1.5cell cellA A  ). Collectively, these 

results indicate that the distribution of cell size is an important feature of a foam. 

 Cell energy maps for other foams reinforce the impact of polydispersity in cell size. 

From the foam analysis in Fig. 4.7, bubble growth foams have a tighter distribution of cell 

sizes. As a result, a larger fraction of cells efficiently contributes to the total strain energy in 

the foam (Fig. 4.12c). Groupings of high energy cells exist, but there are fewer low energy 

cells and more moderate energy cells present during deformation. The honeycomb has uniform 

cell sizes and, as a result, significantly more cells efficiently contribute to the response. Note 

that low energy cells near the top and bottom edges are seen in all three of the foams. This is 

due to prescribed boundary conditions where displacement and rotation of edge nodes are 

fixed.  

 Differences in energy distributions fade for specimens with fewer cells. Cellular strain 

energy measurements taken for cells in 10x10 cell foams are given in Figure 4.14. Probability 

density functions at the top of the figure show that peaks shift to the left for all foams but are 

more drastic for bubble growth and honeycomb foams. Compared to results for 30x30 cell 
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foams, average normalized cell energies, /cell nomU U = , decrease by 2% for 10x10 cell 

Voronoi foams, 11% for bubble growth foams, and 21% for the honeycomb. In these cases, 

boundary conditions significantly affect the response and indicate the greater sensitivity of 

more regular foams (having tight distributions in cell size) to the number of cells spanning a 

dimension. 

4.4.4 Impact of Foam Aspect Ratio on Response 

 

Results of the second FE study highlight the combined effects of microstructure, finite foam 

size, and boundary conditions. Stress-strain responses of 1:1, 2:1, and 4:1 aspect ratio foams 

with the same number of cells per unit length are plotted in Figure 4.15. General trends in 

response align with findings of the previous study: foams with tighter distribution in cell size 

have stronger stress-strain responses. However, features of the response are also affected to 

varying extents by the foam aspect ratio. In the linear elastic regime, Young’s modulus values 

for 4:1 foams are significantly higher than those in equivalent 1:1 aspect ratio foams. As aspect 

ratio increases, the lateral constraint from top and bottom boundary conditions puts the foams 

in increasing states of biaxial stress. Foams in biaxial compression have higher Young’s 

modulus values than those in uniaxial compression because bending is constrained, and axial 

extension/compression of struts becomes more significant. 

In the nonlinear regime, changing the foam aspect ratios leads to various collapse 

behaviors. For honeycomb 90 foams, elastic collapse does not occur in the 1:1 aspect ratio 

case.  However, as aspect ratio increases, elastic collapse occurs at approximately 10% strain 

for the 2:1 foam and at 2.5% strain for the 4:1 foam. The stress at which collapse occurs also 

decreases with increasing aspect ratio. The progression of deformation in each of these three 

cases (Fig. 4.16) illustrates the source of differences in response. For the 1:1 aspect ratio foam, 
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deformation at each compressive strain is accommodated by strut bending with some strut 

buckling at the foam edges. This causes gradual softening in response. Deformation in the 2:1 

aspect ratio foam is initially dominated by strut bending with minimal buckling at edge struts. 

At higher compressive strains, mode II buckling occurs due to the increased biaxial stress. As 

aspect ratio increases to the 4:1 foam case, so does lateral compressive stress, reducing the 

applied stress needed to cause buckling 7. This explains why mode II buckling occurs at a lower 

compressive stress and strain than in the 2:1 aspect ratio foam (illustrated in Fig. 4.16).   

