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MOTIVATION A gold standard for statistical power and generalizability of microbiome research is to
analyze large datasets representing heterogeneous populations, which can be accomplished by combining
data from multiple studies. For 16S rRNA gene variable region amplicon-based microbiome studies, hun-
dreds of thousands of already sequenced specimens are available from public repositories offering an op-
portunity to achieve this gold standard, but the use of these data is hampered by formidable technical chal-
lenges when combining data from technically diverse studies. To overcome these challenges, we
developed phylotypes: a taxonomy-independent, stable compositional feature that is generalizable across
technically diverse microbiome studies.
SUMMARY
For studies using microbiome data, the ability to robustly combine data from technically and biologically
distinct microbiome studies is a crucial means of supporting more robust and clinically relevant inferences.
Formidable technical challenges arise when attempting to combine data from technically diverse 16S rRNA
gene variable region amplicon sequencing (16S) studies. Closed operational taxonomic units and taxonomy
are criticized as being heavily dependent upon reference sets and with limited precision relative to the under-
lying biology. Phylogenetic placement has been demonstrated to be a promising taxonomy-free manner of
harmonizing microbiome data, but it has lacked a validated count-based feature suitable for use in machine
learning and association studies. Here we introduce a phylogenetic-placement-based, taxonomy-indepen-
dent, compositional feature of microbiota: phylotypes. Phylotypes were predictive of clinical outcomes
such as obesity or pre-term birth on technically diverse independent validation sets harmonized post hoc.
Thus, phylotypes enable the rigorous cross-validation of 16S-based clinical prognostic models and associa-
tive microbiome studies.
INTRODUCTION

With the development of high-throughput sequencing, a myriad

of studies have associated the human microbiome (the collec-

tion of microbes that live within and upon us) with health and dis-

ease.1–6 As of 2023, at least 2,000 BioProjects in the NCBI

sequence read archive (SRA) contain human microbiome data

spanning over 150,000 individual specimens. Owing to chal-

lenges with recruiting and retention, microbiome studies are
Cell Repo
This is an open access article und
often conducted at a single center and with limited numbers of

participants. A complication has arisen as a result: studies of

how the microbiome relates to the same biological process

frequently report different microbe-disease associations.7 For

example, multiple studies have associated the human gut micro-

biome with the efficacy of immune checkpoint inhibitor therapy,

with each study finding a different set of bacterial species that

associate with a response.8–12 A similar challenge has arisen

with the vaginal microbiome adverse pregnancy outcomes
rts Methods 3, 100639, November 20, 2023 ª 2023 The Authors. 1
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such as recurrent pregnancy loss and pre-term birth.13 This has

limited the translation of microbiome science to clinical practice.

The inconsistency of smaller single-center studies is not a unique

problem for microbiome studies; similar challenges exist for

studies associating with transcription, genetics, and epige-

netics. With those ’omics studies, meta-analysis by combining

raw data at the sequence or feature level can overcome the chal-

lenges of small and single-center studies.14 However, a funda-

mental technical challenge has hampered the combination of

microbiome studies, particularly those that target the 16S

rRNA gene.6

The dominant technique (at least historically) in microbiome

science has been amplicon sequencing of a hypervariable region

of a taxonomically informative gene such as the 16S rRNA gene.

There are nine hypervariable regions in the 16S rRNA gene, each

of a size suitable for current high-throughput sequencing plat-

forms. The 16S meta-analysis challenge arises when studies

target different variable regions, or even the same variable re-

gions but with differences in the PCR primers, PCR conditions,

sequencing library preparation, and the sequencer itself. These

technical differences result in the same underlying allele being

reported as a different amplicon sequence variant (ASV) and

thus not able to be directly combined and compared. This results

in specimen-ASV-countmatrices from technically diverse studies

having little or no overlap. Thus, some harmonization must occur

to convert observations of individual sequences or inferred

sequences (i.e., ASVs) into a set of compositional features (e.g.,

specimen-feature-count) that are comparable across studies.

Specifically formachine learning (ML)/artificial intelligence (AI) ap-

proaches a count matrix such as these are a key input, comple-

mentary to other inputs such as estimated alpha diversity and

pairwise distance between communities.

Several approaches have emerged for binning reads, generally

relying upon someoutside reference database. The dominant ap-

proaches include closed reference operational taxonomic units

(cOTU) and projection to taxonomy (e.g., quantifying each family

of microbes present). In cOTU generation each experimentally

derived amplicon sequence is aligned against a reference data-

base of full-length 16S sequences.15 This technique is highly

dependent on how well matched the reference is to the microbial

communities being studied. Amplicon sequences without a good

matching reference end up lost in this approach. Likewise, some

amplicon sequences can have multiple nearly identically scored

alignments to reference sequences, particularly when a very

broad reference set is used. Adjudicating those nearly identically

scoring alignments is a difficult challenge and can lead to se-

quences from the same underlying true 16S rRNA allele being

assigned randomly (and thus ambiguously) to different reference

sequences, or being lost. Annotation of 16S rRNA gene variable

region sequence variants with taxonomy, followed by grouping

read counts at a selected (often family or higher) taxonomic level,

is a common tactic (e.g., Pinart et al.,16,17 Chen et al.16,17). Taxo-

nomic assignments to variable region amplicon sequences are

limited by the generally poor reliability of taxonomic assignments

atmore granular ranks (e.g., species or strain), if reasonable down

to genus level.18,19

Phylogenetic placement has been previously demonstrated

as an effective approach for estimating the relationship (pair-
2 Cell Reports Methods 3, 100639, November 20, 2023
wise distance) between microbial communities even from

technically diverse studies.20 Phylogenetic placement methods

for ASVs ‘‘place’’ sequences onto an existing phylogenetic

tree,21 thereby mapping sequence observations onto tree-

derived features such as specific edges of the tree graph.

These methods have a number of advantages. Robust

methods are available for accommodating and expressing

uncertainty deriving from sequence variation.22 The feature hi-

erarchy is derived explicitly from relevant sequence data, in

contrast to a taxonomy, which may either be discordant with

sequence-based relationships or define categories that are

indistinguishable using available sequence data. As noted

above, phylogenetic placement is an effective means of esti-

mating the pairwise distance between communities from

independent and technically diverse studies. Taxonomy-inde-

pendent compositional features (suitable for generation of a

specimen-feature-count matrix) have been derived from indi-

vidual studies via phylogenetic placement23 but have not

been thoroughly validated as a means of generating composi-

tional features generalizable across technically diverse

studies, nor for harmonization of new data into an existing

set of compositional features.

Here, we present an advancement in the technical implemen-

tation of phylogenetic placement for harmonizing 16S rRNA

gene-based microbiome studies, hypothesizing that granular

bins of ASVs could be defined via phylogenetic placement

even when the amplicons are generated from primers targeting

distinct variable regions and employing different sequencing

platforms. We demonstrate a technique that bins ASVs into

phylogenetically related groups of sequences after placement

onto a common phylogenetic tree of full-length, non-clustered,

16S rRNA alleles to generate taxonomy-independent ‘‘phylo-

type’’ counts that are finer grained in specificity than species

while remaining broadly represented across studies. Further,

the technique can successfully integrate ASVs post hoc into an

existing set of phylotypes, as is required for validation or clinical

deployment of predictive models. With this approach we have

scaled up to tens of thousands of specimens across various

body sites and clinical domains on routinely available computa-

tional resources, which has allowed robust applications of asso-

ciation analysis, clustering, and predictive modeling to the data.

