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Monocular 3D Probe Tracking for Generating Sub-Surface Optical 
Property Maps From Diffuse Optical Spectroscopic Imaging 

Robert Amelard, Member, IEEE, Jesse H. Lam, Brian Hill, Amanda Durkin, Kyle Cutler, and 
Bruce J. Tromberg 

 

Abstract—Objective: Diffuse optical spectroscopic imaging (DOSI) is a promising biophotonic 
technology for clinical tissue assessment, but is currently hampered by difficult wide area 
assessment. A co-integrative optical imaging system is proposed for dense sub-surface optical 
property spatial assessment.  Methods: The proposed system fuses a co-aligned set of camera 
frames and diffuse optical spectroscopy measurements to generate spatial sub-surface optical 
property maps. A 3D rigid body motion estimation model was developed by fitting automatically 
detected target features to an a priori geometric model using a single overhead camera. Point-
wise optical properties were measured across the tissue using frequency domain photon 
migration DOSI. The 3D probe trajectory and temporal optical property data were fused to 
generate 2D spatial optical property maps, which were projected  onto the tissue image using 
pre-calibrated camera parameters. Results: The system demonstrated sub-millimeter positional 
accuracy (error 0.24 + 0.35 mm) across different probe speeds (1.0–3.8 cm/s), and displacement 
accuracy in overhead ( 0.42 + 0.33 mm) and tilted (0.51 + 0.51 mm) camera orientations. 
Unstructured scans on a tumor inclusion phantom showed strong contrast under different probe 
paths, and significant (p < 0.001) changes in optical properties in an in vivo leg cuff occlusion 
protocol with  spatial anatomy localization. Conclusion: The proposed co-integrative optical 
imaging system generated dense sub-surface optical property distributions across wide tissue 
areas with sub-millimeter accuracy at different probe speeds and trajectories, and does not 
require pre-planned probe route for tissue assessment. Significance: This system provides a 
valuable tool for real-time non-invasive tissue health and cancer screening, and enables 
longitudinal disease progression assessment through unstructured probe-based optical tissue 
assessment. 

 

I. INTRODUCTION 

ASSESSING tissue properties is important for maximizing diagnostic and therapeutic 
efficacy. Optical imaging systems assess tissue composition and structure across spatial scales 
using non-invasive light-based techniques. Diffuse optical spectroscopic imaging (DOSI) 
quantitatively measures sub-surface interactions of light with tissue for inferring  optical 
properties, more specifically, scattering (μ’s) and absorption (μa ) coefficients, which are then 
used to assess concentrations of bulk absorbing tissue chromophores, primarily oxyhemoglobin 
(HbO2), deoxyhemoglobin (Hb), water (H2O), and lipid [1]. In combination, these quantities 
reflect aspects of tissue perfusion, metabolism, hydration and blood volume [2], and provide 
clinically relevant information for assessing tissue health in applications such as breast cancer 
[3], bone sarcoma [4], and acute hemorrhage treatment [5]. 



Traditionally, DOSI operates as a point-measurement device, wherein a probe is affixed 
to a single location and tissue chromophores are tracked over time to assess functional tissue 
changes. Additional spatial coverage may provide increased clinical insight into localized tissue 
function, such as physiological responses to exercise [6], weight loss [2], and chemotherapy 
treatment in breast cancer research [7]. However, these methods generally suffer from low 
spatial resolution and laborious spatial sampling, usually by drawing a fixed landmark-based grid 
pattern on the tissue [8]–[10]. Additionally, longitudinal follow-up may be error-prone due to 
landmark-based registration. Other methods have incorporated an array of source-detector 
pairings for simultaneous spatial coverage for breast cancer [11] and critical care [12] 
monitoring, but these systems have fixed spatial resolution and form factor, making generalized 
free-form imaging challenging. 