In other foams, results indicate that increasing the aspect ratio causes elastic collapse to 

occur more abruptly at lower compressive strains. This is most evident in the Honeycomb 0 

foam. In the 1:1 aspect ratio case, deformation is initially accommodated by strut bending and 

buckling at the edges (Fig. 4.17a) causing a gradual reduction in tangent modulus. At higher 

compressive strains, mode I buckling begins to dominate in the foam and causes the response 

to transition to a plateau stress. For the 2:1 aspect ratio foam, strut bending is the dominant 

deformation mode at low strains, and strut buckling occurs only at the corners of the foam. The 

smaller fraction of buckled struts results in less softening of the response. Due to the increased 

biaxial stress state at higher aspect ratios, the compressive stress required to cause buckling is 

reduced, and elastic collapse occurs at lower strains. In the 4:1 aspect ratio foam, mode I 

buckling occurs at even lower compressive stresses and strains, truncating the gradual 

softening seen in the response of lower aspect ratio foams. (Fig. 17c highlights mode I buckling 

occurring in the foam.) From these results, increasing the foam aspect ratio, and biaxial stress 

state, reduces the gradual softening and causes large scale elastic collapse within the foam at 

lower compressive strains. Additional results for bubble growth and Voronoi foams are given 

in Figures 4.18 and 4.19 respectively.  
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4.5. Conclusions 

 

The present study of stochastic foams provides the following insights regarding the role of 

microstructure on the shape of the stress-strain response near the ‘knee’ associated with a 

decrease in tangent modulus:  

1. Foam microstructures associated with a purely random Voronoi structure do not 

reproduce characteristics of physical foams, exhibiting a broader range of cell sizes, 

number of struts per cell, and cell interior angles. In contrast, regularized Voronoi 

structures with a regularity parameter of 0.5 = , or a novel ‘bubble growth’ algorithm 

produce geometric features in close agreement with physical foams.  

2. The physical sample size (in terms of the number of cells along an edge) required to 

accurately represent statistical distributions in geometric features is roughly ten cells, 

irrespective of the method used to obtain realistic features. This implies that 

micrographs with ~10 cells along an edge are capable of producing distributions of cell 

characteristics that can be used to evaluate synthetic (algorithmic) foams with realistic 

microstructure.  

3. The physical sample size required to accurately predict mechanical response (without 

artificial invocations of periodicity) is approximately 30 cells along an edge. While 

smaller samples are acceptable for pure Voronoi foams (with 0 = ), the resulting foam 

microstructures contain features inconsistent with physical foams. 

4. Stochastic foams with feature distributions consistent with physical foams are 

significantly stiffer (by about ~20%) and exhibit higher stresses (by about ~35%) at 

moderate strains than purely random Voronoi foams (with 0 = ). One possible 

explanation is that outlier cells play an important role in governing the transition from 
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the initial modulus to the tangent modulus, an important consideration for foams 

designed for moderate strains. 

5. The importance of outlier cells suggests that ‘tailoring’ of stochastic foams will require 

controlling foaming processes to control the distribution of undersized or oversized 

cells. In general terms, softer responses (lower tangent moduli) are likely obtained with 

broader distributions in cell characteristics, while harder responses (higher tangent 

moduli) will require the elimination of outliers. The novel ‘bubble growth’ algorithm 

presented here for generating stochastic microstructures is one potential approach to 

identifying suitable process strategies, e.g. by controlling the distribution of void 

seeding and growth rates to achieve novel foam microstructures, including anisotropy.   

6. Nuanced changes in the sensitivity of response to cell size polydispersity arise for foams 

with high aspect ratios. For foams with uniform cell size, e.g., honeycombs, increasing 

the foams aspect ratio from 1:1 to 4:1 leads to a more abrupt transition from the linear 

domain to the stress plateau. This type of transition may not be ideal form impact 

scenarios such as those obtained during running. Here, the more gradual transition 

obtained in foams with moderate distributions in cell size may be preferable. 
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Appendix 4.A: Microstructure Analysis of Real Foams 

 

Multivariate plots for three separate real foams are given in Figure 4.A1. In all three cases, 

the majority of cells have 5-7 struts, and few cells have 3-4 or 8+ struts. Additionally, most 

cells do not have sharp interior angles. The distribution of cell area, however, varies between 

foam samples.  

