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CHAPTER 15

Clinical spectrum of VCP myopathy,
Paget disease, and frontotemporal
dementia: experimental models and
potential treatments
Virginia E. Kimonis1, Eric Dec2, Mallikarjun Badadani2, Angele Nalbandian2,
Jouni Vesa2, Vincent Caiozzo3, Douglas Wallace2,4, Barbara Martin5, Charles Smith5,
and Giles D. Watts6
1Department of Pediatrics, University of California Irvine School of Medicine, Orange, CA, USA
2Division of Genetics and Metabolism, Department of Pediatrics and Center for Molecular, and Mitochondrial Medicine and

Genetics, University of California, Irvine, CA, USA
3Department of Orthopedic Surgery, University of California, Irvine, CA, USA
4Department of Biological Chemistry, Departments of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
5Department of Neurology, University of Kentucky Medical School, Lexington, KY, USA
6School of Medicine, Cell Biology and Biochemistry, Health Policy and Practice, University of East Anglia, Norwich, Norfolk, UK

Introduction

Clinical features of VCP hereditary
inclusion-body myopathy
Hereditary inclusion-body myopathy (h-IBM) is a

heterogeneous group of disorders associated with

rimmed vacuoles and cytoplasmic and intranuclear

inclusions of 15–21-nmfilaments [1]. An autosomal

recessive quadriceps-sparing form of the disorder

with onset in early adulthood prevalent among the

Iranian Jewish population is associated with muta-

tions in theUDP-N-acetylglucosamine-2 epimerase/

N-acetylmannosamine kinase (GNE) gene [2, 3].

Nonaka inclusion-body myopathy is an allelic dis-

order with a similar phenotype [4].

Inclusion-body myopathy associated with Paget

disease of the bone and frontotemporal dementia

(IBMPFD; OMIM 167320), first reported in 2000, is

an autosomal dominant, progressive, and ultimately

lethal condition with onset typically in the 20s to

30s. Physical exam reveals muscle weakness and

atrophy of the pelvic and shoulder girdle, marked

scapular winging, and difficulty walking up stairs

[5–7]. Muscle disease typically progresses to involve

other limb and respiratory groups; ultimately, in-

dividuals die in their 50s to 60s from progressive

muscle weakness, and cardiac and respiratory fail-

ure [5, 8]. Electromyography shows bothmyopathic

and neurogenic changes suggestive of myopathy,

and serum creatine kinase concentration is usually

normal to mildly elevated (range, 40–1145U/L;

normal range, 20–222U/L).

Histologically, patients show the presence of

rimmed vacuoles and inclusion bodies in themuscle

fibers (see Plate 15.11). Electron micrographs of

affected skeletal muscle demonstrate prominent

15–21-nm tubulofilamentous inclusions within

myonuclei. Weihl et al. [9] identified large TAR
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DNA-binding protein 43 (TDP-43)-positive ubiqui-

tinated inclusions in muscle cytoplasm in IBMPFD

patients, thus adding h-IBMs to the growing list of

TDP-43-positive inclusiondiseases.Kimonisetal. [5]

reported cardiomyopathy in three out of 11 indivi-

duals in the original family. Hubbers et al. [10] re-

ported thatmutant valosin-containingprotein (VCP)

leads to a novel form of dilatative cardiomyopathy

with inclusion bodies.

Paget disease of the bone in IBMPFD
Paget disease of the bone (PDB) is a common

condition characterized by increased and disorga-

nized bone turnover, which can affect one or

several skeletal regions (Figure 15.1). These abnor-

malities disrupt normal bone architecture and lead

to various clinical complications such as bone pain,

osteoarthritis, pathological fracture, and bone de-

formity. Genetic mutations play an important role

in PDB by disrupting normal signaling in bone

remodeling. The nuclear factor kB (NFkB) signal-
ing pathway is one such pathway identified as

being important in PDB. To date there are four

gene mutations or polymorphisms in the NFkB
signaling pathway associated with increased risk

of PDB. These include TNFRSF11A, which encodes

receptor activator of NFkB ligand (RANK),

TNFRSF11B, which encodes osteoprotegerin, VCP,

and SQSTM1 [11, 12], the latter of which encodes

the signaling adaptor p62, a multidomain protein

implicated in the activation of the transcription

factor NFkB [13–16]. Recently variants in opti-

neurin (OPTN) was found to be a risk factor for

Paget’s disease in a genome-wide association study

[15]. Interestingly OPTN mutations have also been

found in patients with amyotropic lateral sclerosis

[16]. Thus these mutations are likely to predispose

to PDB by disrupting normal NFkB signaling. NFkB
plays a critical role in cell survival, in addition to

regulating bone turnover.

