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Abstract We establish a correspondence (or duality) between the characters and
the crystal bases of finite-dimensional representations of quantum groups associated
to Langlands dual semi-simple Lie algebras. This duality may also be stated purely
in terms of semi-simple Lie algebras. To explain this duality, we introduce an “inter-
polating quantum group” depending on two parameters which interpolates between
a quantum group and its Langlands dual. We construct examples of its representa-
tions, depending on two parameters, which interpolate between representations of
two Langlands dual quantum groups.

Mathematics Subject Classification (2000) 17B37 (17B10, 81R50)

1 Introduction

Let g be a simple Lie algebra and Lg its Langlands dual Lie algebra whose Cartan
matrix is the transpose of that of g. In this paper we establish a duality between
finite-dimensional representations of g and Lg, as well as the corresponding quantum
groups.
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706 E. Frenkel, D. Hernandez

Let I be the set of vertices of the Dynkin diagram of g and ri , i ∈ I , the corre-
sponding labels. Denote by r the maximal number among the ri . This is the lacing
number of g which is equal to 1 for the simply laced g, to 2 for B�,C� and F4, and to
3 for G2.

Let L(λ) be a finite-dimensional irreducible representation of g whose highest
weight λ has the form

λ =
∑

i∈I

(1+ r − ri )miωi , mi ∈ Z+, (1)

where theωi are the fundamental weights of g. In other words, λ is a dominant integral
weight which belongs to the sublattice P ′ ⊂ P , where P is the weight lattice of g,
spanned by (1+ r − ri )ωi , i ∈ I . The character of L(λ) has the form

χ(L(λ)) =
∑

ν∈P

d(λ, ν)eν, d(λ, ν) ∈ Z+.

Let

χ ′(L(λ)) =
∑

ν∈P ′
d(λ, ν)eν .

We first prove that, after replacing each

ν =
∑

i∈I

(1+ r − ri )niωi ∈ P ′, ni ∈ Z,

by

ν′ =
∑

i∈I

ni ω̌i ,

where the ω̌i are the fundamental weights of Lg, χ ′(L(λ)) becomes the character of
a virtual finite-dimensional representation of Lg, whose highest component is L(λ′),
the irreducible representation of Lg with the highest weight

λ′ =
∑

i∈I

mi ω̌i , (2)

where the numbers mi are defined by formula (1). In other words, we have

χ ′(L(λ)) = χ L(L(λ′))+
∑

μ̌<λ′
mμ̌ χ

L(L(μ̌)), mμ̌ ∈ Z. (3)

Then we prove that the multiplicities of weights in the character χ L(L(λ′)) of L(λ′)
are less than or equal to those in χ ′(L(λ)). This positivity result means that χ L(L(λ′))
is “contained as a subcharacter” in χ ′(L(λ)).

Since the categories of finite-dimensional representations of g and Uq(g) with
generic q are equivalent, we also obtain a duality between finite-dimensional repre-
sentations of Uq(g) and Uq(

Lg). Moreover, we establish the duality not only at the level
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Langlands duality for representations of quantum groups 707

of characters but at the level of crystal bases as well. This leads, in particular, to the
following surprising fact: one can construct the crystal basis of the irreducible repre-
sentation L(λ′) of Lg from the crystal basis of the irreducible representation L(λ) of g.1

In addition, we conjecture that χ ′(L(λ)) is the character of an actual represen-
tation of Lg (that is, mμ̌ ≥ 0 for all μ̌ in formula (3)), and we prove this conjec-
ture for g = B2.2 We observe that the subset of the crystal of L(λ) consisting of
those elements whose weights are in P ′ does not give us “on the nose” the crystal of
this Lg-module. But we conjecture that after applying a certain deformation process
(presented in Sect. 6) we do get the right crystal structure on this subset. (We also prove
this for B2.) Thus, conjecturally, we can reconstruct not only the crystal of L(λ′) but
the crystal of the whole representation of Lg whose character is equal to χ ′(L(λ)).

It is natural to ask: why should this duality of characters and crystal bases take place?
We suggest the following explanation: there exists an algebra Uq,t (g) depending on
two parameters, q and t , whose specialization at t = 1 gives Uq(g), and at q = ε

(where ε = 1 if g is simply laced and ε = exp(π i/r), r being the lacing number of g)
gives U−t (

Lg). These are the quantum groups without the Serre relations associated
to g and Lg. We call Uq,t (g) the interpolating quantum group. (Example 3 in Sect. 5
indicates that it is impossible to include the Serre relations and preserve the inter-
polating property.) Moreover, we conjecture that any irreducible finite-dimensional
representation Lq(λ) of Uq(g) (equivalently, of Uq(g)) with the highest weight of the
form (1) may be deformed to a representation Lq,t (λ) of Uq,t (g). We also conjecture
that the specialization of Lq,t (λ) at q = ε contains the irreducible representation of
U−t (

Lg)with highest weight λ′ given by formula (2) as the highest component. These
conjectures are confirmed by various explicit examples presented below as well as our
general result on the duality of characters of finite-dimensional representations.

Now we would like to briefly sketch a possible link between our results and the
geometric Langlands correspondence (see, e.g., [6] for a general introduction).

One of the key results used in the geometric Langlands correspondence is an
isomorphism between the center Z( ĝ ) of the completed enveloping algebra of ĝ
at the critical level and the classical W-algebra W(Lg) (see [4,5] as well as [12] for
details). This result forms the basis for the local geometric Langlands correspondence
(see [7,8]) as well as for the Beilinson–Drinfeld construction of the global geomet-
ric Langlands correspondence [1] (see also [6]). However, this isomorphism is rather
mysterious. We know that it exists but we do not fully understand why it should exist.

In order to understand this better, we q-deform the picture and consider the center
Zq( ĝ ) of the quantum affine algebra Uq( ĝ ) at the critical level, which was the starting
point of [10]. The center Zq( ĝ ) is in turn related to the Grothendieck ring Rep Uq( ĝ )

1 After the first version of this paper appeared on the arXiv, we learned from Nakajima that this result
follows from a special case of [18, Theorem 5.1]; see the paragraph before Theorem 2 for more details.
2 After the first version of this paper appeared on the arXiv we were told by Victor Kac that a special case
of our duality, going from type B to type C , may be explained in the context of representation theory of
Lie superalgebras of type B(0, n) as defined in [17]. In fact, the condition on the highest weight λ ∈ P ′
appears in this case in [17, Theorem 8] in the form an ∈ 2Z. It is not clear to us whether one can use Lie
superalgebras to interpret our duality for other types. In addition, we have learned from Kevin McGerty
that in the meantime he has been able to prove this conjecture for other types (see [23]).

123



708 E. Frenkel, D. Hernandez

of finite-dimensional representations of Uq( ĝ ) (this is because for each finite-dimen-
sional representation V we can construct a generating series of central elements in
Zq( ĝ ), using the transfer-matrix construction). Thus, we hope to gain some insight
into the isomorphism Z( ĝ ) �W(Lg) by analyzing the connections between Zq( ĝ ),
Rep Uq( ĝ ) and the q-deformed classical W-algebra.

The idea of [11] was to further deform this picture and introduce a two-parameter
(non-commutative) deformation Wq,t (g). Its specialization Wq,1(g) at t = 1 is the
center Zq( ĝ ), so that Wq,t (g) is a one-parameter deformation of Zq( ĝ ) and a two-
parameter deformation of the original center Z( ĝ ). The work [11] was motivated by
the hope that analyzing various dualities and limits of Wq,t (g) we may learn some-
thing new about the isomorphism Z( ĝ ) � W(Lg) and hence about the Langlands
correspondence.

In particular, it was suggested in [11] that the specialization Wε,t (g) at q = ε

(with ε defined as above) contains as a subalgebra the center Zt (
L ĝ ) of the quantum

affine algebra Ut (
L ĝ ) at the critical level (here L ĝ denotes the Langlands dual of ĝ ).

The latter gives rise to the Grothendieck ring of finite-dimensional representations of
Ut (

L ĝ ) (via the transfer-matrix construction). On the other hand, as we already men-
tioned above, the specialization Wq,1(g) at t = 1 gives rise to the Grothendieck ring
of finite-dimensional representations of Uq( ĝ ). Thus, it appears that the W-algebra
Wq,t (g) interpolates between the Grothendieck rings of finite-dimensional represen-
tations of quantum affine algebras associated to ĝ and L ĝ. In particular, this suggests
that these representations should be related in some way. Examples of such a relation
were given in [11], but this phenomenon has largely remained a mystery until now.

How can we explain this relation from the point of view of representation the-
ory? This question served as the motivation for this paper. Before answering it, we
considered its finite-dimensional analogue: is there a hidden correspondence, or dual-
ity, between finite-dimensional representations of the quantum groups Uq(g) and
Uq(

Lg)—or the simple Lie algebras g and Lg, for that matter?
We have given an affirmative answer to this question which we have outlined above.

Thus, we have found a hidden duality between objects of the same nature: finite-
dimensional representations of two Langlands dual Lie algebras. Actually, it is rather
surprising to observe the appearance of a Langlands type duality in such an elementary
context: that of finite-dimensional representations of simple Lie algebras! We hope
that this duality and its affine analogue will give us some clues about the meaning of
the geometric Langlands correspondence.

What about the duality for the quantum affine algebras? In our next paper [9] we
will propose a precise relation between the q-characters of finite-dimensional repre-
sentations of dual quantum affine algebras Uq( ĝ ) and Uq(

L ĝ ) with is analogous to
the duality of characters of Uq( g ) and Uq(

Lg ) discussed above. We will prove, by
using [14,15], that this relation holds for an important class of representations, the
Kirillov–Reshetikhin modules. In the affine case we also expect that the duality may
be explained by using an affine analogue of the interpolating quantum group.

In the context of our results an interesting problem is to compute explicitly all
multiplicities of simple Lg-modules in a given simple g-module (the numbers mμ̌ in
formula (3)), which we call the Langlands duality branching rules. In the course of
the proof we have found them explicitly in some cases.
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Langlands duality for representations of quantum groups 709

The paper is organized as follows. In Sect. 2 we establish the duality of charac-
ters and crystal bases for a pair of Langlands dual simple Lie algebras. In Sect. 3 we
introduce the interpolating quantum group. We then study its representations which
we expect to interpolate between representations of Uq(g) and U−t (

Lg). This would
explain the duality that we have found in this paper. In Sect. 4 we show how this
interpolation works for the finite-dimensional representations of the elementary inter-
polating quantum groups (those corresponding to Lie algebras of rank one). In Sect. 5
we consider examples of more general interpolating representations. In Sect. 6 we
conjecture a stronger duality for characters and crystals and prove it for all simply
laced g with r = 2 and for B2.

2 Duality of characters and crystals for simple Lie algebras

In this section we prove the Langlands duality for characters of finite-dimensional
representations of quantum groups associated to simple Lie algebras (or, equivalently,
simple Lie algebras themselves). We also prove the duality of the corresponding crystal
bases, by using the monomial model [19,24].

Let g be a finite-dimensional simple Lie algebra and Uq(g) the corresponding quan-
tum group (see, e.g., [3]). We denote r = maxi∈I (ri ), where I is the set of vertices
of the Dynkin diagram of g and the ri are the corresponding labels. This is the lacing
number of g (note that it was denoted by r∨ in [11]).

The Cartan matrix of g will be denoted by C = (Ci, j )i, j∈I . By definition, the
Langlands dual Lie algebra Lg has the Cartan matrix Ct , the transpose of the Cartan
matrix C of g.

2.1 Langlands duality for characters

Let

P =
∑

i∈I

Zωi

be the weight lattice of g and P+ ⊂ P the set of dominant weights. Consider the
sublattice

P ′ =
∑

i∈I

(1+ r − ri )Zωi ⊂ P. (4)

Let

P L =
∑

i∈I

Zω̌i

be the weight lattice of Lg. Consider the map Π : P → P L defined by

Π(λ) =
∑

i∈I

λ(α̌i )(1+ r − ri )
−1ω̌i

if λ ∈ P ′ and Π(λ) = 0, otherwise. Clearly, Π is surjective.
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710 E. Frenkel, D. Hernandez

In this section we investigate what Π does to characters of irreducible representa-
tions of g. For simply laced Lie algebras (that is, r = 1) we have P ′ = P = P L and
Π is the identity. Hence we focus on the non-simply laced Lie algebras.

Let Rep g be the Grothendieck ring of finite-dimensional representations of g. We
have the character homomorphism

χ : Rep g→ Z[P] = Z[y±1
i ],

where yi = eωi . It sends an irreducible representation L(λ) of g with highest weight
λ ∈ P+ to its character, which we will denote by χ(λ).

We will now show that for any representation V of g, Π(χ(V )) is the character of
a virtual representation of Lg, as stated in the following proposition. We denote the
character homomorphism for Lg by χ L .

Proposition 1 For any simple Lie algebra g and any λ ∈ P+,Π(χ(λ)) is in the image
of χ L .

This is a direct consequence of the following Lemma. Here we denote by si (resp.
sL

i ) the simple reflections of g (resp. Lg).

Lemma 1 P ′ is invariant under the Weyl group action and Π ◦ si = sL
i ◦Π on P ′.

Proof Let μ =∏
j∈I y

μ j
j ∈ P ′ and i ∈ I .

If ri = r , we have si (μ) = μy−2μi
i (

∏
j∼i,r j=1 yrμi

j )(
∏

j∼i,r j=r yμi
i ) ∈ P ′. More-

over Π(si (μ)) = Π(μ)y−2μi
i (

∏
j∼i yμi

j ) = sL
i (Π(μ)).

If ri = 1, we have μi ∈ rZ and si (μ) = μy−2μi
i (

∏
j∼i yμi

j ) ∈ P ′. Moreover

Π(si (μ)) = Π(μ)y−2μi
i (

∏
j∼i,r j=1 yμi /r

j )(
∏

j∼i,r j=r yμi
j ) = sL

i (Π(μ)). ��

Remark 1 If g is of type B� and λ ∈ P+ ∩ P ′, then all terms in χ(λ) correspond to
weights in P ′, and so Π(χ(λ)) has the same number of monomials as χ(λ).

