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ABSTRACT OF THE DISSERTATION

Network Designs Via Signaling Dynamics On Geometric Dynamic Graphs

by

Vivek Kurien George

Doctor of Philosophy in Bioengineering with a Specialization in Computational Neuroscience

University of California San Diego, 2019

Professor Gabriel Silva, Chair

Artificial neural networks are treated as black boxes. Generally,only the states of a

subset of the network are considered to determine its efficacy, while the relationship between

a neural network’s topology and its function remains under-theorized. For my analysis, I use a

new class of event-driven recurrent neural networks—a geometric dynamic network modeled

on canonical neurobiological signaling principles that allows to directly encode input data into

its evolving dynamics—to forward a new type of machine learning approach. I accomplish

this by first, mapping causal neuronal signal flows in the C. elegans connectome to show how

the dynamic evolution of signal flows results in a unique internal representation of particular

input data. Second, I propose two distinct approaches to determine the upper-bound for the

xi



amount of network dynamics needed for capturing the signaling evolution of the system. Using

the upper-bound values, I construct a mathematical object representing the causal neuronal

signaling dynamics, and delineate the interaction of sub-sub structures at various scales/heights

of sub-graphs. Finally, based on recent theoretical propositions regarding optimal signaling in

a geometric dynamic network, I show that neurons modify their axonal morphology so that the

propagation time of an action potential, and the membrane’s refractory period become balanced.

Thus, this work not only lays the foundation to construct and analyze a new class of artificial

neural networks whose overall behavior and underlying dynamics are transparently coupled, it

also provides fertile grounds for future work on biologically inspired artificial intelligence.
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Chapter 1

Introduction

Alan Turing formalized the question “Can Machines Think?” [24]. The wonder evoked

by human cognition and the elements which give to it has inspired many researchers. As such

there is coupling between neuroscience and artificial intelligence [6]. From study of the nervous

system, Warren McCulloch, a neuroscientist, and Walter Pitts, a logician, proposed a logical

neuron model (MC model) which enabled the construction of hypothetical neuronal networks

with some required properties[12]. They popularized the construction and analysis of networks

built from an abstraction of the basic elements [14].

Frank Rosenblatt extended the MC model by proposing the perceptron model [16] which

acted as a linear classifier by introducing variable weights between nodes in the network and

supervisory feedback. Then multilayer perceptrons with back-propagation [17, 19, 18] were

proposed to overcome the limitations of the original perceptron model [14, 13]. Virtually all

current widely used methods modify synaptic weights based on some form of back-propogation

of errors. Equipped with the universal approximation theorem [4, 7], Turing computability [21]

and error based training methods artificial neural networks have found much success in various

fields [20, 9, 5].

One way to partition the field of artificial neural networks is by considering spiking
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[11, 10, 15, 23] and non-spiking node models. Generally, both approaches modify synaptic

weights during training. The non-spiking node models are continuous and differentiable, therefore,

amenable to backpropogation of errors, and their output is clearly stated by the activation of some

”output” nodes [20]. Spiking neural networks are the more computationally powerful, in terms of

number of neurons needed, than their non-spiking counterparts [11], but they are more difficult to

train, especially, multi-layer networks.

The focus of this dissertation is to turn around the paradigm of training networks, with

respect to output nodes, by focusing on the structure of dynamics within a network rather than

the dynamics of particular network structures: instead of analyzing the state of output nodes,

we analyze the neuronal signalling pathways carved by signals through a network through the

mathematical objects which arise from the causal interactions. We consider the symphony of

activity present on the network. Concretely, we view the network as a directed geometric graph,

and consider the walks of signals on that graph. Since the specific underlying node models matter

little, the perspective taken may have wider applicability.

Thesis Outline

In what follows we provide a brief outline of the contents of each of the following chapters.

In Chapter 2 we used the C. Elegans neural connectome as our test bed. It is one of the few

organisms whose neuronal connectivity is known and it is amenable to physical experimentation

[3, 8]. We constructed a directed geometric graph using the available data for neuron locations,

synaptic connectivity, and node type (either inhibitory or excitatory). The node model used was a

simplified version of the Geometric Dynamic Percpetron [22]. The simplified node model did not

consider variable synaptic weights, it had a fixed refractory period, it generated a traveling pulse

(Driac pulse) upon receiving an input during its non-refractory state and it was deterministic in

nature. Using these very simple assumptions, we stimulated ASEL with an impulse which resulted
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in a rich repertoire of network activity. Due to cycles in the graph the spiking activity eventually

seemed to settle into a periodic orbit. Notably, we observed semblances of contralateral firing

between sets of ventral and dorsal motor neurons. These observed activation patterns resembles

those which are necessary for animal movement. By this observation our interest had peaked

and we wanted to delve into how the signals were transformed from stimulus to response. This

lead us to consider the theoretical causal neuronal signaling paths which resulted in previously

said firing patterns. To do so we introduced the notion of a Temporal Sequence(TS). It is the

causal chain of node activations from some set of nodes in the network, to some other set of

nodes(not necessarily mutually exclusive). Every motor neuron activation had an associated TS.

Because the network activity entered a periodic orbit we were able to decompose the rise of all the

spiking network activity into a basis set of TSs. The basis set contains unique TSs, and repeating

TSs. By determining the generators producing cyclic sub-sequences and creating a compressed

version of the original TSs we were able to classify them as either unique or repeating. TSs

which had the same compressed representations were considered repeats, those TS without match

were considered unique. We decomposed all the Temporal Walks from ASEL to the VB and

DB motor-neurons into the basis sets. Furthermore, we used TSs as the basis of comparison of

different C. Elegans networks to determine the efficacy of sub-networks in terms of being able to

preserve causal neuronal signaling paths.

In Chapter 3 we proposed methods to determine when to stop collecting dynamics, that

is to determine the Steady-State Statistics of the System, and how to the embed dynamics into

a well studied mathematical form, a directed acyclic graph, where a plethora of tools may then

be applied to further study the structure of said dynamics. In considering a simple classification

problem based on the dynamics in a network one will readily see that it is difficult to determine

an upper bound for the time interval of dynamics to consider. An arbitrary stopping time can be

considered, but that is not satisfactory. In this paper we propose three methods(the best of which

has a computational complexity of O(N) where N is the number of time samples considered) to
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determine when the network dynamics enter into steady-state, that is a periodic orbit, and the size

of the steady-state period. Using the steady-state statistics we propose a graph construction of

the dynamics. Our research interest in decomposing the dynamics into its constituent subgraph

structures and the interaction of those subgraphs in order to further study the link between network

design and dynamics. We used the Weisfeller-Lehman graph relabeling scheme to ascertain the

induced subgraph interactions. This approach not only delineated the prevalence of subgraphs and

their interactions but resulted in a vector space embedding of the dynamics. A vector embedding

enables the use several existing methods as a back-end for classification and even clustering. This

work proposes an end-to-end workflow for the analysis of network dynamics for the purposes of

machine learning.

In Chapter 4 we experimentally verify a neurophysiologically inspired theoretical local

network design rule [22]. Previous works hypothesised that a neuron’s physiology is optimized for

the minimization of bio-cellular material while balancing the maintenance of temporal precision

[2]. This indicates a balance between the neuron’s morphology and its signalling capabilities.

We analyzed optical data [1] of a set of Basket cell neurons from the rat neocortex. We found

a balance between the physical parameters which affects action potential signal latency (from

the axon initial segment to axon terminal) and the membrane refractory period of the individual

neurons. Our analysis indicates that the morphology of a neuron’s axonal arbours preserved the

optimal signaling ratio [22]. The optimal ratio is defined as the time it takes for the propagation

of an action potential from the axon initial segment to the synaptic terminals divided by the

refractory period.

In Chapter 5 we conclude this work by exploring several future directions of investigation.
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Chapter 2

Mathematical Structures Describing

Signaling Dynamics

2.1 Abstract

We construct and analyze the signaling dynamics on geometric dynamic networks whose

elements are nodes and edges which are embedded in spatial coordinates and support signaling.

The network’s dynamics follow canonical neurobiological principles where the finite velocity for

a discrete signal on an edge determines the signaling latency per edge, which combined with the

refractory period of a node, results in the Geometric Dynamic Network Signaling Framework

(GDNSF)[58]. Using this framework, we construct and analyze Temporal Sequences (TSs)—time-

ordered walks of signals on a graph—and we show how perturbations are transformed by the

network’s structure into subsequent network activity through various Neuronal Signaling Pathways

(NSPs) encapsulated through these TSs. Without needing detailed biophysical models, we apply

the GDNSF and TSs to analyze the C. elegans connectome[67, 31, 64]. We show that a food

stimulus elicits contralateral mid-body motor neuron activations, responsible for the worm’s

movement[51]. Also, we find that NSPs, in an isolated C. elegans subnetwork[71, 69], are
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drastically different from those in the complete network; reminding us that when analyzing

biological subnetworks, the whole is more than the sum of its parts[35]. Finally, we elucidate

the necessary set of nodes to preserve the NSPs by decomposing the ensemble NSPs into a

fundamental set of basis TSs. In sum, we find that C. elegans connectome when considered under

the GDNSF, conserves a behaviorally relevant response of the animal, and through TSs we chart

the responsible NSPs between stimulus and response. This work sets the grounds to construct and

analyze other networks with discrete signaling dynamics. Our case study generates experimentally

testable hypothesis and motivates gathering more detailed measurements of the C. elegans’

signaling parameters to better inform models and generate experimentally testable hypotheses.

Furthermore, we propose to expand the analytical reach of network analysis techniques to include

mathematical structures, such as TSs, to augment existing approaches.

2.2 Introduction

Network analysis is a widely used modality to analyze systems[48, 64, 19, 7, 10, 9, 59]. To

contextualize the methods developed in this paper we used C. elegans as our model organism since

it has been extensively studied[23, 29, 16]. Its connectome, the anatomical links/edges between

all constituent neurons, was fully mapped in 1986[67]. Although the organism’s connectome is

known, how neurons behave in context of the entire network and regulate one another is not fully

understood[6, 5], and it is precisely this aspect which we intend to discuss in this paper[38].

Recent computational research efforts are moving past structural analysis[64, 62], and

towards understanding dynamics[33, 11, 55, 47, 61, 70, 34]. We consider how concurrent

network activity based on neuron-to-neuron interaction gives rise to causal neuronal signaling

paths between nodes in the network. To quantify the signaling paths we introduced the notion of

Temporal Sequences (TSs). Each TS is a sequence of causal node activations, more formally a

walk on a graph. The study of the effects of network geometry, edge lengths based on spatial node
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locations, and topology, network connectivity, on dynamics is a key challenge in the analysis of

complex geometric networks.

We studied TSs resulting from stimulus at the ASEL neuron (implicated in chemosensation

and resulting in forward bouts of movement[60, 65] and the activations of mid-body motor neu-

rons(implicated in movement [30, 69] (Fig. 2.1A). Using TSs we showed qualitative motorneuron

neuronal activity patterns associated with animal movement behaviour, performed quantitative

comparisons of the dynamics between networks to quantify the differences in signaling paths,

and quantified the number of different causally related classes of neurons.

We performed the analysis using a computational model (Online Methods 2.5.4) based on

experimentally derived network connectivity[67] and geometry[17, 31]. Rather than building a

network from the ground up using biophysical models[61, 57, 34, 37] which is computationally

expensive[25], requires estimates of ion-channel parameters based on experimental data[43] and

weights, as well as a whole host of other parameters affecting the electrical characteristics of

individual neurons[36], our model approaches the node and network construction from a different

perspective. We focus on a minimal set of signaling parameters(signal conduction velocity, spatial

node locations, node refractory period, and node type which is either inhibitory or excitatory) and

assumptions necessary to simulate signaling dynamics[58]. The nodal dynamics use a simplified

version of the Geometric Dynamic Perceptron Model[58].

The general aims of this work are to inform C. elegans research, propose TSs as a way of

analyzing network dynamics, show how network dynamics can be decomposed into a fundamental

set of sequences which describe all the observed activity of the network. Our computational

framework can be used to generate experimentally testable hypothesis[21] regarding the con-

current signaling paths supported by the connectome. TSs can also be used to generate a set of

candidate sub-networks, that preservers the signaling paths, upon which more computationally

expensive models can be implemented. Finally, our future research focuses on extending the

analysis of causal dynamics for machine learning. For example, in a general network setting
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where we wish to encode images through the causal dynamics, we analyze the statistics of the

resultant TSs, and more general mathematical objects, such as, the statistics of causal network

motifs[46, 2, 68, 18].

2.3 Results

2.3.1 The role of Network Geometry: Lattice Comparison

Geometric information plays an important role in network dynamics[58]. Endowing edges

with signaling delays, due to physical geometry, adds richness to the network dynamics due to the

differentials in signal arrival times at nodes. To quantify the the affect of signal delays/geometry

we compared the network activity on the geometrically embedded C. elegans connectome (Fig.

2.1A), henceforth referred to as the Full network (Online Methods: 2.5.4), and a latticed version

of the C. elegans network, henceforth referred to as the Lattice network (Online Methods: 2.5.4).

While the Lattice network’s edge connectivity and node types (inhibitory or excitatory) are

identical to the Full network, it’s edge signal delays are all the same; this extinguishes the affect

of physical distances/geometry.

We compared the resulting network activity between the Full and Lattice networks due to a

single pulse stimulus of the ASEL neuron (Fig. 2.1B,C). In the Lattice network, we observed that

the network activity went through some transient period of node activations, then, eventually, all

nodes which will fire, fire at the same time in a periodic manner (Fig. 2.1B). In contrast, although

the Full network’s node activity exhibited a transient and periodic activity phases, we observed

more richness in its network state repertoire (its node activation patterns were richer) (Fig. 2.1C).

To quantify the variability in network activity due to geometry, we counted the number of unique

network states. We describe the network’s state through a vector of nodal states at each discrete

simulation time point. Concretely, if the state of node i at time t is given by yi(t) = {0,1}, then

the state of a network, with N nodes, at time t, can be written as y(t) = {0,1}N . A plot of the
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cumulative count of unique network states over the course of the simulation is shown in Figure

(2.1D). The Lattice network assumed 12 unique states, while the C. elegans network assumed 280

unique states across the sampling points (we did not consider the permutations of consecutive

states). Thus geometry is an important consideration because it increases the dynamical range of

the system.

2.3.2 Network Dynamics in Geometric Networks: Qualitative Compari-

son of Network Activity From the Full and Feed Networks Using

Temporal Sequences.

We inspect the signaling dynamics of the network by constructing and analyzing so

called ”Temporal Sequences” (TSs) (Online Methods: 2.5.1). A TS represents the causal nodal

interactions between a set of start nodes and a set of end nodes. Each TS is a walk, of an individual

signal, on the graph from some start node to some end node. TSs capture the signaling pathways

of the network, as such, they enables us to chart the course of a stimulus or any signal through the

connectome. Only a subset of all possible walks on a graph are realizable at any given time. This

is due to network parameters such as delays along edges, refractory periods of the nodes, and

concurrent network activity. We focused on the TSs which start at the ASEL neuron, and either

terminate or traverse the ventral, VB, or dorsal, DB, classes of motor neurons. To illustrate the

TSs in the context of the connectome we traced the TSs from ASEL to neurons in the VB and DB

classes, the color sequence represents the time course of the signal (Fig. 2.1A).

To better visualize TSs, we created a so called TS plot (Online Methods: 2.5.2). The TS

plot shows the evolution of a set of TSs over time. The plot contains node labels on the y-axis,

and time on the x-axis. Each curve in the TS plots traces the causal walk of a signal takes on the

structural connectome leading to a motor neuron firing. Considering all curves active in a time

interval on the TS plots trace the concurrent neuronal signaling pathways leading to subsequent
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activations of motor neurons from the neuronal classes of interest. To lessen the visual clutter in

the TS plot we do not explicitly mark the nodes on the walk. The activated nodes are generally

located at the notches or discontinuities along the curve.

Using TS plots (Fig. 2.2) and histograms (Fig. 2.3) of the node activations, we qualitatively

compared network dynamics of the C. elegans connectome, the Full Network, to a sub-network

of the C. elegans connectome, henceforth called the Feed Network (Online Methods: 2.5.4).

The Feed Network[69] is thought to contain neurons implicated in the feeding behavior of the

animal, as such, contains relevant pathways from ASEL neuron to the VB and DB classes of

motorneurons. Therefore, we do not show all the TSs in the network, but only those which contain

ASEL and the motor neurons from the classes of interest. The locations of the motor neurons(end

nodes) on the TS plot are indicated by the dark blue horizontal lines.

Stimulating ASEL in both the Feed and Full networks qualitatively resulted in back and

forth motor neuron firings of the VB and DB classes (Figs. 2.3A,C). This is indicative of the

contralateral firing patterns[71, 30, 53] expected for animal movement. To uncover how a single

pulse stimulation of the ASEL neuron resulted in the motor neuron firings in the VB and DB

classes, we decomposed the network activity into TSs (Figs. 2.2A,C).

Next we qualitatively analyzed the network activity which results from disrupting the

connectivity of the network through edge randomization (Online Methods: 2.5.4). The random-

ization procedure we used[26, 22] preserves the spatial locations of the nodes but replaces the

original set of edges with a new set which is some subset of the total number of allowed edges.

Although the structural backbone of the connectome plays an important role in propagating the

stimulus signal to the VB and DB sets of motor neurons, we observed that disruption of network

structure through edge randomization resulted in eventual formation of TSs, in both the Feed

and Full networks, linking the stimulus at the sensory neuron to motor neurons activations (see

Figs. 2.2B,D). While TSs exist which links the stimulus and motor neuron classes, and seem

to eventually settle into periodic activity patterns, the synchronized contralateral motor neuron
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firings between the VB and Db classes found in the non-randomized networks (Figs. 2.3A,C) are

decimated in the randomized Feed and Full networks (Figs. 2.3B,D).

Another notable qualitative difference between the TSs of the edge randomized and origi-

nal networks are that the TSs enter periodic regime of activity significantly sooner. Additionally,

the TSs in the randomized network displayed circuitous and complex neuronal signaling pathways

relative to the orderliness of signaling pathways of the non-randomized networks. Further analysis

of TSs could elucidate signaling pathways, significant neuronal hubs of activity[62], and other

important features.

2.3.3 Quantitative Comparison of Resulting Temporal Sequences By Sim-

ilarity Measure

Similarity Measure

We introduce a so called Similarity Measure (SM) as a quantitative approach to compare

sets of TSs. These TSs can either result from two different networks, or from two perturbations

of the same network. We considered the case of TSs resulting from two different networks. The

quantitative comparison technique is similar to graph edit distances [56]. In order to calculate the

SM a reference network must be chosen. The SM is calculated relative to the length of each TS

from the reference network. We then count the number of TSs meeting some matching criteria α,

where α is the percent of a sequence from one set matching some sequence from another set.

Concretely, lets say we wish to calculate SM between network X and network Y , where

X is the reference. The sets X and Y respectively contain the TSs from X and Y . Let the ith TS

of X be denoted xi, and the jth TS of Y be denoted y j. Each comparison of the TS is relative to

a threshold α which is a percentage of total elements in a particular xi which in-order matched

some y j (Algorithm 1, getTSSimilarityMeasure). For each x ∈ X , we evaluate:

13



SM(xi,y j)≥ α (2.1)

With respect to y ∈Y . When (2.1) is TRUE, a counter, cα, is incremented, and the next TS

from X , xi+1 is checked against y ∈ Y . The final value of the counter, cα, is number of TSs from

X which met the criteria α relative to the TSs from Y . For example, if 4 out of 5 node activations

in some xi found an in-order match to some y j, and 4 out of 5 was the best match for all y ∈ Y ,

then we say xi meets the α = 0.8 criteria, and the counter c0.8 is incremented by 1. We outline

the Similarity Measure in Algorithm (1). The inputs to the algorithms are (X ,Y,α). The output

of this algorithms is the SM. The SM result can be stated words as follows: Given network X as

the reference, nX TSs out of a total of mX TSs from network X , found a α match to some subset

of TSs of out a total of mY TSs from network Y . Upon completion of this procedure, we can

ascertain the percent of TSs from X finding a cα match by normalization: cα/mX .

Networks Considered For Similarity Measure

Before we discuss the SM results, we describe the various networks we considered and,

in brief, how we constructed them. We analyzed the SM between several networks, all derived

from the Full network. As discussed in a previous section, the Feed network contains a subset of

the vertices of the Full network, and it maintains the edge connectivity between those vertices.

We constructed randomized counterparts of the Feed and the Full networks using two edge

randomization procedures. We chose two different edge randomization procedures in the case of

results biased by the choice of the randomization procedure. The two edge randomization proce-

dures resulted in varying degrees of edge reorganization. The less drastic network reorganization

of the two randomization schemes was the Edge-Swap based randomization (Online Methods:

2.5.4). It is less drastic because only existing edges have some probability of swapping the edge’s

terminal node [20]. The Gilbert based edge randomization [26] was a more drastic network

reorganization because its network construction was only constrained to maintain approximately
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the total number of edges as the original network. This was accomplished by setting a probability

of connection between two nodes.

Finally, we considered a so called Embedded Random Feed networks (Online Methods:

2.5.4). These network preserves the edge connections of the Full network outside of the Feed

subnetwork. The subnetwork within the Full network uses the same randomized edge connection

profile as the standalone randomized Feed networks.