Early-onset PDB is seen in 49% of IBMPFD pa-

tients [5, 7], and typically begins in the 30s to 40s,

the mean age of onset being 42 years. The diagnosis

of PDB is based on serum alkaline phosphatase

(ALP) concentration, urine concentrations of pyr-

idinoline (PYD) and deoxypyridinoline (DPD), and

radionuclide scans or skeletal radiographs. Zoledro-

nic acid is a potent bisphosphonate that has recently

been licensed for the treatment of established PDB.

A single injection results in sustained biochemical

remission in over 95% of subjects for up to

2 years [17]. It is therefore feasible and appropriate

to identify these patients, since they represent a

high-risk group who might gain benefit from early

therapy.

Frontotemporal dementia in IBMPFD
Frontotemporal dementia (FTD) is a clinicopatho-

logical entity comprising about 3% of all dementias

Figure 15.1 Lateral spineX-ray of a 43-year-oldmanwith

Paget disease andmyopathy shows sclerotic changes of the

vertebral body at the level of T7 thoracic vertebral body.
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of the elderly [18–20]. Symptoms typically involve

personality ormood changes such as depression and

withdrawal, and language difficulties. Patients may

become disinhibited or exhibit antisocial behavior.

Some individuals with asymmetric involvement of

the left hemisphere may develop extraordinary vi-

sual or musical creativity while experiencing lan-

guage impairment. In contrast to Alzheimer disease

patients who typically develop early symptoms of

episodic memory loss, FTD patients exhibit altered

behavior or loss of speech or language as initial

manifestations. Episodicmemory in FTD is relatively

preserved. In later stages of FTD, patients may de-

velop Parkinsonism or amyotrophic lateral sclerosis

(ALS)-like features.

In the disinhibition-dementia-Parkinsonism-

amyotrophy complex, mapping to chromosome

17q21–q22, mutations disrupt the tau (microtu-

bule-associated protein tau; MAPT) gene. The ma-

jority of FTD families, however, have no demon-

strable tau mutations [21–24]. Recently FTD has

been associated with mutations in progranulin

[25], which maps very close to the MAPT gene on

chromosome 17, accounting for early confusion in

the designation of FTD-17 families. Progranulin

mutations are associated pathologicallywithubiqui-

nated neuronal cytoplasmic inclusions positive for

TDP-43. In contrast, FTD associated with mutations

in the CHMP2B gene have ubiquitin-positive but

TDP-43-negative inclusions.

In patients with IBMPFD, onset of dementia in

affected individuals occurred on average at 54 years

(range 39–62 years) with an overall frequency of

33% [26]. The diagnosis of FTD is based on compre-

hensive neuropsychological assessments that reveal

behavioral alteration (e.g. personal/social unaware-

ness, or disinhibition), early expressive language

dysfunction or semantic loss, and preservation of

memory, orientation, and ideomotor praxis [27].

We performed a systematic analysis of the brain

neuropathologic changes in eight patients with VCP

mutations and identified ubiquitin-positive neuro-

nal intranuclear inclusions and dystrophic neurites

[28] (see Plate 15.12), making VCP disease another

example of familial frontotemporal lobar degener-

ation with ubiquitin-positive inclusions (FTLD-U).

Neumann et al. [29] found that a hyperphosphory-

lated, ubiquitinated, and cleaved form of TDP-43,

known as pathologic TDP-43, is the major disease

protein in ubiquitin-positive tau- and a-synuclein-
negative FTD (FTLD-U), and in ALS. Accumulations

of TDP-43 colocalized with ubiquitin pathology in

eight of our patient IBMPFD brains, including both

intranuclear inclusions and dystrophic neurites

[30]. FTD associated with VCP is now classified

under the rubrick of FTLD-U along with disorders

such as ALS [31, 32]. Thus our work on the FTD

associated with IBMPFD has lent new insights into

the common pathogenesis of a spectrum of ubiqui-

tin-related disorders that include FTD alone (pro-

granulin-associated), FTD plus muscle and bone

disease (IBMPFD), familial FTD with ALS, and mo-

tor-system degeneration without FTD (ALS).