According to Proposition 1, we have, for λ ∈ P ′ ∩ P+,

Π(χ(λ)) =
∑

μ̌∈P L ,+
mμ̌χ

L(μ̌), mμ̌ ∈ Z.

It is clear from the definition that the maximal μ̌ for which mμ̌ �= 0 is the image of
λ under Π . Moreover, in this case mμ̌ = 1. An interesting problem is to compute
explicitly all other multiplicities mμ̌, the Langlands duality branching rules.

One of the main results of this section is the following:

Theorem 1 The multiplicities of weights in χ L(Π(λ)) are less than or equal to those
in Π(χ(λ)).

In other words, χ L(Π(λ)) can be seen as a “subcharacter” contained in Π(χ(λ)),
that is,χ L(Π(λ)) � Π(χ(λ))where� is the obvious partial ordering on polynomials.
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Langlands duality for representations of quantum groups 711

Remark 2 In general, the character χ(λ) is given by the Weyl character formula. So
one could try to prove the above results by using the Weyl formula. However, it is not
clear how to do this: although the Weyl groups of g and Lg are isomorphic, there is no
obvious relation for the half-sums of positive roots ρ and ρ̌.

Before giving the proof, we consider some explicit examples.
Let g = B2. Then Lg = C2, which is isomorphic to B2 but with the switch of the

labels of the Dynkin diagram 1→ 1 = 2, 2→ 2 = 1. In other words, ω̌i corresponds
not to ωi , but to ωi .

We have P ′ = Zω1 + 2Zω2. Here are the simplest examples of action of Π on
characters of irreducible representations:

Π(χ(ω1)) = (y1 + y2 y−1
1 + y1 y−1

2 + y−1
1 )+ 1 � χ L(ω̌1).

Π(χ(2ω2)) = (y2 + y−1
2 y2

1 + 1+ y−2
1 y2 + y−1

2 )

+y1 + y2 y−1
1 + 1+ y−1

2 y1 + y−1
1 � χ L(ω̌2).

Π(χ(2ω1)) = (y2
1 + y2 + y−2

1 y2 + y2
1 y−1

2 + 2+ y−2
1 y2 + y−2

2 y2
1 + y−1

2 + y−2
1 )

+y1 + y−1
1 y2 + y−1

2 y1 + y−1
1 � χ L(2ω̌1).

Let us look at some examples for g = G2. In this case Lg = G2, but again with the
switch of labels of the Dynkin diagram, as in the case of B2. We have P ′ = Zω1+3Zω3.
Here are a few examples:

Π(χ(ω1)) = (y1 + y2 y−1
1 + y−1

2 y2
1 + 1+ y−2

1 y2 + y−1
2 y1 + y−1

1 )+ 1 � χ L(ω̌1).

L(3ω2) is of dimension 77. We will not write it out explicitly, but only write

Π(χ(ω2)) = (y2 + y−1
2 y3

1 + y1 + y−1
1 y2 + y2

2 y−3
1 + y2

1 y−1
2

+2+ y−2
1 y2 + y3

1 y−2
2 + y1 y−1

2 + y−1
1 + y2 y−3

1 + y−1
2 )

+2y1 + 2y−1
1 y2 + 2y2

1 y−1
2 +3+ 2y−2

1 y2 + 2y1 y−1
2 + 2y−1

1 � χ L(ω̌2).

2.2 Langlands duality of crystals of irreducible representations

To prove Theorem 1, we will use the crystal basis theory. It gives us an algorithm to
compute character formulas. We will see that the statement of Theorem 1 is actually
satisfied at the level of crystal. Before proving this, we state a closely related result
describing a duality of crystals of irreducible representations of Uq(g) and Uq(

Lg).
Let λ ∈ P ′ ∩ P+ and B(λ) be the corresponding crystal of L(λ), with a highest

element uλ and crystal operators ei , fi . We consider the operators

f L
i = f 1+r−ri

i , eL
i = e1+r−ri

i . (5)

Let B′(λ) be the connected component of uλ in B(λ) for the operators f L
i , eL

i . Note
that the definition of B′(λ) depends only on the structure of the g-crystal of B(λ).
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712 E. Frenkel, D. Hernandez

The weight of the elements of B′(λ) are in P ′ and so for v ∈ B′(λ) we can define
wtL(v) = Π(wt(v)). Then for any simple Lie algebra g (including G2) we have the
following theorem.

After the first version of this paper appeared, we learned from Nakajima that this
theorem follows from a special case of [18, Theorem 5.1] (namely, we put ξ = IdI

and mi = 1 + r − ri in the notation of [18]). Note that [18] discussed examples of
embeddings B(λ) → B(mλ) and foldings obtained from automorphisms of simply
laced Dynkin diagrams, whereas in the present paper we view this in the context of
Langlands duality.

Theorem 2 For λ ∈ P ′ ∩ P+, (B′(λ), eL
i , f L

i ,wtL) is isomorphic to the Lg-crystal
BL(Π(λ)) of L(Π(λ)).

Thus, by using only the crystal of the g-module L(λ) we have constructed the
crystal of the Lg-module L(Π(λ)).

Remark 3 Let us look at g = B2. If p is even, to the representation L(mω1+ pω2) of
g corresponds the representation L(mω1 + pω2/2) of Lg = C2. But C2 � B2. So if
in addition m is even, to the representation L(mω1 + pω2/2) of Lg corresponds the
representation L(mω1/2 + pω2/2) of L(Lg) = g. Thus, we see that this Langlands
duality here is not an involution.

Theorem 2 implies Theorem 1 as we have

Π

⎛

⎝
∑

m′∈B′(λ)
wt(m)

⎞

⎠ = χ L(Π(λ)).

2.3 Reminder: monomial crystals

Let C be a Cartan matrix of finite type and s : I → {0, 1} (i �→ si ) a map such that
Ci, j ≤ −1 implies si + s j = 1. Introduce formal variables Yi,l , and let A be the set of
monomials of the form

m =
∏

i∈I,l∈Z
Y

ui,l (m)
i,l , ui,l(m) ∈ Z.

A monomial m is said to be dominant if ∀ j ∈ I, l ∈ Z, u j,l(m) ≥ 0. We set

Ai,l = Yi,l−1Yi,l+1

∏

j �=i

Y
C j,i
j,l ∈ A.

Consider the subgroup M ⊂ A defined by

M = {m ∈ A | ui,l(m) = 0 if l ≡ si + 1 mod 2}.
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Langlands duality for representations of quantum groups 713

Let us define wt : A→ P and εi , φi , pi , qi : A→ Z∪ {∞}∪ {−∞}, ei , fi : A→
A ∪ {0} for i ∈ I by the formulas (for m ∈ A)

wt(m) =
∑

i∈I,l∈Z
ui,l(m)ωi ,

φi,L(m) =
∑

l≤L

ui,l(m), φi (m) = max{0, {φi,L(m) | L ∈ Z}} ≥ 0,

εi,L(m) = −
∑

l≥L

ui,l(m), εi (m) = max{0, {εi,L(m) | L ∈ Z}} ≥ 0,

pi (m) = max{L ∈ Z | εi,L(m) = εi (m)},
qi (m) = min{L ∈ Z | φi,L(m) = φi (m)}.

ei (m) =
{

0 if εi (m) = 0,

m Ai,pi (m)−1 if εi (m) > 0,

fi (m) =
{

0 if φi (m) = 0,

m A−1
i,qi (m)+1 if φi (m) > 0.

By [19,24] (M,wt, εi , φi , ei , fi ) is a crystal (called the monomial crystal). For m ∈
M we denote by M(m) the subcrystal of M generated by m.

Theorem 3 [19,24] If m is dominant, then the crystal M(m) is isomorphic to the
crystal B(wt(m)) of L(wt(m)).

In the following we will use the notation ir
l for Y r

i,l .

2.4 Examples

We first study examples for Lie algebras of rank 2 and the following representations:

Definition 1 The irreducible representations L((r + 1− ri )ωi ) will be called pseudo
fundamental representations, and the corresponding highest weights (r + 1 − ri )ωi

will be called pseudo fundamental weights.

Note that the pseudo fundamental weights span P ′. By Theorem 2, the crystals of the
pseudo fundamental representations of g correspond to the crystals of the fundamental
representations of Lg.

Let us start with B2. We have the crystal M(Y1,0) of the five-dimensional funda-
mental representation of Uq(B2) decomposed in ML(Y1,0) of the four-dimensional
fundamental representation of U−t (C2) and to ML(1):

10
1→ 1−1

2 22
1

2→ 212−1
3

2→ 122−2
3

1→ 1−1
4 ,

10
1→ 1−1

2 21
2−→ 122−1

3
1→ 1−2

4 � {1}.
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Now we have

22
0

2
��

20

2

��

202−1
2 11

2
��

1

������������
11

1

����
��

��
��

�

2−2
2 12

1

1
��

20221−1
3

2
��

2−1
2 12

1

1
��

1−1
3 22

2

��

111−1
3

1
��

202−1
4

2
��

111−1
3

1
��

1

1−2
3 22

2

2
��

2−1
2 2−1

4 11

1������������
1−2

3 22

2

��

2−1
4 13

1����
��

��
��

1−1
3 222−1

4

2
��

1−1
5

2−2
4 2−1

4

The left crystal is M(Y 2
2,0) corresponding to the ten-dimensional representation

L(2ω2) of Uq(B2). The middle crystal is ML(Y2,0) corresponding to the five-
dimensional fundamental representation of U−t (C2). The two right crystal contain
the remaining monomials and are, respectively, isomorphic to ML(Y1,1) and ML(1).

Now we suppose that g is of type G2. M(Y1,0) has 14 terms
{10, 1−1

2 23
1, 22

12−1
3 , 212−2

3 12, 2−3
3 12

2, 21231−1
4 , 121−1

4 , 212−1
5 , 1−2

4 23
3, 2−1

3 2−1
5 12,

1−1
4 22

32−1
5 , 232−2

5 , 2−3
5 14, 1−1

6 }.
The corresponding B̃(ω1) has terms with two connected components described

here. The first component is {10, 1−1
2 23

1, 2−3
3 12

2, 121−1
4 , 1−2

4 23
3,

2−3
5 14, 1−1

6 } isomorphic to BL(ω1) and the second component is {212−1
5 } isomorphic

to BL(0).
M(Y 3

2,0) corresponds to the 77-dimensional representation of Uq(G2). The corre-

sponding B̃(3ω2) has 29 terms with 4-connected components that we describe. The
first component is isomorphic to BL(ω2):
{23

0, 2−3
2 13

1, 12
11−1

3 , 111−2
3 23

2, 1−3
3 26

2, 2−3
4 1113, 23

22−3
4 , 111−1

5 , 1−1
3 1−1

5 23
2, 2−6

4 13
3,

12
31−1

5 2−3
4 , 131−2

5 , 1−3
5 23

4, 2−3
6 }.

The second component is isomorphic to BL(ω1) : {202−1
4 11,

1−1
3 2023

22−1
4 , 202−4

4 12
3, 202−1

4 131−1
5 , 1−2

5 2022
4, 2−1

2 2−2
6 11, 22

22−2
6 1−1

3 }.
The third component is isomorphic to BL(ω1) : {22

02−2
4 13, 22

0241−1
5 ,

2−2
2 2−1

6 12
1, 222−1

6 111−1
3 , 24

22−1
6 1−2

3 , 222−3
4 2−1

6 13, 1−1
5 222−1

6 }.
The fourth component is isomorphic to BL(0) : {20222−1

4 2−1
6 }.
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Now let us look at the remaining example of Sect. 2.1 for g is of type B2.

12
0

1
��

12
0

1
��

101−1
2 22

1

1
��

2

������������
101−1

2 21

1
��

2

���
��

��
��

��
��

��
��

��
�

1−2
2 24

1

2
��

10212−1
3

1������������
2

��

1−2
2 21

2

��

10

1����
��

��
��

�

1−1
2 23

12−1
3

2
��

10122−2
3

1
��

10122−1
3

1
��

1−1
2 21

2

��

22
12−2

3

2
��

101−1
4

1
��

212−1
3

2

��

101−1
4

1
��

212−3
3 12

2
��

1

������������
1−1

2 1−1
4 22

1

2
��

1−1
2 1−1

4 21

2

����
��

��
��

��
��

��
��

��
2−1

3 12

1

����
��

��
��

2−4
3 12

2

1
��

1−1
4 212−1

3

2������������
2−2

3 12
2

1
��

1−1
4

2−2
3 121−1

4

1
��

2−1
3 121−1

4

1
��

1−2
4 1−2

4

The left crystal isM(Y 2
1,0) corresponding to the 14-dimensional representation L(2ω1)

of Uq(B2). The middle crystal is ML(Y 2
1,0) corresponding to the ten-dimensional rep-

resentation L(2ω1) of U−t2(C2). The right crystal contains the remaining monomials
and is isomorphic to ML(Y1,0).

2.5 Proof of Theorem 2

We consider operators f L
i , eL

i on M as defined in formula (5). Let

M′ = {m′ ∈M|∀i ∈ I, l ∈ Z; ui,l ∈ (r + 1− ri )Z}
= {m′ ∈M|∀i ∈ I, l ∈ Z; ui,l ∈ rZ if ri = 1}.

As wt(M′) ⊂ P ′, we can define wtL = Π ◦ w on M′.

Lemma 2 Let i ∈ I such that ri = 1. Let m ∈ M′ such that εi (m) > 0 (resp.
φi (m) > 0). Then for 1 ≤ q ≤ r − 1 we have

(1) εi (e
q
i (m)) > 0 (resp. φi ( f q

i (m)) > 0),
(2) pi (e

q
i (m)) = pi (m) (resp. qi ( f q

i (m)) = qi (m)),
(3) er

i (m) = m Ar
i,pi (m)−1 (resp. f r

i (m) = m A−r
i,qi (m)+1).
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716 E. Frenkel, D. Hernandez

Proof We prove the assertions for φi (m) > 0 (the assertions for εi (m) > 0 are proved
in the same way).