To detach from the fixed grid approach and enable free-form unstructured scanning 
across an area of interest, spatial context must be detected and co-processed with temporal DOSI 
measurements. Spatial object tracking has been studied in other fields, primarily using either 
inertial measurement units (IMUs) or video-based object tracking. IMUs use a combination of 
accelerometers, gyroscopes, and magnetometers to compute the body’s relative orientation in 
space. These devices have been used to track 3D movement in applications such as lower limb 
biomechanical analysis [13] and robotic microsurgery tremor compensation [14]. However, 
IMUs provide relative changes in orientation, and require further instrumentation for estimating 
a probe measurement in the global spatial context of a tissue region of interest. Image-based 
object tracking algorithms are able to track objects in space with visual global context. Recent 
developments in deep learning have enabled robust single-camera object tracking algorithms 
[15], [16], however inferring 3D position with high accuracy is challenging. Multi-camera 
approaches can yield high 3D accuracy for challenging scenarios such as stereoscopic tracking of 
intra-operative tools [17] and marker-based motion joint tracking [18], but these approaches are 
generally bulky and expensive, making them infeasible in clinical settings. 

To address these outstanding challenges, we propose a co-integrative single camera-
based DOSI imaging system. This system enables generation of sub-surface optical property 
maps by tracking the 3D probe trajectory across tissue using a single camera and an embedded 
physical a priori target pattern with known geometric features. By incorporating the a priori 
target pattern model into a computational rigid body tracking framework, the 3D probe trajectory 
can be estimated and fused with the temporal optical property measurements to generate  a 2D 
optical property map across the scanned area. The proposed computational framework can be 
used with any camera through a one-time calibration procedure, and does not require a pre-
planned (e.g., grid) probe route. 

The remainder of the paper is organized as follows. Section II presents relevant diffuse 
optical spectroscopic imaging theory and the computational framework for 3D probe 
measurement tracking. Section III presents experimental results using an optical tissue tumor 
inclusion phantom and in vivo leg occlusion protocol. Section IV presents discussion on the in 
vivo dense optical property maps and tracking coordinate systems. Section V concludes the 
work. 



II. METHODS 

Given a co-aligned set of frames I(x, y, t) and point-based temporal measurements o(t), 
where o(t) is an optical property of interest (e.g., absorption, scattering, chromophore 
concentration), the goal was to generate a dense 2D sub-surface optical property map O(x, y) 
using estimates of the 3D probe measurement location coordinates (xm (t), ym (t), zm (t)) at each 
time point t. The problem was posed as a rigid body probe planar motion estimation problem. 
Using a single overhead camera, the probe was tracked by detecting a planar checkerboard 
pattern printed on the top probe face. Tissue optical properties were assessed at non-gridded 
positions across the tissue using a frequency domain photon migration diffuse optical 
spectroscopic imaging (DOSI) system. Fig. 1 shows a graphical overview of the system 
components. 

 

A. Diffuse Optical Spectroscopic Imaging (DOSI) 

DOSI uses frequency domain photon migration (FDPM) with computational models to 
assess absolute optical properties from turbid media [1]. Sinusoidal temporally modulated near-
infrared (NIR) laser light was illuminated into turbid media. The recovered optical signal, 
through the use of an avalanche photodiode (APD), was compared to a reference, and the 
amplitude decay A(ω, ρ) and phase delay Θ(ω, ρ)  was calculated across  a broad bandwidth 
frequency sweep (ω ∈ [50, 500] MHz) at a source-detector separation ρ. Calibration was 
achieved by use of silicone-based tissue simulating phantoms [19]. The calibrated amplitude and 
phase for each wavelength was then fit using a P1 semi-infinite approximation to the radiative 
transport equation yielding absolute optical absorption (μa ) and reduced scattering (μ’s ) 
coefficients [20]. Tissue chromophore concentrations Ci were then extracted from μa given 
tabulated extinction coefficients for each absorbing species Ei by use of linear least-squares 
fitting against a Beer-Lambert formulation: 

 

Similarly, the scattering spectra μ’s (λ) was estimated by a least-squares fit to a power law 
inspired by Mie theory: 

 

Then, multiple optical properties were monitored for generating a dense sub-surface optical 
property map: 

o(t) ∈ ሼμa (t), μ’s (t),HbO2 (t),Hb(t),THC(t), SO2 (t)}                (3) 

where HbO2 (t), Hb(t), THC(t), SO2 (t) are oxyhemoglobin concentration, deoxyhemoglobin 
concentration, total hemoglobin concentration, and blood oxygen saturation percentage, 
respectively, yielded from NIR spectroscopic decomposition. 



