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Abstract

Motivation: Mining drug–disease association and related interactions are essential for developing in silico drug
repurposing (DR) methods and understanding underlying biological mechanisms. Recently, large-scale biological
databases are increasingly available for pharmaceutical research, allowing for deep characterization for molecular
informatics and drug discovery. However, DR is challenging due to the molecular heterogeneity of disease and di-
verse drug–disease associations. Importantly, the complexity of molecular target interactions, such as protein–pro-
tein interaction (PPI), remains to be elucidated. DR thus requires deep exploration of a multimodal biological net-
work in an integrative context.

Results: In this study, we propose BiFusion, a bipartite graph convolution network model for DR through heteroge-
neous information fusion. Our approach combines insights of multiscale pharmaceutical information by construct-
ing a multirelational graph of drug–protein, disease–protein and PPIs. Especially, our model introduces protein
nodes as a bridge for message passing among diverse biological domains, which provides insights into utilizing PPI
for improved DR assessment. Unlike conventional graph convolution networks always assuming the same node
attributes in a global graph, our approach models interdomain information fusion with bipartite graph convolution
operation. We offered an exploratory analysis for finding novel drug–disease associations. Extensive experiments
showed that our approach achieved improved performance than multiple baselines for DR analysis.

Availability and implementation: Source code and preprocessed datasets are at: https://github.com/zcwang0702/
BiFusion.

Contact: muzhou@sensebrain.site or cwarnold@ucla.edu

1 Introduction

Drug repurposing (DR) is a strategy to identify novel therapeutic
purposes for existing drugs with a goal to expand the scope of the
original medical indication of known drugs (Li et al., 2016). This
task is of great pharmaceutical significance as the de novo drug dis-
covery is known to be costly and lengthy. The total cost of develop-
ing a drug ranges from $2 billion to $3 billion and it takes at least
13–15 years to bring a single drug to market (Yella et al., 2018). By
contrast, DR offers a fast and cost-effective means for drug candi-
date discovery. For example, the repurposed drug candidate has pro-
ven to be sufficiently safe through preclinical assessments, thus
resulting in a shortened period of clinical evaluation.

Recently, large-scale databases such as protein–protein inter-
action (PPI) networks, drug–target interactions and drug–disease
associations are rapidly growing and increasingly accessible. The
wealth of drug-related data presents great opportunities to generate
novel insights surrounding drug mechanisms and develop in silico
DR methods to accelerate drug discovery. However, in silico DR is
challenging due to the molecular heterogeneity of disease and

diverse drug–disease associations. For example, the complexity of
molecular target interactions such as PPI remains to be elucidated.
Without knowledge from a broader network of the molecular deter-
minants of disease and drug targets, we are unable to develop effica-
cious drug treatment for complex diseases (Greene and Loscalzo,
2017). Therefore, DR requires deep exploration of a multimodal
biological network including drug–disease, drug/disease–protein and
protein–protein associations in an integrative context.

Among various biomedical interactions, the importance of the
complex PPI network is broadly recognized in biological systems
and the development of disease states (Scott et al., 2016). In other
words, PPIs are at the center of almost every cellular process from
cell motility to DNA replication. Thus understanding PPI mechan-
ism could greatly help elucidate the function of a known or novel
protein and its role in a known biological pathway, which can be a
key factor for justifying DR. Existing approaches using PPIs are
often focused on using predefined descriptors to represent protein
information such as the overlap of PPI closeness. However, they can-
not fully explore the potential information within PPI in an
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integrative context, which requires modeling interdomain informa-
tion fusion to characterize drug’s pharmacological action and guide
a roadmap for DR assessment.

Previous studies in DR were primarily focused on drug and dis-
ease activities to uncover statistical associations between them
(Dakshanamurthy et al., 2012; Sanseau et al., 2012; Ye et al.,
2014). These analyses worked on a single data modality such as
gene expression or drug–target interactions, only capturing partial
information of the heterogeneous network. In addition, these meth-
ods cannot consider the important topological information among
different biological networks. To address this limitation, there has
been a growing number of efforts to incorporate various data sour-
ces for boosting the accuracy of drug repositioning (Gottlieb et al.,
2011; Guney et al., 2016; Li and Lu, 2012; Luo et al., 2016;
Napolitano et al., 2013; Zeng et al., 2019; Zhang et al., 2013).
These approaches integrate multiple information sources such as
chemical fingerprint, interaction network closeness of drug targets
and correlation between drug side effects. However, these
approaches with engineering-based features were unable to capture
graph-structured information such as chemical molecules of drugs
and PPI network knowledge. Therefore, graph-based model archi-
tectures become highly desired for incorporating multiscale, graph-
based knowledge and improving the model performance in DR.

