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Semi-empirical prediction method for monthly precipitation prediction based on 
environmental factors and comparison with stochastic and machine learning models
Huihui Zhang a,b, Hugo A. Loáicigab, Fu Rena,c,d, Qingyun Du a,c,d and Da Hab,e

aSchool of Resource and Environmental Sciences, Wuhan University, Wuhan, China; bDepartment of Geography, University of California, Santa 
Barbara, California, USA; cKey Laboratory of Geographic Information System, Ministry of Education, Wuhan University, Wuhan, China; dKey Laboratory 
of Digital Mapping and Land Information Application Engineering, Ministry of Natural Resources, Wuhan University, Wuhan, China; eSchool of Civil 
Engineering, Tianjin University, Tianjin, China

ABSTRACT
Precipitation prediction is central in hydrology and water resources planning and management. This 
paper introduces a semi-empirical predictive model to predict monthly precipitation and compares its 
predictive skill with those of machine learning (ML) methods. The stochastic method presented herein 
estimates monthly precipitation with one-step-ahead prediction properties. The ML predictive skill of the 
algorithms is evaluated by predicting monthly precipitation relying on the statistical association between 
precipitation and environmental and topographic factors. The semi-empirical predictive model features 
non-negative matrix factorization (NMF) for investigating the influence of multiple predictor variables on 
precipitation. The semi-empirical predictive model’s parameters are optimized with the hybrid genetic 
algorithm (GA) and Levenberg-Marquardt algorithm (LM), or GALMA, yielding a validated model with 
high predictive skill. The methodologies are illustrated with data from Hubei Province, China, which 
comprise 27 meteorological station datasets from 1988–2017. The empirical results provide valuable 
insights for developing semi-empirical rainfall prediction models.
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1 Introduction

Precipitation is a key meteorological parameter. The identifica-
tion of suitable models for predicting future precipitation is of 
primary importance in water resource management, agriculture 
and flood prevention. Many studies have been conducted on 
quantitative precipitation predicting using diverse techniques, 
including application of the autoregressive integrated moving 
average (ARIMA) model, artificial neural networks (ANNs), 
support vector regression (SVR) and multiple linear regression 
analysis (Box et al. 2015). Predictive models may be broadly 
divided into two groups: stochastic models and machine learn-
ing models (ML) (Papacharalampous et al. 2019).

Among the most popular stochastic models are the frac-
tional Gaussian noise (fGn) and seasonal ARIMA (SARIMA). 
López-Lambraño et al. (2018) employed the Hurst exponent to 
analyse the persistence of rainfall in a semiarid region of 
Mexico. Karmakar et al. (2019) analysed the long-term mem-
ory of monthly and seasonal surface temperature time series in 
eastern India with the rescaled range analysis (R/S) method. 
Murthy et al. (2018) explored the autocorrelation pattern of 
rainfall and adopted the SARIMA method to develop 
a prediction model in northeastern India. Eni and Adeyeye 
(2015) indicated that the SARIMA model was adequate for 
predicting rainfall in Warri Town, Nigeria. Shi et al. (2015) 
applied the deep learning long short-term memory (LSTM) 
model for predicting precipitation. Kumar et al. (2019) applied 
LSTM to predict monthly rainfall and analysed rainfall time 
series in India.

The successful application of various data-driven models 
has opened new avenues for the application of machine learn-
ing in the field of precipitation prediction. The key advantage 
of machine learning is learning automatically from the data 
without resorting to human expertise (LeCun et al. 2015). 
There are various ML models for regression analysis, such as 
the ANN, regression trees, SVR, Gaussian process regression 
models (GPR) and others. ANNs may simulate nonlinear 
systems without any required assumptions in most traditional 
statistical approaches (Liu et al. 2013). Mehdizadeh et al. 
(2018) verified that ANNs have a better performance than 
the gene-expression programming (GEP) model for estimating 
rainfall. A review of SVR prediction applications can be found 
in Sapankevych and Sankar (2009). Bahram et al. (2018) 
reported that regression trees achieved better results compared 
to the adaptive neuro-fuzzy inference system and the ARIMA 
model in predicting precipitation. A GPR model was applied to 
predict solar radiation and was compared with other models 
by Voyant et al. (2017). GPR models are seldom utilized for 
hydrological process prediction. The applicability of machine 
learning algorithms in rainfall prediction has been reported by 
several authors (see, e.g. Mekanik et al. 2013, Ramana et al. 
2013, Abbot and Marohasy 2014; Papacharalampous et al. 
2018a, 2018b, 2019). Precipitation predicting research often 
focuses on the comparison between stochastic (mainly 
ARIMA) and ML methods based on time series of precipita-
tion. Papacharalampous et al. (2018a) investigated the multi- 
step ahead predictability of monthly precipitation by applying 
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seven automatic univariate time series predicting methods to 
a sample of 1552 monthly precipitation time series. 
Papacharalampous et al. (2019) compared 11 stochastic and 
9 ML methods by conducting 12 computational experiments 
based on simulations. The state-of-the-art approaches have 
advanced the field of rainfall prediction; yet, predicting pre-
cipitation based on ML models with environmental factors 
that explore the potential statistical association between pre-
cipitation and such factors are not customary in precipitation 
prediction.