As m ∈M′, we haveφi (m) ∈ rZ, and soφi (m) ≥ r . Soφi ( f q
i (m)) = φi (m)−q ≥

1 and the statement (1) is proved.
We have fi (m) = m A−1

i,qi (m)+1. We have φi,qi (m)( fi (m)) = φi (m) − 1. For
l ≥ qi (m)+ 2, we have φi,l( fi (m)) = φi,l(m)− 2 ≤ φi (m)− 2. For l < qi (m), we
have φi,l(m) ∈ rZ, so φi,l(m) ≤ φi (m)− r and φi,l( fi (m)) = φi,l(m) ≤ φi (m)− r .
So qi ( fi (m)) = qi (m) and we have proved the point (2) for q = 1. If r = 3 we
also have to prove the statement for q = 2. We have f 2

i (m) = m A−2
i,qi (m)+1. We

have φi,qi (m)( fi (m)2) = φi (m) − 2. For l ≥ qi (m) + 2, we have φi,l( f 2
i (m)) =

φi,l(m)−4 ≤ φi (m)−4. For l < qi (m), we haveφi,l(m) ∈ rZ, soφi,l(m) ≤ φi (m)−r
and φi,l( f 2

i (m)) = φi,l(m) < φi (m)− 2. So qi ( fi (m)) = qi (m) and we have proved
the point (2) for q = 2.

The last assertion (3) is a direct consequence of the first two assertions.

Let Π :M′ →M be the map defined by

Π(m) =
∏

i∈I

Y
ui,l (m)(1+r−ri )

−1

i,l .

Let ML be the monomial crystal for Lg. Viewed as a set, ML is equal to M and so
we can view the map Π as Π :M′ →ML .

Theorem 4 M′ � {0} is stable for the operators f L
i , eL

i which define a structure of
Lg-crystal on M′. The map Π :M′ →ML is an isomorphism of Lg-crystals.

Proof The stability for ei , fi when ri = r is clear as the A±i,l ∈M′. When ri = 1 it

is a consequence of Lemma 2 as the A±r
i,l ∈M′.

To prove that we have a crystal isomorphism, first note that the compatibility of the
map with εi , φi is clear. Then for the compatibility with the operators ei , fi , it is clear
if ri = r and if ri = 1 it follows from Lemma 2.

Theorem 2 is a direct consequence of Theorem 4. Thus, Theorem 2 is now proved.
As discussed above Theorem 1 is also now proved.

Remark 4 The proof given above also implies that Theorems 1 and 2 hold for any sym-
metrizable Kac–Moody algebra such that r ≤ 3 (see [16] for their monomial crystal).
Here the ri are defined as the set of relatively prime integers such that ri Ci, j = r j C j,i ,
and r is the maximal number among the ri .

3 Interpolating quantum groups

In the previous section we have described a duality between characters and crystal
bases of finite-dimensional representations of Uq(g) and Uq(

Lg). We would like to
explain this duality in the following way: there exists a two-parameter deformation
of both of these quantum groups, which we call the “interpolating quantum group”.
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Langlands duality for representations of quantum groups 717

Moreover, the dual finite-dimensional representations Uq(g) and Uq(
Lg) appear as

the result of specialization (of the first and the second parameter, respectively) of a
representation of this interpolating quantum group.

In this section we define the interpolating quantum group and in the following two
sections we construct their representations which exhibit the desired duality property.

Let again g be a finite-dimensional simple Lie algebra and Uq(g) the corresponding
quantum group. We denote by Uq(g) the algebra with the same generators and relations
except for the Serre relations. Note that Uq(g) and Uq(g) have the same categories of
finite-dimensional representations.

The interpolating quantum group Uq,t (g) is an associative algebra depending on
two parameters, q and t . (Note that this algebra is different from the two-parameter
quantum groups considered in [2,25].) We will then establish the following Langlands
duality property of these algebras: the specialization with respect to one parameter,
t = 1, gives the quantum group Uq(g), and the specialization with respect to the other
parameter, q = ε, where ε = 1 for simply laced g and exp(π i/r) for non-simply
laced ones, gives the Langlands dual quantum group U−t (

Lg).

3.1 Interpolating simply laced quantum groups (r = 1)

Let g be a simply laced simple Lie algebra, that is, r = 1. In this situation the definition
of the interpolating quantum group is essentially equivalent to the usual definition of
quantum group. In what follows by an “algebra” we will always mean an associative
unital algebra over C.

Definition 2 Uq,t (g) is the algebra with the generators X±i , K±1
i , K̃±1

i and relations

Ki X±j = q±Ci, j X±j Ki , K̃i X±j = t±Ci, j X±j K̃i ,

[Xi , X−j ] = δi, j
Ki K̃i − (Ki K̃i )

−1

qt − (qt)−1 .

Note that

Uq,t (g) ⊃ 〈(Ki K̃i )
±1, X±i 〉 � Uqt (g),

and that we have the following interpolating property:

Uq,1(g)/(K̃i = 1) � Uq(g) and U1,t (g)/(Ki = 1) = Ut (g) = Ut (
Lg).

As a special case, we have the elementary interpolating quantum group Uq,t (A1). The
elementary rank one subalgebras of Uq,t (g) corresponding to simple roots are all iso-
morphic to Uq,t (A1) if g is simply laced. This is analogous to the properties of standard
quantum groups. We will see in the following that for non-simply laced g we will have
to consider other elementary (rank 1) interpolating quantum groups corresponding to
B1, C1 = L B1, G1, and L G1.
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718 E. Frenkel, D. Hernandez

3.2 Elementary interpolating quantum groups for r = 2

For r = 2 we have ε = exp(π i/2) = i . We will define two elementary interpolating
quantum groups Uq,t (C1) and Uq,t (B1). The definition of the first one is simple.

Definition 3 Uq,t (C1) is the algebra with generators X±, K±1, K̃±1 and relations

K X± = q±4 X±K , K̃ X± = t±2 X± K̃ ,

[X+, X−] = K K̃ − (K K̃ )−1

q2t − q−2t−1 .

Note that

Uq,t (C1) ⊃ 〈(K K̃ )±1, X±〉 � Uq2t (sl2),

and that we have the interpolating property

Uq,1(g)/(K̃ = 1) � Uq2(sl2) = Uq(C1)

and Uε,t (g)/(K = 1) � U−t (sl2) = U−t (
LC1),

as U−t (sl2) = U−t (B1).

Definition 4 Uq,t (B1) is the algebra with generators X±, K±1, K̃±1, η, central ele-
ments C , C̃ and relations

C[K±1, K̃±1, η] is commutative,

K X± = q±2 X±K , K̃ X± = t±1 X± K̃ , ηX± = X±(η ± 1),

X±X∓ = qC (t c̃ K̃±1)P + q−C (t c̃ K̃±1)−P − q∓1t±c̃ K̃ K − q±1t∓c̃(K̃ K )−1

(q − q−1)(qt − (qt)−1)
, (6)

where P = (−1)η and c̃ = PC̃ − 1/2.

Note that we have t c̃ X± = X±t−c̃−1, P2 = 1 and P commutes with E2 and F2.
We also have the following:

qC (t c̃ K̃±1)P + q−C (t c̃ K̃±1)−P = q PC t c̃ K̃±1 + q−PC t−c̃ K̃∓1.

The elements

Cas(q) = qC + q−C and Cas(t) = t c̃+1/2 + t−c̃−1/2

are central. The element Cas(q) will correspond to the Casimir element for the spe-
cialization t = 1. For the other specialization, q = ε, the Casimir element will not be
exactly Cas(t), but t2(1+c̃) + t−2(1+c̃), which is not central in the whole algebra, but
commutes with (X±)2.
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Langlands duality for representations of quantum groups 719

Lemma 3 The algebra Uq,t (B1) is well-defined.

Proof The only point to be checked is the associativity condition

(X±X∓)X± = X±(X∓X±).

It is satisfied as we have

(qC (t c̃ K̃±1)P + q−C (t c̃ K̃±1)−P − q∓1t±c̃ K̃ K − q±1t∓c̃(K̃ K )−1)X±

= X±(qC (t−c̃ K̃±1)−P + q−C (t−c̃ K̃±1)P − q±1t∓c̃ K̃ K − q∓1t±c̃(K̃ K )−1).

Let us look at the specializations of Uq,t (B1) at t = 1 and q = ε = i . Let

X± = ∓(X±)2/(t − t−1) , K = K̃ 2.

Proposition 2 The subalgebra of Uq,1(B1)/(K̃ = 1) generated by X±, K±1 is iso-
morphic to Uq(sl2) = Uq(B1).

The subalgebra of Uε,t (B1)/(K 2 = 1, K q PC = ε) generated by X±, K±1 is
isomorphic to Ut2(sl2) = U−t (C1) = U−t (

L B1).

Proof First, let us consider the specialization Uq,1(B1) at t = 1. Then the ele-
ment K̃ becomes central and we can specialize K̃ = 1. We have the relations
K X± = q±2 X±K and

(q − q−1)2 X±X∓ + q∓1 K + q±1 K−1 = Cas(q).

The equality implies the standard relation

[X+, X−] = K − K−1

q − q−1 .

Cas(q) is central and corresponds to the central Casimir element in Uq(sl2). So we
have an isomorphism.

Now let us consider the specialization of Uq,t (B1) at q = ε. Then K 2 becomes
central. Let us consider the algebra Uε,t (B1)/(K 2 = 1). We have the relations:

K X± = −X±K , K X± = −X±K , K̃ X± = t±1 X± K̃ ,

X±X∓ = (q PC + εK )(t c̃ K̃±1 − εq−PC K t−c̃ K̃∓1)

−2(t + t−1)
.

Since (q PC + εK )X± = X±(q−PC − εK ) = X±(−εK q−PC )(q PC + εK ), we find
that 4(t + t−1)2(X±)2(X∓)2 is equal to

−εK q−PC (q PC K + ε)2(t−c̃−2 K̃±1 + εq PC K t c̃+2 K̃∓1)

×(t c̃ K̃±1 − εq−PC K t−c̃ K̃∓1).
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So it is natural to specialize at K q PC = ε. We obtain that

(X±)2(X∓)2 = t−2 K̃±2 + t2 K̃∓2 − t2(1+c̃) − t−2(1+c̃)

(t + t−1)2
.

The above relations can be rewritten as

(t2 − t−2)2X±X∓ + t∓2K + t±2K−1 = t2(1+c̃) + t−2(1+c̃).

The element t2(1+c̃) + t−2(1+c̃) commutes with X±, K±1 and corresponds to the
Casimir element (see the above discussion). We get the equality

[X+,X−] = K −K−1

t2 − t−2 .

3.3 Interpolating quantum group for r = 2

Let g be a simple Lie algebra such that r = 2, that is, g is of type Bn , Cn or F4.

Definition 5 Uq,t (g) is the algebra with generators X±i , K±1
i , K̃±1

i , η j , C j , C̃ j (1 ≤
i, j ≤ n, r j = 1) and relations

C[K±i , K̃±1
i , η j ,C j , C̃ j ]1≤i, j≤n,r j=1 is commutative,

Ui = 〈X±i , K±1
i , K̃±1

i 〉 � Uq,t (C1) if ri = 2,

Ui = 〈X±i , K±1
i , K̃±1

i , η,Ci , C̃i 〉 � Uq,t (B1) if ri = 1,

Ki X±j = q±ri Ci, j X±j Ki , K̃i X±j = t±ri Ci, j /2 K̃ j ,

[X+i , X−j ] = [(−1)ηi , X±j ] = 0 for i �= j .

Let us consider the elements

X±i = ∓(X±i )2/(t − t−1) , Ki = K̃ 2
i for ri = 1,

X±i = X±i , Ki = K̃i for ri = 2.

The specialization at q = ε = i = √−1 should not be confused in the following
with the index i ∈ I . Proposition 2 implies

Proposition 3 The subalgebra of Uq,1(g)/(K̃i = 1) generated by the X±i , K±1
i is

isomorphic to Uq(g).
The subalgebra of Uε,t (g)/(K 2

i = 1, Ki q Pi Ci = ε) generated by the X±i , K±1
i is

isomorphic to U−t (
Lg).

In the proposition, by convention, Pi Ci = 1 if ri = 2, that is, the relation Ki q Pi Ci =
ε means Ki = 1.
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Langlands duality for representations of quantum groups 721

According to the above proposition, Uq,t (g) interpolates between Uq(g) and
U−t (

Lg) the quantum groups without the Serre relations. Is it possible to have an
algebra that interpolates between the quantum groups Uq(g) and U−t (

Lg) with the
Serre relations? In other words, can one construct a two-parameter deformation of
the Serre relations of Uq(g) and U−t (

Lg)? In this paper we are only interested in
finite-dimensional representations. Therefore this question is not important, because
finite-dimensional representations of Uq(g) are the same as those of Uq(g) (and simi-
larly for U−t (

Lg) and U−t (
Lg)). But for other representations this question becomes

important. The examples given below indicate that in the framework of Uq,t (g) the
answer is negative.

In fact, in Example 3 of Sect. 5 we will construct a finite-dimensional representa-
tion V of Uq,t (B2)which interpolates between representations of Uq(B2) and U−t (C2)

(and hence of Uq(B2) and U−t (C2)), but for different vectors in this representation
different t-deformations of the Serre relations of Uq(B2) will be satisfied. Imposing
either of them (or another t-deformation) on the algebra would lead to additional rela-
tions that are not satisfied in V . Therefore V is not a module over this algebra. Hence it
appears impossible to incorporate a two-parameter deformation of the Serre relations
into Uq,t (g) in such a way that Proposition 3 would hold for the quotient, with Uq(g)
and U−t (

Lg) replaced by Uq(g) and U−t (
Lg).