Graph convolutional networks (GCNs) (Kipf and Welling, 2017)
extend deep-learning approaches specifically designed for processing
graph-based data in various graph-related tasks. In principle, GCNs
perform a convolution by aggregating the neighbor nodes’ informa-
tion to learn node representations in the entire graph. GCN has
unique advances in its automation on feature extraction from raw
graph-structured inputs. Recently, a handful of GCN-based methods
in drug–drug and drug–target interaction predictions have proved
the usefulness of GCN-based models for drug information extrac-
tion (Feng et al., 2018; Gao et al., 2018; Ma et al., 2018; Zitnik
et al., 2018). However, exploring GCN-based networks for deep
understanding multiscale biological characteristics of drug data
remains to be fully elucidated. Specifically, a notable limitation for
conventional GCN-based methods is that same node attributes
should always be assumed. Thus, these approaches view the multire-
lational networks as a global graph, completely ignoring distinct
node features from different domains. For example, node features in
drug and protein domains actually follow separate statistical distri-
butions. But conventional GCNs can only leverage neighboring
nodes in a single graph thus are quite difficult to measure correlation
between the two separate domains.

To address all challenges above, we propose a bipartite graph
convolution network approach, termed BiFusion, for in silico DR.
The key motivation is to model interactions between diverse bio-
logical domains through bipartite graphs. Unlike previous GCN-
based methods, our model enables interdomain information fusion
with a bipartite graph convolution operation. To allow information
fusion, our model learns to represent different features from hetero-
geneous nodes into a unified embedding space, where protein nodes
serve as a bridge for message passing within complex biological net-
works. This design differs from conventional GCN that is limited on
node representation in a single graph. Overall, our major contribu-
tions can be summarized as follows: (i) To the best of our know-
ledge, this article proposed the first bipartite GCN-based approach
for in silico DR, assembling interactions across protein, drug and
disease domains from large-scale databases. (ii) We proposed a
novel end-to-end graph learning framework that can effectively inte-
grate multirelational interaction data for DR, yielding improved per-
formance than baseline methods. (iii) Our analysis provided insights
into better extracting and fusing information from the PPI network
for DR.

2 Related works

We briefly review computational approaches for DR and related
researches on GCNs.

2.1 In silico DR
Numerous studies have used single data source to identify drug indi-
cations. Different information modalities include structural features
of compounds (or proteins) (Dakshanamurthy et al., 2012), genetic
activities (Sanseau et al., 2012) and phenotypic profiles such as side
effects of drugs (Ye et al., 2014). However, these methods failed to
offer an unbiased perspective for predicting drug–disease associa-
tions due to the potential noise in the single information source. In
addition, these methods cannot model important topological infor-
mation among different biological networks. In response, current
methods can be categorized into similarity-based and network-based
approaches.

Most of similarity-based approaches are integrative methods
using the heterogeneous information (Gottlieb et al., 2011; Li and
Lu, 2012; Napolitano et al., 2013; Zhang et al., 2013). They rely on
the assumption that similar drugs are indicated for similar diseases.
These methods utilize shared characteristics between drugs such as
drug–targets, chemical structures and adverse effects, and then con-
structed similarity features to build computational models. For ex-
ample, PREDICT (Gottlieb et al., 2011) is a similarity-based
framework integrating drug–drug similarity (based on drug–protein
interactions, sequence and gene-ontology) and disease–disease simi-
larity (disease–phenotype and human phenotype ontology), authors
used them as key features applying logistic regression to predict
similar drugs for similar diseases.

Network-based approaches (Cheng et al., 2018, 2019; Guney
et al., 2016; Luo et al., 2016; Zeng et al., 2019) model graph-
structured information among different biological networks to boost
the performance for DR. Typically, in these models, the nodes in the
networks represent either drug, disease or gene products and edges
denote the interactions or relationships among them. For example
Cheng et al. (2018) identified hundreds of new drug–disease associa-
tions by quantifying the network proximity of disease genes and
drug targets in the human protein–protein interactome. The deepDR
(Zeng et al., 2019) learnt high-level features of drugs from the het-
erogeneous networks by a multimodal deep autoencoder and
applied a variational autoencoder to infer candidates for approved
drugs. However, deepDR considered information sources in the
drug domain only without interactions in the disease domain.

Bipartite graph comprises a set of nodes decomposed into two
disjoint sets (Pavlopoulos et al., 2018; Yildirim et al., 2007), which
is a natural representation for modeling complex items of biological
systems and their interactions. Extensive studies have revealed the
feasibility of bipartite graphs and their impact in the field of net-
work biology (Pavlopoulos et al., 2018). For example Yildirim et al.
(2007) built a bipartite graph to analyze relationships between drug
targets and disease–gene products. Kontou et al. (2016) performed a
bipartite graph approach to analyze the relationships between
human genetic diseases. In the field of DR, Li and Lu (2012) devel-
oped a bipartite drug–target network method using drug pair simi-
larity integrated drug chemical structure similarity, common drug
targets and their interactions. Zheng et al. (2019) also constructed a
bipartite graph model with known relationships between drugs and
their target proteins. However, most of these methods heavily relied
on predefined drug similarity features and ignored the important in-
formation sources in the disease domain. Although they utilized the
PPI information, the relationships between drug targets and disease–
gene products in the context of biological interaction network have
not been investigated.