Precipitation can be approximated by a linear system, yet, 
rainfall processes are stochastic in nature and governed by 
multiple factors (Chinchorkar et al. 2012). At the local scale 
rainfall processes are affected by environmental factors such as 
terrain characteristics, temperature, humidity and vegetative 
cover (Pal et al. 2019). There is a complex interaction between 
precipitation and environmental factors. Zhang et al. (2003) 
investigated the feedback effects of vegetative cover on summer 
precipitation and their results implied that vegetative cover 
strongly affected summer precipitation in China. Wu et al. 
(2009) proposed that terrain characteristics played an important 
role in precipitation. However, the direct and indirect effects of 
environmental factors on precipitation were not quantified. 
Non-negative matrix factorization (NMF) has been applied to 
feature extraction from images, the identification of distinct 
molecular patterns and automatic speech recognition (Lee and 
Seung 1999, Novak and Mammone 2001, Brunet et al. 2004) and 
plays a significant role in characteristics identification.

A high-precision local model for rainfall prediction is diffi-
cult to implement because of resolution challenges that arise 
when global models are downscaled for local evaluations 
(Colette et al. 2012, Khan et al. 2019). Empirical and semi- 
empirical methods, on the other hand, may be efficient tools 
for short-term rainfall prediction. Machine learning algo-
rithms are cumbersome and commonly excise a heavy compu-
tational burden (Hashemifard et al. 2019). Papacharalampous 
et al. (2018a, 2018b) related the performance of stochastic and 
machine learning models to the size of the solved problem. 
Milanic et al. (1998) compared the performance of a semi- 
empirical and a neural network model in predicting precipita-
tion rates of TiO2 particles in an industrial hydrolysis process, 
determining that the semi-empirical model was the better 
choice when approximate results were acceptable. Dirks et al. 
(2003) presented a simple semi-empirical model for predicting 
the effect changes in traffic flow on carbon monoxide concen-
trations. The building of semi-empirical model mainly suffers 
from two challenges: the selection of appropriate model factors 
and the specification of optimization of parameters.

The aim of this work is threefold: first, to assess the accura-
cies of several stochastic and machine learning algorithms for 
short-term monthly rainfall prediction with time series and 
with environmental and topographic factors, respectively; sec-
ondly, to explore the functional dependence between monthly 
precipitation and predictor variables; and thirdly, to propose 
a semi-empirical precipitation-prediction model that has been 
benchmarked against multiple ML algorithms. This paper first 
assesses the accuracies of several stochastic and machine learn-
ing algorithms for monthly rainfall prediction in Hubei 
Province, China, based on univariate predictors (time series) 

and multiple predictors (environmental and topographic fac-
tors), respectively. The performances of the algorithms based 
on their predictive skills are compared and analysed. 
Subsequently, NMF is applied for exploring the dominant 
environmental factors governing precipitation. Lastly, a semi- 
empirical model for predicting rainfall based on environmen-
tal and topographical factors is developed and calibrated based 
on observation data collected from 27 meteorological stations. 
The semi-empirical model is benchmarked against multiple 
ML algorithms. The genetic algorithm/Levenberg-Marquardt 
algorithm (GALMA) is employed to search for the optimal 
parameters of the semi-empirical model in this study. The 
methodology is illustrated with data from Hubei Province, 
China.

2 Material and methods

2.1 Study area

Hubei Province is centrally located in China (108°21′42′’–116° 
07′50′’E, 29°01′53′’–33°06′47′’N), with an abundance of water 
and plant resources including dense river networks and devel-
oped water systems. Currently, there are over 4000 large and 
small rivers, totalling channel length of over 60 000 km. Thus, 
this region is called “the province of the thousand lakes.” Hubei 
has three diverse topographic zones, including mountain, plain 
and hill zones, which occupy 56%, 20% and 24% of the total area, 
respectively. In the northern, eastern and western regions the 
terrain is high, while in the middle of Hubei Province the terrain 
features minimal relief. The province is located in the subtropi-
cal zone, with a tropical monsoonal climate that is characterized 
by abundant precipitation, long hours with sunlight and high 
temperatures for July–August. Its mean annual temperature 
ranges from 13°C to 18°C and the average annual precipitation 
ranges between 800 and 1609 mm. Summer (July–August) is the 
main flooding season of Hubei Province due to the subtropical 
monsoonal climate and topography. The uneven spatiotemporal 
distribution of precipitation causes 72% of the annual total 
precipitation from May–September.

2.2 Data description

2.2.1 Precipitation and humidity data
The precipitation data used in this study include daily rainfall 
for the period 1988–2017 and monthly rainfall, which was 
calculated by the accumulation of daily precipitation for the 
period 2005–2007. The mean monthly relative humidity was 
calculated from the daily relative humidity from 2005–2007. 
All data, including their latitude and longitude, were collected 
at 27 meteorological stations, which cover the entire Hubei 
Province. The meteorological data came from China’s surface 
climate daily value (V3.0) dataset supplied by the National 
Meteorological Information Center. The 27 meteorological sta-
tions constitute the 27 test areas, which are displayed in Fig. 1.

2.2.2 Topographic data
A digital elevation model (DEM) contains the basic potential 
factors affecting precipitation. A 1-km resolution DEM was 
obtained from the International Scientific & Technical Data 
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Mirror Site, Computer Network Information Center, Chinese 
Academy of Sciences.1 Topographic factors, including the 
slope and altitude, were derived from this DEM. The slope 
map of Hubei Province is shown in Fig. 2.