Similarity Measure Results

The results of the SM are presented in Table 2.1. The reference networks for each SM are

the antecedents in each of the column heading in the table. The top-half of Table 2.1 contains the

SM results of the Gilbert based randomization, and the bottom-half of the table contains the SM

results of the Edge-Swap based randomization. In each half of the table, we compared the TSs

resulting from each of the five network types described earlier. Stimulus was applied at the ASEL

sensory neuron in all the networks, and the TSs of interest were all those which traversed the

VB and DB sets of motor neurons. A general observed trend was that as the α-criteria increased,

the number of TSs meeting the α-criteria decreased. This is expected as the variation in the

structural network will cause variation in TSs. Therefore, fewer TSs from more structurally

different networks will meet a high α value.

In Table 1, we show that as the structure of networks diverge the SM values decreases.

The SM between the reference Feed network and the Full network was greater than the SM

between both the Feed and Full and either of their edge randomized counterparts. This is because

the Feed network was more directly derived from the Full network. The SM values between the

reference Full/Feed networks and their Edge-Swap Randomized networks were higher than the

SM between the Full/Feed networks and their Gilbert Randomized networks. This was because

the Edge-Swap Random networks preserve various network parameters, such as, out-degree,

network connectedness. The edge-swapping procedure is based on flipping a weighted coin for
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the chance to swap an edge, therefore, not all edges need actually be different. Additionally,

based on the number of iterations one chooses to run the edge-swapping procedure the network

will steadily structurally deviate from the original. In contrast the Gilbert based randomization

procedure’s only constraint is to maintain approximately the same number of edges between the

original and the randomized networks.

Although the Feed network was derived from the Full network, the Feed network in

isolation only completely preserved 6 out of 124 TSs, the remaining 118 TSs followed different

neuronal pathways. Ideally, the TSs from a subnetwork should completely be represented in the

full network. A natural question which arises is: Can we build a better subnetwork? Contained

in the 697 TSs are all the nodes necessary for a subnetwork. But the sufficient set of nodes are

those additional vertexes involved in the neuronal signaling pathways of the concurrent network

activity which ensures the the existence of the 697 patterns. Determining the sufficient set of

nodes, which require iterative simulation and testing, is out of the scope of this paper.

To bridge the dynamical regime of the isolated Feed network and the Full network one

can take several approaches. In the context of the Full network removing all the vertices and

edges of the Feed network, except for those associated with ASEL, VB, and DB, and analyzing

the resulting TSs will result in the paths which completely lie outside the feed network, under

the same necessary and sufficient conditions stated earlier. But removing all the vertices and

edges associated with the Feed network from the Full network can drastically affect the overall

dynamics of the network due to the absence of a set of concurrent dynamics. To workaround this

issue, we incrementally randomize the edges in the Feed subnetwork within the context of the

Full network.

We analyzed the TSs resulting from the reference Full network to the Embedded Random

Feed network. Relative to the SM values resulting from the comparison of the isolated Feed

network (vs. Full network), we observed higher SM values while comparing the reference Full

network and the Embedded Random Feed networks (Table 2.1, 5th column). Although there are
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no TSs which have a 100% match when comparing the TSs from the reference Full network to

the Embedded Random Feed network, across α values the Embedded Random Feed networks

better preserved TSs than the reference isolated Feed network relative to the Full network.

Not only do these results paint a cautionary tale for the analysis of isolated subnetworks,

but it also provides a network signaling based solution. As such we have a quantitative method

for generating another Feed network, one which preserves the observed neuronal signaling

pathways of the Full network. The SM procedure coupled with experimental observations and

other theoretical considerations can provide a basis for choosing the constituents of a subnetwork.

2.3.4 Decomposing Temporal Sequences Into Their Basis Sequences

We decomposed the complex patterns of network activity into a set of basis TSs. We

used the term basis to mean: a set of TSs which is composed of TSs which arise from signals

performing One-Time walks on the graph, and TSs which arise from signals who perform

Repeated walks on the graph by virtue of traversing cycles in the graph. From the set of One-Time

walks and Repeated walks all other observed TSs can be recomposed.

To ascertain the basis set of TSs, we categorized each TS into One-Time Temporal

Sequences, and Repeated Temporal Sequences (Online Methods: 2.5.3). The basis set for the Full

Network showed that out of the 697 TSs which traversed the VB and DB set of neurons there

were 50 One-Time TSs, and 20 Repeated TSs. We show the sequence of node activations which

comprise each of the unique TSs in Fig. 2.4B. These patterns of node activity in each of the 50

TSs are unique in that these were no other other TSs out of the 697 which were sub-sequence

repetitions of these 50 TSs. In Fig. 2.4A we show the repeated TSs with each of the sequence

generators are only shown once. Each of the repeated TSs contained some set of sub-sequences,

where each sub-sequence is repeated some number of times. Since there were 50 unique TSs, out

of 697 total TSs, the 20 Repeated TSs made up the remaining 647 TSs.

In Figs. 2.4A and 2.4B we show the TS plot of One-Time and Repeated Sequences
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Algorithm 1 Similarity Measure Algorithm

1: procedure GETSIMILARITYMEASURE(X ,Y ,α)
2: for xi← 1, |X | do
3: maxPercentMatch← 0
4: percentMatch← 0
5: for y j← 1, |Y | do
6: percentMatch← getT SSimilarityMeasure(xi,y j)
7: if maxPercentMatch < percentMatch then
8: maxPercentMatch← percentMatch
9: if maxPercentMatch≥ α then

10: count← count +1
11: thresholdMet← 1
12: break
13: end if
14: end if
15: end for
16: end for
17: return count
18: end procedure

19: procedure GETTSSIMILARITYMEASURE(xi,y j) . Compares the similarity of Temporal
Sequences xi and y j

20: cardx← |xi| . Store the number of elements in xi
21: cardy← |y j| . Store the number of elements in y j
22: lasty← 1
23: count← 0
24: for u← 1,cardx do . We sweep through all the elements of the TS xi looking for

in-order matches of elements in xi
25: for w← lasty,cardy do
26: if xi[u] = y j[w] then
27: count← count +1
28: lasty← y j[w]
29: else
30: continue . Go to the next iteraction of w for-loop
31: end if
32: end for
33: end for
34: PercentMatch = count/cardx
35: return PercentMatch
36: end procedure
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respectively. While the entirety of the One-Time Sequences are displayed in the figure, we only

show the Repeated Sequences with a minimum of their repeating sub-sequences. Together the

One-Time and Repeated Sequences form the minimal description of the dynamics and can be

used as for further analysis and network construction.

2.3.5 Interacting Motor Neuronal Classes Along Neuronal Signaling Path-

ways

C. elegans forward and backward movement is thought to result from the synchronized

activations of banks of motor neurons[30] which involve the interaction between several classes

of neurons[15, 71]. Signaling paths individually and in concert give rise to the neuronal firings

necessary for movement. We analyzed the individual TSs to discern the associations between the

various classes of mid-body motor neurons in a signaling path by expanding the set of neurons

from those we previously considered. We focused on sequences starting at the ASEL neuron,

traversing the mid-body motor neurons from the DA, DD, DB, VA, VD, and VB classes.

We were interested in the presence of multiple motor-neuron classes along the signaling

pathways relevant to the organisms movement. As a starting point, we show (Fig. 2.5A) the

number of TSs which traverse any of the neurons in the classes of interest. We observed that

all of the classes implicated in movement were present in at least some of the TSs (Fig. 2.5A).

Interestingly, the ventral side neuronal classes had significantly had more TSs traverse their

neurons than the dorsal side neuronal classes.

Although the order of classes along the signaling pathways are relevant, they were not

considered in this work. In Figs. 2.5B,C,D we show the results for 2, 3, and 4, classes of neurons

present in TSs. We tabulated the number of TSs which contained 2, 3, or 4 out of the 6 mid-body

motor neuronal classes (Figs. 2.5B,C,D). As the requirement for the number of classes present in

each TS increased, the number of TSs which traversed the increasing number of classes decreased.

Additionally we observed more TSs traversing the ventral side of neurons than the dorsal side
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neurons (Fig. 2.5B).

The fact that there are 3 and 4 class interactions, provides impetus for experimentally test-

ing these neuronal interactions, and elucidating their behavioral consequences (in the movement

models of C. elegans is this something that was observed). Out of the possible 6 neuronal classes

implicated in movement, TSs only contained at most 4 classes. That is to say, the dynamics on

the structural connectome limited the signaling pathways to 4 classes of neurons and no more.

This analysis can be expanded to consider permutations of class interactions rather than only

considering combinations of interactions in TSs.

2.4 Discussion

While many experimental and analytical techniques to study the functional consequences

resulting from C. elegans connectome in particular, and networks in general, focus on structural

network statistics[64, 62, 63, 12], or focus on localized circuits to ascertain their function[13, 27,

14, 72], novel approaches are required for network scale analysis of dynamics[33, 11, 70, 30, 1].

We introduced the analysis of the C. elegans connectome using TSs. Our computational

analysis revealed that network connectivity and geometry gave rise to orderly motor neuron

activation patterns implicated in movement. Moreover, we were able to quantitatively chart

the causal neuronal signaling pathways of motor neuron activations. These neuronal signaling

pathways arose within the context of concurrent network activity. The analysis showed the

existence of multiple neuronal signaling paths outside the Feed Network which transformed the

stimulus at the ASEL neuron to activations of the VB and DB classes of motor neurons. These

paths outside the Feed Network contain candidate nodes and edges which may be considered to

design extended sub-networks.

By analyzing individual TSs we quantified the extent and prevalence of various classes

of mid-body motor neurons in individual neuronal signaling pathways. Our results show that
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there are up to four classes of neurons implicated in neuronal signaling pathways. These results

underscore the need for approaches to analyze network scale concurrent dynamics within the

context of a geometric network, as this view gives rise to testable hypothesis.

In order not be bogged down by biophysical complexity, we focused on the simplest

neuronal model which preserved key parameters significant in network signaling[58]. Future

studies can extend our analysis of C. elegans in several ways such as implementing in a geometric

framework more complex neuronal models, using detailed biophysical signaling parameters, or

making incremental modifications to the existing assumptions to uncover causal relationships sup-

ported by the network’s structure. Given the various ways to extend this work, a delicate balance

exists between the model’s complexity, analytical tractability, and usability. We approached this

work with eye to minimize the complexity of network components in order to start developing the

framework to transform network dynamics into mathematical structures such as walks on graphs.

TSs based approaches can be implemented various scientific domains where a network

abstraction is possible and causal signaling dynamics plays a role. In future work we would

like to understand how the contributions of various factors affecting signaling dynamics, such

as, edge/node models, network parameters and topology manifests itself in the causal relations

between nodes in the networks to uncover how the network behaves at different temporal and

spatial scales. Furthermore, the stability and sensitivity of TSs to small perturbations and initial

conditions needs further study.

Another crucial challenge for future studies is how to extend the mathematical analysis of

TSs. The Similarity Measure is but one type of mathematical analysis of TSs. To gain insights

into the structure of dynamics our approach to constructing TSs can be easily transformed to

more complex mathematical objects such as a graphs[66, 4] and other topological structures[18].

Although we focused on the C. elegans connectome for this work, the analysis of TSs is

an approach agnostic of a specific network model. The causal interactions in a network is a facet

of the dynamics, and one which has structure that can be mathematically abstracted in order to be
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analyzed using a wide array of tools. A TS is one view of the structure of the dynamics.

2.5 Methods

2.5.1 Temporal Sequence Construction

A Temporal Sequence(TS) describes a walk[20] of a quanta of some signal on the graph.

Let us say we have a graph G = (V,E), where v ∈ V and E ∈ V ×V . At time t = 0 lets say

that the signal activates node v0 and after t = t f steps node vt is activated, then the sequence of

vertices Xt f = (v0,v1 · · ·vt f ) is the TS starting at v0(start node) traversing vt f (end node). Since we

are interested in TSs which traverse specific nodes in the network, we specify some beginning

vertex(this could be a set of vertices) for a TS and some end/traversed vertex(this could also be

a set of vertices). The example we use in this paper is the set of TSs which start at ASEL and

traverse any of the neurons in the VB and DB classes. As such, we are no longer interested in a

TSs over time, but the TSs which traverse a specific node of interest during some time interval

bounded by t < tk, where tk is the simulation time or time over which we wish to make our

observations. The resulting set of TSs represent the parallel paths through the graph traversed by

signals beginning at the start node and traversing the end node, over a time interval of interest.

2.5.2 Temporal Sequence Plot construction

To create a visualization the evolution of the Temporal Sequences we created a plot similar

to the raster plot called the Temporal Sequence plot (TS plot). It has time steps on the x-axis,

and node number on the y-axis. Each colored curve on the plot represents one TS. The height

of the curve represents the node which the signal has traversed during the course of the TS, and

the corresponding time of node activation is given by the value on the x-axis. Several TSs have

sub-sequences which overlap. In Fig. 2.4A we observe that all the Repeated TSs go through the
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same set of nodes at stimulus onset, before splitting into various Basis TSs. Note that several TSs

share a partial signaling pathway

In order to better visualize the paths through the nodes of interest, we have drawn blue

horizontal lines on the TS plots. Each horizontal line represents the height corresponds a neuron

from to the VB and DB sets of neurons. In the Feed Network the DB set is the group of blue

horizontal lines from node 17 to 23, and the VB set nodes range from 31 to 41. And in the Full

Network the DB set is the group of blue horizontal lines from nodes 94 to 100, and VB set nodes

range from 248 to 258.

2.5.3 Basis Sequence Construction

The Basis Temporal Sequences of the network dynamics consist of One-time and Repeated

Temporal Sequences. We first discuss the definition of each of the constituent sequence type

in generality, later with more specificity. Each TS is given a set of alternate descriptions which

compress the repetitions within the sequence. Repetitions in the sequence represent a closed walk

on the graph. The nodes and signals involved in the closed walk can give rise to repeating network

activity. Repeating network activity is manifested in TSs by the repetition of a sub-sequence or a

set of sub-sequences within the overall TS. We call the TSs who differ from one another only

in the number of repeating sub-sequences as Repeated Temporal Sequences. It is important to

node that we do not determine in this work if the Repeated TSs will indefinitely repeat. Given

the definition of the Repeating Temporal Sequences, we can readily define One-Time Temporal

Sequences as the remaining TSs which are not Repeating TSs.

Let X be the set of all temporal sequences. Next, let R be the set of Repeated TSs in X ,

where R⊆ X , and finally let U be the set of One-Time Sequences, where U ⊆ X . We constrain

the sets R and U such that R∩U = /0, that is, no TSs can be both a member of the Repeated TSs

as well as the One-Time TSs.

For some ri ∈ R and r j ∈ R, where the only difference between ri and r j is in the repetition
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of some sub-sequences between the ri and r j. Next we will show how to ascertain whether some

xi ∈ X should be a member of R. Let us assume that xi contains sub-sequences which repeat

in different parts of its sequence. Let I = {i1, i2 · · · in} be the set of repeating sub-sequences of

xi. Where each i ∈ I is the sub-sequence but without repeats, a primitive sequence. To account

for the repeats, let K = {k1,k2 · · ·kn} be the set containing the number of repetitions of each of

the primitive sequences in I. As such any x ∈ X can be re-written as combination of primitive

sequences together with its non-repeating sub-sequences. Concretely, given some TS x, we

compress all its repeating sub-sequences in the form of ik j
j , where j is the jth sub-sequence in I,

which takes on k j repetitions.

Every TS, xi ∈ X , which can be derived from changing the number of repetitions of a

primitive sequence, to match another sequence, x j ∈ X is considered a Repeated TS. Both xi and

x j are considered elements of R. Contained in the set I are the candidate pattern generators[28, 42]

of the network, that is, the sequence of node activations which sustain ongoing network activity,

and the realized cycles of the graph. It is not necessary that the dynamics realizes all the possible

cycles of the graph. Because the elements of R are attained from observation, that Repeated TSs

are not necessarily periodic, in the sense that they are guaranteed to repeat indefinitely.

Given the definition of Repeated Sequences, we can define the set U of One-Time

Sequences as U = {u|u ∈ X ,u /∈ R}. The difference between R and U is that for all xi ∈U there

is no other sequence x j ∈ X such that the difference between xi and x j is only in some repetition

of a sub-sequence in xi. Note ui ∈U may contain repeated sub-sequences. Since there are many

approaches to ascertain Basis Sequences, we do not provide an explicit algorithm to extract Basis

Sequences. We can reconstruct all TSs in X form the the Basis Sequences and knowledge of the

number of repetitions of each of the sub-sequences.

24



2.5.4 Network Construction

Full Network

We represent the structural connectome using a directed geometric graph. A graph G is a

pair G = (V,E). Where V is the set of vertices/nodes/neurons, and E is the set of edges/link/axons

such that E ⊆V ×V . A geometric graph is a graph whose vertices are embedded in euclidean

space. We consider neuronal signaling to be unidirectional, that is signals enter the neuron

through the dendritic arbor and exit the neuron through the axonal arbor[32], as such, the resulting

network is directed. We used a simplified version of the Geometric Dynamic Perceptron model to

describe the dynamics of each of the nodes[58]. In what follows we will discuss relevant network

and node parameters.

We constructed the directed adjacency matrix of the Full Network using connectivity

information from[67, 31, 3]. Let A be the network adjacency matrix, if there is a connection

between neuron i and neuron j, then Ai j = 1, otherwise Ai j = 0. Our model only considered

chemical connections between neurons, that is connections along axons. We did not consider

electrical connections through gap junctions. Next we constructed the distance adjacency matrix

using experimentally available data. Out of the 302 neurons which make up the hermaphrodite

C. elegans connectome, the 2D location of only 277 neurons are known[17]. Therefore, we

calculated the straight line edge lengths between those neurons.

Our interest here is in analyzing the network dynamics supported by the structural con-

nectome, specifically from the perspective of causal neuronal signaling pathways, rather than

studying mechanisms underlying the molecular basis for neuronal signaling. Therefore, we

assumed that some quanta of charge is transmitted between nodes through all-or-none nodal

events[44, 40, 39, 45]. Once a node initiated a signal, we assume it traverses all outgoing edges

at a constant conduction velocity. We used a conduction velocity of 80mm
s [49]. We calculated

the signaling time delays along edges through the geometrically derived edge lengths and the
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conduction velocity.

All nodes in the network were either inhibitory or excitatory. Only the GABA expressing

neurons were considered inhibitory[24]. All other neurons types were considered excitatory[50],

including the unknown neuron types. An excitatory neuron sends an excitatory signal through

its outgoing edges. An excitatory signal elicits a response from its down stream neuron. That

response is two fold, first the downstream neuron becomes refractory, and second the downstream

neuron send outgoing signals itself. In contrast, an inhibitory neuron when activated sends an

inhibitory signal. An inhibitory signal also elicits a response from its down stream neuron, but

that response is only one fold. That is, the downstream neuron becomes refractory, and does not

send any outgoing signals. While a node is refractory none of the incoming signals which reach

the axon hillock contribute to that nodes firing. The refractory period of all neurons are set to

4ms[8, 41].

The simplified Geometric Dynamic Perceptron node model takes on two states, it is either

active/firing or inactive/waiting. Let the state of node i at time t be given by yi(t) = {0,1}. When

the node is in the active state y(t) = 1, when it is inactive y(t) = 0. While node i is initially in

an inactive state it can instantly transition to the active state; but when the node i is in the active

state it will become refractory for the time interval of the refractory period. The threshold for

activation is one incoming signal, that is, when a signal arrives to the axon hillock of node i and

it is in the inactive state, instantaneously, an outgoing signal will be generated and transmitted

through all its outgoing edges.

To run our simulations, the network activity is initialized to quiescence. We initiate

network activity by stimulating the ASEL neuron with a single pulse stimulus, eliciting outgoing

signals based on the network connectivity. The simulation is run for approximately 1.5s of

network activity, broken up into 6000 discrete time steps.
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Feed Network

We used the same basic assumptions of the Full Network to construct the Feed Network.

The difference between the two networks is that the Feed Network is a subgraph[69] of the Full

Network. To generate the connections for the Feed Network we created a new distance adjacency

matrix by collecting the rows and columns corresponding to the nodes in the Feed Network.

Lattice Network

We used the adjacency matrix of the Full Network for the Lattice Network. The only

difference between the two networks are in the signaling parameters, namely, the refractory

periods of each node and the edge lengths. The objective for constructing the Lattice Network

was to diminish the influence of variations in edge lengths. To do so the edge signaling delays of

the lattice network were uniformly set to 1tu (arbitrary time unit), and the refractory periods were

set to 0.9tu. This ratio of refractory period to signaling delay is considered to be near optimal

from a local signaling perspective[58].

Edge-Swap Network

The Edge-Swap Network was constructed using the edge-swapping algorithm[54]. The

edge-swapping algorithm was used to randomized the edges in the network to construct null

networks for comparison. The randomization procedure is as follows: Two edges are randomly

selected. If the two edges have two distinct source nodes and two distinct destination nodes, then

the the two destination nodes are swapped as long as the new edge does not already exist. If any

of the nodes associated with the randomly selected edges are the same, then two other edges are

picked randomly, and the procedure is repeated. A network connectedness check is performed to

make sure a separate network component is not created during the edge-swapping process. The

code for the algorithm can be found at[54].