To illustrate this point further, consider the following example of a candidate for
a t-deformation of the Serre relations for g = B2 (note that we do not use it in this
paper):

X+2 X+1
2 − (q2t + q−2t−1)X+1 X+2 X+1 + X+1

2
X+2 = 0, (7)

X+1 X+2
3 − t (q2 + 1+ q−2)X+2 X+1 X+2

2

+t−2(q2 + 1+ q−2)X+2
2

X+1 X+2 − t−1 X+2
3

X+1 = 0.

At t = 1 we recover the Serre relation of Uq(B2). Let us consider the specializations
S, S′ of these relations at q = ε. By computing S′X+2 − t X+2 S′ we obtain

X+1 (X
+
2

2
)2 − (t2 + t−2)(X+2

2
)X+1 (X

+
2

2
)+ (X+2 2

)2 X+1 = 0,

which is one of the Serre relation of U−t (C2). By computing

X+2 SX+1 − (t2 + 1+ t−2)X+1 X+2 S + (t2 + 1+ t−2)SX+2 X+1
−X+1 SX+2 − (t + t−1)X+2 X+1 S + (t + t−1)SX+1 X+2 ,

we obtain

(X+2
2
)X+1

3 − (t2 + 1+ t−2)X+1 (X
+
2

2
)X+1

2

+(t2 + 1+ t−2)X+1
2
(X+2

2
)X+1 − X+1

3
(X+2

2
) = 0,
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which is another Serre relation for U−t (C2) (both relations should be written in terms
of X+1 and X+2 = (X+2 )2).

But if we compute the bracket of the second Serre relation with X−1 , we obtain

K1 X+2
3
q2(1+ q2)(t−4 − 1) = (1− t2)(1− q−2)2(1+ q−2)K−1

1 X+2
3
.

Then we following identity which does not hold in either Uq(B2) or U−t (C2):

K1 X+2
3
q4(1+ t2) = t4(1− q−2)2 K−1

1 X+2
3
.

Hence if we include the relations (7), we obtain an algebra that does not have the
desired interpolation property.

3.4 Interpolating quantum groups for r = 3

For r = 3 we will define two elementary interpolating quantum groups Uq,t (G1) and
Uq,t (

L G1). We have ε = e2π i/6.

Definition 6 Uq,t (
L G1) is the algebra with generators X±, K±1, K̃±1 and relations

K X± = q±6 X±K , K̃ X± = t±2 X± K̃ ,

[X+, X−] = K K̃ − (K K̃ )−1

q3t − q−3t−1 .

Note that

Uq,t (
L G1) ⊃ 〈(K K̃ )±1, X±〉 � Uq3t (sl2)

and that we have the following interpolating property:

Uq,1(g)/(K̃ = 1) � Uq3(sl2) = Uq(
L G1)

and Uε,t (g)/(K = 1) � U−t (sl2) = U−t (G1).

Let us define the elementary interpolating quantum group Uq,t (G1). First we need
the following polynomial map F(X) = X (X−ε2)(1−ε2)−1 which satisfies F(1) = 1,
F(ε2) = 0, F(ε4) = −1.

Definition 7 We define the algebra Uq,t (G1) as the algebra with generators X±, K±1,
K̃±1, η, central elements C, C̃ and relations

C[K±1, K̃±1, η] is commutative,

K X± = q±2 X±K , K̃ X± = t±1 X± K̃ , ηX± = X±(η ± 1),

X±X∓

= qC (t c̃± K̃ )P± + q−C (t c̃± K̃ )−P± − q∓1 K (t c̃± K̃ )P2± − q±1 K−1(t c̃± K̃ )−P2± , (8)

where P± = F(ε2(−η+1∓1)) and c̃± = P±C̃ ∓ 1/2.
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Lemma 4 The algebra Uq,t (G1) is well-defined.

Proof The only point to be checked is the associativity condition

(X±X∓)X± = X±(X∓X±),

which is verified as follows:

(qC (t c̃± K̃ )P± + q−C (t c̃± K̃ )−P± − q∓1 K (t c̃± K̃ )P2± − q±1 K−1(t c̃± K̃ )−P2±)X±

= X±(qC (t c̃∓∓1 K̃ t±1)P∓ + q−C (t c̃∓∓1 K̃ t±1)−P∓

−q±1 K (t c̃∓∓1 K̃ t±1)P2∓ − q∓1 K−1(t c̃∓∓1 K̃ t±1)−P2∓)

= X±(qC (t c̃∓ K̃ )P∓ + q−C (t c̃∓ K̃ )−P∓

−q±1 K (t c̃∓ K̃ )P2∓ − q∓1 K−1(t c̃∓ K̃ )−P2∓).

Let us set

X+ = (X+)3

(1− ε4)2(t3 − t−3)
, X− = (X−)3(−1)m+1

(1+ ε4 + 2ε5)(t−3 − t3)
, K = K̃ 2.

Proposition 4 The subalgebra of Uq,1(G1)/(K̃ = 1) generated by K±1, X±/(q −
q−1) is isomorphic to Uq(sl2) = Uq(G1).

For any m ∈ Z/2Z, the quotient by ε2η = 1, K = (−1)m, qC = (−1)mε of the
subalgebra of Uε,t (G1) generated by X±, K is isomorphic to U−t3(sl2) = U−t (

L G1).

Proof The first point is proved as for Uq,1(B1). Now let us consider the specialization
of Uq,t (G1) at q = ε. Then K 3 becomes central. Note that we have, P±X∓ = X∓P0,
where P0 = F(ε2−2η). We also have P0 X± = X±P± and

c̃±X∓ = X∓(P0C̃ ∓ 1/2) , (P0C̃ ∓ 1/2)X∓ = X∓(c̃∓ ∓ 1).

So we can compute (X±)3(X∓)3, and we obtain

(
qC (t c̃± K̃ )P± + q−C (t c̃± K̃ )−P± − q∓1 K (t c̃± K̃ )P2± − q±1 K−1(t c̃± K̃ )−P2±

)

×(qC (t P0C̃∓3/2 K̃ )P0 + q−C (t P0C̃∓3/2 K̃ )−P0

−q∓3 K (t P0C̃∓3/2 K̃ )P2
0 − q±3 K−1(t P0C̃∓3/2 K̃ )−P2

0 )

×(qC (t c̃∓∓3 K̃ )P∓ + q−C (t c̃∓∓3 K̃ )−P∓

−q∓5 K (t c̃∓∓3 K̃ )P2∓ − q±5 K−1(t c̃∓∓3 K̃ )−P2∓).

Note that ε2η and K commute with (X±)3. So we may take the quotient by the
relations K = (−1)m , ε2η = 1 and qC = (−1)mε where m ∈ Z/2Z. In particular, we
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have P0 = 0, P± = ±1, c̃± = ±C̃ ∓ 1/2. For (X±)3(X∓)3 we obtain

(1+ ε4 + 2ε5)(t±c̃± K̃±1 + ε4t∓c̃± K̃∓1 − ε2±2t∓c̃± K̃±1 − ε2∓2t±c̃± K̃∓1)

×(−1)m+1(t∓c̃∓+3 K̃∓1 + ε4t±c̃∓−3 K̃±1 − ε2∓2t c̃∓∓3 K̃ − ε2±2t∓3−c̃∓ K̃−1)

= (−1)m+1(1+ ε4 + 2ε5)(1− ε4)2(t∓c̃∓ K̃±1 − t∓c̃± K̃∓1)

×(t∓c̃∓+3 K̃∓1 − t±c̃∓−3 K̃±1)

= (−1)m+1(1+ ε4 + 2ε5)(1− ε4)2(−t−3 K̃±2 − t3 K̃∓2 + t2C̃+2 + t−2C̃−2).

We have

−X±X∓(t3 − t−3)2 + t∓3 K̃ 2 + t±3 K̃−2 = t2C̃+2 + t−2C̃−2.

Now we are in position to define the interpolating quantum group Uq,t (G2).

Definition 8 Uq,t (G2) is the algebra with generators X±i , K±1
i , K̃±1

i , η, C , C̃ (i =
1, 2) and relations (i �= j)

C[K±i , K̃±1
i , η,C, C̃]i=1,2 is commutative,

U1 = 〈X±1 , K±1
1 , K̃±1

1 〉 � Uq,t (
L G1),

U2 = 〈X±2 , K±1
2 , K̃±2 1, η,C, C̃, C̃ ′〉 � Uq,t (G1),

Ki X±j = q±ri Ci, j X±j Ki , K̃i X±j = t±ri Ci, j /3 K̃ j ,

[X±1 , X∓2 ] = 0.

We define X±2 , K2 as for Uq,t (G1). Let m ∈ Z/2Z. From the above results we have
the following:

Proposition 5 The subalgebra of Uq,1(G2)/(K̃i = 1) generated by X±1 , X±2 /(q −
q−1), K±1

i is isomorphic to Uq(G2).
The quotient by ε2η = 1, K1 = −1, K2 = (−1)m, qC = (−1)mε of the subalgebra

of Uε,t (G2) generated by X±1 , X±2 , K̃±1
1 , K±1

2 is isomorphic to U−t (
L G2).

We have thus defined an interpolating quantum group Uq,t (g) for any simple
Lie algebra g. The same definition gives us such an algebra for any symmetrizable
Kac–Moody algebra g such that r ≤ 3. We just use the relations of the elementary
interpolating quantum groups in the same way as above. We conjecture that this defi-
nition may also be generalized to all symmetrizable Kac–Moody algebra g.

4 Representations of elementary interpolating quantum groups

Representation theory of the elementary interpolating quantum groups Uq,t (A1),
Uq,t (C1), Uq,t (

L G1) is easily derived from the representation theory of the correspond-
ing standard quantum groups. So we need to consider only Uq,t (B1) and Uq,t (G1).

123



Langlands duality for representations of quantum groups 725

For these algebras we will observe the simplest examples of representations interpo-
lating between finite-dimensional representations of Langlands dual quantum groups
of rank one. Even though naively we have L B1 = B1 and L G1 = G1, the resulting
duality of representations is non-trivial.

4.1 Simple finite-dimensional representations of Uq,t (B1)

As in the representation theory of quantum groups, let us start with Verma modules.
We want to construct a Verma module M(λ) with respective highest eigenvalues of
(K , K̃ , η,C, C̃) given by λ = (λ, λ̃, E, A, Ã) ∈ (C∗)2 × {±1} × C

2. We set:

M(λ) =
⊕

n≥0

C(X−)nvλ.

We have the obvious action

X−.((X−)n .vλ) = (X−)n+1.vλ , C = AId , C̃ = ÃId ,

K ((X−)nvλ) = λq−2n((X−)nvλ) , K̃ ((X−)nvλ) = λ̃t−n((X−)nvλ),
η((X−)nvλ) = (−1)n X+(X−)nvλ.

The point is to have a well-defined action of X+ such that X+vλ = 0. From the rela-
tion involving X+X−, the action is uniquely defined. The relation involving X−X+
evaluated on vλ imposes the following condition on λ:

Lemma 5 The Verma module M(λ) is non-trivial if and only if

q E At E Ã− 1
2 λ̃−1 + q−E At−E Ã+ 1

2 λ̃− qt−E Ã+ 1
2 λ̃λ− q−1t E Ã− 1

2 (λ̃λ)−1 = 0.

Now we want to have a Verma module with a finite-dimensional quotient. For the
specializations defined above, we consider p ≥ 0, n = 2p, λ = qn , λ̃ = t p. So we
obtain the relation

q E At E Ã− 1
2−p + q−E At−E Ã+ 1

2+p − q1+nt−E Ã+ 1
2+p − q−1−nt E Ã− 1

2−p = 0.

Thus, we have E A = −(n + 1) or (E A = (n + 1) and E Ã = p + 1/2). But to have
the second specialization of Proposition 2, we must have K q PC = ε at q = ε, so
εn+E A = ε. So we are in the second case E A = n+1. Consider an (n+1)-dimensional
vector space

Vn = Cv0 ⊕ Cv1 ⊕ · · · ⊕ Cvn .

We denote n = 2p ∈ 2Z, v−1 = vn+1 = 0 and use the usual quantum number notation
[m]x = (xm − x−m)/(x − x−1) for m ∈ Z.
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Let us consider operators on Vn defined by C = n + 1, C̃ = p + 1/2, and the
following formulas:

X+v2 j = [n − 2 j + 1]qv2 j−1, X+v2 j+1 = [n − 2 j]qtv2 j ,

X−v2 j = [2 j + 1]qv2 j+1, X−v2 j+1 = [2 j + 2]qtv2 j+2,

K .v j = qn−2 jv j , K̃v j = t p− jv j , η.v j = − jv j .

The idea of this deformation is just to replace the quantum box [m]q where m is even
by [m]qt .

Lemma 6 The above formulas define an action of Uq,t (B1) on Vn.

Proof All relations are clear without computation, except for relations (6). Let us
check these relations.

(q − q−1)(qt−(qt)−1)X+X−.v2 j = (q2 j+1−q−2 j−1)((qt)n−2 j−(qt)2 j−n)v2 j

= (qn+1tn−2 j + q−n−1t2 j−n − qn−4 j−1tn−2 j − q4 j+1−nt2 j−n)v2 j ,

(q − q−1)(qt − (qt)−1)X−X+.v2 j

= (qn−2 j+1 − q−n+2 j−1)((qt)2 j − (qt)−2 j )v2 j

= (qn+1t2 j + q−n−1t−2 j − qn+1−4 j t−2 j − q4 j−n−1t2 j )v2 j ,

(q − q−1)(qt − (qt)−1)X+X−.v2 j+1

= ((qt)2 j+2 − (qt)−2 j−2)(qn−2 j−1 − q2 j−n+1)v2 j+1

= (q−n−1t−2 j−2 + qn+1t2 j+2 − qn−4 j−3t−2 j−2 − q4 j+3−nt2+2 j )v2 j+1,

(q − q−1)(qt − (qt)−1)X−X+.v2 j+1

= ((qt)n−2 j − (qt)−n+2 j )(q2 j+1 − q−2 j−1)v2 j+1

= (q−n−1t2 j−n + qn+1tn−2 j − qn−1−4 j tn−2 j − q4 j−n+1t2 j−n)v2 j+1.