Because of the variable phenotype in inclusion-

body myopathy, PDB and FTD modifier genes were

evaluated. From a database of 231 members of 15

families, 174 had an apolipoprotein E (APOE) geno-

type available for regression analysis. Analysis of the

data suggested a potential link between the APOE 4

genotype and the FTD found in IBMPFD. In contrast

we observed no association between FTD and the

MAPT H2 haplotype [33].

Molecular studies of IBMPFD

A genome scan, performed at the Marshfield mam-

malian genotyping center, revealed linkage to

chromosome 9p13.3–p12 in the original family re-

ported [5] and three other families [6]. IBMPFDwas

subsequently attributed to being caused by muta-

tions in the gene encoding VCP by Watts et al. [26],

who identified six missense mutations in VCP in 13

families. VCP is highly conserved in evolution, be-

longing to the family of AAA proteins (ATPases

associated with a variety of cellular activities) and

has two ATPase domains (D1 and D2) [34–38] and

two linker domains (L1 and L2), as well as the N-

terminal- and C-terminal domains (Figure 15.2).

VCP forms homohexamers and binds to multiple

cofactors at both its N-terminal and C-terminal do-

mains. Through binding cofactor molecules, VCP

can adapt its function to suit many homeostatic

processes important for the cell’s life cycle. It has
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been reported to be involved in several cellular

activities including endoplasmic reticulum (ER)-

associated degradation (ERAD) of proteins, homo-

typic membrane fusion, transcription activation,

nuclear envelope reconstruction, postmitotic

organelle reassembly, cell-cycle control, and apo-

ptosis [39–41].

BMPFD is increasingly recognized as a distinct

disorder although it is still underdiagnosed because

of its variable phenotype, which leads to misdiag-

noses. Kimonis et al. [8] reviewed data on 49

affected individuals in nine IBMPFD families and

identified myopathy among 42 (87%) individuals,

diagnoses including limb girdlemuscular dystrophy

(LGMD), facioscapular humeral muscular dystro-

phy, scapuloperoneal muscular dystrophy, and

ALS, among others. Kimonis and Watts [42, 43]

have reviewed clinical results in IBMPFD and sum-

marized findings in 20 families harboring 10 mis-

sense mutations [44].

As a result of studies in patients from our North

American families with VCPmutations [26], families

are now being reported from several parts of the

world with unique phenotypes: Germany [45, 46],

France [47], Austria [48], Italy [49, 50], the UK [51],

and other families from the USA [52] and by our

group [53]. As a result of increased awareness of VCP

disease, and hence accurate reporting of VCPdisease,

the phenotypic range associated with VCPmutations

has significantly expanded. Dilated cardiomyopathy,

cataracts, sphincter disturbance, hepatic fibrosis, and

features of ALS and Parkinson disease are now a part

of the spectrum of IBMPFD manifestations.

At the present time 20 disease mutations have

been reported (Figure 15.2, Table 15.1) with many

more mutations expected to be identified as recog-

nition of this disorder increases. The majority of the

mutations have been found to cluster in the N-

terminus of VCP which encompasses a domain that

can bind ubiquitin and other substrate-recruiting

proteins [54, 55]. In particular, we have identified a

mutationhotspot at amino acid residue155 (R155H/

P/C/S/L). Additionally,most of themutated residues

causing IBMPFD are adjacent and potentially inter-

act with each other, suggesting that these residues

may have a similar and specific function within the

VCP homohexamer [53].

We reviewed clinical features of familieswithVCP

disease in order to perform a genotype/phenotype

analysis. Because of the enormous intrafamilial var-

iation, genotype/phenotype analysis was difficult

between families. Notable associations, however,

included a more severe and early-onset myopathy

and dementia in family 6 that had the A232E mu-

tation. Families with the R159C mutation did not

develop PDB [57]. Although, none of the mutations

had a significant effect on the age of onset for FTD

(which was relatively consistent between families

with VCP mutations), there was an increase in the

incidence of FTD among females.