This technique is available as a portable and reproducible

containerized Nextflow workflow (MaLiAmPi; https://github.

com/jgolob/maliampi) immediately applicable to meta-analysis

of 16S rRNA gene-based microbiome studies as well as clinical

translation of extant studies.

RESULTS

Binning of 16S rRNA gene variable region amplicon
sequence variants via phylogenetic distance
Our objectivewas to develop a set of taxonomy-independent fea-

tures that generalize across 16S rRNA gene-based microbiome

studies employing different techniques targeting distinct and

non-overlapping variable regions of the 16S rRNA gene (Fig-

ure 1A) and accurately represent the composition of a microbial

community (Figure 1B). Further, this feature set should be able

to accommodate new data from future studies (Figure 1C) or

https://github.com/jgolob/maliampi
https://github.com/jgolob/maliampi
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clinical patient specimens post hoc, as would be required for vali-

dation and practical use of ML or associative studies (Figure 1D).

We considered whether 16S rRNA ASVs from the same under-

lying 16S rRNA allele but amplified with PCR primers targeting

different (non-overlapping) variable regions of the gene would

be phylogenetically placed in close proximity. Using in silico

PCR and employing commonly used 16S rRNA gene variable re-

gion primers, we generated ASVs from 100 synthetic human gut-

like microbial communities24 and then phylogenetically placed

these ASVs back onto a de novo phylogenetic tree comprising

full-length and non-clustered 16S rRNA alleles selected to repre-

sent the set of ASVs. As expected, ASVs from the same 16S

rRNA allele were placed into the same subpendant of the phylo-

genetic tree that contained the source allele, often at very short

phylogenetic distances from one another, with an example de-

picted in Figure 1E. Thus, we next focused on binning ASVs by

their phylogenetic distance after placement.

The number of ASVs generated from a single microbiome

study, let alone ASVs assembled from multiple studies of similar

sites targeting different variable regions, can reach into the hun-

dreds of thousands to millions, making an O(n2) exhaustive

calculation of pairwise phylogenetic distances between ASVs

for binning computationally impractical. To address this issue

of tractability we developed a divide-and-conquer approach

(Figure 1F), first pre-grouping ASVs which have at least one

shared node or tip with a likelihood of placement, then

combining these pre-groups whose lowest common ancestors

were closer together in phylogenetic distance than the specified

clustering distance.We only exhaustively calculated the pairwise

distances within these groups, then used the pairwise phyloge-

netic distances to bin ASVs. We consider these phylogenetically

binned ASVs to be a set of ‘‘phylotypes.’’25

Phylogenetic tree selection
Most prior efforts to use phylogenetic placement for harmoniza-

tion of data across studies have used a modified and branch-

length optimized version of the Greengenes phylogeny of 16S

rRNA alleles clustered at 99% identity,20,23 specifically version

13.5 that has undergone branch optimization and generalized

time reversible rate estimation via RAxMLv8 and modification

to be suitable for use in the SEPP placement engine.26 Moti-

vated by the observation that for genetically diverse clades of
Figure 1. An overview of the challenge of combining data from technic

approach

(A) Primers targeting four different regions of the 16S rRNA gene, V1-V2, V4, V3-V

gene.

(B) Depiction of conversion of raw 16S rRNA variable region targeting microbiom

(C) Depiction of post hoc integration of additional 16S rRNA gene variable region

(D) Depiction of the uses of specimen-phylotype-count matrices for predictive m

(E) A subclade of the phylogenetic tree of full-length 16S rRNA alleles with place

genetic distance; the entire subclade is 0.13 phylogenetic distance deep. Leave

bracketed numbers. Amplicon sequenceswere generated from the same 16S rRN

largely non-overlapping sequences (as in A), phylogenetically placed on the tree, w

non-underlined indicating no likelihood, and increasing saturation of red indicating

all phylogenetically place to the same small subclade of the phylogenetic tree tha

entirely be placed on the true allele. The lowest common ancestor ({3019}) for al

(F) Depiction of the divide-and-conquer approach for binning of ASVs phylogene

phylogenetic distance.
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physiologically relevant microbes such as Prevotella27 or Gard-

nerella28 where single-nucleotide polymorphisms (SNPs) in 16S

variable regions (lost when clustering at 99% identity) can corre-

spond to functional differences significant to the ultimate host-

microbe interaction, we compared placement on the Green-

genes phylogeny to placement on a de novo phylogenetic tree

more tailored to the observed ASVs from the studies to be

harmonized. For these de novo phylogenetic trees, the tips

were composed of full-length (>1,200 bp), high-quality (no

more than 1% ambiguous bases) 16S rRNA alleles drawn

from NCBI’s NT database which were dereplicated at 100%

identity, with an objective of recruiting approximately 10 alleles

per ASV. Owing to overlapping matching alleles, this can be

satisfied with the order of 10,000 total alleles for typical collec-

tions of host-associated microbiota.

To establish the effect of phylogenetic tree selection on phylo-

type generation, we compared performance of the off-the-shelf

Greengenes 13.5 tree (themost recent available version compat-

ible with placement via SEPP) to ASV-tailored de novo phyloge-

netic trees (via RaXMLv8 with a GTRGAMMAmodel) on a collec-

tion of in silico human-gut-like microbiota18 amplified with in

silico PCR with five distinct commonly used variable region tar-

geting primer sets and real-world data from six technically

diverse studies of the human gut and three of the human vaginal

microbiome (Table S1). The Greengenes 13.5 phylogenetic tree

(modified to be suitable for phylogenetic placement in SEPP)

has 208,500 tips, whereas the de novo phylogenetic trees had

4,644 and 15,331 tips to represent the in silico and combined hu-

man gut and vaginal ASVs, respectively. The typical tip-to-root

depth of the Greengenes phylogenetic tree was shorter than

the ASV-tailored de novo RAxMLv8 trees, as expected given

the very different models and approaches used to generate the

trees and the lack of clustering of the underlying sequences for

the de novo trees (Figure 2A).

We next placed the ASVs onto the trees, using SEPP for the

Greengenes phylogeny and pplacer for the tailored de novo

trees. We then used the resultant placements to bin the ASVs

into phylotypes at a range of phylogenetic distances based on

the observed typical root-to-tip distances: from 1 to 0.001. We

focused our attention on the in silico reads, for which we know

the ‘‘true’’ source allele of every amplicon. Using this knowledge,

we were able to determine the number of alleles-per-phylotype
ally diverse microbiome studies, including the rationale and overall

5, and V6-V9, have largely non-overlapping positions within the full 16S rRNA

e studies into one cohesive specimen-phylotype-count matrix.

amplicon data into an existing set of phylotype features.

odeling, association and regression, and clustering.

ment of one amplicon sequence variant (ASV). Distance bar below for phylo-

s of the tree are annotated by the reference sequence and internal nodes by

A allele with primers targeting different variable regions, and thus of distinct and

ith leaves or nodes with likelihood for the given amplicon underlined, gray and

higher relative likelihood. Despite each ASV having a different sequence, they

t contains the true source allele. The V6-V9 ASV contains sufficient entropy to

l placed nodes or leaves is at a phylogenetic depth of 0.01.

tically placed onto a common phylogenetic tree into phylotypes defined by a
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Figure 2. A comparison of phylotypes from the off-the-shelf Greengenes versus custom-tailored de novo phylogenetic tree reveals superior

performance of the tailored de novo tree

(A) Tip-to-root distances for the Greengenes 13.5 tree (top), and de novo phylogenetic trees generated for ASVs from the in silico (middle) or collection of human

vaginal and gut microbiota (bottom), with the de novo trees comprising tips of full-length non-clustered 16S rRNA SSU alleles. Depicted as a histogram, with the

x axis the tip-to-root distance and the y axis the count of tips in that bin of distances.