The formulas are also satisfied at the limits as for X−X+v0 and for X+X−v2p we get
qn+1 + q−n−1 − qn+1 − q−n−1 = 0.

Note that V ′n = Cv0 ⊕Cv2 ⊕ · · · ⊕Cvn is stable for the action of E2 and F2. We
interpret this as a Langlands duality of representations corresponding to B1 and C1
as follows: the first specialization of Vn is the (n + 1)-dimensional simple represen-
tation of Uq(sl2) = Uq(B1), and by using the second specialization we obtain V ′n , the
(p + 1)-dimensional representation of Ut2(sl2) = U−t (C1) = U−t (

L B1) (at q = ε,
we have K 2 = 1 and K q PC = ε on Vn as in Proposition 2).

Remark 5 If n /∈ 2Z, we can also define a representation of Uq,t (B1)with the same for-
mulas. Indeed the formulas are also satisfied at the limit: it is the same for X−X+v0 and
for X+X−v2 j+1 where n = 2 j +1 we get q−n−1t−n−1+qn+1tn+1−q−n−1t−n−1−
qn+1tn+1 = 0. But then we cannot use the second specialization on V ′n at q = ε as
we have K q PCv0 = −v0 different than in Proposition 2.
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4.2 Representations of Uq,t (G1)

Let Vn be as in Sect. 4.1 where n ∈ 3Z. Let us consider operators defined by C = n+1,
C̃ = (n + 1)/2 and the following formulas:

X+v3 j = (q − q−1)[n − 3 j + 1]qv3 j−1, X−v3 j = (q − q−1)[3 j + 1]qv3 j+1,

X+v3 j+1 = (qt − (qt)−1)[n − 3 j]qtv3 j , X−v3 j+1 = (q − q−1)[3 j + 2]qv3 j+2,

X+v3 j+2 = (q − q−1)[n − 3 j − 1]qv3 j+1,

X−v3 j+2 = (qt − (qt)−1)[3 j + 3]qtv3 j+2,

K .v j = qn−2 jv j , K̃v j = tn/2− jv j , η.v j = − jv j .

The idea of this deformation is just to replace the quantum box [m]q where m ≡ 0[3]
by [m]qt . This is analog to the deformation considered for B1.

Note that we have in particular

P+.v3 j = v3 j , P+.v3 j+1 = 0, P+.v3 j+2 = −v3 j+2,

P−.v3 j = −v3 j , P−.v3 j+1 = v3 j+1, P−.v3 j+2 = 0.

Lemma 7 The above formulas define an action of Uq,t (G1) on Vn.

Proof All relations are clear without computation, except for relations (8). Let us
check these relations.

X+X−.v3 j = (q3 j+1 − q−3 j−1)((qt)n−3 j − (qt)3 j−n)v3 j

= (qn+1tn−3 j + q−n−1t3 j−n − qn−6 j−1tn−3 j − q6 j+1−nt3 j−n)v3 j ,

X+X−.v3 j+1 = (q3 j+2 − q−3 j−2)(qn−3 j−1 − q3 j−n+1)v3 j+1

= (qn+1 + q−n−1 − qn−6 j−3 − q6 j+3−n)v3 j+1,

X+X−.v3 j+2 = ((qt)3 j+3 − (qt)−3 j−3)(qn−3 j−2 − q3 j−n+2)v3 j+2

= (qn+1t3 j+3+q−n−1t−3 j−3−qn−6 j−5t−3 j−3−q6 j+5−nt3 j+3)v3 j+2,

X−X+.v3 j = (qn−3 j+1 − q3 j−1−n)((qt)3 j − (qt)−3 j )v3 j

= (qn+1t3 j + q−n−1t−3 j − qn−6 j+1t−3 j − q6 j−1−nt3 j )v3 j ,

X−X+.v3 j+1 = ((qt)n−3 j − (qt)3 j−n)(q3 j+1 − q−3 j−1)v3 j+1

= (qn+1tn−3 j+q−n−1t3 j−n−qn−6 j−1tn−3 j−q6 j+1−nt3 j−n)v3 j+1,

X−X+.v3 j+2 = (qn−3 j−1 − q3 j+1−n)(q3 j+2 − q−3 j−2)v3 j+2

= (qn+1 + q−n−1 − qn−6 j−3 − q6 j+3−n)v3 j+2.

The formulas are also satisfied at the limits as for X−X+v0 and also for X+X−v3(n/3)
we get qn+1 + q−n−1 − qn+1 − q−n−1 = 0.
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Note that V ′n = Cv0 ⊕ Cv3 ⊕ · · · ⊕ Cvn is stable for the action of E3 and
F3. We interpret this as a Langlands duality of representations of G1: by using the
first specialization, Vn becomes the (n + 1)-dimensional simple representation of
Uq(sl2) = Uq(G1), and by using the second specialization we obtain V ′n , the n/3 +
1-dimensional representation of Ut3(sl2) = Ut (

L G1) (at q = ε, we have εη = 1,
K = (−1)n/3 and qC = (−1)n/3ε on V ′n as in Proposition 4).

Remark 6 If n /∈ 3Z, we can also define a representation of Uq,t (B1) by the same for-
mulas. Indeed, the formulas are also satisfied at the limit: it is the same for X−X+v0,
for X+X−v3 j+1 where n = 3 j + 1 we get qn+1 + q−n−1 − q−n−1 − qn+1 = 0, and
for X+X−v3 j+2 where n = 3 j +2 we get qn+1tn+1+q−n−1t−n−1−q−n−1t−n−1−
qn+1tn+1 = 0. But then we cannot use the second specialization on V ′n as at q = ε
we have K qCv0 = ε2n+1v0 different than in Proposition 4.

4.3 Another interpretation of the duality

In this section we discuss an interpretation of the Langlands dual of Sect. 4.1 in terms
of the structure of the algebra Uq,t (B1).

The duality of the simple finite dimensional representations of Uq,t (B1) in Sect. 4.1
in terms of characters is just the elementary duality between the following polynomi-
als:

y2n + y2n−2 + · · · + y2−2n + y−2n ↔ (y2)n + (y2)n−2 + · · · + (y2)2−n + (y2)−n .

We have seen that it corresponds to an interpolating representation. At the level of
characters, we can define a similar interpolation. Indeed let us consider a map α(q, t)
such that α(q, 1) = 1 and α(ε, t) = 0. Such a map is naturally introduced in [10,11]
(we will also see an elementary way to introduce it bellow):

α(q, t) = (q + q−1)(qt − q−1t−1)(q2t − q−2t−1)−1.

In the following it will just be denoted by α. Then the character

y2n + αy2n−2 + y2n−4 + αy2n−6 + · · · + y4−2n + αy2−2n + y−2n

interpolates between the two formulas.
The character of a fundamental representation is y + y−1. This corresponds to the

decomposition of the Casimir central elements

Cas(q) = qC + q−C , Cas(t) = t c̃+1/2 + t−c̃−1/2.
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The Casimir element of the second specialization is (t2(c̃+1) + t−2(c̃+1)), so we have
the following picture:

Uq,t (B1)
t→1−−−−→ Uq(B1)⊗Zq (B1) C[qC , q−C ]

⏐⏐�q→ε
⏐⏐�Duality

Uε,t (B1) ←−−−−−
Injection

U−t (C1)⊗Z−t (C1) C[t c̃, t−c̃]
.

Note that the tensor product Uq(B1)⊗Zq (B1) C[qC , q−C ] is a quantum analogue (for
g = B1) of the algebras

U (g)⊗Z(U (g)) U (h),

where h ⊂ g is the Cartan subalgebra, considered by Gelfand and Kirillov [13].
The decomposition of the Casimir element and the character formulas are closely

related. This can be put a step forward by having a similar interpretation of the interpo-
lating character in the spirit of the constructions of [10,11] in the affine case. Indeed,
we have the central element Y + Y−1 in Uq,t (B1) where Y = q PC t c̃+1/2, which
interpolates between Cas(q) and Cas(t). (Note that we have Y±1 X+ = X+Y∓1.)

We define the completed algebra Ũq,t (B1) as the algebra containing Uq,t (B1) with
additional elements W±1 such that W±1 X+ = X+W∓1 and Y W = αW Y . Note that
because of the relation of the algebra, we cannot require it to commute with X−. Note
also that we have Y−1W−1 = αW−1Y−1 which is compatible with the commutation
relations with X+.

Let us explain how such a commutation relation Y W = αW Y can be obtained nat-
urally in the spirit of [10,11]. We recall that the variables for the q-characters (affine
version of characters) are materialized as formal power series in generators of the
Heisenberg subalgebra of the level 0 quantum affine algebra. The q, t-analogues of
these variables (which are the building blocks for the generating series of the deformed
W-algebra Wq,t (g)) are, in turn, related to a non-commutative Heisenberg algebra.
In the B1-case this Heisenberg algebra has generators h[n] (n ∈ Z) such that h[0] is
central and for n,m �= 0 we have

[h[n], h[m]] = δn,−m
(qn − q−n)(tn − t−n)

n
.

As the 0th mode h[0] is central, it is not clear how to obtain the commutation rela-
tions as considered above. But the finite type can also be seen as a limit of the affine
type case in the following sense. Let

h±(z) = exp

⎛

⎝
∑

±m≥0

h[m]z−m

⎞

⎠ .
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Then h+(zq3t)h−(w) is equal to

h−(w)h+(zq3t)exp

(
∑

m>0

(q−2m − q−4m)(1− t−2m)

m
(wz−1)m

)

= h−(w)h+(zq3t)
(1− q−4wz−1)(1− t−2q−2wz−1)

(1− q−4t−2wz−1)(1− q−2wz−1)
.

A priori, we cannot directly specialize at z = w = 1. But if we forget the interme-
diate formulas, everything makes sense for this specialization, and for Y = h+(q3t),
W = h−(1) we obtain

Y W = (1− q−4)(1− t−2q−2)

(1− q−4t−2)(1− q−2)
W Y = αW Y.

To give a precise meaning to this specialization, we consider an additional formal
parameter u and replace w, z, respectively, by wu, zu−1. We get formal power series
in u−1. So we can set z = w = 1 and for Y (u) = h+(u−1q3t) and W (u) = h−(u)
we obtain

Y (u)W (u) = (1− q−4u2)(1− t−2u2)

(1− q−2u2)(1− q−4t−2u2)
W (u)Y (u).

Now we can specialize from the affine type to the finite type by considering Y = Y (1),
W = W (1), and we get Y W = αW Y as explained above.

We have a notion of normal ordering : M : for monomials M in Y±1,W±1, where
we put the Y±1 on the left and the W±1 on the right. Then we have

(: Y W + Y−1W−1 :)2 = α−1 : (Y W )2 : +2α + α−1 : (Y−1W−1)2 :
= α−1(: (Y W )2 : +α2+ : (Y−1W−1)2 :)+ α.

In particular, the formula corresponding to the three-dimensional simple representa-
tion appears naturally as

: (Y W )2 : +α2+ : (Y−1W−1)2 :

Note that this formula commutes with X+, as does : Y W + Y−1W−1 :, which has
the same property. This can be interpreted as an analog of the invariance of the usual
characters for the Weyl group action or of the symmetry property of q-characters for
the screening operators (see [11,12]).

It would be desirable to have a similar interpretation of the duality of characters for
general quantum groups.
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5 More general interpolating representations

By an interpolating representation we understand a representation of the interpolating
quantum group Uq,t (g)which gives by specialization representations of the Langlands
dual quantum groups. We have seen in the Sect. 4 that interpolating representations
exist for elementary interpolating quantum groups. In this section we give additional
examples for non-elementary interpolating quantum groups. We believe that any irre-
ducible representation L(λ) of Uq(g) (equivalently, of Uq(g)) with λ ∈ P ′ may be
t-deformed, in an essentially unique way, to a representation of Uq,t (g) in such a way
that its specialization at q = ε gives a representation of U−t (

Lg) whose character is
Π(χ(λ)).

We start with a simple finite-dimensional representation V of Uq(B2) with high-
est weight which has an even multiplicity for the node 2. We want to “deform” the
Uq(B2)-module structure on V . All weights of V have even multiplicities for the node
2. For v ∈ V of weight m1ω1 + 2m2ω2, we set

K2v = q2m2v, K̃2v = tm2v, K1v = q2m1v, K̃1v = tm1v.

The deformation will be necessarily semi-simple for U1 � Uq2t (A1), but moreover we
require that it is semi-simple for the action of U2 = Uq,t (B1) with simple submodules
isomorphic to the representations constructed in Sect. 4. The actions of C and C̃ are
uniquely determined from the action of X+2 and X−2 as it suffices to know the decom-
position in simple modules for U2. So the non-trivial point is to deform the action of
the X+i , X−i .

We will consider 3 examples of interpolating representations of Uq,t (B2). At the
level of crystals, they correspond to the examples studied in Sect. 2.1. The first one
is the most simple example where the duality occurs. In the second example we have
a multiplicity in the character and we can see that the relations between C and the
X±1 cannot be written a simple way. In the third example we observe that different
t-deformations of the Serre relations arise in the interpolating representations.

Example 1 Let V = L(ω1) be the fundamental representation of Uq(B2) of dimen-
sion 5 which corresponds by duality to the representation of U−t (C2) whose highest
component is the fundamental representation of dimension 4. Its character is y1 +
y2

2 y−1
1 + 1+ y1 y−2

2 + y−1
1 , and all weight spaces are of dimension 1.

We consider a basis (vl)1≤l≤5 of V such that v1 is a highest weight vector,

v2 = X−1 v1, v3 = X−2 v2, v4 = X−2 v3/[2]q , v5 = X−1 v4.

In this basis the action of the X±i has matrix coefficients 0, 1 or [2]q . We deform the
action by replacing the [2]q by [2]qt , that is to say we only deform X±2 v3 = [2]qtv3∓1.
The decomposition in simple modules for U1 and U2 is clear and coincides with the
case t = 1.