FDPM measurements were accomplished by routing laser light (727 nm, 787 nm, 832 
nm) to the sample using an optical fiber bundle comprised of eight 0.37 NA, 400 μm optical 
fibers. The laser intensity was set to 30 mW for all wavelengths controlled by a laser diode 
controller (LDC-3916, Newport, Irvine, CA). Modulation frequencies ranged from 50–400 MHz, 
and amplitude and phase sampling was provided by a network analyzer (TR1300/1, Copper 
Mountain Inc. Indianapolis, IN). Laser light was collected using an APD (S11519-30 APD with 
custom module, Hamamatsu Photonics, Hamamatsu Japan). 

B. 3D Measurement Coordinate Estimation 

This section adopts the notation  to declare the coordinate system s for a specified 

coordinate point  (e.g., w p_ is a point  in  the  world  coordinate  system).  Likewise,  

transformation matrices from coordinate system a to b are written as  . The three coordinate 
systems used throughout are the world coordinate system W, defined by the probe position; 
camera coordinate system C, a fixed coordinate system defined by the position and orientation of 
the camera; and image coordinate system I, a 2D coordinate system on the imaging plane. See 
Fig. 1 for a graphical depiction. 

 

Fig. 1. System diagram showing the primary processing steps. An overhead single-camera 
tracking system and diffuse optical spectroscopic imaging (DOSI) were fused into a co-
integrative optical system for non-gridded dense wide area optical property map generation. 
DOSI (bottom panel) employs a frequency domain photon migration model with calibrated 
phantom measurements for assessing optical properties at a single location. An overhead camera 
was used to collect frames of the probe trajectory (top panel). By embedding an a priori target 
model on the probe, the rigid body motion of the probe was estimated by solving a least-squares 
optimization of the measured, undistorted target features and a theoretical rigid body model, 
yielding the 3D probe measurement coordinate in the fixed camera coordinate system. These 
information were fused to generate a spatiotemporal optical property map. 

 



1) Problem Formulation: The probe tracking problem was posed as a 3D rigid body 
transformation estimation problem. That is, for each frame I(x, y, t) at time t, the probe’s 
orientation in the 3D world coordinate system was estimated according to a 3D rigid 
transformation of the probe in the scene (i.e., rotation and translation). 

Mathematically, given a set of 2D feature points in the calibrated image plane 

, a transformation function Ω was sought that optimally transforms the apriori3D 

target model feature points in world coordinates into the a posteriori 2D 

detected feature points  in a least-squares manner: 

 

To impose the physical constraints of a 3D rigid body traveling in the scene, the transformation 

function Ω was modeled as a rigid body transformation matrix : 

 

The goal, therefore, was to determine  by detecting target model feature points in the image 
and incorporating a priori target model knowledge into an estimation model. 

2) Camera Calibration and Probe Tracking: To ensure homogeneously spaced pixel 
distances, the imaging system’s optical distortion was removed through a two-coefficient radial 
distortion model using a two-step optimization approach [21]. Specifically, the camera was 
modeled as a pinhole camera with initially) zero lens distortion: 

 

where α is an arbitrary scale factor,  is the extrinsic camera matrix, and K is the intrinsic 
camera matrix with five degrees of freedom: 

 



where (fx ,fy ) is the focal length, s is skew, and (I x0 ,I y0 ) is the principle point in the image plane. 
Camera parameters were determined by initially solving a closed-form solution assuming zero 
lens distortion, and then refining this solution with a two-coefficient radial distortion model 
through nonlinear least squares minimization [21], [22]. The intrinsic camera matrix and 
distortion variables were stored and used to process all the subsequent frames. 

Using the solved radial distortion variables to invert the effects of lens distortion across 
all frames [21], the goal was to estimate the 3D position of the probe measurement location by 
tracking the 2D feature model points. An 8 × 7 checker-board target model with 6.5 mm spacing 
was used as the target model, and placed on the top probe face to provide salient tar-get model 
features with known planar spatial characteristics for high-contrast tracking. Checkerboard 
corner positions Cpij were automatically detected in the camera coordinate system on the rectified 
frames I’(x, y, t) using multi-orientation corner kernel convolution with sub-pixel localization 
[23]. Specifically, four corner filter kernels {A, B, C, D} were constructed to detect center-pixel 
corners. These kernels were rotated to provide robustness to different orientations. By 
convolving the image with the filters, the filter response fθX of kernel X ∈ {A, B, C, D} and 
orientation θ were used to generate a corner likelihood map: 

 

where S1
θ and S2

θ denote the corner likelihood at a pixel under the two possible flippings. The 
final set of corner coordinates PC were determined through non-maxima suppression thresholding 
and iterative seed point expansion [23]. Due to the recti-fication process, these corner positions 
result from a projection transformation of an equally spaced planar grid that has been rotated and 
translated in the world coordinate system. A total of 42 feature points allowed for sufficient 
redundancy to robustly estimate the plane model. By embedding an a priori geometric target 
model in the scene, a single camera solution is proposed to estimate 3D feature coordinates by 
computing the effect of 3D transformation of the model feature points. 