The algorithm is run for 10 iterations on both the Full Network and the Feed Network,
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to generate their randomized versions. This randomization scheme preserves the node degree

distribution, by extension the number of edges in the network, and network connectedness. A

new distance adjacency matrix is computed given the new connection set.

Gilbert Randomized Network

Here we describe the Gilbert randomization procedure. The difference between between

the Full Network and their Gilbert randomized[26, 52, 22] counterparts are in the edge connec-

tivity pattern and new edge lengths. The Gilbert random network is constructed based on the

total number of edges in the Full Network. We calculated the probability of edge connection as

follows: Let N be the number of nodes in the Full Network, and let e be the number of edges in

the Full Network.

p =
e

N(N−1)
(2.2)

To create the random adjacency matrix, we create a matrix of random number between 0 and 1,

then using p as the threshold value, we set the values of the matrix to 0 if the previous value was

greater than p and 1 if the previous value was less than p. This results in an adjacency matrix of

0s and 1s with approximately the same number of edges in the Gilbert Randomized Network as

in the Full Network. Using the positional data for the neurons, we calculated a distance adjacency

matrix based on the network connectivity.

Embedded Random Feed Network

We embed either (Gilbert or Edge-Swap) edge randomized Feed Network into the Full

Network to generate a, so called, Embedded Random Feed Network. To create this network,

we replace the rows and columns of Full Network’s distance adjacency matrix with the edge

randomized Feed Network’s distance adjacency matrix. We use the same distance adjacency

matrix as in the standalone Edge Randomized Feed Network to make network comparisons of

dynamics more congruent.
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Table 2.1: Table of Similarity Measures with respect to the different networks and with respect to
different randomization schemes. The rows in the leftmost column of the table represent the percent of
a target pattern (refer to the matching criteria α in the body) which matched any of the patterns in the
source network. The heading for each column are organized as reference network vs target network. The
cells in the table represent the number of TSs of the reference network which found a match TS from the
target network meeting the corresponding row’s matching criteria.

Gilbert Rand Based Network

Percent match
Feed(124) vs Feed
Rand(598)

Feed(124) vs
Full(697)

Feed(124) vs
Embedded Rand
Feed(649)

Full(697) vs Embed-
ded Rand Feed(649)

Full(697) vs Full
Rand(665)

0.00% 124 124 124 697 697
25.00% 9 78 9 576 10
50.00% 0 33 0 36 1
75.00% 0 13 0 3 0

100.00% 0 6 0 1 0
Edge Swapped Network

Percent match
Feed(124) vs Feed
Rand(130)

Feed(124) vs
Full(697)

Feed(124) vs
Embedded Rand
Feed(674)

Full(697) vs Embed-
ded Rand Feed(674)

Full(697) vs Full
Rand(643)

0.00% 124 124 124 697 697
25.00% 50 78 9 688 16
50.00% 6 33 0 614 2
75.00% 3 13 0 422 0

100.00% 1 6 0 0 0
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Figure 2.1: Panel A, The reconstruction of the C. elegans connectome. Each gray line is an edge. Each
edge represents chemical connections between nodes. The colored dashed lines represents a sample of the
traversal of a signal from the sensory neuron ASEL through the interneuron network to the VB and DB
classes of motor-neurons. The color gradient indicates the time course as the signal traverses the network.
Cold colors represent early in the neuronal signaling pathway and warm colors represent late in the
neuronal signaling pathway. The node labels and numbers next to them represent the names of the motor
neurons at the terminus of the sequence of activations and the time step when that terminal node was
activated. Panel B, The Full Network’s spike raster caused by stimulating ASEL. The activity is a direct
result of the signaling parameters(signal conduction velocity, refractory period), network connectivity,
and the spatial locations of each of the nodes. Each dot represents the activation of a node in the network,
the white space represents an inactive state of the node. Each discrete height on y-axis represents a
specific node in the network. Panel C, The Lattice Network’s spike raster caused by stimulating ASEL.
The Lattice Network preserves the signaling parameters and network connectivity, but in effect modifies
the spatial locations relative to the Full Network. As a result all edges in the Lattice Network are have
uniform delays. The resulting spike raster is significantly less varied than that of the Full Network. We
will quantify this previous statement with the next panel. Panel D, Each curve is a cumulative count of
the unique number of network states of presented by the Full(red) and Lattice(blue) Networks as they
evolve in time. We observe an approximately a 20-fold increase in the number of network states resulting
from the dynamics of the Full Network than the states resulting from the Lattice Network.
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Figure 2.2: TS Plots. All TSs from ASEL to the VB and DB classes. Panel A, TS plot of Feed Network.
The activation patterns of neurons in the VB and DB classes are synchronized and staggered eventually
giving rise to periodic sequences of node activity. Panel B, TSs of the Gilbert Randomized Feed Network.
Synchronized and staggered activations from the VB and DB class are absent. Transient period of network
activity is longer than in Panel A. The TSs eventually enter a periodic sequences of node activity. There
were significantly more TSs in the randomized network than in Panel A. Panel C, The number of TSs of
the Full Network were significantly more than in the Feed Network (Panel A). Furthermore, the number
of motor neurons were activated at a faster rate than they were in the Feed Network (Panel A). This
indicates that there are many other signaling pathways or more active signaling pathways from ASEL
to the VB and DB classes of motor neurons which are either not captured or not as quickly activated
by the Feed Network. The TSs of the Full Network seems to enter periodic activity within the first
1000 simulation time steps. Panel D, TSs from Gilbert Randomized Full Network. The TS displayed a
significantly longer transient period before the network activity entered a periodic regime. The transient
period lasted approximately for the first 2000 steps of network activity. The time to periodic network
activity relative to the original networks seems to be an indicator of the extent of random deviation of
network connectivity.
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Figure 2.3: Here we show histograms of the number of firings of nodes from the VB and DB classes over
discrete time intervals of length 250 steps. Panel A. Histogram of the Feed Network’s VB and DB class
neurons activations. The network structure supports dynamics in the form of grouped actvivations of
neurons from the VB classes, then a group of activations of neurons from the DB classes, and the switch
of activity from the VB to DB classes continues. Panel B. Histogram of the Gilbert Randomized Feed
Network’s VB and DB class neurons activations. The randomization procedure significantly modified the
class based neuron activation patterns and decimates the grouped class based activations we observed
in Panel A. A semblance of periodic node activations from the VB and DB classes is observed after
approximately 3000 time steps. Panel C. Histogram of the Full Network’s VB and DB class neurons
activations. The C. elegans connectome gives rise to significantly more activity in the VB and DB classes
of motor neurons in comparison to the activity in the Feed Network, Panel A. The dynamics of the Full
Network also supported alternating VB, DB class activity. Because of the density of node activation
we show in the inset a zoomed in view of a sub-interval of activity to better view the VB-DB class
activation pattern. Panel D. Histogram of the Gilbert Randomized Full Network’s VB and DB class
neurons activations. The randomization procedure resulted in the destruction of the class-wise firing
patterns.
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Figure 2.5: Here we expand the motor neuron classes under consideration to include DA, DD, DdB, VA,
VD, and VB classes. We color coded the dorsal side classes in blue and the ventral size classes in green.
To elucidate the classes implicated in individual TSs, as a result of ASEL stimulation, we counted the
number of TSs which contained at least one, two, three and four classes out of the six total classes under
consideration. We only show 4 panels because there were no TSs which contained five or more classes in
them. Panel A, The values in each of boxes indicate the number of TSs with the specific neuronal class
present within the TS. For example, looking at the box labeled DA, at least one of the neurons in the
DA class was present in 325 TSs. The ventral classes were over-represented in TSs with single classes
present. Panel B, Here we considered the presence of any two classes of motor neurons in individual
TSs. The most prevalent two classes present were neurons from the VA-VB classes. Only the DB-DD
class interaction was not observed in any of the TSs captured. Panel C, Here we considered three class
interactions. The classes present in the TSs are given by the lines connecting the boxes. The number of
sequences are given by the circles. Here we observe significantly fewer TSs than in Panel B. Panel D,
There are significantly fewer TSs meeting the four present classes criteria. We do not consider the order
of present classes because of the much bigger combinatorial space to visualize.
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Chapter 3

Embeddings Of Network Dynamics Using

Steady State Statistics

3.1 Abstract

Analysis of the dynamics of spatial-temporal neural networks[49, 39] can provide vital

information for characterizing and differentiating between different inputs. We distinguish two

network’s in this work, there is a spatial network which is the connectivity of nodes along edges,

and there is the spatial-temporal network which is created by embedding the neuronal dynamics

into a graph whose nodes are neuron activation’s and edges , acting as axons, connect the neuron’s

causal activators. A question which arises in the analysis of network dynamics is how much of

the dynamics should be captured, especially, when the patterns of activity start to repeat. We

propose a summation based method and a string repetition finding based method to ascertain

the steady-state statistics of the dynamics, that is the starting point and period of steady-state

oscillations. Those statistics provides bounds over or a stopping criteria for data acquisition. The

string method is implemented in a linear time algorithm to identify steady state dynamics based

on node firing patterns. This is achieved by converting node firings into a string, then using an
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efficient string repetition finding algorithm to identify repeats in the string’s corresponding to

the steady state firing patterns. After ascertaining the steady-state statistics, we map the network

dynamics into a graph, then create a vector embedding of the graph based on the interacting

sub-graphs. This work acts as a scaffold upon which various aspects discussed can be further

developed and tested. For example, the design and testing of networks, node models, turning of

parameters, and the creation of more informative embedding techniques.

3.2 Introduction

Modeling physical and information systems as networks is a powerful approach when

multiple elements that make up the system interact in non-trivial and complex ways[44, 23].

Network abstractions are used pervasively in science and engineering[8, 3, 52, 27, 28, 2, 22, 15].

Both the structure and dynamics of complex networks are well studied[44, 3, 31]. Work so

far has focused on statistics of network structure[24, 48, 14], and signal spreading[46, 43, 21, 20],

for example oscillator synchronization, diffusion processes, rumour spreading, and epidemics

spreading[32, 4]. The problem of mathematically embedding network dynamics for quantitative

comparison is only starting to receive attention[5, 41]. A complex dynamic network consists of at

least two topologies, the topology of the network’s structure and the topology of the network’s

dynamics. Structural topology consists of the physical connectivity of the vertices in a network,

for example, vertex count, edge count, and degree distribution. In the context of neuroscience[7]

neurons which are physically connected are not necessarily causally dependent. The topology

of network dynamics is a subset of the structural topology and consists of the nodes and edges

resulting from observed causal signaling paths. Analysis of the topology of network dynamics

provides a new approach to develop artificial neural networks for machine learning.

Classically, an artificial neural network is represented, or modeled, as a directed graph[34,

50]. The vertices (nodes) are where computations occur, while the edges (links) of the graph have

43



weights on them that affect the computations. Some vertices receive inputs or signals from the

outside world. These are the input nodes. While some vertices are considered output nodes, the

subset of nodes from which one ‘reads out’ the result of the computation by the network. The

rest of the vertices reflect hidden nodes within the network. These are the nodes that are actually

carrying out the computations. Each vertex has associated with it an activation function that

determines if and when the resulting of summating inputs into the vertex produces an activation

of that vertex, which in turn results in the vertex signaling and affecting the vertices it connects

into. Activation functions can take on many forms. For example, it can be stochastic, such as in

Boltzman machines[42, 51], or deterministic, such as various kinds of feedforward networks[34].

The degree or amount that the activation of a vertex influences the vertices it connects into is

determined by the value of the weight on the edge between the two. A vertex sums all the weights

from upstream vertices and it is this value that becomes the input into the activation function.

The greater the weight between two connected nodes, the greater the effect of the upstream node

on the activation of the downstream node. The process of learning in the context of artificial

neural networks is a progressive adjustment of these weights. The networks are ‘trained’ through

a random search algorithm in order to find a combination of weights such that the output of the

network matches as closely as possible a set of inputs. That way, after its trained, when the

network encounters an unknown input it is asked to classify, the resultant output will match one

of the known outputs the network has been trained on.

In contrast, we are developing an alternative model of an artificial neural network that does

not depend on the training and global adjustment of weights[49, 7]. Weights can be randomly

initialized and can either be locally updated[10] or remain fixed (as in this work). Inputs (i.e.

signals or information) are still encoded in our networks by what subset of vertices are activated

and in what order, and there are still summations at individual vertices that trigger an activation

function. But the mapping from input to output is a result of the timing of how signals are flowing

or spreading through the network, which in our case are geometric. They have an equivalent
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physical geometric representation in space, and therefore, the timing of when signals propagating

on the edges of the network arrive at their downstream nodes to influence the summation matter.

The resultant patterns in the dynamics of the network that emerge through this process are a

natural consequence of input signals themselves. There is no training of the weights. And the

timing of the signals in how they interact with each other and affect what vertices are activated

when is a direct result of how the network is set up in the first place: its physical connectivity,

the signaling speed or conduction velocity of signals on the edges, and, importantly, a period of

refractoriness for each vertex during which it is not capable of being responding after it has been

activated.

To generate an embedding of the network dynamics, first we first need to determine which

part of the dynamical regime to capture by finding the steady-state statistics of the system (SS-S)

of the dynamics. The SS-S of the system consists of a steady-sate starting point and the steady-

state period, The steady-state starting point is the time point when the network’s node activity

enter a periodic orbit, that is starts to repeat. And the steady-state period is the time interval or the

number of steps of one period of steady-state activity. We propose three algorithms to determine

the SS-S of the network dynamics, two of complexity O(n3), and one of complexity O(n), where

n is the number of time samples under consideration. With the SS-S in hand, we construct a

graph representing the network dynamics. Then using the graph embedding, we construct a

vector space embedding[54, 47]. The vector space embedding represents the enumeration of

sub-graphs of the same height within the full graph of the network dynamics, and the interaction

of those sub-graphs. Both the graph representation and the vector space representation allows

us to quantitatively study the interaction between the network’s structure, resulting dynamics,

and network initial conditions. The results we discuss here represent an important step towards

the efficient construction of an end to end machine learning architecture that makes use of our

geometric dynamic model capable of adaptive on the fly data encoding and learning.
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3.3 Paper Organization

The paper is organized as follows: First we discuss some preliminaries. The Preliminaries

section includes the definitions we will use in the Methods sections. Next, we present a mapping

from a dynamical description of the network dynamics into symbolic descriptions of network

states. Then describe what we mean by the term steady-state statistics. After which we present

the data structures which are used as input to the summation and string search methods. We

provide a concrete example of an approach to generate the input to the string algorithm.

After the preliminaries, we will introduce the methods to find the steady-state statistics.

Using the steady-state statistics, we will discuss how tp transform the observed dynamics of

the network into a directed graph. Finally, we propose a path to transform the graph previously

constructed in to a vector embedding. This provides a high-dimensional representation of the

input embedded in the resulting dynamics.

3.4 Preliminaries

3.4.1 Network Description

The structural neural network is described by a directed graph[44, 23]. We define a graph

G as tuple G = (V,E, l), where V is the set of vertices V = {v1,v2, . . . ,vn}, where n is the number

of nodes in the network, E is a set of directed edges E ⊂V ×V , and l is the label function which

maps the vertices to an alphabet A , l : V → A . Since the inspiration for this work is derived from

analysis of biological neural networks, we interchangeably call nodes neurons, and edges axons.

Each neuron in G takes on a binary state at a time t. The state of the ith neuron in G is given by

ωi (t) = {0,1}. An axon from neuron i impinging upon neuron j is given by edge ei j =
(
vi,v j

)
,

where ei j ∈ E. Every axon in G has an associated delay, τi j, which is the time it takes a signal

originating at neuron i to reach neuron j. In the general case τi j can be a function of several
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variables, but for the purposes this work it is kept constant, after network initialization.

3.4.2 Dynamical Description

Following the work of Cessac etal.[12, 11], we will attempt to construct a mathematical

bridge from a dynamical system description to a symbolic coding description. In this work we

only consider the deterministic evolution of the network activity, a probabilistic formulation is

left for a future work.

Let Vk(t) be the membrane potential of neuron k ∈ 1 . . .n at time t. V (t) = [Vi (t)]
n
i=1

is the vector representation of the membrane potential of the entire system. V (0) is the initial

condition of the system. The bounds on the values assumed by the membrane potential is given

by Vk (t) ∈ [Vmin,Vmax]. The threshold for firing is some value Θ ∈ [Vmin,Vmax]. For a trajectory V ,

the firing times of neuron k is given by:

t(m)
k (V ) = in f

{
t|t > t(m−1)

k (V ) ,Vk (t)≥Θ
}

(3.1)

As such, t(m)
k is the mth firing of neuron k. As an initial condition for the set of firing times we set

t(0)k =−∞. After firing, the neuron’s membrane potential resets to some value Vreset .

Vk (t)≥Θ =⇒ lim
∆→0+

Vk (t +∆) =Vreset (3.2)

As with V (t), Vreset ∈ [Vmin,Vmax].

To generate a symbolic coding description, we introduce the notion of a raster plot. A

raster plot is a sequence ω̃ = {ω(t)}+∞
t=0 of vectors ω(t), where ω(t) = [ωk (t)]

n
k=1. When neuron

k fires, t, ωk (t) = 1, and when neuron k is quiescent ωk(t) = 0.

For the purpose of generating a raster plot, the membrane potential of a neuron can be

decomposed into two intervals, I0 = [Vmin,Θ] and I1 = [Θ,Vmax]. If neuron k is quiescent then
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Vk ∈ I0; otherwise, the neuron has fired. Let Λ = {0,1}n, and let [ωk (t)]
n
k=1 ∈ Λ. Each point V (t)

corresponds to a firing state ω(t) whose components are given by:

ωk (t) = Z [Vk (t)] (3.3)

where Z is defined using the indicator function denoted by χ:

Z (x) = χ [x≥Θ] (3.4)

The dynamic evolution of the system is given by:

V (t +∆) = F (V (t)) (3.5)

Where F = [Fi]
n
i=1. In the integrating regime of the neuron, the model evolves as follows:

Fi(V ) = γVi(1−Z[Vi])+
n

∑
j=1

w jiZ[Vj(t− τ ji)] (3.6)

Where γ is some decay function[49], and w ji is the coupling strength between neuron i and j, and

τ ji as defined earlier is the delay between neurons i and j.

3.4.3 Description of Steady-State Statistics

Here we define the terms starting point and period of steady-state activity of the network

dynamics. It is defined as the repeating or periodic set of network states the dynamics settles to

after some transient activity. Given our network construction, the regimes of network activity are

(1) persistent activity, and (2) neural death, ie, cessation of all activity in the network. Although

neural death is a type of steady-state, it is the trivial case in this work. Persistent activity can

either eventually enter a periodic orbit of network states, or the network continues to exhibit
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non-periodic but persistent activity. In situations where it is difficult to analytically determine a

network’s steady-state behavior, we forward calculate the network activity to computationally

tractable limits, and analyze the resulting dynamics to determine the network’s steady-state

statistics.

Let us say that the state of the network is given by some function x(t). We say that the

network, has entered steady-state when for ∀t > tss, when:

x(tss + c) = x(tss + c+T ) (3.7)

where tss is the steady-state starting point, T is the steady-state period, and c is some arbitrary

positive time shift:

The transient phase of x(t) is the evolution of x(t) until it enters a periodic orbit. We

define the starting time/time-index of steady-state activity as the end of the transient phase. Once

the network activity has entered a periodic orbit, we define the period of steady-state activity as

the amount of time/time-indices it takes for the activity to repeat. In large and complex networks,

for example one with many nodes, or with some of feedback mechanism which modifies network

parameters as a result of network activity, it is quite possible that the forward computation will not

have been calculated for a long enough data window for the entire network to exhibit steady-state

behavior.

3.4.4 Sum Description

Here we describe the input to the summation methods. We consider the subset M ⊂ ω̃:

M = {ω(t)|∃ωi(t) = 1} (3.8)

In words, M is the set composed of vectors [ωi (t)]ni=1, whose elements are vectors of

node activations. Each vector in the set M contains at least one node activation. Let m ∈M , and
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let us preserve the time ordering of the elements of M by indexing them, where, m[i] is the ith

activation vector of M . Note, that at each t, the corresponding vector representation of the slice

of M contains value 1 at the dimension corresponding to the nodes which activated, and 0 in the

dimensions corresponding to quiescent nodes. This form of definition opens up the possibility of

finding the steady-state statistics in an asynchronous event based simulation framework[6, 53, 37].

We take advantage of the non-uniform sampling in trying to ascertain steady-state statistics in

the network setting. To use the summation method with uniform sampling we use ω̃, instead of

M , keeping all the sampling points which populate ω between firings. Analysis in the uniformly

sampled setting comes at the computational cost as a function of the sampling rate. For networks

with evolving network parameters which affect the sampling rate we may not know apriori the

most optimal sampling rate.

Here we make a distinction, not fully developed in this work, which is one between

analyzed nodes and observed nodes. The observed nodes are all the nodes in the network for

which we have recorded data. The analyzed nodes are a subset of the observed nodes which we

may deem a representative set of nodes. We make this distinction because it may not be necessary

to analyze all nodes in the network to determine steady-state statistics of the entire network.