2.2 Graph convolutional networks
GCN (Kipf and Welling, 2017) has opened a new paradigm for
graph learning and achieved leading performance in machine-
learning tasks. The major motivation of GCN roots in generalizing
convolutional neural network (CNN) in the graph domain.
Increasing amount of graph-structured data necessitate the use of
GCN-based models for addressing with complex relationships and
interdependencies of objects in non-Euclidean spaces. Traditional
CNN models are no longer applicable on these tasks because struc-
tural information are not considered or sufficiently used in feature
extraction in graphs. In addition, traditional graph-based
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approaches are inflexible at scale as they often rely on hand-
engineered features including summary graph statistics and kernel
functions. By contrast, GCN-based models are designed to capture
the dependence of graphs via a recursive neighborhood aggregation
scheme, where each node aggregates feature vectors of its neighbors
to update its new node features. Thus, GCNs demonstrate their su-
periority for graph-related tasks given their ability to naturally inte-
grate the feature attributes of graph-structured data and learn
intrinsic features from raw graph-structured inputs.

GCN extends the idea of the graph neural network (GNN)
(Scarselli et al., 2008). Specifically, a graph G 2 G can be denoted by
GðV; EÞ consisting of a vertex set V ¼ fvigNV

i¼1 and edge set E ¼
fejgNE

j¼1; h
!

vi
2 RN is the node feature of vertex vi. A general GNN

layer can be defined as follows:

gEðviÞ ¼ q hvi
; agg Wvi ;vj

hvj
jvj 2 N Evi

n o� �� �
; (1)

where W 2 RM�N is a learnable matrix transforming N-dimensional
features to M-dimensional features, the agg is a permutation-
invariant aggregation operation such like element-wise mean-pool-
ing and the q operator can be a nonlinear activation function such
as ReLU. NEvi

is the neighborhood of the node vi connected by E in
G. In GCN, these two operators are integrated as follows:

gEðviÞ ¼ ReLU W �Mean hvj jvj 2 N Evi
[ fvig

n o� �� �
: (2)

Following on this work, there is increasing interest in extending
and improving GCN with more powerful aggregation function such
as GraphSAGE (Hamilton et al., 2017) and Graph Attention
Network (GAT) (Veli�ckovi�c et al., 2018). GAT uses an attention
mechanism on the node features to construct the weighting kernel as
Wvi ;vj

¼ avi ;vj
W. The attention mechanism is a single-layer feed-

forward neural network, parametrized by a weight vector a
! 2 R2M

and applying the LeakyReLU nonlinearity. The weighting coeffi-
cients computed by the attention mechanism can be expressed as:

avi ;vj
¼

exp
�
qða!T½Wh

!

vi
jjWh

!

vj
�Þ
�

P
vk2NEvi

exp
�
qða!T½Wh

!

vi
jjWh

!

vk
�Þ
� (3)

where T represents transposition and jj is the concatenation
operation.

Despite advances of GCNs, applying them to bipartite graphs in
biomedical domains was seldom explored. The main technical chal-
lenge is that node features in different domains of bipartite graphs
present quite distinct characteristics. Therefore, it is insufficient to
simply apply conventional GCNs to model the connections between
multiple domains. To build and explore such connection, we identi-
fied that recent studies (He et al., 2020; Nassar, 2018) have shown
the effectiveness of bipartite GNNs on modeling interconnected
graphs.

Conceptually, our research draws inspiration from recent pro-
gress of applying GCNs in biomedicine. For example Zitnik et al.
(2018) achieved state-of-the-art results in predicting polypharmacy
side effects using GCN. Fout et al. (2017) showed the effectiveness
of GCN in the task of protein interface prediction. Kearnes et al.
(2016) proposed a graph convolution framework to learn molecular
representations for data-driven tasks considering both node and
edge features.

3 Datasets

We formulated the problem of DR as a drug–disease link prediction
task using multimodal interaction data. We constructed a multirela-
tional graph network using multiple biomedical datasets that allow
systematic evaluations for DR. Specifically, drug–disease interaction
networks contain drugs therapeutic indications. Drug–protein/
disease–protein networks describe the proteins targeted by drugs/
diseases. Finally, protein–protein networks contain interaction

relationships between proteins. Below we describe details of the
datasets to construct the graph network in our study (Fig. 1).

3.1 Drug–disease associations
For this study, we collected 3204 known therapeutic indications of
drugs from repoDB database (Brown and Patel, 2017), in which
6677 approved indications were drawn from DrugCentral (Ursu
et al., 2017). Only FDA-approved small-molecule drugs were con-
sidered and generic name of each drug were standardized by
Medical Subject Headings (MeSH) (Lipscomb, 2000) and Unified
Medical Language System vocabularies (Bodenreider, 2004). We
also mapped drugs to PubChem (Kim et al., 2019) with compound
ID to get their chemical structure information represented by simpli-
fied molecular-input line-entry system (SMILES) string (Weininger,
1988). Most of drugs (75%) treat less than 3 indicated diseases;
only 4% of drugs treat more than 10 diseases. 70% of the diseases
have less than 5 drugs; 16% of the diseases have 5–10 drugs; 14%
of diseases have more than 10 drugs.