Appendix 4.B: Finite Element Simulations Supplementary Material 

 

While the numerical formulation utilized here for handling large rotations is broadly consistent 

with that embedded in commercial codes such as Abaqus, our in-house code adopts an 

algorithm that is designed to increase simulation speed. The core concept of the algorithm is 

that the linear, small-deformation stiffness matrix for the beam elements is hard-coded 

(avoiding numerical integration), and large rotations are accounted for by transforming this 

matrix using a co-rotational formation. That is, the stiffness matrix in the deformed state is 

computed using average element rotation defined by the current nodal rotations. This implies 

that the instantaneous tangent stiffness matrix of the entire system (used to find define the 

Jacobian used in a Newton-Raphson iterative scheme for nodal equilibrium) can be computed 

from a series of matrix multiplications that can be easily hard-coded and hence fast. Full details 

of the mathematical implementation are presented elsewhere [*].  

 

Foam models used in finite element studies are given in Figure 4.B1 and 4.B2. Results of the 

mesh convergence study are given in Figure 4.B3.  

 

The majority of finite element simulations on foams were conducted using rigid boundary 

conditions (fixed platens). Additional simulations on Voronoi and bubble growth foams with 
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frictionless platens are given in Figure 4.B4 and compared to simulations using fixed platens. 

The responses of foams with frictionless platens exhibit a weaker dependence on cell density, 

although the impact of boundary conditions still persist to a sample size of 30x30 cells. 

Appendix 4.C: Deformation and Response of Honeycombs 

 

Honeycombs with cells in two orientations were simulated in uniaxial compression. Results 

from Figure 4.C1 show two distinct types of behavior indicated in the stress strain plot for 

30x30 cell foams. This is due to two different deformation mechanisms. In Honeycomb 0 

foams, struts initially deform via bending of most struts and buckling of vertical edge struts 

in the strain range 0.01 0.10 = − .  Beyond strains of 10%, elastic collapse occurs within the 

honeycomb causing the plateau stress pictured (blue curve). In Honeycomb 90 foams, struts 

deform via bending at each compressive strain. Strut buckling in vertical struts at the foam’s 

edges also occurs, but these struts account for a small fraction of the total. This is pictured in 

the top row of the figure. As a result of this deformation mode, the stress doesn’t exhibit a 

plateau, and the tangent modulus only gradually decreases at each compressive strain.  
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Appendix 4.D: Bending and Stretching Energy Partitioning for Each Foam Type 

 

One hypothesis for stress-strain differences between foam types was that each foam 

partitioned strain energy differently during deformation. When a foam is compressed, the 

total strain energy stored in the foam is made up of bending and stretching components. If 

honeycomb and bubble growth foams had a larger fraction of stretching strain energy 

compared to random Voronoi foams during deformation, this would explain their stronger 

responses.   

 To investigate this hypothesis, the strain energy in each strut was partitioned into 

bending and stretching components and summed to yield total energies, bU and sU . Each 

strain energy component was then differentiated by compressive displacement (resulting in 

bending and stretching forces) and then divided by the width and unit depth of the foam to 

yield total bending and stretching stress contributions from all struts in the foam. Results 

from energy and stress partitioning are plotted in Figure 4.D1 for 30x30 cell foams. 30x30 

cell foams were selected because significant differences in response were most evident 

between foams at this cell density. Clear differences in energy partitioning should be seen if 

the hypothesis is correct. However, the plots show that for each foam type and across each 

relative density, energy is partitioned similarly; one foam type does not have a significantly 

higher stretching contribution across the full strain range. In fact, stretching contributions are 

small compared to bending especially at lower relative densities. These results show that 

foams with more ordered microstructures have higher bending (effectively total) stresses than 

foams with irregular microstructures.   
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Table 4.1: Summary of previous studies of foams shows (i) if the study conducted a 

convergence study to find a mechanical representative volume element, (ii) if a geometric 

representative volume element was found, and (iii) how the elastic modulus and collapse stress 

vary with increasing regularity of foam microstructure. The relative densities investigated by 

each study are also included. 

 

 2D 3D 

Elastic Foams  Open-cell Closed-cell 

Mechanical RVE 

convergence 

17x1715   - 19   8x821   N=27 cells18 

N=125 cells23 

 

Geometric RVE    

Young’s modulus, 

0E  
Increase 5% = 19   

Decrease 1 8% = −
15,21 

Decrease 1 8% = − 18,23 

 

 

Collapse stress, c  Increase 15,19,21 Increase 18  

 

 2D 3D 

Elastic Foams  Open-cell Closed-cell 

Mechanical RVE 

convergence 

32x3224  

15x1517 

16x1616 

6x6x622 cited exp. 