3.4.5 String Description

To apply string run finding algorithms, we must convert the dynamic evolution of the

system to a string description. We denote the sequence of firings as the set:

ω̃ = {. . .ω(s) . . .ω(−1) ,ω(0) ,ω(1) . . .ω(t) . . .} (3.9)

And we denote the right-sequence of node activations after some initial conditions, for example

at t = 0, as:

ω̃+ = {ω(0) ,ω(1) . . .ω(t) . . .} (3.10)
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To get a string representation of the sequence of firings, we define a labeling function which

maps firings to an alphabet of fixed length strings of size s ∈ N. The alphabet is denoted as Σs.

L : ω→{Σs,ε}, that is, L maps activations of neurons to fixed length strings, Σs, and quiescent

states to the empty string, ε. Let σs,ωi be the symbol associated with the activation of the ith

node. For brevity, we will drop the subscript s and assume a fixed length string in place of the

symbol. Note that we do not distinguish in the string the time of firing, the string only contains

information about the set of node which activated. We define S as the set of strings representing

the evolution of the network. The ordering of this set is based upon the ordering of ω̃ with respect

to time. The input to the string run finding algorithm is

S =
{
. . .σω(t−1),σω(t),σω(t+1) . . .

}
(3.11)

To extend the string description for use with uniform sampling, the labeling function

would assign a symbol or a set of symbols to the quiescent states of ω(t), rather than mapping

those states to ε. Uniform sampling would significantly increases run time by a constant multiple

c, the number of bits or symbols used to describe each discretized value. Resulting in a time

complexity of order O(cn), where n is the number of samples.

3.4.6 String transformation

In this section we present a simple technique to convert a given discrete signal x(t) into a

string. We begin by assuming that this system has n nodes which fire. We then enumerate each

node arbitrarily, and keep it fixed over the course of the analysis. We start with an empty string,

and since our system has information about which node fired, if node i fired at time t = 1 we

simply append i to the string, as such, we append to the string each subsequent node firing. In

the case of multiple node firings at the same time, we generate a new enumeration and append

it to the string. Consider the following network with two nodes showing the following firing
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pattern (Fig. 3.1) That is, node 1 fires at t1, node 2 fires at t2, both fire at t3 and so on. Now we

enumerate the event of the two nodes firing simultaneously by an arbitrary character, say ”a”,

and return the following output: 12a12a212. By doing so we convert our signal into a string

and reduce the problem of finding steady state in a complex signal to only finding a repeating

substring. Note that when encountered by events such as simultaneous firing, we use an unused

character to represent it and store the mapping in a hash table.

3.5 Methods

3.5.1 Steady-State Detection

To tackle the the issue of finding Steady-State Statistics we propose three approaches,

namely, the Signal Summation approach, the Naive String Search approach, and the Efficient

String Search Approach.

Signal Summation

Using as input the ω(t) constructed in Sec. 3.4.4, we describe an algorithm to determine

the steady-state statistics of the system (SS-S-S) (Sec. 3.4.3). This approach is based on the

network’s dynamics from the description in Sec. 3.4.4 of the form ω(t). The following algorithm

is also extendable to the non-uniform sampling setting using m[i], where i is the index. The

methods presented in this paper can only determine that SS-S up-to the extent of the forward

calculation. The longest period this algorithm can determine is of size equal to half the data.

In the general discrete case, for a system of N nodes, the state of node j is given by ω j(t)

(eq. 3.3) where ω j(t) ∈ {0,1}. We assume a node only fires at most once per time point. Each

ω j(t) is defined over the interval t ∈ [t0, t f ], where t0 is initial observation time, and t f is the final

observation time. The signal ω j(t) is comprised of two parts, the transient part, g j(t), defined

over the interval t ∈ [t0, tSS j −∆] , and the periodic part h j(t) defined over the interval [tSS j , t f ],
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for some arbitrarily small ∆. The network’s activity can be described by the following set of

equations:

ω1(t) = g1(t)+h1(t)

. . .

ω j(t) = g j(t)+h j(t)

. . .

ωN(t) = gN(t)+hN(t)

(3.12)

Since h j(t) is periodic, and given the form of ω j(t), we can describe it using a sequence of delta

functions:

h j(t) =
r

∑
m=1

(δ(t−mb1)+ · · ·+δ(t−mbn)) ∈ {0,1} (3.13)

There are a total of n activation per period. Let bi be the time of the ith activation in some mth

period, where m is a multiple of the fundamental period. Let r be the total number of periods.

Note, care must be taken for the final period in the data window, as it is likely to be a fraction of

period.

To find the SS-S-S, we first find Steady-state Statistics of ω j(t) (SS-S-j). SS-S-j is

comprised of the Steady-state Start Point(SS-SP-j) and it’s Steady-state Period(SS-P-j). Let

tSS j be SS-SP-j, the start of h j(t), and SS-P-j is the fundamental period of h j(t). After all the

SS-SP-j’s are determined, the latest starting-point of steady-state across all ω j is used as the

Steady-state Start Point of the system (SS-SP-S). We define the Steady-state Period for the system

(SS-P-S) as the longest period across all ω j(t). Under the non-uniform sampling setting (eq. 3.8)

this technique may not capture the correct steady-state statistics. This happens when there is a

contraction or expansion of timescales over node firings take place, but the sequence of node

firings do not change.

For some ith node in the network, we construct zi(k,T ) to determine the SS-S-i. Here k is

53



the candidate SS-SP-i, and T is the candidate SS-P-i.

zi(k,T ) =
∫ k+T

k
ωi(t)dt (3.14)

The longest period sets the upper-bound for T , while the lower bound of T is fixed to

two consecutive time points. Let ti ∈ [t0, t f ] be the time point when ωi(t) initiates steady-state

behaviour. We assume for all t > ti, the signal ωi(t) is in steady-state. Let ψi ∈ [0, t f
2 − t0] be the

period of ωi(t)’s steady-state. We evaluate zi(k,T ) over the candidate periods T ∈ [0, t f
2 − t0] and

candidate starting points k. Our goal is to find the correct ψi and ti. The regimes of operation

where we evaluate eq. 3.14 are:

1. k ∈ [t0, ti), T ∈ [0, t f
2 − t0]

2. k ∈ [ti, t f ], T ∈ [0, t f
2 − t0]

(a) k ∈ [ti, t f ], T ∈ {ψi,2ψi, . . .nψi}

(b) k ∈ [ti, t f ], T 6∈ {ψi,2ψi, . . .nψi}

We define f (x) to be uniformly zero starting at some constant c, when the function

stabilizes at the value of zero after some point c, i.e.,

∀x≥ c , f (x) = 0 (3.15)

We will use the notion of uniformly zero to analyze the results of Eq. 3.14.

To determine the SS-S-i, we look for the smallest k and smallest T where ∂zi(k,T )
∂k and

∂zi(k,T )
∂T are uniformly zero. Let

A =

{
(k,T ) | ∀k > c,

∂z(k,T )
∂k

∣∣∣
T∈[0, t f

2 −t0]
= 0
}

(3.16)
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First, we determine the SS-SP-i (i.e. ti), by finding the minimum k in A:

ti =
{

k | inf
k

A
}

(3.17)

We use the minimum k, to find ψi by evaluating A for the minimum T :

ψi =

{
T | inf

T
A
∣∣∣
k=ti

}
(3.18)

The uniformly zero condition is satisfied for a short trailing set of start times/indices (see Figs:

3.2c, 3.2f, and 3.4b). This is because two adjacent time units can have the same envelop (eq.

(3.14)) for some k in A satisfying the uniformly zero condition of eq. 3.16. This issue is mitigated

by considering the k infinum of A.

This process results in a set of values for ti, but only one of those is the SS-SP-i. Taking

the infinum removes the false candidate for ti. Likewise, to find the period we take the infinum of

T when we consider the case:

∂z(k,T )
∂k

∣∣∣ k=ti
T∈{ψi,2ψi,...nψi}

= 0 (3.19)

Once we determine ti and ψi for each node, the maximum values across all nodes are

selected for the steady-state statistics of the system.

String Search: Naive O(n3)

The input to the string search uses the construction from sec. 3.4.5. We introduce the

string run finding algorithm by first presenting a naive approach. Here we do a brute force search

to identify a repeating, terminating substring in our signal-converted string. To do so, we loop

over the period of the expected steady state pattern, and for each period we loop over the start

time, essentially testing all n(n+1)/2 substrings as the candidate steady state pattern. Formally,
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given a string of length n we find the pattern using the following psuedo-code:

Algorithm 2 Naive Find Steady-State Statistics
1: procedure FINDSTEADYSTATE

2: str← signal
3: strlen← length of signal
4: perlen← length of candidate period length
5: index← length of current position in string
6: for perlen = 1 to strlen do:
7: for index = 0 to strlen-1 do:
8: substring = str[index:index+perlen]
9: if CheckTerminating(substring, str, index, perlen) then

10: return substring
11: end if
12: end for
13: end for
14: end procedure

15: procedure CHECKTERMINATING

16: str← signal
17: substring← candidate steady state
18: index← candidate start point
19: perlen← length of candidate period length
20: while i = index to strlen-perlen do:
21: if substring != str[i:i+perlen] then
22: return False
23: end if
24: return True
25: end while
26: end procedure

That is, we consider every possible continuous substring and check whether it is the

required pattern, and we stop when we find one, yielding the shortest one. A basic analysis of the

psuedo-code yields an O(n3) time complexity. We improve this in the next section.

String Search: Efficient O(n)

The efficient algorithm uses as input S which is based on the right-sequence of node

activations, ω̃+ as defined in sec. 3.4.5. Let x [i] denote the ith location in S . The modulus operator
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can be used to map from x to ω(t). In stringology[18, 55, 25, 29], a string, x, of length n, has

period, p, if x [i] = x [i+ p], for any i, such that, 1≤ i≤ n− p. If we were to consider the case

where string x can be decomposed into sub-strings u, v, and w, such that x = uvkw, then string

u is considered the prefix of x, and string v is the period, repeated k times, and the string w is

considered the suffix.

Due to our interest in finding the starting time/time-index and period of steady state, we

are concerned with strings which end in repeats. More specifically, strings that end at some

location in the period v, in the course of a run([36]). In stringology, a primitive string is a string

that is the fundamental period of the repetition (and can not be further compressed into the form

vk). The leftmost primitive string is called maximal, that is, if the primitive string can not be

shifted anymore to the left. If the primitive string could be shifted more leftward, a new prefix and

an addition to the kth repetition would result, and that point is leftmost maximal. A run is defined

as the maximal fractional primitively rooted repetition (example: 12312312312 = (123)3 2
3 , where

the run is 123), and takes into account the stop of the forward calculation at some fraction of the

period. Now we have the stringology terminology to describe our needs. We are interested in

strings which end in runs, i.e. periodic sequences. Moreover, we are interested in the leftmost

primitively rooted repetition of that last run. That is the starting point of steady-state.

The problem of finding runs in strings has been solved with O(n) time algorithms ([33]),

where n is the length of the string. We use the implementation courtesy of Dr. Hideo Bannai of

Kyushu University in Japan called runFinder[1]. Modern run finding algorithms[13, 45, 17, 25,

26] rely on building and analyzing data structures which are amenable to finding repetitions in

strings. The following is the procedure used in the algorithm:

(1) A suffix array[38] is build using[40].

(2) The Longest Common Prefix is calculated[30].

(3) Lempel-Ziv factorization[56, 16] is used to find all leftmost runs.

(4) Kolpakov and Kucherov’s[33] linear time algorithm is used for finding all maximal
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repetitions.

Once the maximal runs have been found, we sort through the runs to find those ending

at the input string’s final character position. If there are multiple candidate runs, we pick the

candidate which has the minimum starting position. The primitively rooted repetition is the period

of steady-state activity.

3.5.2 Constructing Graph Representation of Network Dynamics

Using the causal node activity, we construct a graph representing the dynamics on the

network. The nodes of the graph are (vi, tk), where vi is the neuron which fires at some time

tk. The edges of the graph represent the causal activators[49] of (vi, tk). Every time a neuron is

activated a new node, (vi+1, tk+1), is added to the graph. This way we are able to distinguish

repeated node firings, while still being able to construct subgraphs of neuron-neuron interactions.

The initial conditions and external perturbations to the network are represented by node

without causal predecessors. The child nodes are the subsequent nodes which are causally

activated. The steady-state statistics of the network dynamics bounds the construction of the

graph.

3.5.3 Embedding Dynamics using WL Scheme

To transform the graph data structure to a vector representation we use the Weisfeller-

Lehman(WL) subgraph embedding technique[47, 54], a plethora of other data structures and

embeddings can be used[9]. Since our interest is in the interaction of nodes and pathways of

network dynamics, we chose WL subraph embedding to illustrate the process of transforming

neuronal dynamics to a vector embedding.

If one were interested in analyzing the dynamics within the core of the network itself

rather than the graphs which are formed due to the interactions with the sensory layer, i.e., the
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initial conditions, we must make a conscious effort to blind the algorithm of the sensory nodes.

An easy way to do accomplish this is to assign all the sensory nodes the same label. Doing so will

make resultant relabeling and therefore subgraphs dependent only upon the patterns of activity

within the core of the network. Obfuscation of the input layer will also allow us to compare the

ability of the network’s dynamics to characterize the inputs rather than using the inputs, through

the initial conditions, as the differentiating signature of the dynamics.

3.6 Results

3.6.1 Summation Method, Uniformly Sampled 1 Hz Signal

To illustrate the summation method methods we first show the results on a simple idealize

waveform which consists of a 1Hz impulse train (fig. 3.2a), sampled at 100Hz. The signal

consists of a sequence of zeros and ones. Fig. 3.2b shows the sum of the spikes over the various

candidate periods and starting points, a reflection of eq. 3.14. Fig. 3.2c shows the change in the

number of spikes as a function of starting positions, a reflection of eq. 3.16.

The red horizontal lines in fig. 3.2c indicate the candidate periods and starting points

which corresponds to the condition eq. 3.15 applied in eq. 3.16.

The candidates periods fall into two categories. Category 1, encompasses the two red

horizontal lines which share a start time of 0s, and category 2 encompasses all the other red

horizontal lines which start at start time 1s,2s and 3s. For the signal’s SS-S we choose the earliest

start time eq. 3.17, and the shortest period eq. 3.18. The period of 1s explains the data from

a start time of 0s onward. The other red horizontal lines are a result of the envelopes for some

range of (k,T ) in eq. 3.14 as noted in the methods (sec. 3.5.1), meeting the condition eq. 3.15,

but explaining less of the data.
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3.6.2 Uniformly Sampled Randomized Pulse Train

We now consider a sequence of impulses which are poisson distributed as shown in Fig.

3.2d. In Fig. 3.2e we observe that there are bands of values, although not horizontally contiguous

as is our requirement for steady-state statistics, of start times and period lengths which have the

same number of spikes. Our intention for future work is to consider noisy signals, and one way in

which we can handle those is by relaxing the criteria on the change in the number of spikes in

adjacent starting points.

Given the stochastic nature of firings, Fig. 3.2f no longer exhibits the kinds symmetries

which were found in Fig. 3.2c. All the zero differences are relegated to a few starting points at the

end of the data-window, and there is no period of negligible size, or easily discerned harmonics

thereof. In the case that the system is not actually in a regime of periodic activity, we may end up

with candidate periods and starting points due to an unchanging number of spikes in the last few

starting points, k, where the uniformly zero criteria is met. One must make sure that the forward

calculations are done for long enough such that the system is actually in steady-state. A simple

workaround is to consider steady-state statistics such that the forward-calculations are done for a

data-window long enough such that the starting point of steady-state must be some fraction of the

data-window.

3.6.3 Summation Method, Non-Uniform Sampling, Steady-State Statistics

in Network Application

Here we illustrate an application of the steady-state finding algorithms as it pertains to

discerning steady-state statistics in network dynamics settings. The network under consideration

is illustrated in Fig. 3.3a. We introduce an image of a hand written digit from the MNIST

database [35] as binary vector at time t = 0 to the input layer nodes of the network, and analyze

the resulting dynamics. In order to get a sense of the data we wish to analyze, we create a raster
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plot of the activation of the output nodes (Fig. 3.3b).

Following the procedures outlined in the methods, we show the start time index and the

size of the periods in units of time indices Figs. 3.4a, 3.4b. Note that each iteration through the

method is done on a per node basis, and the steady-state statistics of the system are are taken to

be the latest start time and the longest period among all the analyzed nodes.

As with the previous examples, the smallest value on the abscissa where the red horizontal

line begins is the start of the steady-state behavior. Each red line, of the set of longest red lines,

on the ordinate represents the harmonics of the period of steady-state activity.

Note the switch from using seconds to using time indices. The data fed into the steady-

state finding algorithm is no longer uniformly distributed, but used from eq. 3.8. Non-uniform

sampling is used here to reduce the computational complexity of the problem by using the

network’s activity itself as the sampling points. While the start index corresponds to a specific

absolute time value, the number of time indices which make up a period corresponds to a range of

absolute time values. While evaluating eq. 3.14 for a fixed period, in units of time indices, across

start time indices, we observe that the fluctuations in period length measured in absolute time,

seconds, between start times. This is due to the way we non-uniformly sample and the fact that

the absolute time between adjacent activations vary, therefore moving one time index does not

correspond to a move of one absolute time unit. Fig. 3.5a, illustrates the variation in the absolute

time for a fixed period as a function of starting time index.

Each horizontal line in Fig. 3.5a corresponds to a harmonic of the period. The fluctuations

in a particular horizontal line in Fig. 3.5a correspond to the aforementioned absolute time between

the start of the period and end of the period. Fig. 3.5b shows the number of spikes which are

present in each harmonic of the period. There is a one-to-one correspondence between Figs.

3.5a and 3.5b in terms of bottom to top ordering of curves. As expected, and needed, once the

system is in steady-state the number of spikes in a period stabilizes to the steady-state number of

spikes in a period. The number of spikes in a period is unchanging over a period for t ≥ tSS. Each
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successive vertically increasing curve in Fig. 3.5b shows the number of spikes in harmonics of

the period.

Issues

Some issues exist in using the summation method in the non-uniform sampling setting,

here we discuss a few. This method has the shortfall that variations in network activations which

do not cause a reordering of spikes will not be distinguishable, therefore, any drift in spiking

activity without causing a reordering of M will be treated the same.

Since we are using the latest start time and the longest period, and although we are assured

that all the other nodes in the network will be in steady-state, we may not capture entire integer

multiples of full periods of all of the nodes. There may be fractions of periods, of some nodes,

contained in the longest period. If the requirement were to capture integer multiples of the periods,

then the greatest common denominator of all the periods may far exceed the observation time of

the network.

Another issue which exists with the summation method is that the network states which

are under consideration for the determination of steady-state are only the node activations. Cases

where nodes activate due to different causal activators but result in the same pattern of network

activity can exist, but the summation method is not able to distinguish between the different

causal activators. We resolve this issue during post-processing. The one and zeros of the signal

are broken up based on the steady-state statistics, and the signals are aligned on a per period

basis. Preceding the vector positions of the activations, the causal activators are inserted, and

the dimension of the data vector is increased as a result. Finally, the vectors of causal activators,

as well activations, are compared for alignment across periods, to make sure that there is no

difference between the activators which give rise to the firing’s in all the periods until the end of

the observation window. When comparing periods, one may not capture integer multiples of a

period, therefore, care must be taken to consider the final fractional period.
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The final issue with the sum method which we will discuss is that activations in the initial

period may be erroneously included in the steady-state period or as the steady-state starting

point. This issue arises at it’s core due to non-uniform sampling. Because the sum method

is comparing a count of activations within a period’s time window, and because we slide that

window across the candidate starting points, a node activation not really part of the steady-state

set of node activations may be inadvertently included. When that erroneously included node

activaiton happens to lie close the first actual node activation of the period, where we define close

as-a distance in time indices less than the spacing between any of the node activation of the actual

period. Outside the first period, this is not a issue which will arise due to the strict requirement

that number of spikes in the smallest period from start to finish must be maintained between

all consecutive starting points. Alignment of activations, as done to detect difference in causal

activators, is one way to detect this issue. When an erroneous spike is detected one solution is to

remove the erroneous spike from consideration, by flipping the corresponding bit, and rerunning

the algorithm and rechecking for alignment.

3.6.4 Steady-State Statistics using efficient run-finding algorithm

We apply the run-finding algorithm to the strings generated by the introduction of the

MNIST images to the network, as in the previous section. Since we have a total of 793 nodes in

the network (784 sensory nodes associated with the pixels in each image, 5 core nodes, and 4 leaf

nodes), we use a string of 3 symbols. Node 1, will have a label 001, node 2 will have label 002,

and so on up to node 793 with label 793. We do not delimit the symbols with commas or other

delimiters as those symbols increase the processing time.

Table 3.1 shows a sample output for illustration. For a string of length 8586 symbols,

which translates to 2862 node activations, the run-finding algorithm finds a string of length 81

symbols, which is 27 node activations in a steady-state period, and a run of length 6090 symbols,

which translates to 2030 node activations. As with the summing method, using the information in
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the table below we are able to construct a graph of activations, based on set of causal relationships

between node activations up to the point where the dynamics stop producing new information.