2.2.3 Vegetation data
The normalized difference vegetation index (NDVI) is evalu-
ated as one of the potential factors that influence precipitation. 
The monthly vegetation index L3 dataset was calculated with 
the Moderate Resolution Imaging Spectroradiometer 
(MODIS; 1-km resolution) product from the mean daily values 
every month. The dataset was provided by the International 
Scientific & Technical Data Mirror Site, Computer Network 
Information Center of the Chinese Academy of Sciences.2 The 

relationships of the NDVI across different months with pre-
cipitation indicated that there were differences in the effects of 
precipitation on the NDVI among the months during the 
growing season and the response of the NDVI to climate 
factors lagged (Bao et al. 2007, Cao et al. 2011, Jedrzejek 
et al. 2013). The “time lag factor’ of the vegetation response 
to precipitation was analysed in the former study. The delayed 
time is approximately 2 months.

2.2.4 Daytime surface temperature data
The daytime surface temperature (LTD) is considered as 
another potential factor on rainfall. The LTD data were derived 
from the MODLT1 T product by taking the mean value every 
month. The dataset was provided by the International Scientific 

Figure 1. Meteorological stations in Hubei Province, labelled 1 to 27.

Figure 2. Slope map of Hubei Province.

1http://www.gscloud.cn.
2http://www.gscloud.cn.

1930 H. ZHANG ET AL.

https://www.gscloud.cn
https://www.gscloud.cn


& Technical Data Mirror Site, Computer Network Information 
Center, Chinese Academy of Sciences3; its spatial resolution is 
1 km and the time resolution is one month. All these data were 
projected to the same coordinate system with identical geo-
metric correction, atmospheric correction, sensor correction 
and cloud processing.

2.2.5 Evaluation parameters
This work relies on the coefficient of determination (R2), root 
mean square error (RMSE), mean square error (MSE) and mean 
absolute error (MAE) to evaluate the predictive skill of several 
precipitation prediction models. They are calculated as follows: 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1 Xpi � Xoi
� �2

N

s

(1) 

MSE ¼
1
N

XN

i¼1
Xpi � Xoi
� �2 (2) 

MAE ¼
1
N

XN

i¼1
jXpi � Xoij (3) 

R2 ¼ 1 �
PN

i¼1 ðXoi � XpiÞ
2

PN
i¼1 ðXoi � XoÞ

2 (4) 

where Xoi and Xpi denote the ith observed and predicted value, 
respectively (i ¼ 1; 2; . . . ;NÞ, where N denotes the total num-
ber of observations or predicted data; and Xo denotes the mean 
of the observed data.

2.2.6 Test areas
Six test areas were selected among the 27 meteorological 
stations as examples (Test Areas 1, 2, 3, 4, 7 and 8; see Fig. 
1). The six test areas feature unique morphological character-
istics that cover all landform types in Hubei Province, thus 
demonstrating the generality of this paper’s methodology in 
a wide range of precipitation contexts. The average elevation 
of Test Area 7 is above 1200 m a.s.l., which is significantly 
higher than those of the other test areas. Test Area 7 is 
a mountainous region with pronounced slopes and relatively 
large NDVI. The average elevation of Test Area 8 is near 
500 m a.s.l., with less mountainous features than Test Area 
7. The other tests areas encompass plain landforms, with 
elevations below 200 m a.s.l., and feature mild slopes. The 
NDVI of Test Area 2 is the lowest among the six test areas 
measured at a monthly time scale. 

2.3 Methodology

2.3.1 Univariate predictor variable prediction methods
The R/S algorithm is applied to analyse the long-term depen-
dence of monthly precipitation. The SARIMA and LSTM 
algorithms’ predictive skill is evaluated respectively based on 
one-step ahead predicting of monthly precipitation for the 
period 1988–2017. Prior to the application of the SARIMA 
and LSTM methods, we divided each precipitation time series 

into three segments, i.e., the training segment, the testing 
segment and the validation segment. The training and testing 
segments are composed of time series for the period 
1988–2012. The last five years were chosen as the validation 
dataset (2013–2017).

2.3.1.1 The R/S method. The Hurst parameter of the fGn can 
be estimated with the R/S estimator, while the magnitude of 
the long-range dependence is characterized by the value of the 
Hurst coefficient, with higher values related to strong long- 
range dependence (Papacharalampous et al. 2018a).

The mathematical basis of the R/S method is described in 
Beran et al. (2013, pp 410–412). It is essential to remove 
periodic structures of R/S (Mandelbrot and Wallis 1969, 
Shumway and Stoffer 2017). The second-order IIR notch filter 
algorithm is herein applied to monthly precipitation to obtain 
a stationary time series. The reader is referred to Chaparro 
(2019, PP 639–707) for its definition. The implementation of 
the filtering algorithm in this work set the notch frequency 
(w0) equal to 1/12, where 0< w0 < 1. The bandwidth (bw) was 
set equal to w0 × 10. Lastly, the time series were filtered.

This paper employs the R/S method to explore the magni-
tude of long-range dependence in long time series of 
detrended precipitation. All the statistical analyses were pro-
grammed with MATLAB R2019a.

2.3.1.2 The SARIMA model. The SARIMA model has been 
shown to perform better than the simple ARIMA model (Kumar 
and Lelitha 2015). SARIMA model is a special case of ARIMA 
models with seasonality. The SARIMA model is applied to 
analyse time series and forecasting future events in a series. 
The full model is described in Shumway and Stoffer (2017) 
and Box et al. (2015). The detail procedures of the SARIMA 
implementation can be found in Pedregal (2019). It is possible to 
estimate the appropriate values of the autoregressive order p and 
the moving average order q from the partial autocorrelation 
function (PACF) and the autocorrelation function (ACF) 
plots, respectively. Determination of (p, q) is also possible with 
the Akaike information criterion (AIC) and the Bayesian infor-
mation criterion (BIC). The optimal parameters correspond to 
the smallest AIC and BIC and the white noise is tested according 
to the Ljung-Box statistic (Ljung and Box 1978).