Example 2 Let V = L(2ω2) representation of Uq(B2) of dimension 10 which corre-
sponds by duality to the representation of U−t (C2) whose highest component is the
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fundamental representation of dimension 5. Its character is y2
2+ y1+ y2

1 y−1
2 + y2

2 y−1
1 +

2.1+ y2
2 y−2

1 + y1 y−1
2 + y−1

1 + y−2
2 . There is a multiplicity 2 for the weight 1.

We consider a basis (vl)1≤l≤10 of V such that v1 is a highest weight vector,

v2 = X−2 v1, v3 = X−2 v2/[2]q
v4 = X−1 v3, v5 = X−1 v4/[2]q2 , v6 = X−2 v5,

v7 = X−2 v6/[2]q , v8 = X−1 v2, v9 = X−2 v8, v10 = X−2 v9/[2]q .

In this basis the action of the X±i have matrix coefficients 0, 1, [2]q or [2]q2 . We
deform the action by replacing these coefficients, respectively, by 0, 1, [2]qt , [2]q2t .
That is to say we only deform

X±1 v4 = [2]q2tv4∓1, X±2 v6 = [2]qtv6∓1, X±1 v9 = [2]qtv4∓1.

The decomposition in simple modules for U1 and U2 is clear and coincides with the
case t = 1 except for the trivial submodules of U2 and U1 which are, respectively,

C(v9 − [2]qtv4) and C([2]qtv4 − [2]q2tv9).

Note that a priori we cannot expect to have simple relations between the C and the
X±1 as v4 is not an eigenvector of C .

Example 3 Let V = L(2ω1), an irreducible representation of Uq(B2) of dimension
14, which corresponds by duality to a representation of U−t (C2) whose highest com-
ponent is of dimension 10. Its character is y2

1 + y2
2 + y4

2 y−2
1 + y1+ y2

2 y−1
1 + y2

1 y−2
2 +

2.1+ y1 y−2
2 + y2

2 y−2
1 + y2

1 y−4
2 + y−1

1 + y−2
2 + y−2

1 , and there is a multiplicity 2 for
the weight 1.

We consider a basis (vl)1≤l≤14 of V such that v1 is a highest weight vector,

v2 = X−1 v1, v3 = X−1 v2/[2]q2 , v4 = X−2 v3, v5 = X−2 v4/[2]q ,
v6 = X−2 v5/[3]q , v7 = X−2 v6/[4]q , v8 = X−1 v7, v9 = X−1 v8/[2]q2 ,

v10 = X−2 v2, v11 = X−2 v10/[2]q , v12 = X−1 v11,

v13 = X−1 v12/[2]q2 , v14 = X−1 v6.

In this basis the action of the X±i have matrix coefficients 0, 1, [2]q , [3]q , [4]q , [2]q2 ,
([2]q [2]q2/[4]q)±1, [4]q/[2]q2 . We deform the action by replacing these coefficients,
respectively, by 0, 1, [2]qt , [3]q , [4]qt , [2]q2t , ([2]qt [2]q2t/[4]qt )

±1, [4]qt/[2]q2t . The
decomposition into simple modules for U1 and U2 is clear and coincides with the case
t = 1 except for the trivial submodule of U2 and U1 which are, respectively,

C([3]q [4]qtv12 − [2]qt [2]q2tv5) and C([2]qt [2]2q2tv12 − [4]qtv5).
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In this example we can observe non-trivial t-deformations of the Serre relations,
but different relations are satisfied on different vectors in the representation! Indeed,
we have

(X−2 X−1
2 − (q2t2 + q−2t−2)X−1 X−2 X−1 + X−1

2
X−2 )v1 = 0,

(X−2 X−1
2 − (q2t + q−2t−1)X−1 X−2 X−1 + X−1

2
X−2 )v11 = 0.

This implies that if we impose any t-deformation of the Serre relation

(X−2 X−1
2 − (q2 + q−2)X−1 X−2 X−1 + X−1

2
X−2 ) = 0

in the algebra Uq,t (B2), then the resulting algebra will not act on the Uq,t (B2)-module
that we have just constructed. Indeed, this relation will be different from the relation
satisfied on at least one of the vectors, v1 and v11 (as written above). The difference of
the two relations would give us a multiple of the monomial X−1 X−2 X−1 , which should
then have to annihilate this vector. But neither vector is annihilated by this monomial:
we have

(X−1 X−2 X−1 )v1 = v4[2]qt [2]q2t/[4]qt ,

(X−1 X−2 X−1 )v11 = v14[2]qt [2]q2t/[4]qt .

Moreover, one can show that the structure of Uq,t (g)-module on V described above is
unique (the same is also true for the modules in Examples 1 and 2).

Now let us explain how we constructed the above interpolating representations. Let
V be a simple finite-dimensional representation of Uq(B2) as above of highest weight
λ = m1ω1 + 2m2ω2. We have a decomposition in weight spaces V =⊕

μ≤λ Vμ. Let

Vr =⊕
μ=λ−αi1−···−αir

Vμ and V≤R =⊕
r≤R Vr . We have X−1 VR + X−2 VR = VR+1

and Vλ = X−1 Vλ−α1 + X−2 Vλ−α2 .
We define on V the action of the Ki (t), K̃i (t) as explained above.
We define by induction on r ≥ 0 the deformed actions

X+1 (t), X+2 (t) : Vr+1 → Vr and X−1 (t), X−2 (t) : Vr → Vr+1,

satisfying the following properties:

(i) X+1 (1) = X+1 , X+2 (1) = X+2 , X−1 (1) = X−1 , X−2 (1) = X−2 ,
(ii) the action is compatible with the restrictions to U1 and U2,

(iii) [X+1 (t), X−2 (t)] = 0,
(iv) [X+2 (t), X−1 (t)] = 0.

To start with we set X+1 (t) = 0, X+2 (t) = 0 on V0.
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Suppose that the deformed action is defined for r ≥ 0. Let Vλ ⊂ Vr+1. We want to
define the deformed actions

Vλ+α1

X−1 (t)

				
		

		
		

Vλ+α2

X−2 (t)















Vλ+α1

Vλ Vλ
X+2 (t)

��								

X+1 (t)
��









By using the condition (ii) for U2, we can first define the action of X+2 (t) and

X−2 (t). This gives in particular a decomposition Vλ = V (2)
λ ⊕ Ṽ (2)

λ where V (2)
λ =

X−2 (t)(Vλ+α2) and Ṽ (2)
λ = Ker(X+2 (t)) ∩ Vλ. The condition (iii) on Vλ+α2 gives

φ(t) : V (2)
λ → Vλ+α1 . The condition (iv) on Vλ+α1 gives ψ(t) : Vλ+α1 → V (2)

λ . So it

suffices to define X±1 (t) such that X+1 (t) = φ(t) on V (2)
λ , Π ◦ X−1 (t) = Ψ (t) where

Π is the projection on V (2)
λ along Ṽ (2)

λ , and X+1 (t)X
−
1 (t) = R(t) given by condi-

tion (ii) for U1. In a matrix form we have X+1 (t) =
(
φ(t) A(t)

)
, X−1 (t) =

(
Ψ (t)
B(t)

)
,

X−1 (t)X
+
1 (t) = φ(t)ψ(t)+ A(t)B(t).

So it suffices to prove that

rk(R(t)− φ(t)ψ(t)) ≤ dim(Ṽ (2)
λ ).

We call this the compatibility condition. In the examples studied above this condition
is satisfied, and that is why the interpolating representations do exist. We conjecture
that it is satisfied in general and we have the following

Conjecture 1 For any λ ∈ P ′ there exists a unique irreducible representation Lq,t (λ)

of Uq,t (g)whose specialization at t = 1, viewed as a Uq(g)-module, is the irreducible
module L(λ) and specialization at q = ε, viewed as a U−t (

Lg)-module, contains a
module of character Π(χ(λ)).

6 Conjectures on the Langlands duality for quantum groups

In this section we conjecture stronger statements on the duality for characters and
crystals which we prove for simply laced g with r = 2 and for B2. The proof of these
conjectures and the computation of the corresponding Langlands duality branching
rules is a program for further study for this Langlands duality.

6.1 A positivity conjecture

It is easy to compute the Langlands duality branching rules for the examples of
Sect. 2.1.
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For g = B2:

Π(χ(ω1)) = χ L(ω̌1)+ χ L(0) , Π(χ(2ω2)) = χ L(ω̌2)+ χ L(ω̌1)+ χ L(0),

Π(χ(2ω1)) = χ L(2ω̌1)+ χ L(ω̌1),

Π(χ(ω1 + 2ω2)) = χ L(ω̌1 + ω̌2)+ χ L(2ω̌1)+ χ L(2ω̌2)+ χ L(ω̌1).

and for g = G2:

Π(χ(ω1)) = χ L(ω̌1)+ χ L(0), Π(χ(ω2)) = χ L(ω̌2)+ 2χ L(ω̌1)+ χ L(0).

So it is natural to give a purely classical analog to Conjecture 1:

Conjecture 2 For any λ ∈ P+ ∩ P ′, Π(χ(λ)) is the character of an Lg-module.

This Conjecture means that the virtual representation of Proposition 1 is an actual
representation, that is, the Langlands duality branching rules are positive:

Π(χ(λ)) =
∑

μ̌∈P L ,+
mμ̌χ

L(μ̌), mμ̌ ∈ Z+.

We will prove the conjecture in several cases, but first we prove that in general cer-
tain Langlands duality branching rules are positive. We use the partial ordering on P ′
viewed as the Lg weight lattice.

Proposition 6 Let μ̌0 maximal in {μ̌ ∈ P L ,+|mμ̌ �= 0, μ̌ �= Π(λ)}. Then mμ̌0 > 0.

Proof By Theorem 1 the coefficient of μ̌0 inΠ(χ(λ)) is larger than in χ L(Π(λ)). But
the only terms which can contribute to this multiplicity are by hypothesis χ L(Π(λ))

and χ L(μ̌0). This implies the result. ��
This includes all coefficients in the examples at the beginning of this section. Now

let us consider a statement analogous to Conjecture 2 in terms of crystals.

6.2 Structure of the crystal B̃(λ)

For λ ∈ P+ ∩ P ′ let

B̃(λ) = {v ∈ B(λ)|wt(m′) ∈ P ′}.

Note that for g of type B� we have B̃(λ) = B(λ).
B̃(λ) � {0} is stable under the action of the operators eL

i , f L
i . We define new maps

εL
i , φ

L
i on B̃(λ) corresponding to the operators eL

i , f L
i (in general they do not coincide

with the original εi , φi , as we may have eL
i (m

′) = 0 but eL
i (m

′) �= 0, see the example
in Sect. 2.4). We get an abstract Lg-crystal (B̃(λ), eL

i , f L
i , ε

L
i , φ

L
i ,wtL). Moreover,

this crystal is semi-normal, that is to say that for each i ∈ I , it is as a Lg{i}-crystal
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736 E. Frenkel, D. Hernandez

the crystal of a Lg{i}-module (this is a direct consequence of the semi-normal prop-
erty of B(λ)). Here for J ⊂ I we denote by gJ the sub Lie algebra of Cartan matrix
(Ci, j )i, j∈J .

Theorem 2 means that the connected component of B̃(λ) containing the highest
weight vector is normal, that it to say is the crystal of a Lg-module. In this section we
study the structure of the whole crystal B̃(λ).

In all examples of Sect. 2.4 the crystal is normal. In particular, we have obtained
the following:

Proposition 7 For all pseudo fundamental representations of a rank 2 Lie algebra,
B̃(λ) is normal.

So we could expect naively that B̃(λ) is normal. This statement is not true in general.
For example in type B2 consider λ = ω1 + 2ω2.

We have seen that in terms of charactersΠ(χ(ω1+2ω2)) has 4 simple constituents.
But B(λ) =M(Y1,0Y 2

2,1) = B̃(λ) has 3 connected component as a Lg-crystal.

The first connected component is isomorphic to BL(ω̌1 + ω̌2) (16 terms):
{1022

1, 1−1
2 24

1, 1012
22−2

3 , 22
12−2

3 12, 10121−1
4 , 22

11−1
4 , 101−2

4 22
3, 2−4

3 13
2,

1−1
2 1−2

4 22
122

3, 2−2
3 12

21−1
4 , 102−2

5 , 121−2
4 , 1−1

2 22
12−2

5 , 1−3
4 22

3, 2−2
3 2−2

5 12, 1−1
4 2−2

5 }.
The second connected component is isomorphic to BL(ω1) (4 terms):

{10212−1
5 , 1−1

2 23
12−1

5 , 212−2
3 2−1

5 12, 1−1
4 212−1

5 }.
The third connected component is (15 terms):

{1012212−1
3 , 23

12−1
3 , 101−1

4 2123, 1−1
2 1−1

4 23
123, 212−3

3 12
2, 10122−1

3 2−1
5 ,

212−1
3 121−1

4 , 22
12−1

3 2−1
5 , 101−1

4 232−1
5 , 1−1

2 1−1
4 22

1232−1
5 , 1−2

4 2123, 12
22−3

3 2−1
5 ,

212−1
3 2−2

5 , 121−1
4 2−1

3 2−1
5 , 1−2

4 232−1
5 }.

Although the third component has two highest weight elements u = 1012212−1
3

and v = 23
12−1

3 it is not connected as

eL
2 eL

1 eL
1 eL

2 v = 121−1
4 2−1

3 2−1
5 = eL

1 eL
2 eL

2 eL
1 eL

1 u.

But its character is χ L(ω̌1)+ χ L(ω̌2).
In fact, it suffices to modify slightly the crystal structure of the third component to

get a normal crystal. Indeed, without changing the wtL , εL
i , φL

i , we just replace

{
eL

2 23
12−1

3 = 212−3
3 12

2,

eL
2 101−1

4 2123 = 10122−1
3 2−1

5 ,
by

{
eL

2 23
12−1

3 = 10122−1
3 2−1

5 ,

eL
2 101−1

4 2123 = 212−3
3 12

2.