3.7 Discussion

In this work we have proposed a path to ascertain vector embeddings from the observed

dynamics on a network. To get a complete representation of the information contained in the

dynamics one must find the steady-state statistics. Using SS-S as the basis, a graph representation,

which is one of perhaps several to describe the dynamics, is generated.

Large and/or more more complex networks, one which includes feedback or variations

in the network parameters, pose challenges to finding the steady-state statistics. Two of those

challenges are that the network dynamics may not entirely enter steady-state behavior, or the

network dynamics may need too much time to enter the steady-state regime. One may only be

interested in stability of the network dynamics indicated by periodic activity for some duration of

time, we call this transient stability. The methods to find steady-state statistics supports the ability

to find repetitions of periods lasting some duration of time. In the case of the string matching

method, it is just a filter on the length of runs, and in the case of the summing method, a filter on

the length of zero derivatives rather than a filter on the uniformly zero criteria.

Another issue with finding the steady-state statistics on complex networks is that it may

be computationally infeasible to measure the dynamics of the entire system. A solution to this

problem may be to observe the dynamics at a user defined subset of the network and depending

on the network create some confidence measure as to the likelihood of the system being in the

steady-state regime based observed subset’s dynamics. We have some preliminary results which

show that analyzing the dynamics some subset of nodes does in fact result in the same steady-state

statistics as analyzing all the nodes in the network(should i put the data in the appendix, i removed

it because it was for a different MNIST example, and detracted from the main point of the paper).
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In large and complex network analysis, we suspect that the nominal use-case in analyzing

networks will be a combination of the two previously discussed topics. One maybe interested

in only a subset of the network exhibiting transient stability. When transient stability has not

yet been achieved by the network, after some duration of observation time, one may wish to

continue the forward computations and along the way check for steady-state behavior using

whatever user defined criteria for the amount of steady-state activity which will convince the user

that the system is in fact in steady-state, for example some fraction of the captured observations

exhibit steady-state behavior. Online methods, those that do not require the recomputing of entire

data structures previously computed, would be quite useful to run in parallel with the forward

computation. The less computationally efficient summing method can easily be extended into an

online algorithms since each additional node activation is does not require the recomputing of

previously computed values. The string searching algorithm must be rerun in entirety every time

we wish to analyze a new string, even one generated by the addition of one activation to the end

of the string. An online algorithm algorithm which requires minimal recomputing would aid in

inline network dynamics analysis.

An extension of the application of the string searching algorithm to elucidate steady-state

statistics is to include additional observed network states and parameters, for example, causal

activators, signal contributions, times between firings, etc. This can be done by extending the

library of symbols to be included in the string paying relatively small computational penalty.

For example, in the case of adding causal node activators, lets say there are, on average, three

activators required per activation, then we will be extending the size of the string by a multiple of

three. Any parameter that can be translated into a symbolic representation, which is pretty much

all information stored in a computer can be included in the string representation for analysis. It is

up to the user to determine the appropriate parameters for inclusion.

Finding approximate periods, that is a minimal number of symbol switches which results

in a repeating sub-string is also of interest. This problem has to some extent been resolved in that

65



algorithms robust to substitution resulting in repeats exist, and algorithms which result in ”fuzzy”

repeats exist based on graph edit or Levenstein distance. As such some sources of noise such as

aberrant activations or approximate periods can be determined using the string technique.

The vector embedding process of the network activity is agnostic of the steady-state

finding process. Any embedding process will need to be informed of how much of the dynamics

to include in the embedding.

Since the main focus of this work is to put together a workflow which enables systematic

analysis, we are now in a position to evaluate various network models and parameters. The

modularized nature of our workflow enables us to test not only various network models, but also

node models, more informative embedding schemes, and using other back-end classifiers and

techniques to discriminate data, as well as analyze different regimes of network activity based on

various definitions of network dynamic stability.

3.8 Conclusion

In the preceding we show how to map neural network dynamics into a vector representa-

tion. We propose the steady-state criteria to determine how much of the dynamics to capture, and

we outline methods to do so. In circumstance where one is analyzing large or complex network

dynamics, our methods are extensible to relaxed constraints, such as, finding transient stability,

and analyzing subsets of network dynamics.

Each steady-state statistics finding method provides different boons. The summation

method can be extended to the probabilistic setting by relaxing the uniformly zero criteria,

whereas, the string search method utilizes an efficient algorithm.

Inspired by theories from neuroscience we believe the graph representation of the net-

work dynamics provides a straightforward mapping which preserves some salient information

(references about neural patterns being important). The WL subgraph embedding scheme is used
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because we are interested in the interaction of various activity patterns, and at various levels of

organization. Specifically, the WL scheme captures, the interaction between nodes, interaction

between subgraphs of neighbours, and interaction of subgraphs of larger heights. Although we

propose a specific path to ascertain a vector embedding, one is encouraged to build more general

mathematical bridges between network activity and forms of representation, such as topological

constructs[19] to represent the dynamics.

These tools provide a basis upon which we can analyze different network designs and

organizations, compare various node models. The vector representation lets us analyze the results

using a plethora of existing tools from algebra, such as norms and differences.

3.9 Appendix: Network Description

3.9.1 Preliminaries

The structure of our network can be described by a simple directed graph[23]. The

construction of the network we consider for this work is from[49], whose work also introduces

the Geometric Dynamic Perceptron Node model.

We define a graph G as tuple G=(V,E, l), where V is the set of vertices V = {v1,v2, . . . ,vn},

E is a set of directed edges E ⊂ V ×V , and l is the label function which maps the vertices to

an alphabet Σ, l : V → Σ. Each node in G takes on a binary state, the state of the ith node in

G is Xi = 0,1. Each edge ei j =
(
vi,v j

)
in G has an associated delay, τi j, which is fixed after

initialization.

3.9.2 Network Construction

Our network consists of three layers, an input layer, a recurrent/hidden layer, and an output

layer, Fig. 3.3a shows a graphical description. The input layer contains 784 nodes, one for each
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pixel of the MNIST data set. The recurrent layer contains 5 nodes, and finally the output layer

contains 4 nodes. Connectivity of the nodes in each layer are as follows, edges from the input

layer to the recurrent layer are connected in a feed-forward manner, that is, there is a directed

edge from each node in the input layer to every node in the recurrent layer. Within the recurrent

layer, each node is connected to every other node. The nodes between the recurrent layer and

the output layer are connected in a feed-forward manner, similar to edges between the input and

recurrent layer. Finally, at the output layer there are no edges emanating from any of the output

layer nodes.

Each edge has an associated delay. All the edges in the network used for the results

section were drawn from a uniform distribution.

3.9.3 Node Model

The threshold for each node in the network is set to an amplitude of 2 units. Once the

voltage of the node is above threshold, a signal of amplitude 1 unit is transmitted along all the

outgoing edges of that node. Once a signal reaches its destination node along an edge, a decay is

applied to that signal. Each individual signal being summed at a node is separately exponentially

decayed, using a decay constant of xyx. The synaptic weights are set to unity, the network

dynamics are only a function of the edge delays. We set the refractory period of all nodes to

0.0625s.

3.9.4 Network Initial Conditions

The initial conditions of the network are set in two parts, one is at the input layer, the other

is for the rest of the network. At the input layer we select a subset of nodes to be active at time

t = 0, the initialization can be done in whatever way necessary to sufficiently excite the network

such that non-trivial SS exists. Subsequent layers, and all their associated edges are quiescent.
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3.9.5 Data structure

Upon stimulating the network at the input layer, we observe the spiking activity in the

recurrent and output layers. A spike is the activation of a neuron and corresponds to the change in

membrane voltage. In this network, which is a simplification of the neurobiological process, we

define a spike to be the transition of the state variable Y from 0→ 1→ 0. The spike time is the

time at which a spike is generated, and the set of times, S for a node i is written Si = {t|Yi(t) = 1}.

We observe that the spike times are points in time not necessarily picked from uniformly sampled

values.

Next we place the activity of node i in the context of the entire network. To do so we

define the notion of a spike train. Let us denote a set Ti to be the spike train of node i. An

element of the set Ti(t) = 1 takes on a value of 1 when the associated Yi(t) = 1, and Ti(t) = 0

when Yk(t) = 1. At some time tr, in the case where Yi(tr) = 1, and Yk(tr) = 1, we set Ti(tr) = 1.

Now for any i, Ti(t) = {0,1}.
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Table 3.1: A table containing the sample outputs of the steady-state statistics of the system
using the string finding method. Each of the entries are in either String Character Units or refer
to specific Node Numbers in a sequence. String Character Units refer to the index(rows 1 and
2) or interval(row 3) of a symbol or symbols in a string sequence. When mapping from String
Character Units to network node activations care must be taken to account for the length of the
node’s symbol description, for example, because we are using a network with 793 total nodes are
we are using the decimal counting system, therefore, we use three symbols describe every node
and each of the String Character Units are divisible by three. Row 4 shows a sequence of node
numbers which represent the sequence of node activations in one period of steady-state. We
inserted commas in row 4 only to make the nodes involved in the sample period more readable,
inserting extraneous symbols into the string finding algorithm increases the run time and may
not have enough benefit.

Sample Start Index (String
Character Units)

2496

Sample Stop Index (String
Character Units)

8586

Sample Period Length (String
Character Units)

81

Sample Period (Node Num-
bers)

786,788,789,785,793,791,792,
790,787,786,789,788,793,785,
791,792,790,787,786,789,788,
785,793,791,792,790,787

Figure 3.1: A pictorial representation of a set of ordered node activations which we will convert
to a string of symbols. The activity of two nodes are presented. The y-axis represents the state
of the nodes.
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a. b. c.

d. e. f.

Figure 3.2: (a) An idealized 1Hz signal, sampled at 100Hz, comprised of Dirac pulses to be
analyzed by the sum method. The duration of the signal is 4s. (b) The sum of pulses over the
candidate starting points and candidate periods. The values of the heat map are defined over
the set of possible starting points and periods, whereas, the white-space corresponds to the
starting points and periods which can not be determined given the data. For example, we can
not determine periods longer than half the data because we do not observe a repetition. (c) A
plot of the difference of the sum of node activations with respect to starting position. The two
leftmost horizontal red lines refer to the period and the harmonics of the original signal. The red
horizontal lines indicate when the difference is zero from its leftmost end, the start time, to the
end of the data. At the leftmost position of the red line is the start time of steady-state. The heat
map indicates the values of the differences. (d) A randomized set of Dirac pulses sampled at
100Hz. (e) The sum of node activations, the symmetries present in the previous examples are
absent. (f) There is no dominant start time and harmonic.
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Figure 3.3: (a) Network Diagram. The Input layer consists of 784 nodes. The Recurrent/Hidden
layer contains 5 nodes. The Output layer contains 4 nodes. The values of the Input Layer are
set based upon the MNIST images. If the pixel contains a value, then the corresponding input
node is activated at the initial condition of the network. Feed-forward connections from the
Input layer to the Hidden layer, recurrent connections within the Hidden layer, and feed-forward
connections from the Hidden layer to the Output layer. A sample of the edge delays are shown.
The differentiating factor between the Hidden and Output layers are the directions of connections.
(b) The resulting network activity of the nodes in the output layer resulting from stimulus of the
input layer, the initial conditions. The network activity is shown as a raster plot. We forward
calculate the network dynamics to 50s. We chose this length of time for two reasons. Firstly, the
length was long enough to make sure that most initial conditions lead to steady-state activity for
our purposes. Secondly, that we are able to observed multiple periods of steady-state activity to
make visualization of the steady-state statistics easier.
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Sum of Spikes Over Start Time for Per Lengths: Output Node1
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Figure 3.4: (a) The sum of node activations over candidate periods and starting indices for
Output Node 1. Note, the change in units from Figure (3.2). Given our approach to the sum
method in the non-uniform sampling setting, it no longer necessary to discuss units in terms of
absolute time. In the non-uniform sampling setting the candidate periods and starting points
are selected swept along the sampling points determined by the system’s node activations. For
example, a period of length y index units may refer to a range of absolute times. As such, the
candidate steady-state statistics are determined based on indices rather than an absolute time
measure. The system’s steady-state statistics is determined from analysis of all nodes in the
network, and selecting the latest starting point and longest period amongst all nodes. As the size
of the period increases more node activations are captured. (b) The first finite difference in index
units. The result of the difference is given by values of the heat map. The minimum starting
point uniformly zero condition, as denoted by the horizontal red lines, is met around time index
1500. The fundamental period of network activity is given by the smallest height red horizontal
line, with the minimum starting index. Each harmonic of the fundamental period is given by the
incrementally higher horizontal red lines with the same starting indices. The red horizontal lines
at the end of the data range of starting points correspond to consecutive candidate periods with
the same number of node activations. In this situation, these candidates are easily filtered using
the minimum starting point criteria. Light blue heat map values correspond to adjacent starting
points whose difference in the number of node activations is 0.
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a.

b.

Figure 3.5: These plots are intended to show the correspondence between the time indices
and absolute time. (a) The abscissa shows the candidate start indices. The ordinate shows the
length of the period in time units of seconds. Each horizontal line corresponds to a previously
determined harmonic, the horizontal red lines from Figure (3.4 b) The bottom most horizontal
line corresponds to the fundamental period, and each higher one corresponds to the harmonics
of the fundamental period. Fluctuations of each horizontal line correspond to the the length of
the period in seconds when counting a fixed number of time indices, corresponding the number
of time indices which make up a period, from the start index to the end of the period. Because
of the non-uniform sampling the fluctuations remain. (b) Here we count the number of node
activations in each period as a function of start index, and we can clearly see that after the
inception of steady-state dynamics the number of node activations stabilizes to the steady-state
value. The ordinate is a count of the number of node activations. The abscissa is the start index.
And each horizontal line corresponds to a harmonic, the bottom-most corresponding to the
fundamental period, each subsequent one a harmonic.
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Gardeñes, Miguel Romance, Irene Sendiña-Nadal, Zhen Wang, and Massimiliano Zanin.
The Structure and Dynamics of Multilayer Networks. Physics Reports, 544:1–122, Novem-
ber 2014.

[5] Connor Brennan and Alexander Proekt. A quantitative model of conserved macroscopic
dynamics predicts future motor commands. eLife, 8:e46814, July 2019.

[6] Romain Brette, Michelle Rudolph, Ted Carnevale, Michael Hines, David Beeman, James M.
Bower, Markus Diesmann, Abigail Morrison, Philip H. Goodman, Frederick C. Harris,
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examined the functional consequences and temporal cost of wiring minimization principles. Their results suggest 
that there exists a trade-off between the time it takes action potentials to reach synaptic terminals (temporal cost) 
and the amount of cellular material associated with the wiring path length of the neuron’s morphology (material 
cost)9. This can be interpreted as a need to balance the advantages to the organism of signaling and processing 
information as fast as possible, while keeping material and cellular costs within reason.

However, where this spatio-temporal trade-off lies and the design principles being optimized remain 
unknown. Identifying them is critical to ultimately understanding why neurons are designed the way they are, 
and the effect they may have on a neuron’s ability to represent and process information in the brain. This would 
also allow many other seemingly unrelated neurobiological results that involve considerations of neuronal 
structure-function relationships to be understood within this new context. As a result, completely disconnected 
results, models, and interpretations of data would have an underlying ‘constraint’ that nature necessitates they 
conform to. This would have a significant impact on our understanding of the brain as a system.

The work by Budd and colleagues suggested that the spatio-temporal trade-off observed in axon arbors con-
tributes to the maximization of temporal precision, or conversely, the minimization of temporal dispersion in 
neuronal circuits9. Here, we explored the functional role of axon morphologies in the propagation of action 
potentials. The result of our analysis suggests a new putative underlying optimization principle between tem-
poral and material costs in axon arbors. We investigated the signaling dynamics of action potentials in individ-
ual axonal branches using a model that computes a metric associated with the efficiency of signaling in spatial 
geometric networks. We have recently shown that optimal efficient signaling between connected node pairs in 
geometric networks is bounded by a ratio that approaches unity, between the signaling latency on the edge and 
the internal dynamics of the individual nodes16. We call this ratio the refraction ratio. It reflects a necessary bal-
ance between the internal dynamics of the participating nodes that make up the network, and the dynamics of 
signaling or information flow on the network. We have previously shown in numerical simulation experiments 
that a deviation of this principle can result in the complete breakdown of signaling dynamics17.

In this work, we propose the refraction ratio as a measure of signaling efficiency in axons, and we provide 
evidence that the design of axonal arborizations are constructed to optimize this ratio. We considered individual 
Basket cell neurons as geometric axon tree networks with nodes along axonal branching points. We then analyzed 
the signaling dynamics along individual axonal branches, where a branch is the entire axonal segment connect-
ing the axon initial segment to one of the axon’s terminals. Basket cell neurons optimize the ratio between the 
refractory period of the membrane and action potential conduction latencies. Given a signaling latency along the 
convoluted path resulting from the morphological geometry of an axon arbor, the ratio of the signaling latency to 
the membrane refractory period approaches a value of unity for each individual axonal branch. This reflects the 
theoretically predicted optimal ratio.

One interpretation of our results is that the convoluted paths taken by axons and axonal branches reflect a 
design compensation by the neuron to slow down signaling latencies in order to optimize the refraction ratio. 
Because the cell does not have direct control over the biophysics responsible for determining the length and 
changing character of the membrane refractory period, it uses axonal morphology (structure) to ensure that an 
optimized refraction ratio is almost always preserved by the time action potentials reach synaptic terminals. An 
optimized ratio reflects a balance between the temporal constraints associated with the biophysics of the mem-
brane, and the amount of time it takes action potentials (the signals) to travel down the axonal branch.

Competitive Refractory Dynamics Model
We have recently described the construction and theoretical analysis of a framework derived from the canon-
ical neurophysiological principles of spatial and temporal summation that models the competing dynamics of 
incident signals into nodes along directed edges in a network16. We considered how temporal latencies produce 
offsets in the timing of the summation of incoming discrete events, and the ultimate activation of downstream 
nodes. Our approach involved the development of a competitive refractory framework. The framework models 
how the timing of different signals compete to ‘activate’ nodes they connect into. We use the term activation here 
to imply an appropriate reaction of that node to the signal it has received. For example, in the case of biological 
neurons it would be the generation of an action potential that propagates down the axon and axonal arboriza-
tions. In an abstract notion of a directed network, it is the generation of a discrete signaling event by the activated 
node for an excitatory input (or lack of activation for an inhibitory input) and a subsequent period of refractori-
ness. The interplay between temporal latencies of propagating discrete signaling events on the network relative to 
the internal dynamics of the individual nodes can have profound effects on the dynamics of the network17–20. In 
a geometric network temporal latencies are due to the relationship between signaling speeds (conduction veloc-
ities) and the geometry of the edges on the network (i.e. edge path lengths). The model also assumes that each 
node has associated with it a refractory period or refractory state. The refractory period is a value that reflects 
the internal state of the node in response to its activation by an upstream winning node (or set of nodes). It is a 
period of time during which the node is not capable of responding to other input signals from nodes that connect 
into it. In other words, it is refractory to such inputs. We did not assume anything about the internal model that 
produces this refractory state, which could include an internal processing time during which the node is making 
a decision about how to react.

The refraction ratio.  We refer the reader to16 for a full treatment of the derivations and theoretical analysis. 
We considered the geometrical construction of a network in the following sense. We assumed that signals or 
discrete information events (e.g. action potentials in biological neurons) propagate between nodes along directed 
edges at a finite speed or conduction velocity, resulting in a temporal delay or latency of the signal arriving at 
the downstream node. Imposing the existence of signaling latencies implies a network that can be mapped to 
a geometric construction, where individual nodes could be assigned a spatial position in space in ℝ3. Directed 
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edges connecting node pairs are allowed to have a convoluted path integral, i.e. a Jordan arc. There is no restric-
tion that edges have to be spatially minimizing straight line edges, geodesics. A signaling latency τij defines the 
ratio between the distance traveled on the edge relative to the speed of the propagating signal. For any set of con-
nected vertex pairs vivj, τij = dij/sij. We then define a refractory period for the vertex vj by Rj. This reflects the inter-
nal dynamics of vj once a signaling event activates it. For example, the amount of time the internal dynamics of vj 
requires to make a decision about an output in response to being activated, or some reset period during which it 
cannot respond to subsequent arriving input signals. We place no restrictions on the internal processes or time 
that contribute toward Rj. Once the winning node vj ‘activates’, it will become refractory for a period of time Rj. 
We can then compute at discrete times in parallel for every vertex in the network, i.e. every vj, which set of nodes 
that connects into vj causally activates it. We are able to achieve this by keeping track of the temporal interplay of 
propagating signaling events on the edges relative to the refractory states of the individual vertices.

A key consideration of this computation was establishing a relationship between Rj and τij for a vertex vj. We 
defined the refraction ratio between the refractory period Rj and a signaling latency τij associated with a discrete 
signaling event into vj coming from a vertex vi on the edge eij as

τ
∆ = =

⋅R R s
d (1)

ij
j

ij

j ij

ij

where Rj > 0. Our determination of which set of vi will successfully activate vj emerges from an analysis of this 
ratio for every vertex connected into vj.