3.2 Drug–protein and disease–protein associations
Drug targets were obtained from the DGIdb (Cotto et al., 2018)
database which consolidates drug gene interactions and potentially
druggable genes into a single resource from papers, databases and
web resources. DGIdb normalized content from 30 disparate sources
using a combination of expert curation and text mining, resulting in
29 783 drug gene interactions which cover 41 100 genes and 9495
drugs. We pulled target protein-coding genes of a given drug from
DGIdb, then mapped genes to proteins with gene names. Our drug–
protein interaction network covers 7713 drug–protein interactions
between 1012 drugs and 1681 proteins.

Disease–protein associations were extracted from DisGeNET
(Pi~nero et al., 2017), one of the largest available collections of genes
and variants involved in human diseases. DisGeNET integrates data
from expert curated databases with information gathered through
text mining the scientific literature, including various resources such
as the comparative toxicogenomics database (CTD) (Davis et al.,
2017) and online mendelian inheritance in man (OMIM) (Hamosh
et al., 2004). We pulled protein-coding genes of a given disease and
then map them to corresponding products. Our curated disease–pro-
tein interaction network covers 104 716 disease–protein associa-
tions between 592 diseases and 9941 proteins.

3.3 Protein–protein interactions
We used the human PPIs compiled by Menche et al. (2015) which is
an unweighted and undirected network with 13 460 proteins and
141 296 physical interactions. The network contains physical

Fig. 1. Overview of our heterogeneous information network. The multirelational

network has 592 disease, 1012 drug and 13 460 protein nodes connected by 3204

drug–disease, 7713 drug–protein, 104 716 disease–protein and 141 296 protein–

protein edges
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interactions with experimental support, such as regulatory interac-
tions, metabolic enzyme-coupled interactions and signaling interac-
tions. The PPI network is approximately scale-free and shows other
typical characteristics as observed previously in many other bio-
logical networks, such as high clustering and short pathlengths.

The final multirelational network after linking entity vocabula-
ries across different modalities and databases has 592 disease, 1012
drug and 13 460 protein nodes connected by 3204 drug–disease,
7713 drug–protein, 104 716 disease–protein and 141 296 protein–
protein edges.

4 Materials and methods

4.1 Interdomain message passing through bipartite

graph convolution
A bipartite graph BGðU;V; EÞ is a graph GðU [ V; EÞ where U and V
denote two sets of the two domains of vertices (nodes). ui and vj de-
note the ith and jth node in U and V, respectively, where i ¼
1; 2; . . . ;M and j ¼ 1; 2; . . . ;N. All edges of a bipartite graph are
strictly between U and V (i.e. E ¼ fðu; vÞju 2 UÞ; v 2 Vg), eij denotes
the edge between ui and vj. The features of two sets of nodes can be
denoted by Xu and Xv where Xu 2 RM�P is a feature matrix with
x
!

ui
2 RP representing the feature vector of node ui, and Xv 2

RN�Q is defined similarly.
Bipartite graph convolution only performs message passing and

node feature aggregation through interdomain edges as the intrado-
main edges are absent in bipartite graphs. For the message passing
MPv!u from domain V to U, we define a general bipartite graph
convolution (bg) as:

bgEðuiÞ ¼ q agg Wui ;vj
x
!

vj
jvj 2 N Eui

Þ
n o� �� �

; (4)

where NEui
is the neighborhood of the node ui connected by E in

BGðU;V; EÞ (i.e. NEui
� V). Note that any unipartite graph convolu-

tion defined on GðV; EÞ can be formulated as a bipartite graph con-
volution defined on BGðV;V; EÞ.

Our bipartite graph convolution layers uses GAT as the back-
bone, termed as bipartite graph attention convolution layer (bga).
As the attention mechanism considers features of two sets of nodes,
we specifically define a learnable matrix Wu 2 RP�S (resp.
Wv 2 RQ�S) for Xu (resp. Xv). The bga can be formulated as:

bgaEðuiÞ ¼ ReLU
X

vj2NEui

aui ;vj
Wvx

!
vj

 !
(5)

where the weighting coefficients can be expressed as:

aui ;vj
¼

exp q a
!T½Wux

!
ui
jjWvx

!
vj
�

� �� �
P

vk2NEui

exp q a
!T½Wux

!
ui
jjWvx

!
vk
�

� �� � (6)

4.2 Model framework
We cast drug discovery task as a link prediction problem by fusing
information from a heterogeneous network incorporating drug, dis-
ease and protein relationships. More specifically, we show that the
heterogeneous network can be represented by an undirected graph
GðV; EÞ with three sets of nodes: drugs (VD), diseases (VS) and pro-
teins (VP). The initial features of these three sets of nodes are
XVD ; XVS and XVP , respectively. E consists of three interdomain
edges including drug–disease associations (EDS), drug–protein target
relationship (EDP) and disease–protein target relationship (ESP), and
one intradomain edges of PPI network (EPP).

Our model operates directly on the graph GðV; EÞ with encoder–
decoder architecture (Fig. 2A). The encoder is a bipartite GCN
learning the embedding representations for all graph nodes. It fuses
heterogeneous information through message passing across drug,
disease and protein nodes. The decoder is a multilayer perceptron

neural network decoder using drug and disease node embeddings to
reconstruct drug–disease association matrix.