The SARIMA model that captures times series periodicity is 
herein applied to predict monthly precipitation in this paper. 
The SARIMA algorithm was implemented by using the 
Econometrics Toolbox 5.2 of MATLAB R2019a (Chen and 
Boccelli 2018).

2.3.1.3 The LSTM model. Recurrent neural networks (RNNs) 
are a type of sequential model applied to predict time series data. 
The LSTM is a special RNN that captures long-range dependen-
cies and nonlinear dynamics. The LSTM includes one input 
layer, one or more hidden layers and one output layer. 
A LSTM cell comprises three interactive neural networks, called 
the forget gate ft, input gate it and output gate ot. The principle of 
LSTM conducted in this study is mainly based on Hochreiter 
and Schmidhuber (1997). The forget gate (ft) may drop values 

3http://www.gscloud.cn.
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that are not needed and keep those that are necessary for pre-
diction. The input gate (it) renders the new cell state Ct; it is 
calculated as follows: 

it ¼ σ Uixt� 1 þWiht� 1 þ bið Þ (5) 

The intermediate memory cell eCt , which is a combination of 
the input from the last hidden state ht-1 and the input xt-1, is 
calculated as follows: 

eCt ¼ tanhðUecxt� 1 þWecht� 1 þ becÞ (6) 

where U and W denote the adjustable weights matrix or 
learning rates and b denotes the bias vector. Such as Uec, Wec 
and bec are adjustable weights matrix and vectors of eCt . These 
matrices or vectors can be optimized in the training of neural 
networks. tanh denotes the hyperbolic tangent. In the next 
phase the neuron state is updated according to the following 
equation: 

Ct ¼ ft � Ct� 1 þ it � eCt (7) 

where � denotes element-wise multiplication.
Finally, the output gate ot determines which values are 

selected by combining ot with the tanh-modified state Ct hav-
ing output ht. The cell state Ct and output ht are passed to the 
next time step and go through the forget, input and output 
gates as outlined in Fig. 3. Iterations are repeated until reach-
ing a stopping criterion.

This paper applies the LSTM model, which has performed 
well in predicting monthly rainfall. It was implemented with 
the Deep Learning Toolbox of MATLAB R2019a. The LSTM 
model’s predictive accuracy was herein compared with that of 
the SARIMA model.

2.3.2 Multivariate predictor variables prediction methods
The machine learning algorithms are applied to predict monthly 
precipitation based on environmental and topographic factors. 
The ML methods used in this study are mainly supervised 
regression learning algorithms. The ML methods are classified 
into six main categories: back-propagation artificial neural net-
work (BP-ANN); linear regression models; regression trees; 
SVRs; GPRs; and ensembles of trees, which are listed in Table 
3. The implementations of algorithms were mostly made 
through the MATLAB R2019a Statistics and Machine 
Learning Toolbox 11.5, which was applied to data mining by 
Martin et al. (2017), while the BP-ANN was programmed with 
MATLAB 2019 based on Alireza and Peter (2018, p. 20–34). The 
machine learning algorithms were evaluated based on multi-
variate predictor variable (LTD, altitude, NDVI, humidity, lati-
tude, longitude, slope and month date) from 2005 to 2007. The 
first 33 months of the data were applied for training and testing 
dataset, while the last 3 months of the data served to evaluate the 
accuracy of the prediction. The primary prediction algorithms 
are well documented in the literature. The input-output data 
matrix B is designed as follows: 

B ¼ input LTD; altitude;NDVI; humidity;ð½

latitude; longitude; slope;month dateÞ; output rainfallð Þ�

Linear regression models are relatively simple and involve 
relatively low computational burden for making predictions. 
However, their low predictive accuracy constrains their uses. 
Regression trees are easy to interpret, fast for fitting and pre-
diction and low on memory usage. Detailed information about 
regression trees is available in, for instance, Breiman et al. 
(1984) and Loh (2002). This study sets the default minimum 
leaf size of the fine tree, medium tree and coarse tree equal to 4, 
12 and 36, respectively. The SVRs include the linear SVRs and 
nonlinear SVRs. The former SVRs is relatively simple but have 

σ σ σtanh

Ct

ht-1

ht

itft

tanh

ot

Ct-1

xt

ht

Figure 3. Structure of one LSTM memory block.
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low predictive accuracy, while the latter is more complex and 
accurate. Herein we apply the SVR algorithms by Fan et al. 
(2005, 2006)). GPR models are often highly accurate but can be 
difficult to interpret. The GPR algorithms feature design and 
kernel function options that are available in Rasmussen and 
Williams (2006). Ensemble models combine results from many 
weak learners into one high-quality ensemble models includ-
ing boosted trees and bagged trees. Boosted trees are composed 
of least-squares boosting (LSBoost) and regression tree lear-
ners, while bagged trees combine bootstrap aggregating or 
bagging with regression tree learners (see Breiman 1996, 
Warmuth et al. 2006). The parameters of all the models except 
BP-ANN are automatically chosen by using hyperparameter 
optimization. An optimization scheme is applied to seek to 
minimize the model MSE and return a model with the opti-
mized hyperparameters by testing different combinations of 
hyperparameter values.