(B) Scatterplot of themean 16S rRNA SSUgene alleles-per-phylotype (x axis) versus phylotypes-per-allele (y axis) of phylotypes generated after placement on the

Greengenes 13.5 phylogeny (green) or de novo ‘‘tailored’’ phylogenetic tree (blue) at various binning distances (as labeled next to data points). The ideal outcome

is marked as a black square, at one allele per phylotype and one phylotype per allele.

(C) Relationship between computational wall time in hours and phylogenetic distance of binning on 87,477 ASVs from six different studies of the human gut

microbiome and three of the human vaginal microbiome after placement on two different trees (a tailored tree via MaLiAmPi in navy blue, same as in A;

Greengenes 13.5 in green). Testing was conducted on an AMD 5900X CPU, Python 3.10.12 and with Taichi version 1.6.0, llvm 15.0.4. Phylotyping of the

Greengenes 13.5 tree at a distance of 0.5 took over 48 h and is not depicted.

(D) Computational wall time in hours broken down by the four major steps for phylotyping: loading the placement file, pre-grouping, grouping, and phylotyping.

This was for the handling of 87,477 ASVs from six different studies of the human gut microbiome and three of the human vaginal microbiome after placement on

two different trees (a tailored tree via MaLiAmPi, same as in A; Greengenes 13.5) at phylogenetic binning distances of 0.01, 0.05, 0.1, and 0.5. Testing was

conducted on an AMD 5900X CPU, Python 3.10.12 and with Taichi version 1.6.0, llvm 15.0.4. Phylotyping of the Greengenes 13.5 tree at a distance of 0.5 took

over 48 h and is not depicted.
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bin (i.e., if there was lumping of different alleles into the same bin)

and the phylotype bins per allele (i.e., if there was splitting of

ASVs from one allele into multiple phylotype bins) at this range

of phylogenetic distances on both trees. An ideal performance

would be a 1:1 correspondence between true source allele and

phylotype (i.e., neither splitting nor lumping, with one allele per

phylotype and one phylotype per allele). As can be seen in Fig-

ure 2B, the tailored de novo tree binned at a phylogenetic dis-

tance of 0.5 or 0.1 came very close to this ideal and closer to

any distance for the Greengenes 13.5 tree. Further, the tailored

tree demonstrated less sensitivity to the distance parameter

with respect to these performance metrics—a desirable charac-

teristic when working with real data (for which we do not know

the true origin of each amplicon sequence).

We then established how tree selection and the phylogenetic

distance parameter affected memory usage and computational

time. Here, we used the placement of 87,477 ASVs from six

studies of the human gut and three of the human vagina

(Table S1) onto either a custom-tailored tree (as evaluated in

Figure 2A for tip-to-root lengths) or the Greengenes 13.5 phylo-

genetic tree at a range of phylogenetic distances (0.01, 0.05,
0.1, and 0.5). Memory usage scaled largely with the tree size,

on the order of a gigabyte of RAM for both trees. Total and sub-

component (tree loading, pre-grouping, grouping, and phylo-

typing) wall time for computation were determined on an

AMD Ryzen CPU (5900X) hosted by Python 3.10.12 and with

Taichi version 1.6.0, llvm 15.0.4. As expected, computational

wall time had the strongest relationship with the phylogenetic

distance selected for binning, with lower values having shorter

computational times (Figure 2C); this is due to group sizes be-

ing determined by the threshold distance and smaller groups

needing fewer pairwise distance determinations. Comparing

between trees, the Greengenes 13.5 tree took longer to pre-

group and group on (Figure 2D), perhaps reflecting the larger

tree requiring additional effort to subset down to the most rele-

vant subclades. Ultimately phylotyping performance was more

affected by the phylogenetic distance of clustering than the

specific tree selected, with sufficient performance on modest

hardware to handle very large sets of ASVs placed onto large

trees.

Ultimately, the underlying approach for phylotype generation

(as in Figure 1F) is agnostic to the specific placement engine
Cell Reports Methods 3, 100639, November 20, 2023 5
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used (e.g., pplacer, epa-ng, or SEPP) and the tree onto which

placement is occurring, with the tool able to accommodate

ASVs placed onto de novo trees from RAxMLv8, RAxML-ng, or

the Greengenes off-the-shelf phylogeny. This allows users to

use whichever tree they feel is best for their specific collection

of studies. Given these results demonstrating amoderate advan-

tage in both parameter sensitivity and overall performance with

the tailored de novo trees, we proceededwith our de novo phylo-

genetic trees tailored for the ASVs to be harmonized in subse-

quent studies.

Phylogenetic-placement-derived phylotypes are
generalizable across studies at a finer resolution than
species-level taxonomy
The approach of binning ASVs into phylotypes results in a hyper-

parameter that needs to be selected: phylogenetic distance for

clustering. Sequence variants at less than this distance apart

will be clustered together to form phylotypes. We established a

range of phylogenetic distances (0.1, 0.5, and 1.0) for evaluation,

derived from our initial explorations of the typical phylogenetic

distance between the placement of ASVs from the same

underlying allele (an example depicted in Figure 1E) and when

comparing phylogenetic trees (Figure 2B). We applied the phylo-

genetic placement before binning approach on in silico ampli-

cons from 100 human-gut-like communities, as used previously

in Golob et al.,18 and amplicons from nine real-world studies of

human microbiota (six gut and three vaginal) (Table S1). A refer-

ence package was generated for each respectively. For the

in silico data, we compared the same set of 100 communities

when amplified in silico with primers typically used in 16S

rRNA studies. We considered both granularity (how many fea-

tures that can be derived from a set of specimens) and accuracy

(how well these features can represent the ‘‘true’’ underlying mi-

crobial communities).

For the in silico communities, we know the original allele for

every amplicon and thus can directly establish both the number

of ‘‘true’’ features and the ‘‘true’’ relationships between commu-

nities. Rarefaction curves were generated from the source alleles

and amplicons generated using primers and read depths typi-

cally used in human associated microbiota studies (Figure 3A).

Consistently, regardless of primers and sequencing technique

simulated, phylotypes at a distance of 0.1 were more granular

than species-level taxonomy, with phylotypes at 0.5 distance

comparable to genus-level grouping.