3) Compute 3D World Transformation: Given the fixed intrinsic camera matrix K, the 

goal was to compute the trans-formation matrix  of the probe for frame I’(x, y, ti ) to 
estimate the 3D measurement location in the fixed 3D camera co-ordinate system. Specifically, 

 

The transformation matrix  is described by the translation of the optical center from world 
coordinates to 3D camera coordinates, and rotation of the image plane: 



 

Given a calibrated camera, the relationship between the jth pattern feature coordinate in 

the world space  and the detected feature points in the image space  ∈ PC was 
modeled by a projective transformation: 

 

where γ is an arbitrary scaling parameter, and Hi is the projective transformation homography 
matrix: 

 

Note the 0 entry in the world coordinates in Eq. (11), since the Wz axis was defined as orthogonal 
to the target plane, and thus all feature points lie on the z =0 plane. The extrinsic rotation and 
translation matrices were computed using a closed form planar estimation solution [21]: 

 

where hk is the kth column vector of matrix Hi from Eq. (12). This closed-form estimate may still 
be sensitive to estimation noise. Local iterative optimization was performed using the closed-
form solution as the original solution estimation, making it reliable and fast convergence. 
Specifically, the rigid body motion parameters were solved simultaneously using Levenberg-



Marquardt iterative non-linear least-squares minimization, using the following objective 
function: 

 

where K is the intrinsic camera matrix from Eq. (7), Q is the projection matrix is 
the  

rigid body trans-formation matrix from Eq. (10),  and    

 are points in the 2D image plane and 3D world 

coordinate systems, respectively, in homogeneous coordinates. The term  shows the final 
formulation of the feature point transformation matrix, which is used to solve Eq. (5). 

The final probe measurement coordinate was determined halfway between the source and 

detector. This location was computed as a 3D offset from the world 
co-ordinate origin using measurements from the 3D probe design model, yielding 

 , where  is the origin of the world coordinate system. The 

probe measurement location  in the camera coordinate system was computed for each 
time ti by applying the solved rigid body transformation matrix from Eq. (16): 

 

 

C. Spatiotemporal Optical Property Sampling 

The sequence of 3D probe measurement coordinates {(Cxi , C yi , C zi ) | i =[0,n]}, or 
conversely the projected 2D im-age plane coordinates {(I xi , I yi ) | i =[0,n]}, and DOSI optical 
property measurements {oj | j =[0,m]} (from Eq. (3)) may be captured at different sampling rates. 
Furthermore, while the camera frame rate is constant, DOSI measurements may be collected at 
non-uniform sampling times. Assuming that DOSI measurements are collected progressively 
across a tissue, and thus assuming piecewise continuous measurements, the DOSI measurements 
were interpolated using a cubic spline interpolation to yield an interpolated {o’i | i =[0,n]} 
discrete signal with equal sampling frequency as the camera coordinate measurements. The 
optical property map O(x, y) was then computed using triangle-based bicubic interpolation of the 
non-gridded scattered measurements [24], [25]. Thus, for each pixel coordinate (xi ,yi ) in the final 
map O(x, y), the interpolated tissue optical property measurements were collected from its 
neighborhood Ni as determined by Delaunay triangulation. 



D. Experimental Setup 

Positional accuracy was evaluated against a pre-programmed path using a motorized XY 
stage over a tissue phantom. The XY stage moved the probe across the phantom in 8 cm sweeps 
and 1 cm steps, covering a total path distance of 80 cm over a 64 cm2 area. The effect of both 
probe speed and probe translation was evaluated. Error of the estimated 3D probe coordinate was 
computed through the Euclidean distance of the estimated and true location for each frame by 
sampling the known (pre-programmed) path. Accuracy was calculated by computing the 
correlation, agreement and absolute error between the known pre-programmed path and the 
estimated 3D probe trajectory. 