4.3 Node feature representation
We applied zero-initialization for all protein nodes and defined simi-
larity measures for initializing features for drug and disease nodes.

• Chemical-based drug similarity measure: Canonical SMILES of

the drug molecules were used from PubChem. The similarity

score between two drugs is computed based on their fingerprints

according to the two-dimensional Tanimoto score (Tanimoto,

1957).
• Graph-based disease similarity measure: We used MeSH term

(Lipscomb, 2000) as disease descriptor for constructing similar-

ity measures. Given that the structure of MeSH is a directed

acyclic graph which enables the comparison of semantic similar-

ity in the graph, we applied the graph-based method proposed by

Wang et al. (2007) to measure similarity between disease MeSH

terms.

4.4 Bipartite graph convolutional encoder
Each layer of our bipartite graph convolutional encoder consists of
three computing steps. First, we applied a single bipartite graph at-

tention convolution layer to pass the message of drugs and diseases
to target proteins simultaneously. Conceptually, we can view this
step as projecting information from macro level (e.g. information in

drugs and disease domains) to micro level (e.g. protein space). This
message passing step is formulated as follows:

MP
ðkÞ
VD!VP : h

ðkÞ1
v

p
i

¼ bgaEDP ðvp
i Þ

MP
ðkÞ
VS!VP : h

ðkÞ2
v

p
i

¼ bgaESP ðvp
i Þ

8><
>: (7)

where k indicates the layer index and h
ðkÞ
vp

i

are hidden embeddings of

nodes vp
i (when k¼0, h

ð0Þ
v

p
i

¼ xvp
i
). We concatenated the results of

two message passing processes into a unified embedding representa-

tion. Therefore, the updated embeddings of protein nodes can be
written as:

H
ðkÞ
VP ¼ H

ðkÞ1
VP jjHðkÞ2VP (8)

In the second step, to enhance domain fusion and model the rela-

tionships between drug targets and disease–gene products, we
applied a single layer GAT within our PPI network. The intuition
behind this step is that GAT can enable feature smoothing between

protein neighborhood nodes, and a drug is more likely to treat a dis-
ease if they are nearby in protein space. This layer performs intrado-

main message passing that allows information fusion in protein
space and depict complex interactions between drugs and diseases.
Therefore, protein nodes serve as a bridge of message passing within

our multirelational graph. In each layer, GAT propagates node hid-
den embeddings across edges of PPI network, which is defined as:

MP
ðkÞ
VP!VP : h

ðkÞ
vp

i

¼ bgaEPP ðvp
i Þ (9)

Finally, we utilized the nonlinear graph information captured by
protein nodes to update hidden embeddings of drug and disease

nodes. In particular, we applied another bipartite graph attention
convolution layer to project protein embeddings back to drug and

disease domains. Therefore, the third step can be viewed as an inte-
grative graph method to learn drug and disease representations
through closeness in PPI network. For those drugs and diseases that

share target proteins, this step will help to further make their fea-
tures similar. The updated feature representations of drug and dis-
ease nodes can be written as:
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MP
ðkÞ
VP!VD : h

ðkÞ
vd

i

¼ bgaEDP ðvd
i Þ

MP
ðkÞ
VP!VS : h

ðkÞ
vs

i
¼ bgaESP ðvs

i Þ

8<
: (10)

We summarize our bipartite graph convolutional encoder in
Figure 2B–D.

4.5 Multilayer perceptron neural network decoder
Our network decoder applies a multilayer perceptron to reconstruct
links in the drug–disease interaction graph. In particular, using
embeddings of drug node hvd

i
and disease node hvs

j
returned by the

encoder, we concatenated two embeddings to represent the drug–
disease pair and then fed into the decoder. In particular, decoder
scores a drug–disease pair ðvd

i ; v
s
j Þ through a three-layer MLP neural

network representing how likely it is that the drug can be indicated
for the disease:

MLPðvd
i ; v

s
j Þ ¼MLPðhvd

i
jjhvs

j
Þ (11)

Then we applied a sigmoid function r to compute probability of
edge ðvi; vjÞ :

pij ¼ r
�

MLPðvd
i ; v

s
j Þ
�

(12)

4.6 Model training
During model training, we optimized model parameters using the
cross-entropy loss in an end-to-end fashion. Followed previous stud-
ies (Mikolov et al., 2013), we trained the model through negative
sampling. Specifically, for each positive drug–disease edge ðvi; vjÞ,
we sampled a random edge ðvi; vkÞ as a negative example. This is
achieved by replacing a drug or disease node vj with node vk that is
selected randomly according to a sampling distribution Ps (Mikolov
et al., 2013). We calculated the final loss function by considering all

edges. To optimize the model, we used the Adam optimizer (Kingma
and Ba, 2015) and initialized weights as described in Glorot and
Bengio (2010). To generalize well to unobserved data, we trained
the model in a denoising setup by randomly dropping out all out-
going messages of a particular node with a fixed probability. In par-
ticular, during the message passing process in encoder, individual
outgoing messages across multirelational edges are dropped out in-
dependently, making embeddings more robust against the presence
or absence of single edges. We also apply regular dropout
(Srivastava et al., 2014) to the hidden layer units in MLP decoder.