We then calculated Bray-Curtis pairwise distances between

communities based on pseudo-counts (normalized to 10,000

readsper specimen), including the samecommunities sequenced

with six distinct techniques (five different PCR primers and the

full-length alleles). Ideally, the distance between the same com-

munity but with a different approach would be zero. We used

ANOSIM29 to correlate these pairwise distances to the source

community across the six distinct techniques (ideally perfectly

correlated at 1) or of the same community but with different

primers (ideally not correlated, or zero). Phylogenetic placement,

whether as species counts or phylotype counts binned at 0.1

distance, were able to retain the best correlation with the commu-

nity while minimizing the residual correlation with the primer used

to amplify (Figure 3B). Uniform manifold approximation and pro-
6 Cell Reports Methods 3, 100639, November 20, 2023
jection (UMAP) ordination based on Bray-Curtis distance of

pseudo-counts (normalized to 10,000 reads per specimen) of

five randomly selected in silico communities (Figure 3C) revealed

clustering almost entirely by technique rather than source for

dereplicated ASV or cOTU (as expected), and significant lingering

overlap between communities with species-level taxonomy.

In contrast, phylotype-count-based ordination (binned at a dis-

tance of 0.1) cleanly separates by source community into tight

groups.

Real-world human vaginal and gut microbiota data rarefaction

curves demonstrated that phylotypes at 0.1 distance are more

granular than species-level taxonomy across a broad swath of

approaches and studies (Figure 3D). Again, we calculated

Bray-Curtis distances between the real-world specimens using

pseudo-counts (normalized to 10,000 reads). We used

ANOSIM to establish the relative strength of ‘‘signal’’ (correlation

with body site) to ‘‘noise’’ (correlation with project within the

same body site) (Figure 3E). The correlation with body site was

the strongest via phylogenetic placement either as species or

phylotype counts, much as it was for the in silico data, with the

phylotype counts marginally superior. Correlation to project

was almost entirely removed with species or phylotype counts

for the three vaginal microbiome studies. A more interesting

pattern emerged for the six gut studies, with phylotype counts

having a moderate correlation with the project, perhaps reflect-

ing that the six studies are similar but not biologically identical,

and those subtle biological differences are better retained with

the phylotype counts. UMAP ordination based on Bray-Curtis

distance of feature pseudo-counts revealed the cleanest separa-

tion between specimens fromdifferent body sites with species or

phylotype counts (Figure 3F).

Together, this indicates that phylotypes binned at a distance

of 0.1 retain an ability to accurately represent the microbes in a

community, are more granular than species, and are generaliz-

able across a broad swath of simulated 16S rRNA amplifica-

tion and sequencing approaches both in silico and with real-

world data.

Phylotype counts are biologically meaningful features
for pairwise distance estimation, ordination, and
clustering of specimens
We next focused on the six studies of the ‘‘healthy’’ human gut

we were able to separate from vaginal communities (see

above). Each has a slightly different definition of healthy and

distinct techniques. We built off the prior Bray-Curtis ordination

based on phylotype pseudo-counts (normalized to a total of

10,000 reads per specimen) from phylotypes binned at 0.5

and 0.1 phylogenetic distance. At 0.5 phylogenetic distance,

the communities cluster into two distinct groups (Figure 4A)

represented across all six studies (Figure 4B) in roughly equal

proportions (Figure 4C). At 0.1 phylogenetic distance, the spec-

imens cluster into three distinct groups (Figure 4D). The repre-

sentation (Figure 4E) and proportions (Figure 4F) here do vary

across studies, with four of the six studies dominated by spec-

imens in clusters 1 and 3, and two studies with specimens in

clusters 1 and 2. Notably, all three clusters are represented in

multiple studies (gB, gC, and gE) in a manner that does not

clearly track with the variable regions targeted by each study,



Figure 3. A comparison of phylotypes to taxonomy and closed operational taxonomic units

(A) Rarefaction curves of alleles and amplicons derived in silico from simulated human gut-like microbial communities. The x axis is number of reads observed,

and the y axis is the number of unique features recovered. Gray: raw features, representing the ‘‘true’’ amount of features before clustering, binning, or grouping;

green: phylotypes binned at 0.1, 0.5, and 1.0 phylogenetic distance (from darkest to lightest); blue: taxons at species, genus, or family level (from darkest to

lightest).

(B) ANOSIM regression of pairwise distance versus the ‘‘true’’ source (ideal coefficient 1), or primer used for in silico PCR (ideal regression coefficient of 0).

(C) Ordination plots generated by UMAP from pairwise Bray-Curtis distance between five simulated human gut-like microbial communities, PCR amplified

in silico targeting five distinct variable regions (as in Figure 1A) and the full-length alleles, with a different color for each primer (as labeled in the upper left panel)

and a different marker for each of the five source communities (as numbered in the lower panels). The raw features were then clustered by dereplication, closed

operational taxonomic unit generation (cOTU), taxonomy (species level via cOTU), or phylotypes binned at 0.1 distance.

(D) Rarefaction curves of real-world 16S rRNA variable region amplicon data from three studies of the human vagina during pregnancy and six studies of the

human gut in health. The x axis is number of reads observed and the y axis the number of unique features recovered. Gray: raw features before any attempt at

clustering or binning; green: phylotypes binned at 0.1, 0.5, and 1.0 phylogenetic distance (from darkest to lightest); blue: taxons at species, genus, or family level

(from darkest to lightest).

(E) ANOSIM regression coefficients with 95% confidence intervals determined by bootstrapping. Real data were regressed against the body site from which the

specimen was obtained (ideal coefficient would be 1) or source project stratified by body site (ideal coefficient of zero).

(F) Bray-Curtis pairwise distance based UMAP ordination of real data from three studies of the human vaginal microbiome during pregnancy and six studies of the

‘‘healthy’’ human gut. Vaginal studies (vC, vD, and vG) are in orange; gut studies (gA, gB, gC, gD, gE, and gF) are in purple-blue.
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indicating that these differences are more likely to be biological

rather than technical, revealed by the finer disambiguation be-

tween organisms at a distance of 0.1 compared to 0.5. This is

further supported by cluster 1 being largely overlapping when

comparing specimens between 0.1 and 0.5 phylotypes, with

cluster 2 at 0.5 distance split into clusters 2 and 3 at 0.1

(Figure 4G).
Phylotype counts can be biologically meaningful and
stable features for regression and machine learning
Next, we integrated post hoc two independent studies of the

human gut related to body mass index (BMI) into the already

established phylotype sets binned at 0.5 (Figure 5A) and 0.1

(Figure 5B) phylogenetic distance and noted that the speci-

mens from these studies neatly fell into the ordination and
Cell Reports Methods 3, 100639, November 20, 2023 7



Figure 4. UMAP ordination based on pairwise Bray-Curtis distance of specimens from six independent studies of the healthy human gut

clustered by k-means clustering

(A) Ordination and two distinct clusters based on phylotype counts when binned at 0.5 phylogenetic distance.

(B) Clusters are represented in all six studies in roughly equal proportions.

(C) Ordination and three distinct clusters based on phylotype counts when binned at 0.1.

(D) Phylogenetic distance.

(E) Clusters are represented in multiple studies.

(F) Cluster 1 is represented in roughly equal proportion across all six studies, with cluster 2 or 3 predominant in distinct subsets.