Sub-surface optical property maps were generated for both a breast tumor inclusion 
optical phantom model, as well as an in vivo thigh cuff inflation protocol. These different tissue 
characteristics were used to demonstrate the ability to scan and detect clinically relevant 
scanning output. The heterogenous silicone-based tissue phantom was fabricated to simulate the 
absorption-scattering contrast ratio typical of a breast tumor [26]. It contained a 26 mm diameter 
absorbing hemispherical inclusion embedded 9 mm below the phantom surface, measured at the 
top of the inclusion. The phantom was formulated using a silicone rubber base (P4, Eager 
Polymers, Chicago, IL) with water-soluble Nigrosin dye (Sigma-Aldrich, St. Louis, MO) as the 
primary absorber and anatase titanium (IV) dioxide (Sigma-Aldrich, St. Louis, MO) as the 
primary scattering agent. The construction process followed similar instructions reported 
previously [19]. However, prior to the silicone curing step, a hemi-spherical, highly absorbing 
inclusion was suspended below the surface of the larger phantom in order to simulate an 
embedded tumor. The absorption and scattering coefficients were characterized at 785 nm using 
the compound concentrations for the inclusion (μa = 0.02 mm−1 , μ’s = 0.7 mm−1 ) and 
background (μa = 0.006 mm−1 , μ’s = 0.7 mm−1 ). 

A thigh cuff occlusion protocol was performed to evaluate changes in perfusion in a 
vascular occlusion model. The participant assumed a face-down supine position on a bed. The 
camera was placed over the lower legs, facing directly down. DOSI scans were performed on 
both legs, covering the gastrocnemius and soleus muscle groups. Two trials were performed. 
First, a normal baseline scan was performed on both legs to determine baseline optical 
properties. Second, a thigh cuff was placed around the left thigh, and inflated beyond systolic 
blood pressure to restrict both arterial and venous flow. DOSI scans were performed after 3 min 
of occlusion. 

 

III. EXPERIMENTAL RESULTS 

Fig. 2 shows an image of the experimental setup. A monochromatic camera (FLIR GS3-
U3-41C6NIR) was mounted in a fixed position above the measurement area such that the field of 
view was sufficient to capture the entire path of the probe. Frames were acquired at 30 fps, with 
an exposure time of 4 ms. DOSI and the camera were time synchronized at the start of data 
acquisition. The system was evaluated for positional accuracy, and in vivo wide area optical 
property assessment during a cuff occlusion protocol. The human measurements were performed 



under a clinical protocol approved by the Institutional Review Board at the University of 
California Irvine, and were performed in accordance with the Declaration of Helsinki. 

 

Fig. 2. Experimental setup. The camera was positioned overhead, facing down toward the DOSI 
probe. Here, the XY motorized stage is shown (see Section III-A). 

 

A. Positional Accuracy 

Fig. 3 shows the 3D probe position estimation evaluated at two different camera angles to 
show robustness to relative probe-camera positioning: overhead (Fig. 3(a–c)) and 20◦ tilt (Fig. 
3(d –f)). 

The estimated path displacement demonstrated high correlation and sub-millimeter 
accuracy across the whole path in both overhead (r2 = 0.9999, error −0.42 ± 0.33 mm) and tilted 
(r2 = 0.9998, error 0.51 ± 0.51 mm) camera orientations. Using the camera calibration matrix, the 
3D path was projected onto the 2D image field of view (Fig. 3(c ,f)). Both paths showed the 
same spatiotemporal route across the tissue phantom, demonstrating robustness to relative 
camera-probe positioning for optical property visualization. 



 

Fig. 3. 3D probe position estimation over a pre-programmed path, with the camera angled 
directly above (a–c) and at a 20◦ angle (d–f) relative to the tissue phantom. The estimated 
coordinates exhibited high agreement with the true programmed path for both overhead (r2 = 
0.9999, error -0.42 + 0.33 mm) and angled (r2 = 0.9998, error 0.51 + 0.51 mm) camera 
orientations. The projected path (c, f) color coding denotes time (blue: start, red: finish). 

 

The effect of probe movement speed on positional accuracy was evaluated at six different 
speeds, varying from 1.0 to 3.8 cm/s. Fig. 4 shows the distribution of 3D probe estimation errors 
across different probe operating speeds, and descriptive statistics are presented in Table I. The 
results show robustness of the position estimation system to different operating speeds, observed 
through a small range in error mean (0.33–0.37 mm), median (0.30–0.39 mm), interquartile 
range (0.44–0.52 mm), and pooled mean error (0.24 ± 0.35 mm) across all speeds. 