2.3.2.1 BP-ANN. The ANNs are commonly applied to per-
form large-scale parallel calculations to simulate nonlinear 
correlation (Catalogna et al. 2012). Among the tens of ANN 
models, the back propagation (BP) network is the most widely 
used. The basic principle of the algorithm is that after the input 
signal is presented to the network, the error vector across 
output units is calculated and back propagated to update the 
weights (Nourani et al. 2011). This study applies the BP-ANN 
with five layers (one input layer, three hidden layers and one 
output layer). Each hidden layer includes 6 nodes. The BP- 
ANN was programmed with MATLAB R2019a. The activation 
function is a sigmoid function, whose formula is: 

f xð Þ ¼
1

1þ e� x (8) 

The datasets are divided into two parts, the training data and the 
testing data (90% and 10%, respectively). The prediction preci-
sion performance of the BP-ANN training set is evaluated using 
the testing data for cross validation (Liu et al. 2013). The pre-
diction results are evaluated using R2, RMSE, MSE and MAE.

This paper compares the prediction accuracy of BP-ANNs 
with those of other ML algorithms. A proposed semi-empirical 
prediction model is herein identified and benchmarked against 
the BP-ANN’s predictions.

2.3.3 Parameter selection and optimization algorithms
2.3.3.1 NMF. Non-negative matrix factorization was intro-
duced by Paatero and Tapper (1994) and popularized in an 
article by Lee and Seung (1999). NMF has previously been 
shown to be a useful decomposition for multivariate data 
belonging to unsupervised learning. The principle of the 
NMF algorithm is to find non-negative matrix factors W and 
H for a given non-negative matrix V. NMF captures the data 
traits by identifying the correlation between data parts and 
finding the internal interactions among the data. The basic 
formula is as follows: 

V F�Nð Þ �W F�Kð ÞH K�Nð Þ (9) 

where V denotes the origin matrix of size F × N. F and 
N denote the number of rows and columns, respectively. 

W and H denote the weighting and coefficient matrices, 
respectively. K is chosen to be smaller than F or N so that 
(F + N)×K < F × N, which means W and H are of smaller size 
than the matrix V.

The objective function for finding H and W is written as 
follows: 

minf W;Hð Þ ¼
1
2
j V � WHj jj

2
F;W;H � 0 (10) 

in which �j jj j2F denotes the Frobenius norm.
The optimization of the objective function is made according 

to the multiplicative iterative principle (Lee and Seung 1999).
This paper employs NMF to detect the sensitive environ-

mental and topographic factors that have a strong statistical 
association with precipitation to build the semi-empirical pre-
diction model.

2.3.3.2 GALMA. The genetic algorithm/Levenberg-Marquardt 
algorithm is a hybrid algorithm combining the advantages of the 
genetic algorithm (GA) and the Levenberg-Marquardt (LM) 
method to estimate optimal parameters. The GA is first applied 
to find a suboptimal solution from a global search space. 
Subsequently, the solution obtained with the GA serves as an 
initial search point to launch the LM algorithm to achieve a near- 
global solution that avoids local, suboptimal, solutions. The new 
parameter optimization algorithm proposed by this study is based 
on the work of Zheng et al. (2019). The optimal parameters of the 
semi-empirical prediction model are estimated by GALMA in 
this work. The GALMA was programmed with MATLAB R2019a 
based on the flow diagram of GALMA (Fig. 4).
2.3.3.2.1 Objective function and termination criterion.
Equation (11) is the objective function which measures the 
agreement between the observed and estimated data: 

SEE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
v

Xn

i¼1
e2

i

r

(11) 

where SEE is the standard error of estimates; ei denotes the ith 
difference between the value of the observed precipitation and 
the estimated precipitation; v represents the degrees of freedom, 
which equals the number of monthly precipitation records 
minus the number of estimated parameters.

The MSE is relied upon to evaluate the difference between 
the observed and estimated precipitations, in which case is 
applied as the suitable termination criterion to terminate the 
calculation during the computational process (Jha et al. 2006). 
The formula is shown in Equation (2).

In the optimization search the parameter estimation search 
process is terminated when the MSE equals or is less than the 
pre-set threshold, or when a maximum number of iterations is 
reached.
2.3.3.2.2 GA algorithm. This work adopts the GA for searching 
a suboptimal solution as the first step. The initial population of 
solutions is generated randomly. The crossover rate Pc and Pm 
equal to 0.8 and 0.005, respectively (Reed et al. 2000). The number 
of populations of solutions in each GA iteration is set equal to 200 
(Samuel and Jha 2003).
2.3.3.2.3 LM algorithm. The LM algorithm is a modified 
Gauss-Newton optimization approach in which the parameter 
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set is updated iteratively. The parameters P1, P2, P3, P4, P5, and 
P6 are considered time-invariant and independent of each 
other. The termination criterion in this study adopts 
a maximum number of 200 iterations of the LM algorithm. 
An initial damping parameter λ0 is set equal to 10−3 (Madsen 
et al. 2004).

The elements of parameter vector α are the six parameters: 

αT ¼ P1; P2; P3; P4; P5; P6½ �

The value of the parameter vector in the kth iteration of the 
LM algorithm is denoted by αk.

The function g (x, α) is employed to calculate monthly 
precipitation as a function of a vector of independent variables 
x (say, LTD, altitude, humidity, NDVI) and a vector of para-
meters. The Jacobian matrix Jk in the kth algorithmic LM itera-
tion reduces to a 6-D vector of derivatives of Equation (12) with 
respect to the precipitation parameters evaluated in the kth 
iteration-with gk = g (xk, αk): 

Jk ¼
@gk

@P1
;
@gk

@P2
;
@gk

@P3
;
@gk

@P4
;
@gk

@P5
;
@gk

@P6

� �T

(12) 

where @gk
@P1
;
@gk
@P2
;
@gk
@P3
;
@gk
@P4
;
@gk
@P5
;
@gk
@P6 

can be approximated with the 
difference equations introduced by Zheng et al. (2019).