In other words we have defined a bijection Ψ : B̃(λ) → BL , where BL is normal,
satisfying (wtL , φL

i , ε
L
i )Ψ = (wtL , φL

i , ε
L
i ) and Ψ f L

1 = f L
1 Ψ , Ψ eL

1 = eL
1 Ψ . But

Ψ is not a morphism of crystal as Ψ f L
2 �= f L

2 Ψ and Ψ eL
2 �= eL

2 Ψ (see the picture
bellow).
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1022
1

1������������
2

��������������

1−1
2 24

1

2
��

1012212−1
3

1
��

2

��

23
12−1

3

2
��

2

����������������������� 101−1
4 2123

2

� � � � � � � � � � � � � � �
1

��

2

��
1012

22−2
3

1

�������������

22
12−2

3 12

2
��

1

�������������
1−1

2 1−1
4 23

123

2
��

10212−1
5

1�����������
2

��

10121−1
4

1
��

212−3
3 12

2

1

�������������

2
��

22
11−1

4

2
��

1−1
2 23

12−1
5

2
��

10122−1
3 2−1

5

1
��

101−2
4 22

3

1
��2�������������

2−4
3 13

2

1
��

212−1
3 121−1

4

2�����������
1

��

22
12−1

3 2−1
5

2
��

101−1
4 232−1

5

1

�������������

2
��

1−1
2 1−2

4 22
122

3

2
��

2−2
3 12

21−1
4

1
��

1−2
4 2123

2
��

212−2
3 2−1

5 12

2
��1�������������

102−2
5

1
��

1−1
2 1−1

4 22
1232−1

5

2�������������

121−2
4

1
��

1−1
4 212−1

5

2
��

12
22−3

3 2−1
5

1�������������
1−1

2 22
12−2

5

2�����������

1−3
4 22

3

2
��

121−1
4 2−1

3 2−1
5

1����������
212−1

3 2−2
5

2
��

1−2
4 232−1

5

2

�������������
2−2

3 2−2
5 12

1�������������

1−1
4 2−2

5

Conjecture 3 For λ ∈ P ′, there is a bijection Ψ : B̃(λ)→ BL to a normal Lg-crystal
BL satisfying wtLΨ = wtL and (φL

i , ε
L
i )Ψ = (φL

i , ε
L
i ) for any i ∈ I .

This means that, by changing the maps eL
i , f L

i , respectively, by Ψ−1eL
i Ψ , Ψ−1 f L

i Ψ ,
we get a normal crystal.

Conjecture 3 implies Conjecture 2 as we have

Π(χ(λ)) =
∑

v∈B̃(λ)
wtL(v).

First, we look at the case of the Lie algebra of rank 1. For r = 1 the result is clear
as eL = e and f L = f . For r = 2, consider B(2pω) = B̃(2pω):

u2p → u2(p−1)→ u2(p−2)→ · · · → u2(2−p)→ u2(1−p)→ u−2p

which is decomposed in BL(pω̌) � BL((p − 1)ω̌) as a Lg-crystal:

(u2p → u2(p−2)→ · · · → u−2p) � (u2p−2 → u2p−6 → · · · → u2−2p).
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738 E. Frenkel, D. Hernandez

Here Conjecture 2 is just the elementary decomposition:

y2p + y2p−2 + · · · + y−2p

= (y2p + y2p−4 + · · · + y−2p)+ (y2p−2 + y2p−6 + · · · + y2−2p).

We have the following Theorem, due to [20,21] (see for example [19, Theorem
2.1]):

Theorem 5 A finite g-crystal B is normal if and only if for any J ⊂ I with at most
two elements, B is normal as a gJ -crystal.

So it is of particular importance to study Lie algebras of rank 2. We will now prove
Conjecture 3 for Lie algebras of rank 2 (and r ≤ 2). Such a Lie algebra will be denoted
by (X, r1, r2), where 1 ≤ r1, r2 ≤ 2 are the labels. We consider all crystals B(λ) such
that B̃(λ) �= ∅. For g of type B2 it implies λ ∈ P ′ but in general λ is not necessarily
in P ′. For (A1 × A1, 2, 2) and (A2, 2, 2) the result is clear as we have f L

i = fi and
eL

i = ei . For types (A1× A1, 1, 1), (A1× A1, 1, 2), (A1× A1, 2, 1), the result follows
from the rank 1-case studied above. So we study the two remaining case (A2, 1, 1)
and (B2, 1, 2). In fact, we prove

Theorem 6 Conjectures 2 and 3 hold for simply laced g with r = 2 and for B2.

We cannot prove the statement for B2 directly by using the result for pseudo-
fundamental representations (Proposition 7) as the eL

i , f L
i for the tensor product of

Lg-crystals do not coincide with the operators defined from the tensor product of
g-crystals.

6.3 Type (A2, 1, 1)

Let λ = Rω1 + R′ω2 dominant in P . We have λ ≡ 0, ω1, ω2 or ω1 + ω2 where
≡ means mod P ′ in this section. Let Λ = {(i, 1)|1 ≤ i ≤ R} ∪ {(i, j)|R + 1 ≤
i ≤ R + R′, 1 ≤ j ≤ 2}. Then B(λ) is isomorphic [22] to the crystal of tableaux
(Ti, j )(i, j)∈Λ with coefficients in {1, 2, 3} which are semi-standard (i.e., Ti, j ≤ Ti+1, j

and any i, j , and Ti,1 > Ti,2 for i ≥ 2R + 1). Let

Tλ =
(

1 · · · 1
1 · · · 1 2 · · · 2

)
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be the highest weight tableaux. Let us compute the tableaux T ∈ B̃(λ) of highest
weight for eL

1 = e2
1 and eL

2 = e2
2. T = T (a, b, c) is characterized by a, b, c such that

Ti,1 =

⎧
⎪⎨

⎪⎩

1 for i ≤ a − 1,

2 for a ≤ i ≤ b − 1,

3 for b ≤ i ,

and Ti,2 =
{

1 for R + 1 ≤ i ≤ c − 1,

2 for c ≥ i .

The condition e2
1T = 0 is equivalent to the following:

(R + R′ = c and b − a ≤ R′ − 1) or (R + R′ = c − 1 and b − a ≤ R′ + 1).

The condition e2
2T = 0 is equivalent to c − b ∈ {0, 1}. We have four cases:

(1) c = b = R + R′ and a ≥ R + 1. So a = R + 1. So 0 ≡ wt(T ) ≡ λ+ ω1 + ω2.
(2) c = b = R+ R′ + 1 and a ≥ R. If a = R+ 1 then T = Tλ and λ ≡ 0. If a = R,

then λ ≡ ω2.
(3) c = b + 1 = R + R′ and a ≥ R. If a = R + 1, then λ ≡ ω2. If a = R, then

λ ≡ 0.
(4) c = b + 1 = R + R′ + 1 and a ≥ R − 1. If a = R + 1 then λ ≡ ω1. If a = R

then λ ≡ ω1 + ω2. If a = R − 1 then λ ≡ ω1.

So for each value of λ mod P ′ we have 2 highest weight vectors T0, T1 of respective
connected component B′ and B′′. We prove that B′ �= B′′ and that they are normal.
This implies a stronger result than Conjecture 3, that in this case B̃(λ) is normal.

(T0, T1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(Tλ, f1 f2 f1 f2Tλ) if λ ≡ 0,

( f2Tλ, f2 f1 f1Tλ) if λ ≡ ω1,

( f1Tλ, f1 f2 f2Tλ) if λ ≡ ω2,

( f1 f2Tλ, f2 f1Tλ) if λ ≡ ω1 + ω2.

Note that wt(T (a, b, c)) ∈ P ′ if and only if b ≡ 1+ R′[2] and a ≡ c[2].
Let us treat in detail the case λ ≡ 0. We know by Theorem 2 that B′ is normal.

In particular, B′ �= B′′. So we only have to prove that B′′(λ) is isomorphic as a
Lg-crystal to BL(λ′) where λ′ = Π(wt(T1)) = (R/2 − 1)ω1 + (R′/2 − 1)ω2. We
have T1 = T (R, R + R′ − 1, R + R′) that is,

T1 =
(

1 · · · 1 1 2
1 · · · 1 2 2 · · · 2 3 3

)
.

LetΛ′ = {(i, 1)|1 ≤ i ≤ R/2−1}∪{(i, j)|R/2+1 ≤ i ≤ R/2+R′/2−1, 1 ≤ j ≤ 2}.
Then BL(λ′) is isomorphic to the crystal of semi-standard tableaux (Ti, j )(i, j)∈Λ′ with
coefficients in {1, 2, 3}. For such a tableaux we define a, b, c as above. Then consider

φ : T (a, b, c) ∈ BL(λ′)→ T (2a, 2b + 1, 2c + 2)B′′(λ).
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Then φ is an isomorphism of Lg-crystals. First for (R/2, (R + R′)/2 − 1, R/2 +
R′/2 − 1) we get T (R, R + R − 1, R + R′) = T1. Then it suffices to prove that
φ( fi T ) = f 2

i φ(T ). Let T = T (a, b, c).
For f1: if R + b ≥ a + c and a ≥ 2, then f1T = T (a − 1, b, c). We have

(R+1)+(2b+1) ≥ 2a+(2c+2), so f1φ(T ) = T (2a−1, 2b+1, 2c+2). But we have
also (R+1)+(2b+1) ≥ (2a−1)+(2c+2) so f 2

1 φ(T ) = T (2(a−1), 2b+1, 2c+2).
If R + b ≥ a + c and a = 1, then f1T = 0. We have (2R + 1) + (2b + 1) ≥

2a+(2c+2), so f1φ(T ) = T (1, 2b+1, 2c+2). But we have also (R+1)+(2b+1) ≥
(2a − 1)+ (2c + 2) so f 2

1 φ(T ) = 0.
If R + b < a + c and c > b then f1T corresponds to (a, b, c − 1). We have

(2R+1)+(2b+1) ≤ 2a+2c < 2a+2c+2, so f1φ(T ) = T (2a, 2b+1, 2c+1). But we
have also (R+1)+(2b+1) < 2a+(2c+1) so f 2

1 φ(T ) = T (2a, 2b+1, 2(c−1)+2).
If R + b < a + c and c = b then f1T = 0. We have (2R + 1) + (2b + 1) ≤

2a + 2c < 2a + 2c + 2, so f1φ(T ) = T (2a, 2b + 1, 2c + 1). But we have also
(R + 1)+ (2b + 1) < 2a + (2c + 1) so f 2

1 φ(T ) = 0.
For f2: if b > a then f2T = T (a, b − 1, c). We have 2b + 1 ≥ 2a + 3 > 2a, so

f1φ(T ) = T (2a, 2b, 2c+2). But we have also 2b > 2a, so f 2
1 φ(T ) = T (2a, 2b−1,

2c + 2).
If b = a then f2T = 0. We have 2b + 1 = 2a + 1 > 2a, so f1φ(T ) =

T (2a, 2b, 2c + 2). But then 2b = 2a, so f 2
1 φ(T ) = 0.

For the cases λ ≡ ω1 or λ ≡ ω1 + ω2 we give only the formulas of isomorphisms
of Lg-crystals as above.

Let λ ≡ ω1 (the case λ ≡ ω2 is symmetric). T0 = T (R + 1, R + R′, R + R′ + 1),
T1 = T (R− 1, R+ R′, R+ R′ + 1). Let φ′ : B((R+ 1)/2ω1+ (R′/2− 1)ω2)→ B′

φ′ : T (a, b, c) �→
{

T (R + 1, 2b − 1, 2c) if a = (R + 3)/2,

T (2a − 1, 2b − 1, 2c − 1) if a < (R + 3)/2,

and

φ′′ : T (a, b, c) ∈ B((R − 1)/2ω1 + R′/2ω2) �→ T (2a, 2b + 1, 2(c + 1)) ∈ B′′.

For λ ≡ ω1+ω2, T0 = T (R+1, R+ R′, R+ R′), T1 = T (R, R+ R′, R+ R′ +1).
Let

φ′ : T (a, b, c) ∈ B((R − 1)/2ω1 + (R′ − 1)/2ω2) �→ T (2a, 2b, 2c) ∈ B′,
φ′′ : T (a, b, c) ∈ B((R−1)/2ω1+((R′−1)/2ω2) �→ T (2a − 1, 2b, 2c + 1) ∈ B′′.

Remark 7 In the course of the proof we have found the following Langlands duality
branching rules (see the end of Sect. 2.1) for irreducible representations of (A2, 1, 1)
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Langlands duality for representations of quantum groups 741

and the symmetric ones: (λ1, λ2 > 0)

Π(χ(2λ1ω1 + 2λ2ω2)) = χ L(λ1ω̌1 + λ2ω̌2)+ χ L((λ1 − 1)ω̌1 + (λ2 − 1)ω̌2),

Π(χ(2λ1ω1)) = χ L(λ1ω̌1) , Π(χ((2λ1 − 1)ω1)) = χ L((λ1 − 1)ω̌1),

Π(χ((2λ1 + 1)ω1 + 2λ2ω2))

= χ L((λ1 + 1)ω̌1 + (λ2 − 1)ω̌2)+ χ L((λ1 − 1)ω̌1 + λ2ω̌2),

Π(χ((2λ1 − 1)ω1 + 2(λ2 − 1)ω2)) = 2χ L((λ1 − 1)ω̌1 + (λ2 − 1)ω̌2).

6.4 Application to symmetric cases

Consider a simply laced g with r = 2.

Proposition 8 For λ ∈ P ′, B̃(λ) is normal.

In particular, Conjectures 2 and 3 hold for these types. In fact, we have proved a
stronger result as the crystal is normal.