The results demonstrated robustness to different operator scanning speeds, with sub-
millimeter maximum errors (≤0.75 mm) across all speeds. 



 

Fig. 4. 3D probe position estimation error distributions across different probe handling speeds. 
Probe sensor position accuracy was robust to speed increases from 1.0 to 3.8 cm/s, exhibiting 
max error < 0.8 mm for all speeds, and median error ranging from 0.39 mm (1.0 cm/s) to 0.30 
mm (3.8 cm/s). See Table I for descriptive statistics. 

 

TABLE I 

STATISTICS OF 3D PROBE POSITION ESTIMATION ERROR ACROSS DIFFERENT 
PROBE HANDLING SPEEDS. (Q1–FIRST QUARTILE, Q3–THIRD QUARTILE, IQR–
INTERQUARTILE RANGE) 

 

 

B. Optical Property Assessment 

1)   Breast Tumor Inclusion Model: Fig. 5 shows the result of freeform hand-operated 
DOSI scans using a tumor inclusion phantom (see Video 1 for the full capture). The scan was 
first performed at a coarse resolution (top row) to demonstrate rapid wide area tissue assessment. 
The coarse scan shows a sub-surface absorbing tumor inclusion with high absorbing and low 
scattering properties compared to the surrounding tissue. A fine resolution scanning path that 
emphasized the area of the highly absorbing medium was performed (bottom row) to 
demonstrate fine resolution investigation of heterogeneity. This fine resolution scan shows more 
structure of the absorbing tumor inclusion, and a finer resolution optical property map in the 
target area. These scans were performed without trajectory guidance, which can be seen in the 
coarse wide area probe trajectory (a) and circular trajectory (d). 



2) Thigh Cuff Occlusion Protocol: Fig. 6 shows both left and right lower leg sub-
surface optical property maps during normal control (top row) and occlusion (bottom row) 
manipulations (see Video 2 for the full capture). Absorption and scattering coefficients (μa , μ’s ) 
were extracted from the DOSI measurements, and absorption was further decomposed into 
concentrations of oxyhemoglobin, deoxyhemoglobin, total hemoglobin, and tissue oxygen 
saturation. The elimination of arterial supply and venous return in the left leg, combined with 
maintained muscle metabolic activity and capillary flow, resulted in changes in tissue perfusion 
and hemoglobin concentrations. Optical property values were assessed for statistical differences 
in normal vs occlusion states using a two-tailed paired-sample t-test (see Fig. 7). The effect of 

left leg occlusion resulted in statistically significant (p< 0.001) increases in scattering (  = 

0.06 mm−1 ), absorption ( = 0.004 mm−1 ), deoxyhemoglobin (  = 34.4 μM), and total 

hemoglobin (  = 26.8 μM), as well as statistically significant (p< 0.001) decreases in 

oxyhemoglobin (  = −7.5 μM) and oxygen saturation (  = −26.8%) in the left 
leg. This is commensurate with the effects of venous blood pooling and maintained metabolic 
activity resulting in the consumption of oxygen in muscles and tissues. There was also an effect 

of left leg occlusion on the right leg, with statistically significant increases in scattering (  = 

0.044 mm−1 ), deoxyhemoglobin (  = 12.5 μM), and statistically significant (p<0.001) 

decreases in absorption (  = −0.002 mm−1 ), oxyhemoglobin (  = −14.0 μM), and 

oxygen saturation (  = −15.9%). 

 

 



Fig. 5. Absorption (μa , 832 nm; b,e) and scattering (μ’s , 832 nm; c, f) maps of a tumor inclusion 
optical phantom constructed during freeform hand probe scanning (a, d). The phantom was 
scanned coarsely (a–c), and finely over a tumor inclusion (d–f). Coarse scanning allows for rapid 
tissue assessment, while fine scanning allows more high-resolution optical property assessment. 