The GALMA is implemented by the following steps:
Step 1. The GA randomly generates the initial generation of 

parameter estimates. The selection, evaluation, crossover and 
mutation processes are repeated until the termination criterion 
is satisfied in which case the algorithm proceeds to Step 3. 
Otherwise upon reaching the maximum number of generations, 
the initial parameters in the LM algorithm use the best-fitting 
solution calculated with the GA.

Step 2. The trial solution and the SEE are updated along the 
steepest decent direction dp estimated with the LM algorithm. 

The detailed derivation of dp can be found in Zheng et al. 
(2019).

Step 3. The optimal solution is found when the calculated 
and measured precipitation satisfy a user-specified conver-
gence criterion.

3 Results

3.1 Analysis based on univariate predictor variable

3.1.1 R/S analysis
Six test areas were selected among 27 meteorological sta-
tions as test examples. The R/S characteristic parameters 
of the monthly precipitation time series in the period 
1988–2017 are listed in Table 1. Table 1 shows H ∈ 
[0.785,0.871], 0 ≤ F(z) < 1, which demonstrates there is 
a strong long-term dependence, i.e., both that a high value 
in the precipitation series will probably be followed by 
another high value and that the precipitation values for 
some time into the future will also tend to be high. H is 
near 1, indicating the long-range dependence is relatively 
strong. In summary, the future monthly precipitation in 
Hubei Province are likely to be continuations of past 
trends.

Generate initial population

Compute fitness of the population

Termination criterion met?

Select fittest chromosome

Crossover

Mutation

Initial parameters

Gen= Gen + 1

Start Measurement 
precipitation

Initial parameters MSE0

Compute Jacobian matrix

Decent direction

Update parameters
αk+1=αk+dpk

Is MSEk<MSEk-1?

Termination criterion met?

λk=λk-1/10

k= k+ 1

λk=λ k 10

Output

GA LM

Figure 4. Flow diagram of the GALMA.

Table 1. Rescaled range analysis parameters of monthly precipitation. R2: coeffi-
cient of determination; H: Hurst index, F(z): autocorrelation coefficient.

Test area R2 H F(z)

1 0.729 0.785 0.485
2 0.716 0.795 0.505
3 0.701 0.815 0.548
4 0.712 0.793 0.501
7 0.678 0.871 0.672
8 0.814 0.856 0.638
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3.1.2 LSTM model
The training and testing data of the LSTM model were from 
1988–2012. The forecasting accuracy was determined by pre-
cipitation data from 2013–2017. The LSTM model was trained 
relying on monthly precipitation at the meteorological stations 
(test areas 1, 2, 3, 4, 7 and 8) as the datasets. There are several 
parameters that influence the LSTM neural networks, includ-
ing the hidden units, learning rates and epochs. Computations 
were carried out with several parameter sets for a single-layer 
LSTM model to obtain the best performance parameters. 
Based on the narrow ranges of the RMSE and R2, 200 was 
chosen as the number of hidden units, 600 for the epochs and 
0.01 for the initial learning rate. The model was analysed 
during the training and testing phases to assess overfitting. 
During simulation, the loss functions for training and testing 
decreased and converged near zero, which suggests the model 
is a good fit. Finally, the accuracy of the prediction results 
increased by updating the network state with the observed 
values instead of the predicted values. The performances of 
the LSTM model for different test areas are listed in Table 2.

Table 2 shows the LSTM model performed well for the six 
test areas. The range of R2 is 0.53–0.72 and the RMSE ranges 
from 54.17 to 85.28. The best predicted result is for Test Area 4 
according to the highest R2 value of 0.72. The smallest value of 
R2 corresponds to Test Area 7 (0.53). The results reveal that 
LSTM model has good efficiency in forecasting time series of 
monthly precipitation in Hubei Province. Hence, the LSTM 
approach efficiently captures the characteristics of precipita-
tion, which can also be visualized in the results between the 
observed and simulated data, as shown in Fig. 5 (taking Test 
Area 4 as an example).

3.1.3 SARIMA model
The dataset from 1988–2012 was applied in the estimation of 
model parameters. The dataset from 2013–2017 was used to 
determine the accuracy of the forecast, where the R2, RMSE, 
MSE and MAE equal 0.68, 133.42, 17 800 and 86.96, respectively. 

Figure 6 displays the observed monthly precipitation data 
employed in this study for Test Area 4. Comparing the forecast 
results with the LSTM algorithm results demonstrates the LSTM 
algorithm is more suitable than SARIMA for forecasting monthly 
precipitation, having a lower RMSE and higher R2.

The SARIMA(p,d,q) (P,D,Q)[s] model in this study features 
a seasonal period of monthly precipitation equal to S = 12. 
Twelve-order seasonal differential processing was performed 
on the precipitation data to eliminate the seasonal period for 
the precipitation series. This is followed by first order differ-
ence was performed on the monthly precipitation data to make 
it a stationary sequence where d = 1, D = 1. Appropriate model 
parameters were estimated based on the PACF and ACF. The 
seasonal ACF and PACF are described in Fig. 7. Testing the 
different combinations of (p, q) and (P, Q) and further deter-
mining the best model with the lowest AIC and BIC yielded the 
best model parameters p = 1, q = 3 and P = 1, Q = 2. The 
optimal parameters of the SARIMA model are (1,1,3) (1,1,2)12.

A diagnostic check was performed on the identified models 
(Fig. 8). The Box-Ljung testing has P > 0.05, which indicates 
the residual series of the model is white noise and shows that 
the model is reasonable. The model fit result is displayed in Fig. 
8(c) with the observed data (blue line) and output data (red 
line). The 5-year precipitation forecast (2013–2017) is shown 
in Fig. 8(d).