Under realistic conditions, there is likely to be a temporal offset between when each vi signals and how far 
along vj is in its recovery from its refractory period due to a previous signaling event. Furthermore, each contrib-
uting vi is statistically independent from every other vi, so that the amount of temporal offset for each vi vertex sig-
naling vj will be different. In order to compute these offsets and keep track of the overall dynamics of the network, 
we index two different notions of time. We defined ti to be the moment at which vi initiates a signal along its edge 
eij towards vj. And an observation time To, which is the moment at which we observe or measure the state of the 
network. We can then compute temporal offsets by slightly expanding how we define the refractory period and 
signaling latency. For the refractory period, we let φj represent a temporal offset from Rj, such that at To.

φ φ= − ≤ ≤R R Rwhere 0 (2)j j j j j

We call Rj the effective refractory period. It reflects the amount of time remaining in the recovery from Rj at the 
observation time To.

Similarly, the times at which each vi vertex initiates a signaling event would not be expected to be all the same. 
At any given arbitrary observation time To a signal from any vi may be traveling part way along eij at a speed sij, 
effectively shortening τij. Or it may be delayed in signaling if vi signals some time after To, effectively lengthening 
τij. At To we need to take into account the degree of signaling progression for each vi along its edge. To accomplish 
this, we extend how we consider a signaling latency in the following way. First, we retain τij to represent the abso-
lute temporal delay (latency period) for a signal that travels on the edge eij for a vertex vi. Note that the initiation 
of the signaling event could come before, right at, or after the observation time To. We then considered a temporal 
offset for τij, an effective shortening or lengthening of τij relative to To as follows

τ τ δ δ= + ∈where, (3)ij ij ij ij

δij > 0 represents an effective delay or elongation beyond τij. In other words, it represents the vertex vi initiating 
a signal at some time after To. Values −τij < δij < 0 represent an effective shortening of τij. This would be the case 
when vi had initiated a signal that was traveling part way along the edge eij towards vj prior to To. When δij = 0 it 
implies that vi signals exactly at the moment the network is observed. And when δij = −τij it implies that the signal 
arrives at vj at the moment the network is observed. Values of δij < τij, which result in τ < 0ij , represent a signal 
arriving at vj prior to the observation time To.

In the general case then, we were then able to extend Equation 1 to reflect the effective refractory period and 
effective latency (relative to an observation time To) as

τ
Λ =

R

(4)
ij

j

ij

Efficient signaling using the refraction ratio.  We then defined a notion of optimized efficient signaling 
in the context of the competitive refractory dynamic framework and the refraction ratio. Given an effective refrac-
tory period Rj and effective latency τij along an edge eij, the condition for the winning vertex vi from the set of 
vertices that connect into vj that achieves activation of vj is dependent on the τ → +lim Rij j

 for τΛ = R /ij j ij. In other 
words, the first discrete signal that arrives at vj after it stops being refractory is the signal that results in its activa-
tion. Intuitively, efficient signaling in the context of the framework means that there should be a temporal match 
between the dynamics of signals traveling on edges relative to how quickly nodes can internally process signals. 
When a mismatch between these two considerations occurs, it can cause a break down in the signaling dynamics 
of the network. If signaling speeds sij are too fast, or equivalently, if the latencies τij are too short, compared to the 
refractory period of the node, the network will not be able to sustain recurrent activity17. If sij is too slow or the set 
of τij too long then the network will be inefficient in the sense that it has the potential for faster dynamic signaling 
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that is not being realized. Time, as a resource, is being wasted in such a network. In16 we formalized these con-
cepts by deriving upper and lower bounds for the refraction ratio between connected vertices vi and vj. We were 
able to show that, given a subgraph of the network as a set of nodes vi with directed edges into a node vj, the opti-
mal refraction ratio [Λij]opt is bounded by

φ δΛ = Λ =
τ → +

[ ] lim when and 0 [Upperbound]
(5a)ij opt

R
ij j ij

ij j

φΛ ⇒ Λ =
δ ϕ→− +

R[ ] lim when [Lowerbound]
(5b)

ij opt ij j j
ij j

where τij is the absolute signaling delay on the edge eij and Rj is the absolute refractory period for vj. Given these 
bounds, an optimized refraction ratio is such that

τ

Λ


 = → .

R
1

(5c)
ij opt

j

ij

We refer the reader to16 for the full derivation and proof.

Refraction ratio analysis in axon arbors.  In this paper, we considered the morphological structure 
of individual Basket cell neurons as geometric networks, and carried out an analysis of the refraction ratio for 
individual axonal branches given experimentally determined morphologies and computed values of conduction 
velocities and refractory periods. Specifically, we considered a path consisting of the soma of a neuron and its 
axon and axonal arborizations. We first mapped the axon arbor network into a tree-graph consisting of a root 
vertex defined at the axon’s initial segment, and terminal vertices at each synaptic terminal (see Methods section). 
We then evaluated the signaling efficiency at synaptic terminals by computing the refraction ratio at each terminal 
vertex as a function of the geometry (morphology) of the respective axonal branches. We use the term ‘branch’ to 
refer to the sequence of axonal segments connecting the root vertex, i.e. the first vertex at the soma, to a specific 
terminal vertex at one of the axon's synaptic terminals.

The refraction ratio is a point property, in the sense that it is computed at a specific node in the network. We 
computed the ratio for a known set of defined nodes corresponding to specific axonal segments along the length 
of a branch, culminating at the terminal synaptic node. Computing the ratio depends on knowledge or estimation 
of the conduction velocity of the action potential and the refractory period for the node under consideration. 
The refractory period or refractory state of individual nodes along specific points in the arbor graph reflect the 
refractory period of the membrane at the corresponding points along the axon (see the Methods section for full 
details regarding the estimation of the refractory period). The refraction ratio along the defined node points of 
the branching path that connects the root vertex to the synaptic terminal vertex is a property of that branch. It 
depends on the time of propagation of an action potential along that branch (which is a function of the morphol-
ogy and conduction velocity). Within this context, the refraction ratio determines a gating effect at each node: 
in setting the rate at which each action potential can be transmitted along an axonal branch, and as a result when 
synaptic signaling occurs, it dictates the frequency at which each neuron fires.

Results
Graph-Based Model of Geometric Axon Arbor Networks.  We carried out our analysis of the refrac-
tion ratio in geometric tree networks of morphologically reconstructed axonal arbors. In order to compare our 
results with those of Budd and colleagues15, we choose to analyze Basket cell neurons. Specifically, we considered 
anatomical and morphological data from detailed three-dimensional (3D) reconstructions of complete single 
neuron axonal arbors of 57 basket cells from the rat neocortex21–23. This resulted in a data set consisting of 11,575 
independent axonal branches. The morphology of one of the basket cells we analyzed is shown in Fig. 1A.

We used a graph-based modeling approach to map the geometric connectivity of the axon arbor structures. 
The vertices in the graph reflect sampling points in the original morphological reconstruction of the neurons, and 
are associated with a physical position in three dimensional space (see NeuroMorpho.Org22,23). Figure 1B shows 
a graphical representation of the axon tree network: the root vertex vR corresponds to the initial vertex at the axon 
initial segment where the axon begins at the base of the cell body (soma); branching points along the axons were 
labeled as branching or bifurcation vertices vB; synaptic terminals were defined as fixed end terminal vertices vT. 
We use the term ‘branch’ to refer to the axonal segment connecting the root vertex, i.e. the first vertex at the soma, 
to a specific terminal vertex at one of the axon’s synaptic terminals. Vertices in between these two end point ver-
tices reflect axonal segments along the way, defined by the original morphological sampling frequency of the data 
in the NeuroMorpho database. We call these elementary vertices ve,n. We equivalently use the term ‘branch’ or 
‘branching path’ in some instances in the paper. Within a specific neuron, every branch shares a common subset 
of vertices, specifically, the vertices for the segments that make up the axon itself from the soma up to where the 
axonal arborization branches off into individual synaptic branches. A full branching path then, is composed of 
this common axonal subset plus the unique arborization branch that ends at its respective synaptic terminal. 
Mathematically, we summarize a specific branch as p v v( , )R Ts

. For example, in Fig. 1B, a branch is the sequence of 
axonal segments that connects vR to the terminal vertex vT1

. A second branch is represented by the sequence 
of axonal segments that connects vR to the terminal vertex vT2

. In other words, a branching path p v v( , )R Ts
 is 

the path through which an action potential that is generated at the soma propagates to reach a specific synaptic 
terminal.
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Figure 1C shows the adjacency matrix encoding all the edges for the network graph representation of the 
neuron. A pair of vertices (vi, vj) in the graph are connected by a directed geometric edge eij that reflects the mor-
phological geometry of the axonal segment linking both vertices. Each edge is associated with a length parameter 
associated with the convoluted length of the axonal segment in the arbor, computed as the path integral of the 
corresponding curve. Additional details about network construction, as well as the description of the edge path 
length integral calculation can be found in the Methods.

Figure 1D plots the three dimensional graph of the axon network. For clarity, this particular plot only shows 
the root vertex vR and synaptic terminals vT. The plot shows the length minimized network, where the distance 
from root vertex to terminals is the shortest straight line path calculated as the Euclidean distance. The figure 
highlights the difference between the geodesic (shortest) path distance in the minimized network, relative to the 
actual morphological paths of the axon arbor (Fig. 1A). Panel E in Fig. 1 shows the biograph of the same axonal 
network. We observed similar single neuron reconstructions for all the cells in our data set.

Signaling Dynamics in Axon Arbor Networks.  We characterized the signaling dynamics on individual 
axonal arbors by estimating the conduction velocities (signaling speeds) of action potentials, and computing the 
propagation delays (signaling latencies) for each branch. The axonal branches were defined by fixing the principal 
vertex vR and each terminal vertex vTs

 in the axon graph for all branching paths p v v( , )R Ts
 (the subscript s indexes 

specific vertices - see Methods). Axon conduction velocity is a function of the biophysical and morphological 
properties of the membrane and axon; it varies with axon thickness, branching, ion channel density and variety, 
and myelination24. We assumed that the neurons we analyzed here were unmyelinated, inferred from their small 
average diameter (mean 0.63 μm) from direct measurements25 and theoretical studies26,27 (see the Methods for a 
detailed justification and calculations). We then derived the conduction velocity sij between any two vertices vi 

Figure 1.  Deriving axonal network tree graphs from morphological reconstructions. (A) Representative three 
dimensional morphological reconstruction of one of the Basket cells in our data set from rat neocortex. 
Dendritic arbors are in green, axonal arbors in black [data from http://neuromorpho.org/21–23]. (B) Graph-
based model of the geometric network of an axon and its arborizations. Vertices in the graph are labeled as 
follows: root vertex vR is located at the initial segment of the axon at the soma; branching vertices vB 
corresponding to branch points along the axons; terminal vertices vT were synaptic terminals of the axon 
arborizations. Vertices between branch points reflect measurement points in the original reconstruction, and 
are denoted as ve,n, with e identifying the edge and n the specific axonal point within that edge. The computation 
of the convoluted geometric distance between the root vertex vR and a selected terminal vertex vTs

 was 
determined by the sum of all edge distances between ve,n pairs forming the total path that connected the two 
vertices. The total distance approximates well the edge path length integral (see the Methods) of the tortuous 
path connecting the axon initial segment to a synaptic terminal in a real neuron (see panel A). (C) Reduced 
adjacency matrix mapping the connectivity between branching points along the axon tree of the neuron 
visualized in A. (D) Three dimensional graph of the same axon arbor mapped onto a minimized length network 
where only root vertex and terminal vertices are considered. The units are microns, as indicated. Metric 
distances are Euclidean distances from the root vertex at the center of the figure (common point for each 
branch) to the axonal terminals. The actual terminals are the green points in the figure. The 3D positions of root 
and terminal vertices (X, Y, Z coordinate values) were obtained from the 3D morphological reconstruction in 
the NeuroMorpho database. Visually, Euclidean distances are represented by the blue lines connecting the root 
to the terminal vertices. (E) Biograph of the reduced network of the axon arbor in A, described by the adjacency 
matrix in C. Each labeled box in the graph stands for an identification number of the reported vertex. Root 
vertex in yellow, branching vertices in green, and terminal vertices in red.
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and vj as a function of the axonal diameter D according to the relationship in28. We estimated an average conduc-
tion velocity for each individual axonal branch separately as described in detail in the Methods.

We obtained an average conduction velocity of 0.39 ± 0.16 m/s (Fig. 2 in Methods). Current estimates of mean 
intracortical axonal conduction velocity in adult cat visual cortex vary in the range 0.1–0.6 m/s29–31 with similar 
values reported for horizontal axonal connections in rat neocortex (0.3–0.5 m/s)25,32,33. It is important to note 
that the accuracy of axonal diameter values are dependent on the resolution of the imaging techniques used in21. 
Fractions of microns are not easily or reliably measurable by optical microscopy. This uncertainty on the variabil-
ity of the diameter data was accounted for in our analysis by computing average conduction velocities.

To estimate the signaling latency τij on an edge eij, we divided the path length |eij| between vertices vi to vj by a 
conduction velocity sij. The labels vi and vj indicate any vertex pair with vi connecting into vj regardless of the type 
of vertex (i.e. vR, vT or ve,n). We then computed the total propagation delay along an axonal branching path 
p v v( , )R Ts

 as the sum of all temporal delays for each individually computed segment (see Methods).

Refractory Dynamics in Basket Cell Axon Arborizations.  We next independently computed the 
refractory period Rj at the positions on the membrane corresponding to vertices vj for every axonal segment 
in the tree network of all 57 neurons. Accurate experimental measurements of sub-type specific axonal mem-
brane refractory periods are difficult to find in the literature. In general, refractory periods are defined as a range 
of values for whole neurons and almost always without regard for differences along different axonal segments. 
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Figure 2.  Basket cell neurons display optimized refraction ratios. (A) Distribution of the refraction ratio for 
all branches forming the axon arbor for a single neuron, i.e., for all paths p(vR, vT) connecting the root vertex at 
the initial segment vR to the synaptic terminals vT. The inset shows an example of one axonal branch path from 
this cell. The refraction ratio was computed independently for each axonal branch for all branches of the axon 
tree. The x-axes represents values of the computed refraction ratio, while the y-axes shows the number or count 
of individual axonal branches. (B) Distribution of the refraction ratio for the full data set of 57 basket cells. The 
refraction ratio axis is on a logarithmic scale. All axonal branches (11,575) from all the neurons are statistically 
independent variables, and the value of the refraction ratio corresponding to each of them was used to build the 
distribution. (C) The peak of the distribution shown in B occurred at 0.56, while the median had a value of 0.92. 
The median value of all medians computed for each of the 57 neurons in the data set had a value of 0.91 (see the 
discussion in the main text). Inset: histogram of the median values of the refraction ratio distribution computed 
for each of the 57 neurons. The computed mean of the median ratio distribution had a value of 1.01 with 49 
neurons (86 % of the entire data set) within one standard deviation, 1.01 ± 0.61 (μ ± 1σ). (D) Distribution of 
the refraction ratio for the entire data set (same data shown in panel B) but with x-axis extending out to the 
full range of values in order to show the few outliers (indicated by the red arrows). Inset: zoomed in view of the 
main plot out to a refraction ratio of 60 which captures the range over which most of the outliers were found. 
Note how the branch count steeply decreases from the peak. The distribution of refraction ratio values, the 
number and width of each bin, was obtained by dividing the full range of the computed refraction ratio by the 
smallest value of the ratio in order to obtain reasonable bin sizes (see Methods).
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Textbook values of the absolute refractory period are typically reported to range between 0.8–1 ms34. The relative 
refractory period typically lasts up to 5 ms. A few studies have investigated the details of the refractory period in 
the context of specific morphological and biophysical measurements35–38. This has allowed other investigators 
to study the role of axonal refractoriness on the signaling dynamics and information processing along individ-
ual axon branches, in response to extracellular activation39,40. However, although it is known that membrane 
refractoriness can change along the length of the axon and its axonal branches, there is limited empirical data 
available41. Recent work by Hu and colleagues on the biophysical and dynamical properties of Basket cells, the 
same class of neurons we investigated here, allowed us to estimate changes in the refractory period along axon 
arbors25. These authors showed that Basket cells display a supercritical density of sodium ion (Na+) channels 
with a specific density profile along the axonal tree, responsible for high reliability fast propagation in nonmyeli-
nated small axons. Additionally, analysis of Na+ channel gating kinetics and voltage-dependence of activation and 
inactivation revealed that the inactivation time constant was 2.4-fold faster for axonal versus somatic Na+ chan-
nels. Based on these observations, we estimated individual values of the refractory period Rj at axonal branching 
points as a function of the distance from the soma. We computed variations in the membrane refractory period 
using a derived function inferred from actual measurements of channel density variations in these neurons25 (see 
Supporting Information).

Basket Cells Axon Branches Approach Near Optimal Values of the Refraction Ratio.  The refrac-
tion ratio is defined as the numerical ratio between the refractory state Rj of a vertex vj, and the temporal propa-
gation delay (signaling latency) τij of a signal traveling from a vertex vi that connects into vj

16. We calculated the 
refraction ratio for each of the 11,575 axonal branch paths p(vR, vT) from root vertex vR to terminal vertices vT 
independently for the entire data set. To compute the ratio, we used the path length, and calculated τij and Rj val-
ues. Figure 2A, shows the distribution of the ratio for all branches of the axon arbor of one representative Basket 
cell from our data set. There is a clear clustering of the ratio near unity for the axonal branches of this neuron. The 
histogram for the distribution of refraction ratios across the entire data set for all the axonal branches is shown in 
Fig. 2B. There is a narrow peak in the distribution centered near unity. Figure 2C shows a highly magnified view 
highlighting the peak of the histogram in panel B. Approximately 76% (8, 795) of the total 11,575 branches had 
computed refraction ratios within the range of 0.25–1.75, with a median value of 0.92 for the entire distribution.

The value of the refraction ratio for the median of the medians across all 57 neurons had a computed value of 
0.91 (inset in Fig. 2C). To compute the median of the medians we took the median value of the refraction ratio for 
each of the 57 basket cells computed independently from their respective distributions as shown for the represent-
ative neuron in panel A, and then obtained the median value of all the individual medians across the entire pop-
ulation. Our rationale for computing the median of the medians was that it provides a normalization against the 
varying total number of terminal vertices (synapses) across our sample population of 57 neurons. The median of 
the entire distribution pools all the ratios equally for all computed axonal branches across the whole population, 
but it does not take into account that different neurons contribute different numbers of ratios to the distribution 
because they have more (or less) number of axonal branches. This means that neurons that have more branches 
will have a greater effect on the value of the median of the population, and if they happen to have a dispropor-
tionately greater number of outlier ratio values these outliers will skew the value of the median. By computing the 
median of each cell independently, and then identifying the median of the population of median values, each of 
the 57 neurons have equal weight or effect on the median of the medians, regardless of the total number of termi-
nal vertices they may have. It effectively filters out or normalizes a disproportionate effect contributed by outlier 
ratio values. Interestingly, the correspondence of the median of the entire population versus the median of the 
medians was almost identical (0.92 versus 0.91), adding further weight to the validity of the results.

In addition to the median values being near the theoretically predicted optimal, the distribution of the pop-
ulation of the medians, the degree of clustering near the peak, is equally significant. Because each median was 
computed independently for each neuron, the population of median values can be treated as its own data set. Of 
the 57 neurons, 49 of them (86 %) had ratios falling within one standard deviation, within the range 1.01 ± 0.61 
(μ ± 1σ). Nearly the entire sampled population, 56 out of 57 neurons, had median values of their ratios falling 
within two standard deviations, in the range 1.01 ± 1.22 (μ ± 2σ) for the positive values of the ratio (since nega-
tive values have no meaning).

Importantly however, we note that some axonal branches did deviate significantly from an optimized refrac-
tion ratio, in one case extending out to an extreme value of 1600; see the outliers in Fig. 2B and D. This lends sup-
port for the sensitivity of the refraction ratio as a metric of signaling efficiency in neurons. We discuss the possible 
functional implications of such outliers in the Discussion below.

Morphological Regulation of Signaling Latencies.  In order to investigate how the different parameters 
that define the refraction ratio affected the computed values for our data, we looked more closely at what param-
eters were having the greatest effect on the axonal branches of one representative neuron. Figure 3A shows a 
stylized axon arbor and schematically exemplifies observed signaling pathways in our neuron graph model. An 
action potential is generated at the axon initial segment (vR, yellow circle) and propagates to individual synaptic 
vertices (terminal vertices vT, black circles) along the respective branching paths p v v( , )R Ts

 of the arbor. Two 
example branching paths are illustrated in the figure (blue and orange lines), which share the first two bifurcation 
points (red circles) and corresponding edges. Figure 3B shows the refraction ratios for all the branching paths 
p v v( , )R Ts

 of an individual cell ordered by decreasing edge path length (Methods). Similar to the results above, the 
plot shows how a large subset of the terminal vertices in this neuron fall within a range of 1 ± 0.5 (red horizontal 
bar in Fig. 3B). The value of the ratio is sensitive to and inversely related to the path length from the root vertex at 
the soma to the terminal vertices (Fig. 3C). Figure 3D shows the signaling latencies from the root vertex to the 
terminal vertices for all paths in the arbor. Signaling latencies are sensitive to |eij|, which are determined by the 
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axon’s morphology. These results are in agreement with numerical simulations of intracortical axon arbors which 
suggest that the path length is the main determinant of signaling latency15. Axonal branches longer than ~500 μm 
in this neuron were almost always capable of achieving an optimal ratio despite significant differences in morpho-
logical path lengths and signal latencies. We observed similar results in other individual neurons we looked at.