(G) Cluster 1 from phylotypes at 0.5 phylogenetic distance corresponds to cluster 1 from phylotypes binned at 0.1 phylogenetic distance.
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clustering scheme previously established. One study (SRA:

PRJEB4203) had participants with BMI >30, and the other

(SRA: PRJEB47555) was a study of ‘‘lean’’ individuals all with

a BMI <30. Over 99% of the reads from these studies could

be assigned to a phylotype previously generated. Cluster 1,

from phylotypes binned at 0.5 (Figure 5C) or 0.1 (Figure 5D)

phylogenetic distance, were enriched with specimens associ-

ated with BMI >30 (Figure 5E).

We next completed a beta-binomial regression30 of phylo-

types or species counts versus BMI and noted a roughly similar

pattern of correlation (Figure 5F). Delving into the top ten features

within each set that are positively (Table 1) or negatively (Table 2)

correlatedwith BMI, we noted some overlap and one substantive

consistency. Thirteen of the top 20 positively associated species

had a related phylotype also positively associated with BMI (Ta-

ble 1), and ten of the top 20 negatively correlated species also

had a phylotype negatively associated with BMI (Table 2). The

full regression results are available as a supplement for species

(Table S2), phylotypes binned at 0.5 (Table S3), and phylotypes

binned at 0.1 (Table S4).
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We noted an interesting pattern in a highly prevalent species

within the human gut, Faecalibacterium prausnitzii (Fp), where

the species was represented by multiple distinct phylotypes

which had opposing consistent associations with BMI (Fig-

ure 5G). When binned at 0.5 phylogenetic distance, Fp is repre-

sented by four phylotypes (found across both studies); binned at

0.1 distance, Fp is represented by nine phylotypes. In contrast to

the Fp species count (which was not correlated with BMI), phy-

lotypes at both binning distances were mixed in their association

with BMI (Figure 5G). For example, of the four Fp phylotypes at

0.5 binning, one was strongly positively correlated with BMI

and another strongly negatively correlated, indicative of Fp sub-

species variation relating to BMI in a manner only observable by

16S with the granularity provided by phylotypes.

Finally, a random forest regressor was trained on phylotype

counts (binned at both 0.5 and 0.1 phylogenetic distance)

and phylotype-based clusters from 70% of the specimens on

SRA: PRJEB47555 and on hyperparameters tuned using the re-

maining 30% of specimens from SRA: PRJEB47555, and vali-

dated on specimens from SRA: PRJEB4203. The resultant
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Figure 5. Post hoc integration of gut microbiome studies into an existing phylotype set, ordination, and clusters

(A and B) Two independent studies relating body mass index (BMI) and the gut microbiome were harmonized into the existing set of phylotypes and derived

UMAP ordination and k-means clusters from phylotypes binned at 0.5 (A) and 0.1 (B) distance.

(C and D) SRA: PRJEB4203 BMI stratified by cluster membership based on phylotypes at 0.5 (C) or 0.1 (D) distance.

(E) SRA: PRJEB4203 specimens stratified by BMI category, with those with BMI >30 enriched in cluster 1 derived from phylotypes at 0.5 or 0.1 binning distance.

(F) Volcano plots of beta-binomial regression of phylotype or species counts versus BMI of specimens from both SRA: PRJEB4203 and SRA: PRJEB47555.

(G) A focus on regression results of the species Faecalibacterium prausnitzii (Fp) and phylotypes (PT) most likely representing Fp subspecies. The left panel shows

the regression coefficients relative to BMI with 95% confidence intervals on the x axis being the regression coefficient with BMI. The 95% confidence interval of

the regression coefficient is depicted. The right panel is a heatmap of mean relative abundance of each feature stratified by BMI after log10 transformation. Values

are the log10 order of magnitude. ‘‘NO’’ specifies that this feature was not observed in specimens with this BMI.

(H) Random forest regression based on phylotype counts (from binning at both 0.1 and 0.5) and assigned clusters on training and test subsets of SRA:

PRJEB47555 as well as validation on specimens from SRA: PRJEB4203 (not used for training or testing).
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predictions (Figure 5H) are monotonic with the true BMI (Spear-

man’s r of 0.4 on the validation cohort).

This is not a comprehensive re-evaluation of the relationship

between the human gutmicrobiome andBMI. Rather, this serves

as a technical demonstration of the phylotype-based approach

and potential utility of phylotypes as a compositional feature

that is stable across technically diverse studies, including

when studies are harmonized post hoc. Our companion manu-

script (unpublished data), using phylotypes to predict a risk for

pre-term birth from vaginal microbiome data from technically

diverse studies, is a further technical demonstration of the utility

of this approach.

DISCUSSION

Combining data from multiple studies has proven to be a fruitful

way to improve patient care using ’omics data, within the broad

conceptual framework of precision medicine. For example, it is

now common practice to use genomics data to personalize and

optimize cancer treatment regimens, significantly improving

outcomes for patients.31,32 Similarly, transcriptional33 and epi-

genomics studies are being combined and revisited with newer

ML techniques with an eye toward drug repurposing and

personalized medicine. These successes were contingent

upon being able to combine data from multiple independent

studies to allow for robust cross-validation of any predictions.
The clinical translation requires ability to integrate data from

an individual patient into the schema of features used for

modeling. Facilitating these efforts are a very clear and intrinsi-

cally generalizable set of features, such as SNPs (genomics),

loci (epigenomics), and genes (transcriptomics). Microbiome

studies have lacked such a clear and generalizable underlying

feature. cOTUs and taxons have been attempted when inte-

grating microbiome studies, but both have fundamental limits

that we have redemonstrated here or in previous studies.18

Thus, lack of a robust and generalizable feature has been a

core limitation of microbiome science. It has left the field unclear

as to how to apply the findings of a microbiome study to other

studies of the same clinical question and to an individual patient

and use the microbiome as a biomarker (as is done with geno-

mics data in cancer treatment).

Here we demonstrate a practical approach using phylogenetic

placement of ASVs from 16S rRNA allele variable regions to

overcome differences in technique (such as primer selection,

PCR conditions, and sequencing platform), successfully

combining data from multiple studies into one cohesive dataset.

Previous applications of this technique focused on generating

pairwise distances between communities (e.g., Unifrac34) or su-

perior taxonomic assignments to ASVs. Ordination and clus-

tering based on pairwise distances has come under increasing

critique for being prone to bias during hyperparameter selec-

tion35 and can miss when the relationship between a microbial
Cell Reports Methods 3, 100639, November 20, 2023 9



Table 1. Top 20 features most positively associated with body mass index as determined by Wald T via beta-binomial regression

Species Phylotype 0.5 Phylotype 0.1

Dorea formicigenerans pt05__01746: a Faecalibacterium prausnitzii pt01__00105: a Blautia wexlerae/

Blautia provencensis

Ruminococcus faecis pt05__00227: a Xylanivirga thermophila pt01__02297: a Blautia phocaeensis/

Blautia faecis

Blautia provencensis/Blautia

wexlerae

pt05__01926: a Oscillibacter ruminantium pt01__00160: a Fusicatenibacter saccharivorans

Anaerocolumna cellulosilytica/

aminovalerica

pt05__00134: a Catenibacterium mitsuokai pt01__11220: a Anaerocolumna cellulosilytica/

aminovalerica

Marseillibacter massiliensis pt05__01928: a Ruminococcus bromii/[Clostridium]

viride/Paludicola psychrotolerans

pt01__00127: a Faecalibacterium prausnitzii

Eubacterium coprostanoligenes pt05__00001: a [Ruminococcus] torques pt01__00261: a Fusicatenibacter saccharivorans