3.2 Analysis based on multivariate predictor variables

3.2.1 BP-ANN and other machine learning algorithms
Machine learning techniques were applied to predict the 
monthly precipitation based on eight factors (LTD, altitude, 
NDVI, humidity, latitude, longitude, slope and month date) in 
the period 2005–2007. The training and testing data of the ML 
models were the first 33 months (see matrix B). The accuracy 
was determined by the data of the last three months. Each 
method was cross-validated 10-fold. Several methods were 
compared, such as the ANNs and model trees (Table 3). The 
R2 value varied in the range of 0.41 to 0.64, while the RMSE 
value was in the range 43.32 to 61.31. The model performance 
of the BP-ANN gives better R2 (0.64) and RMSE (43.32) values 
when predicting monthly precipitation than other models. The 
next best model is the GPR model, which employs the rational 
quadratic kernel (rational quadratic GPR), with R2 and RMSE 
values equal to 0.59 and 51.22, respectively. The poorest model 
is the linear SVR, with the lowest R2 and highest RMSE. This 
comparison clearly indicates that monthly precipitations are 
effectively estimated by the BP-ANN model.

Table 2. Model parameter estimates for six test areas. R2: coefficient of determi-
nation; RMSE: root mean square error; MSE: mean square error; MAE: mean 
absolute error.

Test area R2 RMSE MSE MAE

1 0.68 78.08 6096.72 52.92
2 0.62 72.32 5230.48 55.58
3 0.64 75.54 5705.77 56.88
4 0.72 85.28 7271.95 59.35
7 0.53 54.17 2934.80 38.69
8 0.58 70.20 4928.51 51.31

Table 3. Estimates of the model evaluation parameters for different algorithms.

Model R2 RMSE MSE MAE Model R2 RMSE MSE MAE

BP-ANN 0.64 43.32 1876.5 31.90 Stepwise Linear 0.52 55.33 3061.2 37.29
Rational quadratic GPR 0.59 51.22 2623.8 33.13 Linear interactions 0.52 55.33 3061.4 37.21
Matern 5/2 GPR 0.59 51.23 2624.4 33.17 Medium tree 0.51 55.92 3127 36.61
Cubic SVR 0.59 51.28 2629.4 33.13 Coarse tree 0.47 57.84 3344.9 38.95
Boosted trees 0.58 51.42 2644.0 33.40 Linear regression 0.45 58.86 3464.4 41.31
Squared exponential GPR 0.58 51.43 2644.8 33.58 Coarse Gaussian SVR 0.45 59.31 3517.5 37.20
Exponential GPR 0.58 51.45 2647.0 33.07 Fine tree 0.43 60.01 3600.8 39.52
Bagged trees 0.58 51.82 2684.9 34.37 Fine Gaussian SVR 0.42 60.82 3699.5 40.75
Medium Gaussian SVR 0.58 51.84 2687.1 32.93 Robust linear 0.41 61.23 3749.6 39.67
Quadratic SVR 0.54 54.18 2935.6 34.87 Linear SVR 0.41 61.31 3759.3 39.63
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3.2.2 Simplified model for predicting monthly precipitation
3.2.2.1 Selecting model influence factors based on NMF.
Environmental and topographic factors have multiple interac-
tions and influence precipitation. The correlation between these 
factors introduces duplication of information (multicollinearity). 

Matrix decomposition is a mapping of the original matrix to 
a subspace; the mapping is performed by approximating the low 
rank of the original matrix. The aim of NMF is to explore the 
relations between factors and precipitation. Altitude, slope, 
month date, latitude, longitude, LTD, NDVI, humidity and 

(a) 

(b) 

(c) 

Figure 5. Results of the LSTM model for the monthly precipitation in Test Area 4, 1988–2017: (a) monthly precipitation prediction results of the LSTM model; (b) 
comparison between the predicted and observation data; and (c) updated network results comparing the prediction and observation data.
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monthly precipitation data from 2005 to 2007 at 27 meteorologi-
cal stations were normalized. The monthly date was transformed 
to make it consistent with the seasonal precipitation pattern of 
Hubei Province, i.e., May, June, July, August and September have 
larger weights, while the remaining months have smaller weights 
and the monthly date was normalized. A 927 rows × 9 columns 
matrix was constructed: 

A ¼
LTD1 � � � longitude1

..

. . .
. ..

.

LTDn � � � longituden

2

6
4

3

7
5

where the columns represent LTD, slope, rainfall, month date, 
NDVI, humidity, altitude, latitude and longitude. The rows are the 
corresponding factors arranged according to months and the 
meteorological stations from 1 to 27. Taking the mean value of 
the NMF 1000 times, the relations between the factors were 
expressed by a heat map (Fig. 9). The last two rows of Fig. 9(a) 
show that the influences of latitude and longitude on precipitation 

are negligible. Thus, the latitude and longitude factors were 
excluded from the original matrix and NFM was performed on 
the remaining factors of the matrix. The first row of Fig. 9(b) 
shows the LTD is closely related to the monthly date. The slope 
denotes a high correlation with altitude in the fourth row. The last 
row demonstrates there is a strong correlation of precipitation 
with LTD, humidity and altitude. The slope and month date were 
determined as redundant factors and they were excluded from the 
matrix. Only the internal relations between the selected factors 
were analysed; the selected factors are, the LTD, altitude, NDVI 
and humidity (see Fig. 9(c)). Humidity has a weak correlation with 
the NDVI and LTD (see second row). There is a high correlation 
between the LTD and NDVI in the first row of Fig. 9(c). The last 
row demonstrates the NDVI also correlates positively with alti-
tude and humidity.