Figure 3E shows the relationship between the mean diameter measured as a function of position along indi-
vidual branches of the axonal arbor, while Fig. 3F shows the scatter plot of the conduction velocity from the soma 
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Figure 3.  Effect of axonal morphological branch path lengths and conduction velocities on computed 
refraction ratios. (A) Stylized axon arbor of a neuron. Yellow circle: root vertex at the axon initial segment; red 
circles: bifurcation vertices; black circles: terminal vertices at the axon’s synaptic terminals. A branching path 
p v v( , )R Ts

 is defined as the axon segment connecting the root vertex vR to a specific terminal vertex vTs
. The two 

example branching paths in the figure (blue and orange lines) share the first two bifurcation points and 
corresponding edges. An action potential is generated at the axon initial segment and propagates from the soma 
to each synaptic vertices throughout the individual branching paths of the arbor. (B) Refraction ratios 
computed for all branches of the axonal tree of one representative basket cell. Each circle represents one 
individual path p v v( , )R Ts

. Data points within the red band are ratios within a range of 0.5 to 1.5, indicating 
branches that fell near an optimal value of unity. (C) Path lengths associated with the axon morphologies 
responsible for the convoluted edges connecting the root vertex at the initial segment (vR) to the synaptic 
terminals (vT). Each bar represents a different synaptic terminal (branch) of the axon tree. (D) Propagation 
delays (latencies) for the same cell. (E) Mean axonal diameter for each branch. The mean diameter for a given 
branch was calculated as the mean for all measured diameter points for each branch. (F) Signaling speeds 
(conduction velocities) for each branch in this neuron. Although branch path lengths varied significantly, 
conduction velocities for most branches were within a range of 0.3–0.5 m/s. The data for panels A-D on the  
x-axes were ordered by path length from shortest to longest.
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to its synaptic terminal along individual axonal branches. In contrast to the effect of the morphology (path length) 
there is comparatively little variability in the diameter, even though it is a key contributor to the conduction 
velocity. This is reflected in the computed constant conduction velocity across all branches of the neuron. We also 
showed that the convergence towards an optimal ratio occurs quickly, within a few branching orders from the 
soma (see the Supplementary Information).

Perturbations of Morphological Path Lengths Resulted in Deviations of Optimal Ratios.  We 
then investigated the effect that changing the axonal path lengths has on the ability of the neuron to compensate 
for longer latencies in order to preserve a near optimized refraction ratio at synaptic terminals. We compared 
ratios for the actual geometric morphology of a representative neuron (Fig. 4A, left) to a length-minimized ver-
sion of the same cell (Fig. 4A, right) constructed by measuring the Euclidean (shortest) distance between the root 
vertex at the soma and terminal vertices at the synaptic terminals (cf. Fig. 1D). Figure 4B shows the distribution of 
lengths (distance of terminal vertex from the root vertex) for all branches in the tree network for this neuron and 
the distribution of signaling latencies, respectively. Figure 4C shows the refraction ratios for all paths between the 
soma and synaptic terminals of the same Basket cell calculated for the two different configurations of the network. 
As would be expected, for the length minimized network all branches have signaling ratios that deviate signifi-
cantly from optimality. Figure 4D shows the refraction ratio for the entire 57 neurons and all individual axonal 
branches computed for length minimized tree networks. The population median of the medians of the ratios 
increased from 0.92 to 2.8. Mechanistically, this is due to poor temporal matching between signaling latencies and 
refractory recovery times at the synaptic terminals. The path length minimized networks still preserve the relative 
order of the axonal branches organized by lengths, in the sense that longer branches relative to shorter branches in 
the morphologically accurate geometric networks will still be longer in the shortest path networks. But the entire 
distribution of the ratios is skewed.

Vertex vR

Geometric Network Shortest Path Length Network

0 10 20 30 40 50
0

400

200

600

800

Signaling Ratio

B
ra

nc
h 

C
ou

nt

S
ig

na
lin

g 
R

at
io

1

5

3

7

9 Shortest Path Length Network
Geometric Network median of median = 2.8

0.5

0

1

1.5

Le
ng

th
 [m

m
]

Shortest Path Length Network
Geometric Network

Shortest Path Length Network
Geometric Network

1

0

2

3

D
el

ay
 [m

s]

1.5

2.5

3.5

0.5

Terminal node

Terminal node

A B

C D

Vertex vR

Vertex vTs Vertex vTs

Figure 4.  Effect of axonal branch path length on the refraction ratio. (A) As a control, we re-computed the 
refraction ratio for the entire data set with axonal branch path lengths that reflected the shortest Euclidean 
distance between the root vertex and terminal synaptic vertices. Left: The geometric tree network for one 
representative neuron where each edge connecting the root vertex to the terminal synaptic vertices were 
associated with the geometric convoluted path length (see the Methods). Right: the path length minimized 
tree network for the same neuron, where the length of the edges connecting the vertices were defined by 
the shortest Euclidean distance. (B) (Top) Path length computation in the geometric network (yellow bars) 
superimposed on the path length minimized network (red bars) for one of the 57 axon arbors. Each bar in the 
diagram identifies a different axonal branch. (Bottom) Signaling latencies derived for the geometric network 
(green bars) and the minimized network (blue bars) for the same axon tree. (C) Computed refraction ratios 
for the geometric network versus the minimized network for the same cell as in (B and C). The height of each 
of the black bars stands for the refraction ratio calculated as a function of the convoluted geometric path of an 
individual branch of the axon. (D) Histogram showing the global distribution of refraction ratios computed for 
all 11,575 branches of 57 neurons in our data set when mapped into a length-minimized network. The median 
value of all the medians computed for length minimized networks for all the neurons was centered at 2.8, 
indicating a deviation from optimality of the refraction ratio as a result of the perturbed path lengths associated 
with ignoring the geometry of the axonal morphologies.
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Discussion
In this work we investigated the relationship between axonal morphology, membrane refractory period, and 
action potential conduction velocities through an analysis of computed refraction ratios. This analysis allowed 
us to understand how the interplay between structure and dynamics achieves signaling efficiency in Basket cell 
neurons. Presumably, either directly or as a consequence of other processes, neurons are optimizing the refraction 
ratio as a design target.

Of the total 11,575 axon branches we computed refraction ratios for, 76% had a ratio within a range 0.25–1.75. 
86% of the neurons had median ratio values within one standard deviation of the median of the population (0.91); 
a value that approaches the theoretically predicted maximal efficiency. This suggests that while an optimal refrac-
tion ratio at synaptic terminals is a local property associated with individual axonal arborizations, it is highly 
conserved across the entire population of sampled neurons.

In some cases, we also showed that some axonal branches did deviate significantly from an optimized refrac-
tion ratio (Fig. 2D). Some amount of variability is to be expected from any analysis of empirically measured 
experimental data. However, we note that the number of outliers was very small. An interesting question is 
whether these reflect ‘noise’ in the data set, essentially true (random) outlier events, or if they instead perhaps 
exhibit such extreme refraction ratios for a physiological reason. For example, one possibility is that these outliers 
reflect axonal branches that are designed to filter specific signals at a subset of synaptic terminals. The presence 
of such outliers also serve the purpose of validating the sensitivity of the refraction ratio in capturing a mismatch 
between refractory states and signaling latencies within physiologically plausible bounds.

The analysis also suggests that morphological regulation of signaling latencies exerts the greatest control on 
the refraction ratio. The data in Fig. 3 indicates that the shortest branches are not able to preserve an optimal ratio. 
This is because the latencies are too short and not able to match the refractory period at such short distances from 
the soma. One interpretation is that these branches are outliers relative to the rest of the dataset. This is statisti-
cally reasonable if we consider the variability of the experimental parameters. Incomplete development of axon 
arbors or incomplete pruning associated with the young age of the rat from which our data were derived (10–15 
days postnatal) could possibly account for the discrepancies in the refraction ratio values. However, axons can 
also make synaptic contacts at short distances for physiologically functional purposes. Taking this into consid-
eration, these outliers could be possibly serving a physiological role. One possibility is that branches that display 
non-optimality of the refraction ratio could be playing a different function in the dynamics of the cell, such as the 
propagation and transmission of signals at lower or higher frequencies. Such a possibility for a functional role of 
non-optimal ratios is further supported by the fact that seemingly outlier refraction ratios showed similar trends 
in several neurons. In contrast to the effect of the morphology, there was less variability in the average diameter 
computed for different branches, even though it is a key contributor to conduction velocity. This is reflected in the 
computed constant conduction velocities across all branches of the neuron. Conduction velocities and membrane 
refractory periods are the direct result of membrane biophysics; more specifically, the permeability and channel 
kinetics of sodium and potassium ion channel populations and the inactivation kinetics of sodium channels, 
respectively. These are biophysical properties that a neuron does not have control over in a sense. They represent 
generic cellular and molecular properties that the neuron cannot change. An intriguing interpretation of our 
results is that neurons may take advantage of the morphological geometry of individual axonal branches in order 
to manipulate signaling latencies to match the refractory periods at the terminal vertices (synapses). This would 
represent a mechanism or ‘design criteria’ to optimize signaling transmission in the cell.

We also tested the hypothesis that Basket cell axon arbors are not minimized for either wiring length or con-
duction velocity latencies15. By wire minimizing the axonal morphology, we were able to show that axonal path 
length is used to compensate for longer latencies in order to preserve a near optimized refraction ratio at synaptic 
terminals (Fig. 4). More significant deviations in the refraction ratios will occur when additional effects to axon 
path lengths and conduction velocities are considered, such as a reduction of the arbor diameter or randomly 
generated arbor graphs, as some authors have modeled13,42–44. In fact, shortest distance wiring path lengths like we 
computed here reflect the most conservative changes possible, and are therefore the least disruptive to the com-
putation of the refraction ratios. This makes the surprising precision of the refraction ratio results near optimality 
for the morphologically accurate data even more significant.

Subsequent work should explore if an optimized refraction ratio holds for other types of neurons. We are also 
beginning to investigate experimentally if this principle holds in individual neurons where morphological recon-
structions and detailed empirically measured values of conduction velocities and refractory periods across differ-
ent segments are obtained in the same cell. Recent advancements in the development of novel electrophysiology 
techniques able to provide signal detection with high spatio-temporal resolution45,46 will greatly benifit this type 
of analysis by reducing the number of assumptions, such as computing rather than measuring refractory periods 
and conduction velocities that contribute to signaling latencies. Finally, beyond establishing the refraction ratio 
as the design principle being optimized by neurons are questions about the physiological purpose of preserving 
an optimized ratio. Presumably neurons are exerting this level of dynamic precision for important neurophysio-
logical reasons that require further investigation. One example could be temporal precision at synaptic terminals 
and its consequences on signaling integration. This has been previously suggested as one reason why neurons are 
neither optimized for wiring length or signaling speeds15.

Methods
Axon Database.  We used anatomical and morphological data from detailed three-dimensional (3D) recon-
structions of complete axonal arbors of Basket cells from the rat neocortex21. Data were obtained from the online 
digital database NeuroMorpho.Org23. The neurons in our dataset were chosen based on the availability of high 
accuracy measurements of axon thickness or diameter throughout the whole arbor structure. More specifically, 
the data in the NeuroMorph database is comprised of spatial reconstructions and measurements along the axonal 
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arbor, with an identification number for each sample point, a three dimensional location (xi, yi, zi), and the diam-
eter Di of the axon at that point. The database also contains indices indicating the physical connectivity between 
sample points along the arbors, thus providing all the relationships to construct the axonal tree. Different neurons 
have differing degrees with respect to the completeness of this information. Because of our analysis necessitated 
high detailed reconstructions we randomly selected Basket cell neurons that had the most complete information 
available.

Axon Graph Description.  Graph-model of axon arbors.  We used a graph theoretic approach to describe 
the three dimensional connectivity of single axons. A schematic description of the graph model is shown in Fig. 5. 
An axon arbor is naturally modeled as a tree-graph. We used the term axon ‘branch’ or ‘branching path’ to refer 
to the axonal segment connecting the axon initial segment to one of the axon’s synaptic terminals. In a 
graph-based model, a ‘branch’ is composed of multiple axonal segments stringed together by a set of edge con-
nected vertices. For the purposes of our analysis, we needed to distinguish between three classes of vertices and 
their corresponding edges. For each individual neuron in our dataset, vertices and edges were defined based on 
specific axonal landmarks. These were the initial axonal segment, axonal branching points or bifurcations, and 
synaptic terminals. These features mapped to a root vertex vR, branching or bifurcation vertices vBk

 (k = 1, …, Q 
− 1 with Q − 1 total number of branching vertices in the selected branch), and terminal vertices vTs

 (s = 1, …, W, 
with W total number of synaptic terminals, or branches, in a given neuron), respectively. The vertex pair consist-
ing of the root vertex vR and a synaptic terminal vertex vTs

 connected by the edge eR V, Ts
 defined a branching path. 

We equivalently used the label p v v( , )R Ts
 to indicate a specific branching path. Successive bifurcation vertices, i.e 

one branching point and the next branching point in an axonal arborization, are given by vB i( )k
 and 

+
vBk i( 1)

, along 
with their edges +eB i B i, 1k k

, the segment of the axon that connects two bifurcation points. Vertices in between the 
root and terminal vertex reflect axonal segments along the way, defined by the original morphological sampling 
frequency of the data in the NeuroMorpho database. We called these elementary vertices. Elementary vertices 
correspond to neither a branching vertex, a terminal vertex, nor the root vertex. The elementary vertices located 
in between bifurcation vertices of the same axonal branch are labeled ve,n where e = 1, ..., Q (Q is the total number 
of edges in a branch), and n = 1, ..., N − 1 (N − 1 is the total number of nodes along the eth edge). Edges that con-
nect successive elementary vertices ve,n(i) and ve,n(i+1) were labeled 

+
ev v,e n i e n i, ( ) , ( 1)

. Note that eR V, Ts
 and 

+
eB B,k i k i( ) ( 1)

 are 
composed from subsets of elementary edges 

+
ev v,e n i e n i, ( ) , ( 1)

.

Adjacency matrix.  From the structural data we built an adjacency matrix that encoded information about the 
connectivity of the network. The adjacency matrix was organized such that each element represents a connection 
(graph edge) between an input vertex (row) and an output vertex (column). The axon and axon arborizations 
are represented by tree-network graphs. The associated adjacency matrix describes the composite hierarchical 
organization of the tree, where a common axonal segment (‘parent segment’, identified by all elements on the 
diagonally-shaped line in the connectivity matrix) gives rise to a number of daughter axonal branchlets.

For the purpose of our analysis we chose to reduce the full adjacency matrix (containing nodes from the sets 
vR, vB, vT, and ve,n) to an adjacency matrix containing vertices from the sets vR, vB, and vT. It is this reduced matrix 
that we used in our analysis. This reduced adjacency matrix was created for three reasons. First, branching points 
define the variable paths of action potentials (signals) transmission through the axon. Second, in the more gen-
eral case of myelinated axons, bifurcation points typically corresponds to unmyeliated locations where a node of 
Ranvier is present and thus where the signal propagates down the axon by saltatory conduction. This agrees with 
the methodology of our analysis which focuses on pairs of defined vertices that have an active role in neural sign-
aling. Finally, synaptic terminals define the different paths of signaling in the axonal arbor and are thus necessary 
for comparisons between selected branches in the tree. And synaptic terminals represent active areas of the axon 
where synaptic transmission to one or multiple post-synaptic neurons occurs.

Deriving the Path Lengths of Axons and Axonal Arborization Branches.  As described, pairs of 
vertices (vi, vj) in the graph were connected by a directed geometric edge ei,j. Each vertex in the graph was associ-
ated with a physical position in three dimensional space, and each edge followed a convoluted geometric path in 

 terminal vertex s

 branching vertex k

 root vertex

 vertex n in edge e

 edge connecting 

vR
vBk
vTs
ve,n
e to

 edge connecting e to

vBk vBw
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Figure 5.  Graph-based model of the geometric network of an axon arbor.
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space determined by the actual physical morphology. Given an edge ei,j, the convoluted distance, i.e. the physical 
distance di j,  of the edge between any two vertices vi and vj can be defined by the path integral di j,  from vi to vj. To 
compute it, we took into account all segments forming a particular edge, and then calculated the sum of all 
Euclidean distances between pairs of nodes for a given segment. For example, to calculate the convoluted distance 
(path integral) dB B,k w

 from branching vertex vBk
 to branching vertex vBw

, we approximated the length by:

∑=d d
(6)B B

N
n n, ,k w m q

where dn n,m q
 is the Euclidean distance 






= − + − + −





( )( ) ( )d x x y y z zn n n n n n n n,

2 2 2

m q m q m q m q
 computed 

between pairs of nodes (v v,e n e n, ,m q
), and N is the number of sub-edges en n,m q

 forming eB B,k w
.

The tortuous path connecting the root vertex vR to a selected synaptic terminal vTs
 was the sum of all convo-

luted distances dB B,k w
:

∑= d d
(7)

R T
Q

B B, ,s k w

where Q indicates the total number of edges eB B,k w
 that compose the selected path p v v( , )R Ts

 in the axonal tree. For 
example, for the neuron represented by the graph in Fig. 5 (path highlighted in red), the total distance between 
the root vertex and the synaptic vertex vT3

 was computed by summing up all distances of the edges eB B,k w
 between 

the branching vertices along that path, which in turn were obtained by the sum of all distances of the multiple 
sub-edges en n,m q

 they were composed of.

Calculations of Signaling Parameters.  Axon conduction velocity is a function of several biophysical 
and morphological properties, including axon thickness, branching, ion channel density and variety, and mye-
lination24. Considering the predominant role that axon thickness and degree of myelination have in defining 
the conduction velocity of action potential in mammalian axons47, in this work we derived estimated values of 
conduction velocity based on only these two structural factors. For our data, we assumed that the arbors of all 
our basket cell neurons were unmyelinated based on morphological empirical results and geometrically-based 
models from the literature25–27. While it is generally agreed that the conduction velocity of myelinated axons 
increases linearly with increasing diameter37,48,49, the situation for non-myelinated axons is less definitive. 
Theoretical arguments and empirical measurements on large invertebrate axons suggest that the conduction 
velocity of non-myelinated axons is proportional to the square root of the axonal cross-sectional diameter27. 
However, other results seem to suggest that such a square-root relationship at least in invertebrates oversimplifies 
the situation50,51. In the vertebrate nervous system however very fine non-myelinated axons were found to support 
a linear relationship28.

In our data, the diameter of the axons we studied were comparable to the fine non-myelinated axons in28. 
Therefore, we assumed a linear relationship between axonal diameter and conduction velocity (signaling speed) of 
non-myelinated axons. Hoffmeister et al. experimentally derived the linear relationship s = 0.24 * C between the 
circumference C of non-myelinated fibers and their signaling speed s. Our data had axonal segments expressed 
as diameters, not circumference. We therefore wrote the equivalent relationship: s = KD with K = 0.24 * pi = 0.75, 
where s is signaling speed, D is the axon diameter, K is a constant, and the relationship between circumference 
and diameter is C = 2 * pi * D. The same relationship has been used in other recent work to investigate the 
volume-latency trade-off in neocortical axons52.

We used this relationship to estimate the signaling speed sij between vertex pairs vi and vj:

= .s D0 75 (8)ij

where D is the (constant) diameter of the axonal segment connecting vi and vj. If vi and vj are consecutive meas-
urement sample vertices between branching points, ve,n, D was typically constant because Di ~ Dj due to the sam-
pling resolution of the original data. If vi and vj corresponded to two consecutive branching points, D was 
calculated as the arithmetic mean of the diameters of all sample points between successive vertices vBk i( )

 and 

+
vBk i( 1)

. Considering that sampling points along individual edges of the axon were characterized by small diameter 
changes, the average represented a good approximation of the diameter of that particular axonal segment.

Neurons in our dataset had computed conduction velocity values of 0.39 ± 0.17 m/s (μ ± σ, with μ being 
the mean computed on the raw distribution of conduction velocities from all 11,575 axonal branches, and σ the 
standard deviation of their distribution). The histogram in Fig. 6 shows the distribution of signaling speeds inde-
pendently computed for all branches of the entire data set of 57 basket cells. We also considered the distributions 
of conduction velocities for individual neurons in order to better characterize the behavior of single cells. For each 
neuron we computed the mean value of the conduction velocities of all axonal branches. We then calculated the 
mean value of the 57 computed means, obtaining a mean value of all means of 0.38 m/s.