Xylanivirga thermophila pt05__01922: a Tyzzerella nexilis/Coprococcus

phoceensis

pt01__00089: a Faecalibacterium prausnitzii

Monoglobus pectinilyticus pt05__00042: a Prevotella stercorea pt01__00358: a Dorea formicigenerans

Beduinibacterium massiliense pt05__00335: a Sporobacter termitidis/Papillibacter

cinnamivorans

pt01__00299: a Oscillospira guilliermondii

Paraprevotella clara pt05__00026: a [Clostridium] innocuum pt01__00063: a Monoglobus pectinilyticus

Holdemanella biformis pt05__00035: a Senegalimassilia faecalis/

Senegalimassilia anaerobia

pt01__00042: a Ruminococcus faecis

[Eubacterium] rectale pt05__00060: a Collinsella tanakaei pt01__00024: a Prevotella stercorea

Collinsella aerofaciens pt05__00043: a Paraprevotella xylaniphila pt01__00485: a [Eubacterium] rectale

Ruthenibacterium lactatiformans pt05__00004: a [Eubacterium] rectale pt01__00321: a Lachnospira eligens

Dorea longicatena pt05__00049: a Romboutsia timonensis/

[Clostridium] dakarense/Romboutsia

sedimentorum

pt01__00184: a Eubacterium ramulus

[Ruminococcus] gnavus pt05__00023: a [Eubacterium] saphenum/

[Eubacterium] brachy

pt01__00059: a Paraprevotella clara

Clostridiales spp. pt05__00088: a Duncaniella muris pt01__00061: a Holdemanella biformis

Eubacterium ramulus pt05__00116: a Butyrivibrio crossotus pt01__00135: a Dorea longicatena

[Ruminococcus] torques pt05__00014: a Ruminococcus flavefaciens pt01__07299: a Duncaniella muris

Streptococcus thermophilus pt05__00879: a Eubacterium coprostanoligenes pt01__00030: a Pseudoflavonifractor capillosus

Features are species counts, or phylotype counts binned at 0.5 or 0.1 phylogenetic distance. Phylotypes are decorated by the most similar species;

there can be multiple phylotypes for a given species. Species with related phylotypes are in boldface.
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community and functional outcome is driven bywhichmicrobe is

occupying a minor (from relative abundance perspective) but

physiologically potent ecological niche. An example is the meth-

anogenic archaea Methanobrevibacter smithii,36 which colo-

nizes some human gut microbiota at a low relative abundance

but can have a potent effect on butyrate production by other mi-

crobes within the gut.37 Particularly given the advent of novel ML

and AI techniques that can identify and discern such complex

and contextual relationships, the lack of a validated direct analog

to a sequence variant, operational taxonomic unit, or taxon

(species, genus, or family) count matrix after phylogenetic place-

ment has left most studies attempting meta-analysis to continue

to focus on taxonomy. Our approach to generate taxonomy-

independent phylotype counts after phylogenetic placement

presented and validated here has broad applicability for micro-

biome science, supporting efforts to describe relationships be-

tween microbes, ecotypes, associations with microbes, and

the use of cutting-edge ML and AI methods dependent upon

well-regularized data in matrix format. The approach is imple-
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mented in a computationally tractable manner and validated

here for use in both regression and AI/ML approaches.

Much as we demonstrated here with BMI prediction, the

proximate rationale of this study was to support our recent

study presenting VMAP (Vaginal Microbiome Atlas during Preg-

nancy)38 and a crowdsourced AI/ML challenge to predict pre-

term birth from the aggregated vaginal microbiome dataset,39

with training data identified spanning generations of high-

throughput sequencing technologies and targeting a mix of

non-overlapping variable regions. To judge the challenge, two

independent datasets had to be integrated into the same set

of compositional features post hoc. Perhaps the strongest

demonstration of the value of this approach can be found in

the results of this competition.39 Participating teams were pro-

vided a variety of datasets derived from the vaginal micro-

biome, including both taxonomy counts (family, genus, and

species level) and phylotype counts (binned at 1.0, 0.5, and

0.1 distance). The best-performing models all made use of phy-

lotype counts, with feature permutation revealing that the



Table 2. Top 20 features most negatively associated with body mass index as determined by Wald T via beta-binomial regression

Species Phylotype 0.5 Phylotype 0.1

Gemmiger spp. pt05__00260: a [Clostridium] fimetarium/Fusimonas

intestini/Acetatifactor muris

pt01__00065: a Faecalibacterium prausnitzii

Christensenellaceae spp. pt05__00005: a Bacteroides xylanisolvens pt01__00306: a Oscillospira guilliermondii

Lachnospiraceae spp. pt05__00254: a Faecalibacterium prausnitzii pt01__00020: a Lachnospiraceae spp.

Lachnospira spp. pt05__01930: a Candidatus Galacturonibacter

soehngenii

pt01__00289: a Lachnoclostridium spp.

unclassified Clostridiales spp. pt05__00034: a Bifidobacterium pseudocatenulatum pt01__00016: a Lachnospiraceae spp.

Lachnoclostridium spp. pt05__01618: a Ruminococcaceae spp. pt01__00460: a Bilophila wadsworthia

unclassified Ruminococcaceae spp. pt05__00086: a Oribacterium spp. pt01__00152: a Bifidobacterium longum

Butyrivibrio spp. pt05__00017: a Coprobacter fastidiosus pt01__00097: a Bacteroides uniformis

Bilophila wadsworthia pt05__00339: a Oscillospira guilliermondii pt01__01171: a Bacteroides xylanisolvens

Roseburia spp. pt05__00052: a Desulfovibrio piger pt01__11376: a Ruminococcaceae spp.

Bifidobacterium longum pt05__00010: a Alistipes timonensis pt01__00090: a Bacteroides ovatus

Marseillibacter spp. pt05__00006: a Bacteroides vulgatus pt01__00767: a Sporobacter termitidis/

Papillibacter cinnamivorans

Ruminococcaceae spp. pt05__00064: a [Clostridium] fimetarium/

Lachnobacterium bovis

pt01__02179: a Oscillospira guilliermondii/

Sporobacter termitidis

Eubacterium spp. pt05__00033: a Oscillospira guilliermondii/

Sporobacter termitidis

pt01__00104: a Lachnospiraceae spp.

Blautia faecis pt05__00007: a Bacteroides uniformis pt01__00039: a Bacteroides xylanisolvens

Bacteroides ovatus pt05__00149: a Sporobacter termitidis/

Monoglobus pectinilyticus

pt01__00230: a Faecalibacillus intestinalis

Bacteroides xylanisolvens pt05__00640: a Candidatus Borkfalkia

ceftriaxoniphila/Beduinibacterium

massiliense

pt01__01874: a Petroclostridium xylanilyticum/

Xylanivirga thermophila

Shigella flexneri pt05__00012: a Ruthenibacterium lactatiformans pt01__02138: a unclassified

Ruminococcaceae spp.

Alistipes onderdonkii pt05__00056: a Anaerobutyricum soehngenii pt01__11810: a Butyrivibrio spp.