CDC48/VCP/p97

L1 D1 L2 D2

16151413121110987654321 17

C-terminalN-terminal

A232E
R93C, R95G,C

R155H, P, C, S,L
G157R, R159H,C,

N387H

I27V

R191Q

T262A
A439S

P137L
L198W
I206F

Ubiquitin & Recruiting 
Co-factor binding

Processing Co-factor 
binding

Figure 15.2 Functional domains and disease mutations in VCP. The domains of VCP include the ubiquitin-binding N-

terminal domain (CDC48), flexible linker (L1), first AAA ATPase domain (D1), linker region (L2), second AAA ATPase

domain (D2), and the C-terminal domains. There are 17 exons and arrows indicate the locations of all 20 mutations. The

majority of mutations occur in the ubiquitin-binding N terminal domain.
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VCP is at the intersection of the
ubiquitin-proteasome system and
autophagy
The ubiquitin-proteasome system (UPS) is themajor

extralysosomal pathway responsible for degradation

of both structural and regulatory proteins during

muscle remodeling in eukaryotes. The UPS com-

prises a ubiquitin-conjugating system and the 26S

proteasome. The ubiquitin-proteasome protein deg-

radation system (UPD) has been shown to involve

VCP via its cooperation with a binary Ufd1/Npl4

cofactor, enabling VCP targeting of specific sub-

strates for degradation [54, 56–58]. Protein degra-

dation mediated by the UPS is essential for the

elimination of misfolded proteins from the ER in

response to ER stress. It has been reported that the

AAA ATPase p97/VCP/CDC48 dislocates proteins

across the ER membrane allowing subsequent ubi-

quitin-dependent degradation by the 26S protea-

some in the cytosol. Degradation of a prototypical

misfolded ERAD substrate,DF508CFTR, is slowed in

IBMPFD mutant-expressing cells. Consistent with

this, the undegraded DF508CFTR colocalized with

IBMPFD mutant p97/VCP in ubiquitinated inclu-

sions. [59]. Hubbers et al. [10] found that transient

and stable expression of IBMPFD mutants p97/VCP

R93C, R155C, and R155H in HEK293 and C2F3

myoblasts did not result in an increase in ubiquti-

nated proteins. Genetic studies in Caenorhabditis

elegans revealed that IBMPFD mutations selectively

impair the proteasomal degradation of the myosin

chaperone, Unc-45, lending support for the dysre-

gulation of the UPS [60–62].

Alterations in UPS function have been implicated

in the pathogenesis of a variety of sporadic and

familial neurodegenerative diseases including Par-

kinson disease, Alzheimer disease, polyglutamine

repeat diseases, and ALS [63–65]. Mizuno et al. [66]

called VCP “vacuole-creating protein” and demon-

strated that VCP was observed in ubiquitin-positive

intraneuronal inclusions in both motor neuron dis-

ease with dementia, and ballooned neurons in

Creutzfeldt–Jakob disease. In Alzheimer disease,

VCP has been found in dystrophic neurites while

Table 15.1 List of VCP disease mutations

Amino acid c. DNA Base change Exon Domain Number of

families

References

1 I27V 79A!G 2 N-terminus 1 [80]

2 R93C 277C! T 3 N-terminus 4 [10, 47, 81]

3 R95G 283C!G 3 N-terminus 2 [26]

4 R95C 283C! T 3 N-terminus 1 [44]

5 P137L 410C! T 4 N-terminus 1 [82]

6 R155C 463C! T 5 N-terminus 5 [12, 26, 45, 47, 83]

7 R155H 464G!A 5 N-terminus 8 [10, 26]

8 R155P 464G!C 5 N-terminus 1 [26]

9 R155S 463C!A 5 N-terminus 1 [69]

10 R155L N/A 5 N-terminus 1 [84]

11 G157R 469 G!C 5 N-terminus 1 [46]

12 R159H 476G!A 5 N-terminus 2 [48]

13 R159C 476G!A 5 N-terminus 2 [49, 52]

14 R191Q 572G!A 5 Linker 1 1 [26, 52]

15 L198W 593T!G 6 Linker 1 1 [53, 84]

16 I206F 828A! T 6 Linker 1 1 [82]

17 A232E 695C!A 6 Junction (L1–D1) 1 [26]

18 T262A N/A 7 AAA D1 1 [52]

19 N387H 1159A!C 10 AAA D1 1 [53]

20 A439S N/A 11 Linker 2 1 [85]
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granules of granulovacuolar degeneration and neu-

rofibrillary tangles were not positively stained for

VCP. In Parkinson’s disease, Lewy and Marinesco

bodies and Lewy neurites have been found to stain

positive for VCP as well. These results indicate that

VCP reacts with abnormal or misfolded proteins and

plays a role in accelerating the process of degener-

ation and cell death.