5 Experiments

5.1 Evaluation metrics
We conduct 10-fold cross validation to evaluate the model perform-
ance. All known drug–disease associations are randomly divided
into 10 subsets with equal size. A matching number of unknown
pairs were selected as negative samples in training and testing sets
through negative sampling strategy. In each cross-validation trial,
one subset is taken in turn as the test set, whereas the remaining sub-
sets constitute the training set. We selected model hyperparameters
by performing cross validation on the training set. We measure the
prediction performance using three criteria: area under the receiver-
operating characteristic (AUROC), area under the precision–recall
curve (AUPRC) and overall accuracy, which are widely used for
drug indication prediction tasks. As the prediction performance can
vary considerably across diseases and drugs, we further report the
disease/drug-centric accuracy, which is the average of balanced ac-
curacy of all drug–disease pair subsets clustered by disease/drug
nodes. To reduce the data bias, we performed 100 independent
cross-validation runs and reported the full distribution of average
testing performance of all evaluation metrics. In addition, during
each random run, a different sampled negative set and partition of
the dataset were used. To prevent information leakage in the

Fig. 2. Overview of BiFusion model architecture. (A) The pipeline of BiFusion contains a bipartite GCN encoder and a MLP decoder. The encoder takes similarity features of

drug and disease nodes as inputs, and generates drug–disease pair embeddings by fusing heterogeneous information through message passing across drug, disease and protein

nodes. Each BiFusion layer consists of three computing steps shown in the following subfigures. BiFusion decoder takes pair embeddings to produce prediction score and recon-

struct drug–disease association matrix. (B) The first step in BiFusion layer: a single bipartite graph attention convolution layer is applied to project information from drug and

disease domains to protein domain. (C) The second step in BiFusion layer: a single layer graph attention convolution layer is applied within PPI network. (D) The third step in

BiFusion layer: another bipartite graph attention convolution layer is used to update drug and disease features based on learnt protein node embeddings
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evaluation, we ensure that only drugs and diseases seen in the train-
ing set were used to construct similarity features.

5.2 Method comparison
We compare the performance of our model against the several com-
peting approaches. Specifically, BiFusion uses a two-layer architec-
ture with 256 and 128 hidden units in each layer, and a dropout rate
of 0.1 in all experiments.

• GCN (Zitnik et al., 2018) includes encoder and decoder mod-

ules. The encoder is a conventional GCN operating on our multi-

modal graph of protein–protein, drug–protein and disease–

protein interactions. The decoder is a tensor factorization model

using node embeddings to model drug–disease associations.
• DeepWalk (Perozzi et al., 2014) learns latent node representa-

tions of our heterogeneous information network based on local

information obtained from truncated random walks. Drug–dis-

ease pairs are represented by concatenating latent drug and dis-

ease node representations. We used pair representations as inputs

to train a logistic regression classifier.
• Collective variational autoencoder (cVAE) (Chen and de Rijke,

2018; Zeng et al., 2019) simultaneously recovers drug–disease

association matrix and side information using a variational

autoencoder. Specifically, drug–disease association matrix and

drug–drug similarity matrix are encoded and decoded collect-

ively through the same inference network and generation

network.
• Sparse linear methods with side information (SSLIM) (Ning and

Karypis, 2012) learns a sparse coefficient matrix to do top-N rec-

ommendation, by leveraging both association matrix and simi-

larity matrix within a regularized optimization process.
• Network-based proximity: This approach measures relative

proximity that quantifies the network-based relationship be-

tween drugs and disease proteins in the interactome. Given the

set of disease proteins S and drug targets T, the proximity is the

closest measure d(s, t), the shortest path length between nodes s

and t in the network, which is defined dðS;TÞ ¼ 1
jjTjj
P

t2T

mins2Sdðs; tÞ. Proximity versus sensitivity and specificity curves is

used to find the optimal proximity threshold.
• BiFusion-v2 (w/o PPI): To investigate the contribution of intra-

domain message passing operation in PPI network, we imple-

mented a variant of our BiFusion model. We remove the second

step of message passing to hide PPI information in each layer of

encoder.

6 Results

6.1 Performance comparison
In Table 1, we found that BiFusion showed strong performance and
outperformed other approaches by a large margin. Especially,

BiFusion surpassed other methods without incorporating the graph
structure information (cVAE and SSLM) by up to 22.3% (AUROC),
highlighting the importance of graph-level information fusion for

drug–disease findings. We also observed that our model achieved a
gain of 8.2% (AUROC) over GCN operating on homogeneous

graph, which indicated the effectiveness of bipartite graph convolu-
tion to model multirelational network. In addition, the protein fea-
ture smoothing operation allowed BiFusion a 2.4% gain (AUROC)

over BiFusion-v2. Such finding supported that intradomain message
passing operation can encourage information fusion in PPI network

and thus enhanced the model performance on capturing complex
interactions between drugs and diseases.