 

Fig. 6. Dense optical property maps from non-gridded freeform FDPM DOSI probe scanning of 
a thigh cuff occlusion protocol. A wide area of the left and right lower leg were scanned to assess 
perfusion changes in the calf when comparing left leg thigh cuff arterial occlusion (bottom row) 
to a normal control baseline (top row). Only the left leg was occluded. Left leg occlusion resulted 
in increased scattering (μ�s , 832 nm) (a) and absorption (μa , 832 nm) (b) compared to normal 
left leg. The gastrocnemius medial head was observed in both legs as a localized area of higher 
absorption and lower scattering. Absorption (μa ) was further decomposed into concentrations of 
oxyhemoglobin (c), deoxyhemoglobin (d), tissue saturation (e), and total hemoglobin 
concentration (f). Left leg thigh cuff occlusion restricted venous return, and with sustained 
metabolic activity, resulted in increased deoxyhemoglobin concentration (d), reduced tissue 
oxygenation (e), and increased total hemoglobin due to vascular pooling (f). Statistical 
comparisons of the effects of control vs occlusion are presented in Fig. 7. 



 

Fig. 7. Statistical comparisons of the changes in optical properties in left leg (top row) and right 
leg (bottom row) during normal control vs left leg occlusion. Left leg occlusion resulted in 
significant increases in scattering, absorption, deoxyhemoglobin, and total hemoglobin 
concentration, as well as significant decreases in oxyhemoglobin and oxygen saturation in the 
left leg. An effect was also observed in the right leg, with significant increases in scattering, 
deoxyhemoglobin, and decreases in absorption, oxyhemoglobin, and oxygen saturation. 
Associated spatial perfusion characteristics can be seen in Fig. 6.(∗∗∗p< 0.001) 

 

Additionally, heterogeneous spatial perfusion patterns were observed. The increase in μa upon 
occlusion was primarily observed at the location of gastrocnemius medial head, a large muscle 
group with high metabolic demand. A large increase in the muscle’s localized deoxyhemoglobin 
concentration was observed as a result of maintained metabolic demand under restricted blood 
flow, as well as localized increase in total hemoglobin concentration resulting from localized 
blood pooling. In contrast, the oxygen saturation was reduced across the entire lower leg area, 
indicating whole region hypoperfusion. Apparent systemic changes were also observed in the 
right leg, with whole-area increases in deoxyhemoglobin and decreases in oxyhemoglobin 
compared to control. The total hemoglobin concentration remained relatively unchanged, 
indicating maintained blood flow through the right leg during left leg occlusion. 

 

 

 



IV. DISCUSSION 

The ability to generate sub-surface optical property maps from handheld freeform optical 
probe scanning has major implications in clinical disease screening and treatment effect 
monitoring. Although handheld biophotonic technologies have been shown to provide clinically 
relevant quantitative tissue proper-ties in a non-intrusive, safe (light-based) and handheld manner 
for applications such as breast cancer [3], bone sarcoma [4], and acute hemorrhage treatment [5], 
the clinical uptake of the technologies is currently limited by the lack of operator freedom, 
operator-patient interaction, and difficulty of landmark-based measurements for follow-up 
assessment. The demonstrated robustness to different probe operating speeds shows promise for 
the use of the technology by different operators, which is a critical characteristic for clinical 
adoption. Results presented here show the ability to rapidly assess tissue heterogeneity in a tissue 
tumor phantom, as well as assessing changes in vascular health and perfusion in vivo without 
needing to adhere to strict fixed probe routes. This new technology may enable effective 
assessment with the benefits of other widely adopted technologies, such as ultrasound imaging. 

System accuracy is dependent on image resolution and the number of feature points in the 
target model. The mathematical formulation presented here generalizes to any asymmetric 
geometric model with known feature point distribution. Asymmetry is important to infer absolute 
orientation of the probe. De-creased resolution results in decreased feature point localization 
precision, and thus the optical setup (working distance, sensor size, focal length, etc.) is an 
important consideration. Theoretically, three feature points is sufficient to determine the planar 
orientation of the probe through the geometric fitting method. However, feature point 
redundancy provides increased accuracy to account for measurement and process inaccuracies at 
the expense of computation time. Here, an 8 × 7 checkerboard model empirically provided a 
desired accuracy-computation trade-off. The fitting procedure was modeled directly and used a 
physical motion model to explicitly determine the optimal orientation parameters in a least 
squares manner. Fast performance was encouraged through initializing each iterative 
optimization with the last known probe orientation. Machine learning regression models (e.g., 
deep learning, random forest) could alternatively be trained to implicitly learn the physical 
motion by learning the model on either real or synthetic data with known orientations [27], [28]. 
Although these models would require significantly more memory to store the parameter set, 
robust learning through large datasets may improve system performance. 