Roseburia hominis pt05__00215: a Lachnospiraceae spp. pt01__07966: an unclassified Clostridiales spp.

Features are species counts, or phylotype counts binned at 0.5 or 0.1 phylogenetic distance. Phylotypes are decorated by the most similar species;

there can be multiple phylotypes for a given species. Species with related phylotypes are in boldface.
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models relied upon a similar set of phylotypes as critical fea-

tures for making accurate predictions.

Based on our results, a de novo phylogenetic tree comprising

non-clustered 16S rRNA alleles tailored to a set of ASVs to be

placed and binned may produce a superior representation of

the community across technically diverse studies and reduced

sensitivity of the performance to the phylogenetic distance of

binning hyperparameters. Our purely algorithmic and auto-

mated approach for generation of de novo phylogenetic trees

(implemented in the refpkg.nf module of MaLiAmPi) both facil-

itates this approach by others and cannot replace the fidelity or

quality of carefully curated and hand-tailored phylogenetic

trees, such as those made and published by Greengenes.40

The use of off-the-shelf phylogenies has major appeals. Estab-

lishment of the phylogenetic tree is computationally intensive.

Having one shared tree of 16S rRNA alleles aids in compara-

bility. A shared tree can undergo intense curation by experts

and is inevitably a better representation of the ‘‘true’’ genetic

relationships. However, this may come at a cost of reduced

specificity for a given set of microbiota. This includes the ne-

cessity of pre-clustering 16S rRNA alleles. For genetically
diverse clades of physiologically relevant microbes, such as

Preovotella27 or Garnerella,28 SNPs in 16S variable regions

(lost when clustering at 99% identity) can correspond to func-

tional differences significant to the ultimate host-microbe inter-

action. Similarly, we made an unexpected finding of subspe-

cies-level variation within the Fp species regarding the

directionality of BMI association. Thus, there is a possible

advantage to generation of a de novo phylogenetic tree of

full-length, non-clustered, 16S rRNA alleles relevant to a set

of sequence variants when attempting predictive modeling.

Nevertheless, the use of bespoke phylogenetic trees in our

approach, as opposed to the off-the-shelf Greengenes phylo-

genetic tree, is a complication; phylotypes are only generaliz-

able when generated against the same phylogenetic tree.

Regardless, the phylotype-generating approach and implemen-

tation is agnostic to the tree used, and performant enough to

apply if one wished to use the Greengenes phylogenetic tree

(or any other phylogenetic tree). The utility that generates phy-

lotypes from placed sequence variants is available via the Py-

thon Package Index and is agnostic to the tree and framework

within which the placements are generated. It can be easily
Cell Reports Methods 3, 100639, November 20, 2023 11



Article
ll

OPEN ACCESS
integrated as a plugin within the robust and mature Qiita41

framework that already makes extensive use of phylogenetic

placement.

We believe that phylogenetic normalization of 16S rRNA

gene variable region ASVs is a promising approach for harmo-

nizing microbiome data from different studies that significantly

outperforms existing techniques such as cOTU generation and

taxonomy. The outputs are suitable for both meta-analysis and

precision medicine. This approach is fully implemented as a

reproducible and portable Nextflow-based workflow that can

facilitate future microbiome studies.

Limitations of the study
Our evaluation of the approach has some fundamental limits. We

employed in silico simulated data for portions of the analysis that

required knowledge of the ‘‘true’’ origin of a given sequence

(e.g., Figure 2B). Such in silico data can only approximate true

microbiota. We attempted to mitigate this limitation by all other

analyses being conducted with real-world data from a variety

of technically and biologically distinct studies of human micro-

biota, with the caveat that the ‘‘true’’ relationships in those

data can only be approximated. The performance of this

approach with less well characterized microbiomes (e.g., envi-

ronmental, non-human) remains to be established in future

studies. How different associative techniques will interact with

phylotypes (as studied for taxons by Nearing et al.42) remains

an open question and opportunity for study. We selected

CORNCOB, given its ability to acknowledge and handle data

with different per-specimen read depths, but future study of

the better associative approaches is required. Likewise, there

is an exciting opportunity to establish how phylotypes can sup-

plement and relate to other forms of ’omics data, such as

whole-genome shotgun, metabolomics, transcriptomics, among

others. We are hopeful that phylotypes will prove an enabling

compositional feature for future efforts involving multi-omics

integration.

Our technique cannot overcome some fundamental chal-

lenges. If the primers selected for the study fail to amplify a critical

member of the community, this technique itself cannot infer the

presence of those organisms. Studies with different sequence

amplicon lengths are likely to vary in their ability to resolve a given

organism, as sequence length and variable region selection

affect the available entropy used to distinguish between mi-

crobes. The lower-read depth of other pyrosequencing-based

studies results in a limit-of-detection difference that also cannot

be overcome. This limit-of-detection challenge is shared by ap-

proaches such as low-read-depth whole-genome shotgun

sequencing (WGS). Further, this approach cannot address tech-

nical variance introduced by differences in collection and DNA-

extraction protocols. This approach also adds a hyperparameter

thatmust be selected: a phylogenetic distance atwhich to cluster

ASVs. WGS is an alternative technique for microbiome studies

but with its own set of analytic challenges and opportunities.43,44

The semi-random priming of reads eliminates some but not all of

the cross-study comparability problems between studies, as it

does not eliminate differences in sequencers, library prepara-

tions, andsequencingdepths. It also remains unclear how to inte-

grateWGSand 16S rRNAdata into one cohesive dataset. Finally,
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the breadth, annotation quality, and upkeep of references for

WGS data lag behind those of 16S rRNA alleles. The integration

of 16S rRNA gene data with shotgun metagenomic data is an

active and ongoing effort in our group.
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16. Pinart, M., Dötsch, A., Schlicht, K., Laudes, M., Bouwman, J., Forslund,

S.K., Pischon, T., and Nimptsch, K. (2021). Gut Microbiome Composition

in Obese and Non-Obese Persons: A Systematic Review and Meta-Anal-

ysis. Nutrients 14, 12. https://doi.org/10.3390/nu14010012.

17. Chen, Y., Wu, T., Lu,W., Yuan,W., Pan,M., Lee, Y.-K., Zhao, J., Zhang, H.,

Chen, W., Zhu, J., and Wang, H. (2021). Predicting the Role of the Human

Gut Microbiome in Constipation Using Machine-Learning Methods: A

Meta-Analysis. Microorganisms 9, 2149. https://doi.org/10.3390/microor-

ganisms9102149.

18. Golob, J.L., Margolis, E., Hoffman, N.G., and Fredricks, D.N. (2017). Eval-

uating the accuracy of amplicon-based microbiome computational pipe-

lines on simulated human gut microbial communities. BMC Bioinf. 18,

283. https://doi.org/10.1186/s12859-017-1690-0.

19. Bokulich, N.A., Kaehler, B.D., Rideout, J.R., Dillon, M., Bolyen, E., Knight,

R., Huttley, G.A., and Gregory Caporaso, J. (2018). Optimizing taxonomic

classification of marker-gene amplicon sequences with QIIME 2’s q2-

feature-classifier plugin. Microbiome 6, 90. https://doi.org/10.1186/

s40168-018-0470-z.