The signaling latency or propagation delay τij of action potentials (signals) traveling between vertices vi and 
vj were calculated as:

τ =
d
s (9)

ij
ij

ij
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where dij is the distance measured between vertex i and vertex j as described in the previous section. Because our 
analysis is highly sensitive to the convoluted path length between vertices, the calculation of signaling speed and 
propagation delay depended on the kind of vertices that are considered in the arbor graph. For pairs of consecu-
tive vertices ve,n belonging to individual edges between branching vertices, the distance was calculated using the 
Euclidean distance between them, and the dynamic parameters, conduction velocity and signaling latency, were 
obtained according to Eqs 10 and 11. On the other hand, for vertices corresponding to branching points or syn-
aptic terminals of the arbors, the dynamics was computed slightly differently taking into consideration that any of 
these convoluted edges can be decomposed into multiple sub-edges of uniform diameter and conduction velocity. 
More specifically, for each branch of the axon arbor, that is the path connecting the root vertex vR to a synaptic 
terminal vTs

, we calculated the total propagation delay as the sum of all piecewise propagation delays obtained for 
all edges eB B,k w

 forming that branch:

∑τ τ=
(10)

R T
Q

B B, ,s k w

with Q being the total number of edges connecting the initial segment to a synaptic terminal. In turn, each edge 
in the branch can be decomposed into multiple sub-edges en n,m q

 along which the signal propagates with a tempo-
ral latency defined as:

∑τ τ=
(11)B B

N
e n n, , ,k w m q

where N is the total number of sub-edges en n,m q
 in eB B,k w

. We then used the information about axonal path lengths 
and latencies to compute the signaling speed. By doing this we avoided averaging different diameters in the cho-
sen path for the calculation of a mean signaling speed. We instead considered multiple conduction velocities 
obtained for short segments between consecutive edges in the path that had a constant diameter D. We then used 
the resulting combination of propagation delays for estimating the signaling speed between the axon initial seg-
ment and its synaptic terminals. This more accurately reflects the true values of action potential propagation 
speeds.

Estimation of the Refractory Period.  The refractory period was estimated along the entire length of 
the axon, from the soma (root vertex) to each synaptic terminal (synaptic vertex). Since each path from root 
vertex to a terminal vertex was defined as a branching path, it is equivalent to saying that the refractory period 
was estimated for all axonal sampling points (i.e. nodes) along each specific branch, as a function of the distance 
between root and terminal vertex. We estimated the refractory period from empirical measurements reported in 
the literature25. More specifically, we approximated the decreasing refractory period from soma to synaptic ter-
minals with a curve whose descending slope was inferred from actual measurements of channel density variation 
and membrane inactivation properties25. We set a lower bound to 1 ms, which is about the absolute lower limit 
for any neuron due to fundamental limitations associated with the kinetics of Na+ channels. The maximum value 
for Rj was set to 2.5 ms, which we justify by three specific arguments: first, 2.5 ms represents a reasonable value as 
the average of the generally accepted range (0–5 ms) associated with neocortical neurons53–56; second, work on 
demyelinated axons and the supercritical Na+ channel density proposed in25 implies that higher values would 
not be physically appropriate; finally, a change of refractory period from 1 ms to 2.5 ms is in agreement with the 
2.4-fold increase of activation time for Na+ channels suggested by the experiments in25. A detailed explanation 
about the rationale for computation of a local refractory period for each vertex in the axon graph is reported in 
the online Supporting Information.

Computation and Statistics of the Refraction Ratio.  We considered the refraction ratio16 between all 
pairs vertex pairs (v v,R Ts

): the root and terminal vertices in the network, the first vertex corresponding to the 
initial axon segment and the second to any synaptic terminal at the end of an axonal arborization. The value of the 
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Figure 6.  Global distribution of the signaling speeds independently computed for all branches of the 57 
basket cells. Signaling speeds of individual axon branches range from 0.15 to 1.49 m/s (mean 0.39 m/s, median 
0.33 m/s).
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refraction ratio was obtained by computing the numerical ratio between the refractory period of any terminal 
vertex vTs

 and the propagation delay signaling latency along the axonal branching path p v v( , )R Ts
 connecting the 

root vertex to the terminal vertex. The refraction ratio was computed independently for all reconstructed axon 
arbor graphs across each of the 57 basket cell neurons in our dataset. This resulted in 11,575 statistically inde-
pendent refraction ratio values.

Histograms were used to collect, visualize, and analyze the data. At the single neuron level, each histogram 
described the distribution of the computed refraction ratio for all pairs of root and terminal vertices in the ana-
lyzed axon arbor (c.f. Fig. 2A). The value of bin within the distribution (the height of individual plotted bars) 
reflected the number of branches associated with refraction ratio value falling within a the specific range for the 
interval defined for that particular bin. For each basket cell we independently (from other neurons) computed the 
median value of the distribution.

To visualize and compute the statistics on the entire dataset, we constructed a histogram for the raw distribu-
tion of refraction ratio values computed for the 11,575 axonal branching paths from each of the 57 neurons (c.f. 
Fig. 2B). To normalize against varying numbers of terminal vertices across our sample population of 57 neurons, 
we computed the median value of the median population (see the main text above) (c.f. Fig. 2C).
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Estimation of the Refractory Period
Our rationale for justifying computing a local refractory period for each vertex was based on the following
considerations. The inactive state of a neuron is strictly dependent on the recovery time of the cellular
membrane after activation. Once an action potential is initiated at one point in the cell body, its
propagation along the axon occurs through a chain of depolarization-repolarization membrane processes.
An action potential only occurs in a limited area of the cell membrane, but the changes in membrane
potential at the edges of this area are enough to initiate another action potential in a neighboring space,
which then give rise to another action potential further down the axon, a process which results in the
propagation of the action potential. Each single point of the axon and its neighborhood experience
initiation of an action potential followed by a period of recovery during which Na+ channels are in their
inactive state, and the axon segment is refractory. Given the spatially local area of how we defined nodes
along the axon and axonal arborization (see above sections), we assumed that every vertex in our tree
graph model of each neuron could be associated with a locally active-refractory area of membrane along
the axon, and that a locally-defined refractory period could be calculated for it.

Our estimation of the refractory period at individual vertices along the axon was based on very
recent findings about the biophysical and dynamical properties of basket cells. In the work by Hu
and colleagues1 these authors carried out confocally visualized sub-cellular patch-clamp recordings
in rat hippocampal slices at different sites in the soma and axons of basket cells. Their experimental
measurements demonstrated a supercritical density of sodium ion (Na+) channels with a non-uniform
density profile along the axonal tree. In particular, sub-cellular mapping revealed a stepwise increase
of Na+ conductance density from the soma (ρNa = 2.6 channels µm−2) to the proximal axon (ρNa = 25
channels µm−2 at 50 µm distance from the soma), followed by an additional gradual increase in the
distal axon (ρNa = 46.1 channels µm−2 at 315 µm distance from the soma). High Na+ channel density is
normally required for action potential generation; in typical neuron axons Na+ channels are typically
concentrated at the axon initial segment where action potential generation occurs. Based on this detailed
work however, Na+ channel distribution differed somewhat in basket cell axons. This supercritical,
gradual increase in the density of sodium channels was interpreted as ensuring high reliability and fast
propagation of neural signaling in unmyelinated small axons1. Additionally, analysis of gating kinetics
and voltage-dependence of activation and inactivation revealed that Na+ channels in basket cell axons
differed from somatic channels in their functional properties. In particular, the inactivation time constant
was 2.4-fold faster for axonal than for somatic Na+ channels, thus implying locally reduced refractory
periods in the axon with respect to the soma.

Given this information, we decided to approximate the decreasing refractory period from soma to
synaptic terminals with a curve whose descending slope was inferred from the actual measurements
of channel density variation. Specifically, a lowest and highest bound were defined for the refractory
period. The lowest bound was set to 1 ms, which is about the absolute lower limit for any neuron due
to fundamental limitations associated with the kinetics of Na+ channels. The maximum value for R j
was set to 2.5 ms, which we justify by three specific arguments: first, 2.5 ms represents a reasonable
value as the average of the generally accepted range (0 - 5 ms) associated with neocortical neurons2–5;
second, the work on demyelinated axons and the supercritical Na+ channel density proposed in1 implies
that higher values would not be physically appropriate; finally, a change of refractory period from 1 ms
to 2.5 ms is in agreement with the 2.4-fold increase of activation time for Na+ channels suggested by
the experiments in1. We thus determined the refractory period for any output vertex v j of individual
axon branches as a function of the distance of the vertex from the soma. Specifically, R j values steeply
decrease from 2.5 ms to ∼ 1.7 ms in the first 50 µm distance from the cell main body; it then further
gradually reduces at the distal site of the axon until reaching a constant refractory period of 1 ms at a
threshold length of 315 µm (Figure 1).

The function used to estimate the varying refractory period along individual branches was constructed
from considerations of the experimental curve obtained for the Na+ channel density variation along
basket cell axons from the initial segment to distal parts of the axons (315 um) in1 (see Figure 1 in1).
The channel density steeply increased from the soma to the proximal axon out to about 50 µm from a
density of 2.6 channels µm2 to a value of about 25 channels µm2. We empirically estimated the slope of
the curve describing the profile of channel density change within this first section of the axon by taking
the slope of the straight line connecting these two points in that data. Beyond about 50 µm the channel
density increased less steeply from a value of 25 channels µm2 to approximately 46.1 channels µm2 at
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315 µm from the soma. We similarly linearly estimated the changing channel density in this second
section of the axon by calculating the slope of the line connecting these two points.

We then built the function approximating the gradual decrease of the refractory period along individual
branches as a function of the distance from the soma or axon initial segment.

Since no information was reported for distances from the soma larger than 315 µm, and given the
gradual decrease in the slope relative to the channel density curve, we assumed that by 315 µm2 the
refractory period nearly reached saturation at a minimal value of 1 ms, and assumed that beyond that
distance any further changes in the refractory period were negligible. Moreover, observing that for larger
distances the average diameter of axonal arborizations could be assumed to have no relevant variation,
we found it to be a reasonable assumption since the geometry does affect the recovery properties of
the membrane6. We also assumed that the refractory period varies along individual branches from the
minimal value of 1 ms to the maximum of 2.5 ms as the inverse of the channel density profile, since as
discussed above there is an inverse relationship between the refractory period and channel density. In
an ideal scenario empirical data for the refractory period would exist along the continuum of axonal
branches. Since this is not the case, we made assumptions that reflect the most current and detailed
data available about the refractory period of Basket cell neurons. Importantly, we modeled the refractory
period before and independent of calculations of the refraction ratio. In other words, the refractory
period model was not adjusted to achieve an optimal ratio.

Trade-Off Conservation at The Synapses
In order to investigate how the dynamic properties vary throughout the axon hierarchy, we calculated the
evolution of the ratio along individual axonal paths. We computed the refraction ratio for sequential pairs
of vertices where each pair includes the root vertex vR as source vertex and one of the Q−1 branching
points vB as output vertex, where each branching vertex is selected one at a time descending along the
axonal branch (or path p(vR,vTs)) to the synaptic terminal (Figure 2 A). In Figure 2B we report the evolving
refraction ratio for all branches of a single basket cell (coded as different colors for each branch; Fig.2B).
When evaluated this way, there is a converging trend of the refraction ratio towards optimality as it
approaches the terminal output vertices. The inset in Figure 2B shows that a high percentage of the
total number of branches in the cell have high values of refraction ratio early in the tree, which then
converge quickly to near-optimal values as the terminal synaptic vertices for each branch are approached
(c.f. Figure 2 in the main text).

Figure 3A shows the distribution towards optimal convergence of the refraction ratio for a representative
basket cell as a function of the branching order at which convergence towards the optimal range occurs.
The branching order corresponds to depth of a selected branching vertex on the axonal path p(vR,vTs)).
The vertex depth is here defined by the number of bifurcations that separate that specific branching
vertex from the root vertex. For this analysis, we arbitrarily fixed the range 0.5≤ Λi j ≤ 1.5 as optimality
range of convergence. The histogram shows what is the smallest branching order in the axon hierarchy
at which the refraction ratio converges. Figure 3B shows the same metric combined for our whole dataset
of 57 neurons. More specifically, the histogram shows the number of neurons whose maximum number
of branches have ratio converging to optimality as a function of the first branching at which convergence
occurs. To build this histogram, we first selected, for each neuron in the data set, the branches whose
ratio at synapses falls within an optimal range (here arbitrarily set to 0.5≤Λi j ≤ 1.5); then, for each branch
we determined the branching order in the hierarchy at which convergence first occurs, as described for
data in Figure 3A; finally, for each of the 57 cells, we calculated the order of bifurcation that maximizes
the number of converging branches. We obtained 57 different orders, one for each neuron, and used
them to build the here reported distribution.
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Figure 1. Estimation of the refractory period for an individual basket cell. R j is plotted as a function of
the path length. Its values steeply decrease from 2.5 ms to ∼ 1.7 ms in the first 50 µm distance from
the cell main body; then, R j gradually reduces at the distal site of the axon until reaching a constant
refractory period of 1 ms at a threshold length of 315 µm.
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Figure 2. Convergence of the refraction ratio towards an optimal range for one representative basket cell
neuron. (A) Schematic representation of the different pairs of vertices for which the evolving ratio was
computed, starting from the root vertex vR at the soma and ending at the synaptic terminals vTs for all
paths p(vR,vTs). (B) Evolving signaling ratio for all paths in the axon arbors of the same cell. Different
colors represent different branches. The x-axes shows the order of bifurcation (depth of the tree) in the
hierarchical structure from the origin to the terminal vertex. The y-axes shows the value of the
computed refraction ratios. Inset: zoomed in view of the same data. We assumed an optimal refraction
ratio range to be within 0.5 and 1.5 for this analysis.
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Figure 3. Branching order counts at which an optimal ratio is achieved. (A) Histogram showing the
distribution of branching orders (depth in the tree-network) for a single neuron at which an optimal ratio
is reached. We assumed the same optimal ratio 0.5 and 1.5 as in the rest of the analysis. (B) Data
showing the results of the same analyis as for the representative neuron in panel A, but plotting for each
neuron only the branch order that displayed the maximum number of axonal branches that achieved
the optimal ratio at that particular branch order (see text).
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Chapter 4, in full, is a reprint of An Optimized Structure-Function Design Principle

Underlies Efficient Signaling Dynamics in Neurons, Puppo F, George V, Silva G. This article

appeared in the Nature Scientific Reports 2018, volume 8:10460. This dissertation author was the

second on this paper.
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Chapter 5

Conclusions and Future Work

The main thrust of this work was to takes steps towards constructing generalized learning

architectures based on principles from the theory of operation of the brain. Although this is a

lofty problem and the contributions of this work are modest steps towards that end, this work

lays an important foundation. Despite considerable advances in the field of artificial neural

networks and its ever increasing application space, the brain is still a formidable learning machine.

How the brain computes and operates continues to inspire scientists, engineers and artists. In

search for the underlying principles upon which the brain operates there are some experimental

guides[4], but there is also much that is unknown[7]. The goal of this dissertation is not only

to use principles from neuroscience to inform new machine learning algorithms, but also to

contribute to neuroscience literature.

In the first part of this dissertation, we investigated the dynamics supported by the C.

elegans connectome through the study of Temporal Sequences(TSs). TSs are causal neuronal

signaling pathways of a network which arise from walks of signals on the network. The neuronal

signaling pathways are constrained by the concurrent network dynamics. The mathematical

study of structure of the dynamics, whether it may be TSs, graphs, vectors or other mathematical

structures one may construct, is potentially more informative than only studying the evolution of

103



a nodal state variable, for example, recording the membrane voltage of a set of neurons in the

network. In a more sophisticated analysis one may merge the evolution of salient state variables

and the structure of the dynamics.

We constructed a geometric directed network of the C. elegans connectome using experi-

mentally derived physiological data[10, 9, 3]. To simulate network dynamics we implemented a

simplified version of the so-called Geometric Dynamic Perceptron Model[8] to describe nodal

behaviour. The refractory nature of the individual neurons lead to non-trivial neuronal signaling

pathways, i.e. TSs. These TSs are non-trivial because of network signaling contention. Not all

possible paths supported by the structural graph must be realizable concurrently, as such, there

is an order to the possible causal interactions. Only observing the responses, in terms of node

activity, of a subset of the nodes in the network deprives one of elucidating and studying the

intricate paths carved through the network by signals.

From a neuroscience perspective, our network simulation results showed that upon stim-

ulus of the chemosensory neuron ASEL, the dynamics on both the entire connectome and in a

subset of the connectome, resulted in what looked like contraleteral activations of the ventral(VB)

and dorsal (DB) classes of motor neurons. The contralateral motor-neuron activation pattern,

is a general neuron activity pattern which is implicated in animal movement[10, 5]. Through

the analysis of TSs we were able to elucidate the network paths which gave rise to the observed

node activations. Then we recast the use of TSs to compare networks through quantifying the

difference between networks on the basis of their causal signaling paths. As an example we

compared TSs from the sub-networks to the TSs from the full connectome. This was interesting

because one may reasonably want to design a sub-network such that at the least every neuronal

signaling path within the sub-network should also exist in the full network, but not necessarily

vice versa. By comparing TSs from the two networks we were able to quantify the preservation

of neuronal signaling pathways.

For any scientist looking to study sub-networks, our results provided a cautionary note, but
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also a partial remedy. We found that the neuronal signaling on sub-network outside the context of

the full-network behaves differently than the neuronal signaling of the full network. We provided

a measure (the Similarity Measure) to determine how differently. The remedy to picking a good

representative sub-network lies in approaching the problem of sub-network generation by using

computationally cheap approaches to study the preservation of some macroscopic behaviours,

for example, making sure that TSs between the network are statistically similar and preserve

neuron activation rates. That is how much of the TSs from the entire connectome formed the

same pathways as those in the sub-network and maintaining the neuron activation rates between

the two networks.

By analyzing the TSs for repeating sub-sequences we can hypothesize the pattern gen-

erating circuits supported by the structural connectome in the presence of concurrent network

signaling dynamics. The analysis of sequence repetitions also provided a method to decompose

the rich signaling dynamics observed on the network into a fundamental set of neuronal signaling

pathways. We called this fundamental set the set of Basis Sequences. Basis sequences provide a

minimal descriptions of TSs and from the canonical signaling pathways on the connectome.

This work has some profound implications for machine learning. Existing artificial neural

network approaches focus on minimizing cost functions relative the activations of some node in an

output layer. We upend that paradigm by proposing the analysis of TSs to analyze and categorize

dynamics on a network. Since the work on C. elegans was focused on neuronal signaling pathways

we constructed TSs. We again note that a TS is only one view of the network dynamics, there

are several other mathematical structures which can be built and analyzed. Furthermore, through

the analysis of the structure of the dynamics we increase the mathematical expressiveness of the

network dynamics.

Our second work focused on how much of the networks dynamics one must capture to

then further analyze and how to preserve the concurrency of network signaling pathways in a

mathematical object. In a machine learning paradigm which depends on the collection of analysis
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of network statistics from a dynamical system it is unclear what are the physical observational

limits after which the collection of new observations prove to be less informative. One answer to

this quandary is to wait for long time until the network activity reaches steady-state in the same

sense that one considers steady-state solutions to differential equations. Even if one waited for a

long time for the network activity to reach steady-state, since our analysis is predicated upon the

construction of mathematical objects representing the dynamics we may still want to know how

much of the network dynamics in steady-state one must capture.

We proposed two distinct methods to determine the steady-state statistics, that is, start of

periodic network activity and the period of the repeating activity. One method was based upon

the sum of node activations over time, and the other was based on finding repetitions in strings

representing network states. The string repetition method is the more computationally efficient of

the two. It has a computational complexity of O(N), where N is the number of samples. Although

the string method is efficient, it is not robust to noise, in that, the computational complexity

diminishes when considering almost periodic strings. The summation method more easily can be

extended to account for noise, albeit, in an approximate way. This is something we have left for

the future since the current networks under consideration have no need for it.

An opportunity for enhancement of the string method is in extending it to consider strings

in an online way. The goal would be that once the steady-state statistics were found for N samples,

then if m additional samples were considered, the resulting complexity should be O(m), rather

than O(N +m). One approach to reduce the complexity of an online approach is to minimize the

reconstruction of fundamental data structures used for the string search.

Upon determining the system’s steady-state start time and period, we were interested

in developing a mathematical description encompassing the ensemble dynamics which could

also delineated the local structures arising in the dynamics. We used a directed acyclic graph to

capture the causal signaling activity in the network. Given that the signaling activity is taking

place on the structural backbone of the network, the resulting graph description involves the
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repetition of labels. To accommodate this need we used a technique commonly used to describe

chemical molecules, but extended the idea to a directed graph setting. Although several tools

exist to measure distances between graphs[2], machine learning software packages for the most

part operate on vectors. Once the graph was constructed, we created a vector space embedding[6]

of the graph which counted the number of subgraphs of various heights present in the graph, and

in that process inherently captured the interaction of subgraphs. Not only does the vector space

embedding allow the use of a multitude of classifiers, but it also provides a test bed to study the

relationships between the network’s topology, node models and dynamics in order to inform the

elusive search for structure-function relationships. Research within this end-to-end framework is

an area of active inquiry.

Our final work in this dissertation experimentally verifies a theoretical neuronal design

principle[8] underlying axonal development and morphology. We found that there was a balance

between the membrane refractory periods and axonal signaling delay. A guiding learning principle

from neuroscience used in machine learning is spike time dependent plasticity. This is one of the

few established local learning rules with experimental data to provide guidance on its functional

form[1]. This work is the first of many experimental works necessary for its characterization. In

the future we intend to extend the Hebbian learning framework to include this phenomena as a

local learning rule and to construct and optimize structural networks. On the experimental side

we intend to study whether neuronal signaling modifications are associated with brain disorders

and other conditions.
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