Enabled by the rapid wide-area scanning, the dense spatial chromophore distributions 
yielded interesting observations in the in vivo occlusion protocol. Chromophore concentration 
and oxygenation values during baseline and occlusion protocols were commensurate with 
existing lower limb manipulation studies [29], [30]. There were marked differences in perfusion 
changes in the gastrocnemius medial head compared to the sur-rounding areas. Striated patterns 
were observed in the top calf scattering (μ�s ) map. This dense map may be revealing the 
underlying distribution of muscle fibers that make up the large muscle group. The gastrocnemius 
is predominantly composed of type II fast twitch (or “white”) muscle fibers to enable fast leg 
movements such as running and jumping [31]. Compared to type I oxidative slow twitch fibers 
which require oxidative phosphorylation to generate adenosine triphosphate (ATP), type II 



muscle fibers produce ATP primarily through anaerobic glycolysis, resulting in reduced 
perfusion and capillary networks, and thus giving it a white coloration. Furthermore, type II 
fibers generally have a large diameter to generate large forces and store glycogen, making it 
feasible to image at a macroscopic level. Monitoring muscle composition and fiber 
characteristics can be used to assess performance [32] and healthy aging [33], and may have 
implications in vascular occlusion diseases such as peripheral artery disease, thrombosis, and 
vascular aneurysm, in all of which blood flow and perfusion is chronically impaired. Further 
investigation is needed to investigate the link between these optical property patterns and muscle 
fiber composition. 

A systemic response to left leg occlusion was observed, resulting in changes in right leg 
perfusion. Right leg total hemoglobin concentration did not change significantly compared to 
control, confirming maintained blood flow through the unobstructed leg, and yet a significant 
increase in deoxyhemoglobin concentration, and a resulting in oxygen saturation, was observed. 
Systemic effects of local vascular manipulations have been demonstrated in other cases, such as 
cold pressor tests causing systemic sympathetic activation and increased blood pressure [34], and 
leg blood flow restrictions during exercise increasing cardiac work [35]. Identifying changes in 
perfusion patterns in non-occluded limbs may help elucidate systemic responses to local 
manipulations. 

In the present study, the probe position was tracked in a fixed camera coordinate system. 
Different camera orientations showed rotation of the probe trajectory compared to the scene 
coordinate system. In practice, this tilting is inconsequential, since the optical property maps 
generated by the probe trajectory are projected onto the scanning surface according to the 
camera’s parameterized calibration matrix. Thus, the visual feedback to the operator is robust to 
camera orientations, as they may visualize the tissue properties under many different relative 
camera-tissue orientations as long as the target model is visible to the camera. This system may 
be used by operators to provide real-time tissue property feedback without the burden of 
adhering to a landmark-based grid system for co-aligning the data to previous patient visit scans. 
By addressing the primary challenges currently limiting the widespread clinical adoption of 
biophotonic tissue assessment, this technology can enable fast, safe, non-intrusive, and portable 
quantitative assessment of tissue disease assessment and monitoring, ultimately providing new 
technologies for preventive disease monitoring. 

 

V. CONCLUSION 

A co-integrative diffuse optical spectroscopic imaging (DOSI) system was proposed for 
non-gridded handheld sub-surface optical property map generation across wide areas. Tis-sue 
optical properties were assessed using frequency domain photon migration model, and an 
overhead imaging system was used to track the 3D probe measurement coordinates across time. 
The data were fused to generate a spatial optical property map across a region of interest. Sub-
millimeter probe position estimation accuracy was demonstrated using pre-programmed probe 
trajectory paths, and the estimation was robust to different probe movement speeds ranging from 



1.0–3.8 cm/s. The superiority of dense optical property maps using free-form non-gridded 
trajectories was demonstrated in a tumor inclusion tissue mimicking phantom, as well as in vivo 
in a leg cuff occlusion protocol. The optical property maps demonstrated relevant differences in 
scattering, absorption and chromophore concentrations in identifying the absorbing tumor 
inclusion and different perfusion levels with and without arterial leg occlusion. These results 
demonstrate an optical imaging technique that can pro-vide relevant wide area tissue information 
to clinical operators for enabling real-time diagnostic capabilities. 
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