Results from Andrews et 

al. 200131 

- 20   - 32 

6x6x633 and 5x5x525 

cited exp. Results 

from Andrews et al. 

200131 

 

Geometric RVE    

Young’s modulus, 

0E  
Decrease 3 9% = −
16 

Insensitive 15% =
17 

Increase 3 9% = − 22 

Increase 12.5% = 20 

Decrease 1 10% = − 32 

Decrease 33 

Increase 25 

Collapse stress, c  Increase 16,17 Increase 20,22,32 Increase 25,33 
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Figure 4.1: Illustrations of foam microstructures: (a) Voronoi tessellation of random points, 

(b) regularized Voronoi tessellation with regularity parameter 0.5 = , (c) a perfect hexagonal 

honeycomb corresponding to a regularity parameter 1 = , and (d) result of the bubble growth 

algorithm. (e) Typical stress-strain curves of an elastomeric foam, showing (i) the initial 

Young’s modulus 0E , (ii) the instantaneous tangent modulus tE  and (iii) the characteristic 

stress c as defined by the backwards projection of the tangent modulus at a fixed strain 

interval. 
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Figure 4.2: (a) Microstructure image of a polyurethane closed-cell foam from Brondi et al. 
38

. 

(b) Image after threshold editing using ImageJ. (c) Centroids are found for each cell from the 

segmented image. (d) A Voronoi mesh is generated using the centroids as the seed points.  
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Figure 4.3: (a) A bivariate scatterplot with cell area and interior angles as axes, made from 

analyzing images of gas-expansion polymer and metal foams. Plots on the edges show fitted 

probability density functions of each characteristic. (b) Datapoints in the scatterplot are colored 

orange, blue, and green for cells having 3-4, 5-7, and 8+ struts. Normalized probability density 

functions in the marginal plots are also updated to show the distributions of cell characteristics 

for each of the three color groups. (c) A density plot of the joint probability distributions shows 

regions where the datapoints are concentrated for each of the three groups. The joint density 

plot is separated to show (d) a magnified view of the marginal plots for 3-4 and 8+ sided cells. 

Percentages of each category are included in the plots. 
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Figure 4.4: Illustrations of the bubble growth algorithm show bubbles growing at three growth 

steps and resultant foam structure (bottom panes). (a) Centroids of bubbles are used to generate 

Voronoi meshes. (b) As bubbles grow (dashed blue to red) some bubbles merge when the 

distance between edges is smaller than a specified tolerance. (c) In a later growth step (dashed 

red to green), some bubbles with dissimilar areas merge and the new centroid is weighted by 

the two bubble areas.  
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Figure 4.5: Three characteristics of foam microstructure are tracked for foams with different 

initial cell dimensions at each growth step: (a) cell area coefficient of variation, (b) fraction of 

cells with 4 struts, fraction of cells with interior angles 90  . In each plot, the lightest red 

points track microstructural features in 15 foams with 400 initial cells (20x20) and the darkest 

red points track features in 15 foams with 2,500 cells (50x50).  At moderately high growth 

steps, / 0.6 0.7totaln n = − , variation between cell areas and unrealistic cell characteristics reach 

a minimum.  
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Figure 4.6: Multivariate density plots are used to illustrate distributions in microstructural 

features of foam ranging in regularity parameter: (a) 0 = , (b) 0.25 = , (c) 0.5 = , and (d) 

0.75 = , (e) 1 = . (f) results from foams generated using the bubble growth algorithm is 

plotted for comparison. Each plot shows the results of 10 generated foams. Examples of each 

analyzed foam are illustrated above the plots. 
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Figure 4.7: Multivariate density plots for (a) Voronoi tesselated foams and (b) regularity 

parameter foams ( 0.5 = ), and (c) bubble growth generated foams with different cell 

densities. Distributions in microstructural features are consistent across 10x10, 20x20, and 

30x30 cell foams. Orange, blue, and green data shows cells with 3-4, 5-7, and 8+ struts 

respectively.  
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Figure 4.8: Normalized stress-strain results are plotted at for honeycombs in two orientations 

(red and blue), bubble growth foams (purple) and Voronoi-tesselated foams (green) at three 

relative densities: (a) 0.05, (b) 0.15, and (c) 0.25. The darkest shade of each color corresponds 

to 30x30 cell foams. As colors get lighter, the cell density in the foam decreases to 20x20, 

15x15, and 10x10 cells. Standard error bars are included for each response. 