Proof By Theorem 5, it suffices to prove the result for the subalgebras of rank 2. For
subalgebras of type A2, the statement follows from Sect. 6.3. For the subalgebras of
type A1 × A1, it suffices to prove that if Ci, j = 0 then the f L

i , f L
j commute. But it is

clear as the fi , f j commute. ��

6.5 Type (B2, 1, 2)

Letλ = 2Rω1+R′ω2 ∈ P ′. LetΛ = {(i, 1)|1 ≤ i ≤ 2R}∪{(i, j)|2R+1 ≤ i ≤ 2R+
R′, 1 ≤ j ≤ 2}. Then B(λ) is isomorphic [22] to the crystal of tableaux (Ti, j )(i, j)∈Λ
with coefficients in {1, 2, 2, 1} which are semi-standard (i.e., Ti, j � Ti+1, j and any
i, j , and Ti,1 $ Ti,2 for i ≥ 2R + 1 for the ordering 1 � 2 � 2 � 1) and such that for
i ≥ 2R + 1, (Ti,1, Ti,2) �= (1, 1) and (Ti+1,1, Ti,2) �= (2, 2).

Let Tλ be the highest weight tableaux. The tableaux T = Tε(a, b, c, d) is charac-
terized by a, b, c, d and ε ∈ {0, 1} such that

Ti,1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 for i ≤ a − 1,

2 for a ≤ i ≤ b − 1,

2 for b ≤ i ≤ c − 1,

1 for c ≤ i ,

and Ti,2 =

⎧
⎪⎨

⎪⎩

1 for 2R + 1 ≤ i ≤ c − ε − 1,

2 for c − ε ≥ i ≤ d − 1,

2 for d ≤ i .

In fact,

(
2
2

)
appears at most once (it can appear in T1 and does not appear in T0).
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Let us compute the tableaux T of highest weight for the operators eL
1 = e2

1 and
eL

2 = e2. The condition e2T = 0 implies d = R + R′ + 1. The condition e2
1T = 0

implies c = d = R + R′ + 1. Let us consider the 3 classes of such tableaux:
Tableaux (A): TR,1 = 1 (that is c ≤ R). e2T = 0 gives R′ ≥ c− b. e2

1T = 0 gives
R′ = 0 = c−b and 2R ≤ a. So all coefficients are equal to 1 except T2R,1 ∈ {1, 2, 1}.

Tableaux (B): TR,1 = 2 (that is c > R and b ≤ R). e2T = 0 gives b = R+R′+1−ε.
So ε = 1 and R′ = 1. e2

1T = 0 gives a ≥ 2R. So (TR+1,1, TR+1,2) = (2, 2),
TR,1 ∈ {1, 2} and all other coefficients are equal to 1.

Tableaux (C): T1,1 � 2 (that is b > R). e2T = 0 gives b = R + R′ + 1− ε. Then
e2

1T = 0 gives a ≥ 2R.
For R′ = 0 and R > 0: we get 3 tableaux Tλ, f1Tλ, f1 f2 f1Tλ.
For R = 0 and R′ > 0: we get 2 tableaux Tλ, f1 f2 f1Tλ.
For R, R′ > 0: we get 4 tableaux

Tλ =
(

1 · · · 1
1 · · · 1 2 · · · 2

)
,

T1 = f1Tλ =
(

1 · · · 1
1 · · · 1 2 2 · · · 2

)
,

T2 = f1 f2Tλ =
(

1 · · · 1 2
1 · · · 1 2 · · · 2 2

)
,

T3 = f1 f2 f1Tλ =
(

1 · · · 1 2
1 · · · 1 2 2 · · · 2 2

)
.

We concentrate on the case R, R′ > 0 (the cases R = 0 or R′ = 0 can be easily
deduced from it). By Theorem 2 the connected component of Tλ is isomorphic to the
crystal of a simple Lg-module. In particular it contains T1, T2, T3. Let B (resp. B′) be
the union of the component of T1, T2 (resp. the component of T3). We have u ∈ B if
and only if wt(u) ∈ λ − (1 + 2Z)α1 − Zα2. So the component B ∩ B′ = ∅. In the
monomial model M(Y R′

2,0Y 2R
1,1 ), T3 corresponds to Y1,1(Y R′

2,0Y 2(R−1)
1,1 )Y−1

1,5 . By Theo-

rem 4 the Lg-crystal generated by Y R′
2,0Y 2(R−1)

1,1 is the crystal of the simple Lg-module

of highest weight (R − 1)ω̌1 + R′ω̌2. But the multiplication by Y1,1Y−1
1,5 does not

change the action of the crystal operators here, and so B3 is also isomorphic to this
crystal.

For B we write explicitly the bijection by using the three cases as above. To do it
we also use the dual tableaux realization of BL(μ) for μ = μ1ω̌1 + μ2ω̌2.

Let ΛL = {(i, 2)|μ1 < i ≤ μ1 + μ2} ∪ {(i, j)|1 ≤ i ≤ μ1, 1 ≤ j ≤ 2}. BL(μ) is
isomorphic [22] to the crystal of tableaux (Ti, j )(i, j)∈ΛL with coefficients in {1, 2, 2, 1}
which are semi-standard as above. The tableaux T = T l

ε (a, b, c, d) is characterized
by a, b, c, d and ε ∈ {0, 1} such that

Ti,1 =

⎧
⎪⎨

⎪⎩

2 for i ≤ a − 1,

2 for a ≤ i ≤ b − 1,

1 for b ≤ i ≤ μ1,

and Ti,2 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 for i ≤ b − ε − 1,

2 for b − ε ≥ i ≤ c − 1,

2 for c ≤ i ≤ d − 1,

1 for d ≤ i .
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Let BL
1 = BL(Rω̌1 + (R′ − 1)ω̌2) and BL

2 = BL((R − 1)ω̌1 + (R′ + 1)ω̌2). We
define Ψ : BL

1 � BL
2 → B. The general idea to define the map is to replace (1, 1),

(2, 2), (2, 2), (2, 2), (1, 1) in the first part of the tableaux, respectively, by

(
1
2

)
,

(
1
2

)
,

(
2
2

)
,

(
2
1

)
,

(
2
1

)
, and to replace

(
1
2

)
,

(
1
2

)
,

(
2
2

)
,

(
2
1

)
,

(
2
1

)
in the second part of

the tableaux, respectively, by (1), (2), (), (2), (1). In general, it cannot be done in
the obvious way as other term may appear as (1, 2), (2, 1) and so we have to do the
following case by case description.

Tableaux (C). T±(a, b, c, d) ∈ B⇔ a ≡ ε[2]. Let β ≥ R + 1. We set :

T0(α, β, γ, δ) ∈ BL
1 �→ T1(2α − 1, β + R, 1+ R + γ, 1+ R + δ),

T0(α, β, γ, δ) ∈ BL
2 �→ T0(2α, β + R, R + γ, R + δ).

Tableaux (B). T±(a, b, c, d) ∈ B⇔ a ≡ ε[2]. Let β ≤ R < γ . We set

Tε(α, β, γ, δ) ∈ BL
1 �→ T1(2α − 1, 2β − 1− ε, 1+ R + γ, 1+ R + δ),

Tε(α, β, γ, δ) ∈ BL
2 �→ T0(2α, 2β − ε, R + γ, R + δ).

Tableaux (A). T0(a, b, c, d) ∈ B⇔ c ≡ a + 1[2]. Let γ ≤ R. We set

Tε(α, β, γ, δ) ∈ BL
1 �→ T0(2α − 1, 2β − ε − 1, 2γ, 1+ R + δ),

and the image of Tε(α, β, γ, δ) ∈ BL
2 is set to be

⎧
⎪⎨

⎪⎩

T0(2α, 2β − ε, 2γ − 1, R + δ) if (ε = 1 or β < γ ) and δ > R,

T0(2α − 1, 2β, 2β, R + δ) if ε = 0, β = γ and δ > R,

T0(2α − 1, 2β − 1− ε, 2γ, 2R + 1) if δ = R.

It is straight forward to check that the properties of Conjecture 3 are satisfied.

Remark 8 In the course of the proof we have found the following Langlands duality
branching rules for irreducible representations of (B2, 2, 1): (λ1, λ2 > 0)

Π(χ(2λ1ω1 + λ2ω2)) = χ L(λ1ω̌1 + λ2ω̌2)+ χ L(λ1ω̌1 + (λ2 − 1)ω̌2)

+χ L((λ1−1)ω̌1+(λ2+1)ω̌2)+χ L((λ1−1)ω̌1+λ2ω̌2),

Π(χ(2λ1ω1)) = χ L(λ1ω̌1)+ χ L((λ1 − 1)ω̌1 + ω̌2)+ χ L((λ1 − 1)ω̌1),

Π(χ(λ2ω2)) = χ L(λ2ω̌2)+ χ L((λ2 − 1)ω̌2).

6.6 A proposed deformation process

Suppose that r = 2. We have proved the statement of Conjecture 3 for rank 2, but we
cannot use Theorem 5 directly for general rank. For example, for type B3, B̃(λ) is a
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normal crystal for Lg{1,2} and Lg{1,3}. We use the rank 2 to deform the 3-arrows so
that we get Lg{2,3}. But then we may not preserve the Lg{1,3}-crystal structure.

We propose a conjectural inductive process to redefine the crystal operators of B̃(λ)
so that we get a normal crystal. Suppose that we know the result for rank lower than
n−1 for an n ≥ 3. Let I = I1� I2 where Ik = {i ∈ I |ri = k}. We assume |I2| ≥ 2 (the
case |I1| ≥ 2 can be treated in a symmetric way by Proposition 8). We use the notation
I2 = {1, . . . , i0} and I1 = {i0 + 1, . . . , n} so that Ci0,i0+1 = −1. Let I2 = I2 − {i0},
I1 = I1 ∪ {i0}.

Let λ ∈ P ′ and fix a class P ′′ = μ + Q′′ ⊂ λ + Q mod Q′. Then B = {u ∈
B̃(λ)|wt(u) ∈ P ′′} is a union of connected component of B̃(λ) as the weight of the
vectors in a connected component are in the same class. For μ1, μ2 ∈ P ′′, we have
μ1 − μ2 = ∑

i∈I niα
L
i where ni ∈ Z and the αL

i are the simple roots of Lg. We put
N (μ1, μ2) =∑

i∈I ni . Let μ′ ∈ {wt(u)|u ∈ B} such that N (μ,μ′) is maximal. It is
well defined, that is to say independent of the choice of μ, as for μ1, μ2, μ3 ∈ P ′′ we
have N (μ1, μ2)+N (μ2, μ3) = N (μ1, μ3). We set N (μ1) = N (μ′, μ1). For N ≥ 0,
let WN = {u ∈ B|N (wt(u)) = N }.

For C a (normal) Lg crystal, by truncated (normal) crystal of C we mean for a
certain N ∈ Z the set {u ∈ C|N (wt(u)) ≥ N } with the maps wtL , eL

i , εi , φi restricted
to it and the map f L

i restricted to {u ∈ C|N (wt(u)) ≥ N − 1}.
To start we set all ( f L

i )
′ = f L

i , (eL
i )
′ = eL

i . By induction on N ≥ 0, we redefine
( f L

i )
′ on �M≤N−1WM (or equivalently (eL

i )
′ on �M≤N WM ). We say that the process

does not fail if (�M≤N WM ,wtL , εL
i , φ

L
i , ( f L

i )
′, (eL

i )
′) is a normal truncated crystal.

For N = 0 we do not change the maps. Let N ≥ 0.
Let i ∈ I1 and u ∈ WN−1 such that ∃ j ∈ I2, ε

L
j (u) > 0. If φL

i (u) = 0 we set

( f L
i )
′(u) = f L

i (u) = 0. Otherwise let v = eL
j (u) �= 0. Then φL

i (v) = φL
i (u) �= 0

so w = ( f L
i )
′(v) �= 0. Then φL

j (w) = φL
j (v) �= 0 so x = f L

j (w) �= 0. We set

( f L
i )
′(u) = x .

v

i����
��

��
�� j

���
��

��
��

w
j

���
��

��
��

u

i���
�

�
�

i

���
��

��
��

�

x

We have εL
i (x) = εL

i (w) = εL
i (v)+1 = εL

i (u)+1 and ( f L
i )
′(u) is well-defined (inde-

pendent on j ∈ I2). (eL
i )
′(y) is now defined for y ∈ WN such that

∑
j∈I 2

εL
j (u) > 0.

Let μ ∈ P ′ and U± = {y ∈ (WN )μ| ±∑
j∈I2

εL
j (y) ≤ ±1/2}. We redefine (eL

i )
′

on U+ by induction on i ≥ i0. Let

u ∈ Bi = {u ∈ (WN )μ+αi |φL
i (u) > 0 , u /∈ (eL

i )
′(U−)}.

Consider the truncated Lg-crystal �M≤N−1WM and C be the corresponding normal
crystal with the injection Ψ : �M≤N−1WM → C. We have φL

i (Ψ (u)) = φL
i (u) > 0
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and so v = f L
i (Ψ (u)) �= 0. If there is i0 ≤ j ≤ i − 1 such that εL

j (v) > 0, let

w = eL
j (v). We set ( f L

i )
′(u) = ( f L

j )
′Ψ−1(w) = x .

Ψ (u)
i

���
�

�
� w

j
����

��
��

��
u

i
���

�
�

�
i

���
�

�
� Ψ−1(w)

j
���

�
�

�
�

v x

As |I1| < n we have :

|{v ∈ Bi |(εL
j ( f L

i (Ψ (u)))) j∈I1
= (a j ) j∈I1

}|
= |{v ∈ U+|(εL

j (v)) j∈I1
= (a j ) j∈I1

}|

for a given (a j ) j∈I1
. So we can define ( f L

i )
′(u) for u ∈ Bi such that

∑
i0≤ j≤i−1 ε j (v) =

0. We get ( f L
i )
′ : Bi0 → U+ injection. Moreover conjecturally for i = i0, we can

choose ( f L
i0
)′ compatible with the φL

i , i ∈ I2 (in other words, there is “enough dimen-

sion” in weight spaces to do it) and then we can redefine ( f L
i0
)′ on U+ so that the

structure of LgI2 -crystal is not modified.
If the conjectural point is satisfied, the process never fails, and the new crystal is

normal for any LgJ where |J | ≤ 2. Then we can conclude with Theorem 5.
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