A gain-of-function concept explains much of

the phenotype seen in this disease as indicated by

the work by other researchers [67, 68]. The work

of our laboratory and that of other researchers

suggest that VCP-mutation-induced neurodegen-

eration is mediated by several mechanisms in-

cluding ERAD ubiquitin-proteasome and autop-

hagy pathways. IBMPFD thereby joins familial

forms of Alzheimer disease, Parkinson disease,

Marinesco–Sj€ogren syndrome, and other neuro-

degenerative diseases in which intracellular pro-

tein accumulation results from perturbation of ER

chaperone function.

Autophagy is a process that degrades long-lived

proteins and cytoplasmic components within au-

tophagosomes. Proteins and cytoplasmic compo-

nents destined for degradation are sequestered and

enveloped into vesicles that later mature through a

series of steps including membrane fusion with

lysosomes. Upon activation of autophagy, the

18 kDa LC3 (LC3-I) protein undergoes proteolytic

cleavage followed by lipid modification converting

the 18kDa form into the 16 kDa membrane-bound

form (LC3-II). LC3-II is specifically localized to the

autophagosomal membranes whereas LC3-I is pri-

marily cytosolic. The conversion from LC3-I to LC3-

II is used as a marker for autophagic processing in

mammalian cells. A buildup of either molecule

suggests a disruption in the normal maturation of

autophagosomes. Western-blotting analysis has

demonstrated that protein lysates extracted from

mutant cells have significantly increased amounts

of LC3-II when compared to wild-type cell lines

[69]. Related research [69] found accumulation of

enlarged vacuoles in myoblasts from patients with

VCP-associated inclusion-body myopathy. These

findings suggest an impairment of autophagosome

maturation and hence accumulation of autophago-

somes at an immature state which are seen as

vacuoles. Further analysis of the enlarged vacuoles

via immunological staining revealed positivity for

LAMP-1 and LAMP-2 antibodies. LAMP proteins

are lysosomal-associated membrane proteins sug-

gesting that vacuoles are able to fuse with the

endosomal or lysosomal compartments (Figure

15.3). Lysosomal membrane proteins LAMP-1 and

LAMP-2, however, showed increased molecular

weights in patients’ myoblasts due to differential

N-glycosylation [69].

Ju et al. [70, 71] also identified impaired autop-

hagy in cells transfected with VCPmutations, and in

anoverexpressing transgenicmousemodel, by dem-

onstrating increased ubiquitinated p62/sequesto-

some, a marker for autophagy. Sequestosome is a

multimeric protein complex that serves as a depot

for proteins destined for degradation. p62 has an LIR

domain (LC3-interacting region) that recognizes

and binds LC3, thereby initiating the first steps in

autophagy. It is already known thatmutations in the

p62/sequestosome is a cause of PDB, seen in ap-

proximately 50% of familial and 30% of simplex

cases of Paget disease. Similarly, p62 is found to be

associated with a number of other diseases associ-

ated with cytoplasmic inclusion bodies. In particu-

lar, p62 has been identified in neuronal and glial

inclusions associated with FTD [72] and mutations

have been identified in ALS.

Figure 15.3 Accumulation of LAMP-1-positive vacuoles

in cultured myoblasts from an IBMPFD patients with the

R155H mutation. Mutant cells are also defective in

myotube formation.
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Autophagy has also been implicated in the other

type of h-IBM, autosomal recessive distal myopathy

with rimmed vacuoles (DMRV) or h-IBM. h-IBM is

an early adult-onset distal myopathy caused by

mutations in the GNE gene which encodes a bifunc-

tional enzyme involved in sialic acid biosynthesis. It

is pathologically characterized by the presence of

rimmed vacuoles, especially in atrophic muscle

fibers, which also occasionally contain congophilic

materials that are immunoreactive to b-amyloid,

lysosomal proteins, ubiquitin, and tau proteins.