6.2 Investigation of novel predictions
To validate the ability of models for predicting truly novel drug–
disease associations (i.e. for new diseases without any treatment
information), we further implemented a disjoint cross-validation

fold-generation method (disease-centric cross validation) that
ensures none of the diseases in onefold would appear in another
fold. Specifically, all disease nodes were split into 10 equal-sized

subsets during disease-centric cross validation. We clustered drug–
disease pairs by disease nodes, then recombined pair clusters based

on disease subsets resulting in 10 pair subsets. Each pair subset was
used in turn as the testing set. We also performed 100 independent
runs to report full distribution of average testing performance.

Table 1. The summary of model performance on repoDB dataset under 10-fold cross validation

Method AUROC AUPRC Overall accuracy Drug-centric accuracy Disease-centric accuracy

BiFusion 0.857 6 0.003 0.867 6 0.003 0.738 6 0.002 0.710 6 0.003 0.705 6 0.003

BiFusion-v2 (w/o PPI) 0.837 6 0.003 0.810 6 0.003 0.712 6 0.003 0.687 6 0.002 0.674 6 0.003

GCN 0.792 6 0.004 0.774 6 0.005 0.700 6 0.003 0.651 6 0.004 0.659 6 0.004

DeepWalk 0.769 6 0.003 0.764 6 0.003 0.672 6 0.003 0.617 6 0.003 0.637 6 0.003

cVAE 0.743 6 0.003 0.739 6 0.003 0.665 6 0.002 0.623 6 0.003 0.616 6 0.003

SSLIM 0.701 6 0.002 0.703 6 0.002 0.635 6 0.002 0.590 6 0.002 0.625 6 0.002

Network-based proximity 0.663 6 0.004 0.678 6 0.004 0.608 6 0.004 0.568 6 0.004 0.603 6 0.005

The best results are highlighted in bold.

Table 2. The results of novel predictions on repoDB dataset

Method AUROC AUPRC Overall accuracy Drug-centric accuracy Disease-centric accuracy

BiFusion 0.775 6 0.003 0.794 6 0.003 0.709 6 0.002 0.666 6 0.003 0.700 6 0.003

BiFusion-v2 (w/o PPI) 0.749 6 0.003 0.732 6 0.003 0.674 6 0.003 0.663 6 0.003 0.668 6 0.004

GCN 0.740 6 0.004 0.726 6 0.005 0.687 6 0.004 0.669 6 0.004 0.656 6 0.005

DeepWalk 0.712 6 0.004 0.700 6 0.004 0.663 6 0.003 0.647 6 0.003 0.655 6 0.004

cVAE 0.696 6 0.003 0.698 6 0.003 0.637 6 0.002 0.631 6 0.002 0.641 6 0.003

SSLIM 0.671 6 0.002 0.699 6 0.003 0.616 6 0.002 0.575 6 0.003 0.591 6 0.002

Network-based proximity 0.661 6 0.004 0.692 6 0.004 0.622 6 0.004 0.574 6 0.004 0.594 6 0.005
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As shown in Table 2, BiFusion achieved AUROC value of 0.775
and disease-centric accuracy value of 0.700, outperforming all base-
line methods. We observe that BiFusion surpassed two other GCN-
based methods by up to 6.7% (disease-centric accuracy), which
showed the superior performance of our model on predicting novel
drug–disease associations.

6.3 Experiments on the external dataset
To illustrate the potential generalization of our model, we per-
formed evaluation on an external dataset (Gottlieb et al., 2011).
Following the rule of collecting our primary dataset, we identified a
total of 1234 associations containing 475 drugs and 141 diseases
from the external dataset. We compared the performance of our
method with baseline approaches under the same experiment set-
tings as discussed. Table 3 showed the full distribution of average
testing performance of 100 random runs. The results illustrated that
BiFusion led best performance with AUROC value of 0.757, where-
as GCN, DeepWalk, cVAE and SSLM have 0.717, 0.649, 0.676 and
0.652, respectively. BiFusion also achieved the best result in AUPRC
with surpassing baseline methods by up to 24.5%.

6.4 Case study
We conducted a case study to further assess the quality of our mod-
el’s novel predictions by performing a literature-based evaluation of
new hits. Specifically, we applied BiFusion to predict candidate
drugs for two diseases including breast carcinoma and Parkinson’s
disease (PD). After the prediction scores of all candidate pairs are
computed, we generate a ranked list of drug–disease associations by
the predicted scores. We then identified novel associations by
excluding all the known drug–disease associations from the primary
dataset. Table 4 shows candidate drugs with evidences.