3.2.2.2 Influences of the selected parameters on monthly pre-
cipitation. The empirical model was established according to the 
factors selected by NMF for predicting monthly precipitation in 
Hubei Province. The relations between a single factor and rainfall 
were analysed separately. Figure 10 displays a scatter gram of 
temperature and precipitation, which conforms to a Gaussian 
distribution. This is consistent with the conditions in Hubei 
Province. The rainfall in Hubei Province is concentrated in sum-
mer when temperature is higher.

The maximum, minimum and average values of each factor 
were adjusted; the thresholds of the other factors were estab-
lished and the relations between a single factor and precipita-
tion were compared. For example, when LTD < 10°C, altitude 
< 800 m and NDVI < 0.662, there is an exponential relation 
between relative humidity and precipitation (see Fig. 11). 
Humidity and precipitation follow the same trend when the 
threshold is changed. Exploring the association between alti-
tude and precipitation indicates precipitation exhibits 
a decreasing trend with increasing altitude. The NDVI exhibits 
a linear relation with precipitation, while the slope of the trend 
line is flat. The evidence suggests altitude and NDVI have 
linear patterns of association with precipitation.

3.2.2.3 Semi-empirical model. The following formula was 
fitted based on the analysis of relations between factors: 

Y ¼ f T; P1; P2ð Þ � P3 Altþ P4ð Þ � NDVþ P5ð Þ � eH�P6 (13) 

where Y denotes the monthly precipitation and f represents the 
Gaussian membership function f T; P1; P2ð Þ ¼

expðð� T � P1ð Þ
2
Þ=2P2

2Þ. T represents the LTD (°C) and P1 
and P2 denote the mean and the standard deviation of the 
Gaussian distribution, respectively. The terms Alt, H and NDV 
denote the altitude (m), humidity and NDVI, respectively, and 
P3, P4, P5 and P6 are constants.

Parameter estimation based on the nonlinear model (13) was 
carried out with a hybrid algorithm named GALMA (Zheng et al. 
2019) (Section 2.3.3.2). The objective function for parameter 
estimation is the MSE between the observed data and predicted 
precipitation obtained with Equation (13). Figure 12 presents the 
convergence history during the estimation of parameters. The GA 
is applied first and the LM starts its search with the 20th genera-
tion of the GA. It is seen in Fig. 12 the improvement achieved by 

Figure 6. Observed monthly rainfall of raingauge station in Test Area 4.

Figure 7. Seasonal ACF and PACF of monthly precipitation.
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the GALMA. After 120 iterations of the LM, the value of the 
objective function converges with a set of near-optimal 
parameters.

The optimal parameters obtained by the GALMA are P1 
= 26.558, P2 = 43.512, P3 = 1.442 × 10−4, P4 = 1.335 × 104, 

P5 = 0.120, and P6 = 6.203. The value of R2 is 0.65 (see 
Figure 13), RMSE is 41.81, MSE is 1747.76 and MAE is 
29.11. Thus, the predictive skill of the proposed semi- 
empirical model is at least as good as that of machine 
learning algorithms.

(a) 

(b) 

(c) 

(d) 

Figure 8. SARIMA model diagnostic check and model fit results: (a) residual line chart of the ARIMA model; (b) ACF of the residuals; (c) model fit and residual plot; and 
(d) predicted precipitation.
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4 Discussion and conclusions

This paper relied on monthly rainfall time series featuring 
strong long-term dependence in the period 1988–2017. 
Results indicated that there was a persistent characteristic of 
precipitation in Hubei Province. This paper also compared the 
prediction results obtained with the one-step ahead LSTM and 

SARIMA algorithms based on monthly time series. The pre-
diction accuracy of the LSTM model was better than that of the 
SARIMA model. It may depend on the sample sizes 
(Papacharalampous et al. 2018a, 2018b).

Environmental and topographic factors were introduced in the 
prediction models. The performances of the machine learning 

(a) 

(b) 

(c) 

Figure 9. NMF heat maps of: (a) nine NMF factors; (b) seven NMF factors; and (c) four NMF factors.
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algorithms for monthly precipitation were assessed based on the 
environmental factors. The results implied the BP-ANN has the 
best performance among the algorithms.

A novel approach based on developing the semi-empirical 
model was proposed in this study for the prediction of 
monthly precipitation. The approach included combining 
NMF, numerical analysis and the GALMA parameter optimi-
zation algorithm. NMF was applied to explore the potential 
connection between the influence factors and monthly preci-
pitation. The results revealed that relative humidity, daily sur-
face temperature, altitude and NDVI were the main governing 
factors for predicting monthly precipitation and they were 
chosen in the model development for this paper. 
Determining the optimal parameters of the prediction model 
by GALMA combines the advantages of the GA and LM 
algorithms.
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Figure 10. Relationship between the LTD and monthly precipitation.

Figure 11. Fitted function between relative humidity and monthly precipitation.

Figure 12. Convergence rate of the GALMA for estimation.
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Figure 13. Prediction results of the semi-empirical model.
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Future work will evaluate the suitability of the semi- 
empirical model for other areas besides Hubei Province. In 
addition, more environmental factors could be entertained in 
the prediction model to select the most relevant factors and 
parameters. Future research will focus on improving the accu-
racy of the prediction model and comparing the performance 
of enhanced machine learning algorithms for predicting 
monthly rainfall.
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