 

 

Figure 4.9: (a) Results for 30x30 cell foams are compared to responses of 30x30 cell foams 

generated using regularity parameters. (b) Results for 10x10 and 30x30 cell foams with varying 

regularity parameters show that foams with regular microstructures are more sensitive to 

boundary conditions. 
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Figure 4.10: (a & b) Comparison of measured Young’s modulus values for 10x10 and 30x30 

cell foams with predictions from the Gibson-Ashby model (dashed line). (c & d) The 

characteristic stress is also plotted for each 10x10 and 30x30 cell foam. Red lines are for 

honeycombs (HC), purple is for bubble growth foams (BG), and green is for random Voronoi 

foams (V). 
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Figure 4.11: Normalized tangent moduli values are plotted for each foam type at three relative 

densities. Borders of each color outline the minimum and maximum values found from each 

foam type with different cell densities. Solid circles show measured values for 30x30 cell 

foams and open circles show the same for 10x10 cell foams at increments of 5% compressive 

strain. 
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Figure 4.12: (a) Probability density functions are plotted for 30x30 cell Voronoi foams (light 

green), bubble growth foams (light purple), and honeycombs tested in two orientations (red 

and blue) at three compressive strains:   =0.05 , 0.10 , and  0.15. Dark green and purple curves 

show the cumulative probability density curves of 10 Voronoi and 10 bubble growth foams 

respectively. Deformation maps show the distribution and evolution of normalized cell strain 

energy in a (b) Voronoi foam, (c) bubble growth foam, and (d) honeycomb. 
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Figure 4.13: For all 30x30 cell Voronoi foams, normalized cell size is plotted against 

corresponding cell energies at three compressive strains: (a) 0.05 = , (b) 0.10 = , and (c) 

0.15 = . Fitted trendlines are plotted as dashed lines. The strength of correlation increases 

with compressive strain. 
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Figure 4.14: (a) Probability density functions are plotted for 10x10 cell Voronoi foams (light 

green), bubble growth foams (light purple), and honeycombs tested in two orientations (red 

and blue) at three compressive strains:  =0.05, 0.1, and 0.15. Dark green and purple curves 

show the cumulative probability density curves of 10 Voronoi and 10 bubble growth foams 

respectively. Deformation maps show the distribution and evolution of normalized cell strain 

energy in a (b) Voronoi foam, (c) bubble growth foam, and  (d) honeycomb. 
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Figure 4.15: (a) Normalized stress-strain results for each of the four foam types at three aspect 

ratios. All results are for foams at 15% relative density. Voronoi and bubble growth results are 

averaged across 10 simulations. Honeycomb results are from single simualtions.  
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Figure 4.16: Probability density functions and deformation maps of Honeycomb 90 foams are 

plotted at three compressive strains: (a) 0.05 = , (b) 0.10 = , and (c) 0.15 =  . Deformation 

maps show the distribution and evolution of normalized cell strain energy in each foam and 

show the emergence of mode II buckling as foam aspect ratio increases. (Corresponding stress-

strain curves are plotted in Fig. 4.15) 
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Figure 4.17: Probability density functions and deformation maps of Honeycomb 0 foams are 

plotted at three compressive strains: (a) 0.05 = , (b) 0.10 = , and (c) 0.15 =  . Deformation 

maps show the distribution and evolution of normalized cell strain energy in each foam and 

show mode I buckling occurring at lower compressive strains for larger foam aspect ratios. 