Hyposialylation plays an important role in the path-

ogenesis of DMRV/h-IBM. It is uncertain if a similar

mechanism may be involved in VCP h-IBM [73].

Disruption of the ER/autophagy pathway thus holds

potential for revealing insights into the pathogenesis

of VCP muscle, bone, and brain disease.

VCP mouse models

Human and mouse VCP proteins differ by only one

amino acid residue at position 684. The targeted

homozygous deletion of VCP by Cre-loxP technol-

ogy was reported to result in early embryonic

lethality [74]. In contrast, heterozygous mice lack-

ing one VCP allele and having one wild-type allele

were apparently indistinguishable from their wild-

type littermates. Weihl et al. [75] found that

transgenic mice overexpressing the most common

human IBMPFD mutation (R155H) under the reg-

ulation of a muscle creatine kinase promoter

became progressively weaker in a dose-dependent

manner starting at 6 months of age. These mutant

mice showed muscle pathology including coarse

internal architecture, and disorganized membrane

morphology and vacuole-like clefts with reduced

caveolin-3 expression at the sarcolemma. Even

before animals displayed measurable weakness

there was an increase in ubiquitin-containing

protein inclusions and high-molecular-weight

ubiquitinated proteins.

Recently Custer et al. [76] reported a transgenic

mouse overexpressing mutant forms of VCP. The

mice expressed muscle weakness, and pathology

characteristic of inclusion-bodymyopathy including

blue rimmed vacuoles, and TDP-43 pathology.

Radiological examination of the skeleton revealed

focal lytic and sclerotic regions in the vertebrae and

femur. Additionally the brain revealed widespread

TDP-43 lesions and the mice also exhibited abnor-

malities in behavioral testing. To replicate the hu-

man disease associated with VCP mutations our

laboratory [77] has generated a knock-in mouse

model of the common VCP R155H mutation. Mice

demonstrated progressive muscle weakness, vacuo-

lization of myofibrils, and centrally located myonu-

clei, in addition to TDP-43- and ubiquitin-positive

inclusion bodies in quadriceps myofibrils and brain.

Additionally, muscle sections showed increased

numbers of autophagosomes, elevated caspase-3

activity, and an increased number of TUNEL-

positive nuclei supporting involvement of autop-

hagy and apoptosis in the pathogenesis of the

disease. Bone histology showed increased osteoclas-

togenesis suggestive of PDB. The Custer overex-

pressed mutant VCP transgenic mice and our

knock-inmice thus replicate the human disease and

represent useful models for trials of novel therapies

for diseases with similar pathogenesis.

Treatment

Currently there are no known treatments for the

muscle component of VCP disease or the dementia

however treatment trials are needed in this disease.

PDB, however, is well treated with bisphosphonates

and it is hypothesized that progressive disease can be

prevented if treated at an early stage of the disease.

Autophagy is negatively regulated by the mamma-

lian target of rapamycin (mTOR) and can be induced

in all mammalian cell types by mTOR inhibitors

such as rapamycin. A number of investigators have

reported dramatic effects of rapamycin on the size

of renal angiomyolipomas and sub-ependymal

giant cell astrocytomas in tuberous sclerosis patients

[78, 79], neurofibromatosis, and polycystic kidney

disease. Autophagy is a major clearance pathway for

the removal ofmutanthuntingtonproteinassociated

with Huntington disease, and many other disease-

causing, cytoplasmic, aggregate-prone proteins.

Research in IBMPFD will likely address important

pathophysiologic principles underlying many other
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common related disorders. Pharmacologic strategies

to modify autophagy and other pathways such as

proteasomal inhibition, and ER stressmodifiers,may

hold potential not only in VCP disease but also other

disorders such as the vacuolar myopathies including

GNE-associated h-IBM, sporadic inclusion-body

myositis (s-IBM), oculopharyngeal muscular dystro-

phy (OPMD), and other proteinopathies such as FTD

and ALS. Potential therapeutic strategies can be ex-

plored using the available cell andmouse models for

preclinical studies.
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