• Breast carcinoma: Among the top five predicted drugs in the

rank list, four drugs (80% success rate) were validated by various

literature evidences. Arsenic trioxide was predicted by BiFusion

to be associated with breast carcinoma, which is supported by re-

cent reports. For example Zhang et al. (2016) showed arsenic tri-

oxide suppresses cell growth and migration via inhibition of

miR-27a in breast cancer cells. Shi et al. (2017) found that ar-

senic trioxide suppressed cell growth, stimulated apoptosis and

retarded cell invasion partly via upregulation of let-7a in breast

cancer cells. Clofarabine (CIF) is also one of the top predicted

candidates for treating breast carcinoma. Lubecka-Pietruszewska

et al. (2014) provided the first evidence of CIF implications in

epigenetic regulation of transcriptional activity of selected tumor

suppressor genes in breast cancer. Lubecka et al. (2018) demon-

strated the ability of ClF-based combinations with polyphenols

to promote cancer cell death and reactivate DNA methylation-

silenced tumor suppressor genes in breast cancer cells. In

addition, BiFusion found that Cimetidine and Thiamine were

associated with breast cancer, which was supported by several

evidences (Boueuf et al., 2003; Liu et al., 2018).
• Parkinson’s disease: PD is a neurodegenerative disease currently

without efficacious treatments available yet. Among top 10 pre-

dicted candidates, we found 5 drugs were validated by literature.

For example dextromethorphan is the top predicted candidate.

Despite approval by the FDA for pseudobulbar affect based on

studies of patients with amyotrophic lateral sclerosis or multiple

sclerosis, Fox et al. (2017) and Fralick et al. (2019) provided evi-

dence of clinical benefit with dextromethorphan–quinidine for

treating PD. Atomoxetine was also predicted by our model to be

associated with PD. Such prediction can be supported by a previ-

ous study (Ye et al., 2015), indicating that atomoxetine can

enhanced prefrontal cortical activation and frontostriatal con-

nectivity and may improve response inhibition in PD. The results

of Rae et al. (2016) also suggested that atomoxetine restores the

response inhibition network in PD.

6.5 The effect of layer numbers on model performance
To investigate the effect of layer numbers on model performance,
we compared results with different number of layers in BiFusion on
the repoDB dataset. We performed 100 independent cross-
validation runs and reported the mean value of AUROC and
AUPRC. Figure 3 showed the model performance along with the in-
crease of layer numbers. We observed that one layer has the lowest
performance, suggesting that a shallow bipartite GCN cannot suffi-
ciently propagate the node feature to fuse heterogeneous informa-
tion, especially for the complex drug–protein–disease network.

Table 3. The summary of model performance on external dataset

Method AUROC AUPRC Overall accuracy Drug-centric accuracy Disease-centric accuracy

BiFusion 0.757 6 0.005 0.721 6 0.004 0.671 6 0.004 0.675 6 0.004 0.653 6 0.004

BiFusion-v2 (w/o PPI) 0.722 6 0.005 0.677 6 0.005 0.675 6 0.005 0.670 6 0.004 0.636 6 0.005

GCN 0.717 6 0.004 0.676 6 0.004 0.664 6 0.003 0.667 6 0.003 0.624 6 0.004

DeepWalk 0.649 6 0.003 0.628 6 0.003 0.611 6 0.003 0.604 6 0.003 0.572 6 0.003

cVAE 0.676 6 0.006 0.653 6 0.005 0.637 6 0.005 0.629 6 0.006 0.639 6 0.006

SSLIM 0.652 6 0.003 0.607 6 0.003 0.602 6 0.002 0.614 6 0.003 0.625 6 0.003

Network-based proximity 0.610 6 0.003 0.579 6 0.002 0.573 6 0.003 0.566 6 0.002 0.563 6 0.003

Table 4. New candidate drugs ranked by prediction scores by BiFusion for breast carcinoma and Parkinson’s disease

Diseases Rank Candidate drugs Evidences

Breast carcinoma 1 Clofarabine Lubecka-Pietruszewska et al. (2014) and Lubecka et al. (2018)

3 Cimetidine Boueuf et al. (2003)

4 Thiamine Liu et al. (2018)

5 Arsenic trioxide Zhang et al. (2016) and Shi et al. (2017)

Parkinson disease 1 Dextromethorphan Fox et al. (2017) and Fralick et al. (2019)

2 Solifenacin Zesiewicz et al. (2015)

4 Atomoxetine Warner et al. (2018), Rae et al. (2016) and Ye et al. (2015)

7 Venlafaxine Broen et al. (2016)

8 Tapentadol Vaz et al. (2020)
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Meanwhile, we found that BiFusion achieved significant improve-
ment with two layers’ structure. But with more than two layers, the
model performance tends to decrease. This finding may be explained
that GCN model is viewed as a special form of Laplacian smoothing
that over-smoothing occurs with too many convolutional layers (Li
et al., 2018). Thus, if BiFusion’s layers are going too deep, the out-
put embedding features can be over-smoothed and less differentiated
from different classes.

7 Conclusion

In this study, we presented a novel bipartite GCNs toward heteroge-
neous information fusion for computational DR. Our BiFusion
model achieved information fusion via an important interdomain
message passing across drug-, disease- and protein-level informa-
tion. Extensive experiments have demonstrated that our model
achieves strong performance on the task of DR. In addition, we ex-
ternally validated results that have confirmed the potential general-
ization of our approach for DR. Case study offers concrete
examples that reaffirmed medical usefulness of our approach. In the
future work, we plan to assess model performance by exploring scal-
able cohorts with clinically validated associations between drugs
and diseases. As our approach supports multilevel biological infor-
mation fusion, additional pharmaceutical information such as drug
side effects information can be also considered to improve our net-
work analysis.
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