(Corresponding stress-strain curves are plotted in Fig. 4.15) 
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Figure 4.18: Cumulative probability density functions for sets of 10 bubble growth foams 

and representative deformation maps of are plotted at three compressive strains: (a) 0.05 = , 

(b) 0.10 = , and (c) 0.15 = . Deformation maps show the distribution and evolution of 

normalized cell strain energy in each foam and show bands of cells with high normalized 

energies. (Corresponding stress-strain curves are plotted in Fig. 4.15) 
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Figure 4.19: Cumulative probability density functions for sets of 10 Voronoi foams and 

representative deformation maps of are plotted at three compressive strains: (a) 0.05 = , (b) 

0.10 = , and (c) 0.15 = . Deformation maps show the distribution and evolution of 

normalized cell strain energy in each foam and show bands of cells with high normalized 

energies. (Corresponding stress-strain curves are plotted in Fig. 4.15) 
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Figure 4.A1: Individual multivariate density plots for three real foams  are created by 

analyzing Voronoi models of gas expanded (a & b) polymer foams 27 and a (c) metal foam 28. 
Figure 4.20 
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Figure 4.B1: Images of Voronoi, bubble growth, and honeycomb foams used in finite element 

simulations. Ten different sets of bubble growth and Voronoi foam were used at each relative 

density in this study. Honeycomb models were the same at each relative density. Figure 4.21 
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Figure 4.B2: Images of Voronoi, bubble growth, and honeycomb foams used in finite element 

simulations where the impact of microstructure on macroscopic foam dimensions was studied. 

Ten sets of bubble growth and Voronoi foam were used in this study. Figure 4.22 
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Figure 4.B3: Mesh convergence studies on two types of foams (Voronoi and bubble growth) 

with different cell densities (approx. 100 and 400 cells) show that the mechanical response 

converges to a common solution when the element size is approximately 1/3 of an average 

strut length. Each plotted response is an average of 10 simulations. Figure 4.23 
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Figure 4.24: Results from bubble growth and Voronoi foam simulations using (left) 

frictionless platens and (right) fixed platens. Different shades of each color correspond to 

foams with different numbers of cells. Each curve shows the average of 10 simulations with 

standard error bars included. 

 

 

Figure 4.C1: Stress-strain curves for 30x30 cell honeycombs at 0.15 = are marked with 

three points of interest to show differences in deformation behavior. At each deformation step, 

cells are colored by their relative change in area, 0/A A . Figure 4.25 
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Figure 4.D1: Total bending and stretching stress contributions from all struts averaged over 

each 30x30 cell foam at (a) 5%, (b) 15%, and (c) 25% relative density. Solid lines show the 

bending component of the stress-strain response and dashed lines show the stretching 

component. Results indicate that differences in response are not due to differences in energy 

partitioning. Figure 4.26 
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Chapter 5  
 

Conclusions and Recommendations 

5.1 General Conclusions and Impact 

 

The overarching goal of the research in this dissertation was to identify and analyze concepts 

to tailor the compressive response of ordered lattices and stochastic foams. Resulting 

discoveries may expand the design space and attainable responses of cellular structures. A 

common approach was employed throughout: break the structure of interest down into 

fundamental structural components, understand the role of the components in the response, 

and identify which features can be modified to tailor the response in targeted ways. 

  In Chapter 2, the primary objective was to identify a design concept that allowed for 

high load-bearing capacity, high straining capacity, and strain reversibility. This was achieved 

by combining elements from tensegrity structures with those in periodic stretch-dominated 

lattices. The concept involved two materials with disparate properties: rigid polymers for struts 

that bear compressive loads and compliant elastomers for struts that are loaded in tension. The 

topology of the structure produced a stretching-dominated response, with stiffness and load-

bearing capacity controlled by the tensile struts. Implementation of this concept requires 

special consideration of joint design: joints must enable both effective load transfer and strut 

rotation. For this reason, hinged joints were used in the current implementation. The resulting 

2D bi-material structures were able to accommodate large macroscopic compressive strains 

through strut rotation at the joints and stretching of the tensile struts. The concept showed 

promise in attaining both high strength and straining capability. 

 Analytical mechanics models yielded a useful framework for predicting both the stress-

strain response and the onset of failure. The analyses showed that the compressive response 
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depends sensitively on the angle of inclined (compressive) struts and the stiffness of the 

transverse (tensile) struts. Increasing either variable results in an increased load bearing 

capacity of the bi-material lattice. The analysis was also useful for developing design 

guidelines to prevent common failure modes, focusing on properties of the constituent 

materials, strut morphology, and network morphology. To prevent strut rupture, the ductility 

of transverse (tensile) struts must be considered. Increased ductility of struts is required for 

lattices with high inclination angles (compressive struts at 0 65  ) compared to that required 

for lattices with low inclination angles ( 0 55   ). To prevent compressive failure modes such 

as strut buckling and strut yielding, ratios of characteristics are important to consider: strut 

material stiffness ratio, /c tE E , strut thickness ratio, /c tt t , compressive strut slenderness ratio, 

/c ct L , and the ratio between compressive strut yield strength and tensile strut stiffness,

, /y c tE . To achieve the higher load bearing capacity afforded by lattices with high inclination 

angles, increasing the numerator of each ratio is necessary. 

 The specific lattice design employed in this part of the study had two shortcomings. 

The first was the need for large macroscopic changes in lateral dimensions when the lattice 

was compressed. This introduced large effects of friction along the loaded surfaces. The second 

shortcoming was undue constraint at the joints leading to some strut bending. 

  In Chapter 3, the 2D bi-material concept was extended to 3D. Deficiencies in the 

original 2D design were addressed by selection of a network topology that keeps lateral 

displacements entirely within the body of the lattice (not affecting the external surfaces) and 

through the use of knob-and-socket joints with small gaps to minimize rotational constraint. 

The resulting 3D lattices deformed stably up to high strains and achieved the objective 

response. Characteristics of the compressive response were similar to those of the 2D lattices: 
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initial hardening due to stretching of the tensile struts followed by gradual softening due to 

progressive changes in strut inclination angle. This type of response is promising for impact 

applications. 

 The initial 3D designs were modified to further tailor compressive response. Design 

modifications focused on the elastomeric (tensile) component, since this component governs 

the compressive response. In one design, curved struts were added to each of the three straight 

struts (from the previous design). The intended goal was to extend the hardening regime by 

adding elements that initially carry little load but progressively stiffen and contribute to the 

macroscopic response at higher compressive strains. Results were less favorable than those 

predicted by analytical models, and the additional material added for curved struts was 

inefficiently utilized.  

 In a second design iteration, a greater expansion of the design and property space was 

achieved using elastomeric sheets in place of struts, exploiting the stiffer biaxial tensile 

response of elastomers. This design led to a twofold increase in load bearing capacity. 

However, both the experimental measurements and the finite element simulations show that 

this structure is more susceptible to rupture because of the high strain concentrations in the 

transition regions. This problem was partially mitigated by grading the sheet: essentially 

moving material from regions of low strain energy to regions of high strain energy. The result 

was a more uniform distribution of strain energy density, indicating a lower likelihood of 

rupture. This conclusion was supported by experimental measurements on bi-material 

structures with graded sheets. More broadly, the results of this study demonstrate the potential 

for creatively combining elements of open and closed-cell lattices along with multiple 

materials in further tailoring mechanical response.  
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 To extend unit cell designs to larger multi-cell structures, a tiling concept was proposed. 

This concept involves arranging unit cells so that struts within one cell do not make contact 

with those in neighboring cells as the structure is compressed. This concept allows for stable 

axial deformation of the cell array and prevents large macroscopic changes of the entire 

structure thereby achieving a plastic Poisson’s ratio of zero. It raises some questions, however, 

about the stability of the structures when subjected to lateral loads. This may require more 

concepts in tiling and joining: a subject of possible future work.  

 Shifting from ordered lattices to stochastic foams, the primary objective of the work 

presented in Chapter 4 was to establish connections between microstructural features and the 

mechanical response of finite-sized foams. Approaches based on multivariate scatter plots and 

associated probability density plots were introduced as a means to better visualize distributions 

in microstructural characteristics and their relations with one another. Characteristics of 

interest included cell area, number of struts per cell, and cell interior angles. Analyses on real 

foams helped to identify a baseline of realistic features, notably cells having between 5 and 7 

struts and interior angles greater than 90 . Using the analysis on foam models helped to make 

connections between regular or irregular microstructures and specific microstructural features. 

Moving from irregular to regular microstructures results in a reduction of unrealistic features, 

i.e., cells having 3-4 struts and low interior angles ( 90   ). 

 Results from finite element simulations revealed that polydispersity in cell size has a 

large effect on the stress-strain response. Ordered honeycombs, having uniform cell size, 

exhibit the strongest response, followed by bubble growth-generated foams (cell size 

coefficient of variation 0.32 ), and then Voronoi tesselated foams (cell size 0.52CV  ). 

Strain energy maps show that a wide distribution in cell sizes results in larger-than-average 
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cells accommodating deformation while smaller-than-average cells deform less. The 

nonuniform distribution in strain energy density results in a softer compressive response. 

Broadly, these results elucidate observations made in previous studies on the effects of 

irregular and regular microstructures on the compressive response. Increasing regularity indeed 

leads to a stronger compressive response, an effect caused by tighter cell size distributions and 

not by other features that vary with regularity.  

 Additionally, the compressive response of foams with tighter distributions in cell size 

was found to be more sensitive to boundary conditions. For these foams, the compressive stress 

increases as the number of cells in the model increases; the results converge for models having 

containing arrays of 30x30 cells. Conversely, foams having wider distributions in cell size, like 

the Voronoi foams, show only weak sensitivity to number of cells. These results highlight the 

importance of cell size polydispersity in applications where only small numbers of cells span 

a part dimension. 

 Nuanced changes in the sensitivity of response to cell size polydispersity arise for 

foams with high aspect ratios. For foams with uniform cell size, e.g., honeycombs, increasing 

the foams aspect ratio from 1:1 to 4:1 leads to a more abrupt transition from the linear domain 

to the stress plateau. This type of transition may not be ideal form impact scenarios such as 

those obtained during running. Here, the more gradual transition obtained in foams with 

moderate distributions in cell size may be preferable. Collectively, the results demonstrate the 

coupled effects of cell size polydispersity, boundary conditions, and foam size on compressive 

response.  
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5.2 Future Work 

 

Three specific research problems are proposed for future work. The first is to build upon 

quasi-static results and examine the role of dynamic loading on the mechanical response of 

multi-material lattices. Rate effects would naturally arise from the intrinsic rate sensitivity of 

the constituent materials. Additional effects may arise from the rate sensitivity of frictional 

sliding within bi-material joints. Finally, for very high loading rates, effects of internal inertia 

and shock waves may come into play. 

 A second area of future study stems from recognizing that bi-material structures greatly 

extend the design landscape of lattices. New considerations include: (i) strut material 

properties, especially ratios between properties, (ii) joint design, surpassing the limits of rigid 

connections, and (iii) phase distribution to describe how different strut populations are 

distributed within a lattice. With increasing design variables, an area of future work would be 

in the generalization and formalization of descriptions of multi-material lattices. This could 

include devising a unifying taxonomy of lattice structures, building on the work of Zok et al. 

1. In that work, concepts from crystallography and geometry were used to describe nodal 

locations and connectivity of struts. The resulting taxonomy was built on a hierarchy of 

geometric complexity, starting with elementary cubic lattices, then moving to non-cubic and 

compound lattices. Existing descriptions of single-material compound lattices may prove to 

be a useful starting point for descriptions of periodic bi-material lattices.  

 A third area relevant to design of stochastic polymer foams would involve the 

incorporation of the intrinsic viscoelastic characteristics of the constituent material into models 

of macroscopic cyclic response. In the past, effects of viscoelasticity have been tied to 

performance of foams in athletic shoes, especially with respect to running economy, comfort, 
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and injury prevention 2–5. Viscoelastic effects could be implemented in the types of models 

used here through, for example, the standard linear solid model commonly employed in the 

polymer research community. This could reveal additional coupled effects of intrinsic material 

properties (including damping), foam architecture, foam size, and macroscopic response. In 

turn, these effects might lead to new strategies to tailoring foam properties. 
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