20. Janssen, S., McDonald, D., Gonzalez, A., Navas-Molina, J.A., Jiang, L.,

Xu, Z.Z., Winker, K., Kado, D.M., Orwoll, E., Manary, M., et al. (2018).

Phylogenetic Placement of Exact Amplicon Sequences Improves Associ-

ations with Clinical Information. mSystems 3, 000211-18–e118. https://

doi.org/10.1128/mSystems.00021-18.

21. Matsen, F.A., Kodner, R.B., and Armbrust, E.V. (2010). pplacer: linear time

maximum-likelihood and Bayesian phylogenetic placement of sequences

onto a fixed reference tree. BMC Bioinf. 11, 538. https://doi.org/10.1186/

1471-2105-11-538.

22. Evans, S.N., and Matsen, F.A. (2010). The phylogenetic Kantorovich-

Rubinstein metric for environmental sequence samples. Preprint at ArXiv.

https://doi.org/10.48550/arXiv.1005.1699.

23. Zheng, Q., Bartow-McKenney, C., Meisel, J.S., and Grice, E.A. (2018).

HmmUFOtu: An HMM and phylogenetic placement based ultra-fast

taxonomic assignment and OTU picking tool for microbiome amplicon

sequencing studies. Genome Biol. 19, 82. https://doi.org/10.1186/

s13059-018-1450-0.

24. Golob, J.L. (2017). Decard: Cc11 Dataset. https://doi.org/10.5281/ZEN-

ODO.1120360.

25. Berry, D., Schwab, C., Milinovich, G., Reichert, J., Ben Mahfoudh, K.,

Decker, T., Engel, M., Hai, B., Hainzl, E., Heider, S., et al. (2012). Phylo-

type-level 16S rRNA analysis reveals new bacterial indicators of health

state in acute murine colitis. ISME J. 6, 2091–2106. https://doi.org/10.

1038/ismej.2012.39.

26. Mirarab, S., Nguyen, N., and Warnow, T. (2012). SEPP: SATé-enabled
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Didier Raoult et al.48 NIH SRA PRJEB31801

Vaginal bacterial dysbiosis increases risk of

preterm fetal membrane rupture, funisitis

and neonatal sepsis and is adversely

effected by erythromycin treatment.

(Coded as study vC in this paper)

David A MacIntyre et al.49 NIH SRA PRJEB21325

vaginal microbiota composition in early

pregnancy. (Coded as study vD in this paper)

David A MacIntyre et al.50 NIH SRA PRJEB30642

Replication and Refinement of a Vaginal

Microbial Signature of Preterm Birth.

(Coded as vG in this paper)

Gregory Buck et al.51 NIH SRA PRJNA393472

The gut microbiota of Colombian adults

with varying body mass index

This paper. Submitted to SRA in 2015

from the Colorado Center for Microbial

Ecology, University of Colorado at Boulder

NIH SRA PRJEB4203

Targeted metagenomic (16S amplicons) of

the fecal microbial communities from young

healthy lean students from Munich Germany

This paper. Submitted to SRA in 2021

from the Technical University Munich

NIH SRA PRJEB47555

DECARD: CC11 Dataset David Fredricks et al.18 doi.org/10.5281/zenodo.1120360

ARF/YA16Sdb collection of curated

16S rRNA alleles

This paper. doi.org/10.5281/zenodo.6876634

Software and Algorithms

MaLiAmPi This paper. https://github.com/jgolob/maliampi

phylotypes This paper. https://github.com/jgolob/phylotypes;

https://pypi.org/project/phylotypes/

arf/ya16Sdb This paper. https://github.com/jgolob/arf

DADA2 Benjamin Callahan et al.52 Docker: quay.io/biocontainers/

bioconductor-dada2:1.26.

0–r42hc247a5b_0

Dada2-pplacer This paper Dockerhub: golob/dada2-pplacer:

0.8.0__bcw_0.3.1A

fastcombineseqtab This paper Dockerhub: golob/dada2-fast-

combineseqtab:0.5.0__1.12.

0__BCW_0.3.1

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Barcodecop This paper Dockerhub: golob/barcodecop:

0.5__bc_1

TrimGalore Felix Krueger Docker: quay.io/biocontainers/

trim-galore:0.6.6–0

Vsearch Rognes et al.53 Docker: quay.io/biocontainers/vsearch:

2.22.1–hf1761c0_0

Fastatools This paper Dockerhub: golob/fastatools:0.8.0A

Pplacer Matsen et al.21 Dockerhub: golob/pplacer:1.

1alpha19rc_BCW_0.3.1A

Infernal Nawrocki et al.54 Docker: quay.io/biocontainers/

infernal:1.1.4–h779adbc_0

RAxML-ng Kozlov et al.55 Docker: quay.io/biocontainers/

raxml-ng:1.0.3–h32fcf60_0

RAxMLv8 Stamatakis56 Docker: quay.io/biocontainers/

raxml:8.2.4–h779adbc_4

Taxtastic This paper. Dockerhub: golob/taxtastic:0.9.5D

https://github.com/fhcrc/taxtastic

Epa-ng Barbera et al.57 Docker: quay.io/biocontainers/

epa-ng:0.3.8–h9a82719_1

Gappa Czech et al.58 Docker: quay.io/biocontainers/

gappa:0.7.1–h9a82719_1

MaLiAmPi This Paper 10.5281/zenodo.8329650

Phylotypes This Paper 10.5281/zenodo.8393203

arf/ya16Sdb This Paper 10.5281/zenodo.10015301
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Jonathan

Golob (jonathan@goloblab.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Please see Table S1 for the publicly available read data, obtained from theNIHNCBI Sequence ReadArchive. The in silico data-

sets used are available via Zenodo, at 10.5281/zenodo.1120360. The set of full-length ref. 16s rRNA alleles (processed by ARF)

can be found on Zenodo at https://doi.org/10.5281/zenodo.6876634.

d The core MaLiAmPi workflow is open source (MIT license) available at Github (https://github.com/jgolob/maliampi), with the

version tagged v3.5.0 used for this manuscript and available archived at Zenodo at https://doi.org/10.5281/zenodo.

8329650. The phylotype generation tool is open source (MIT license) available at Github (https://github.com/jgolob/

phylotypes) and installable via pip via the Python Package Index pypi.org (‘pip3 install phylotypes’), with version 1.0.1 used

for this manuscript available at https://doi.org/10.5281/zenodo.8393203. ARF is a workflow used to create the repository of

full-length 16s rRNA alleles and is open source (MIT license). It is available as a Github repository (https://github.com/

jgolob/arf) and at https://doi.org/10.5281/zenodo.10015301.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Phylogenetic placement of 16S rRNA gene ASVs via MaLiAmPi
MaLiAmPi (Maximum Likelihood Amplicon Pipeline) is a Nextflow-based workflow that implements the approach described in this

article. The workflow is 100% containerized and portable, and can be run locally (via Docker), on public clouds (such as Amazon

Web Services Batch), or academic high performance computing clusters (e.g., SLURM or Sun Grid Engine-based) via Singularity

containers. There are four broad steps MaLiAmPi implements: (1) generation of ASVs; (2) selection of a repository of full-length
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16S rRNA alleles; (3) generation of a reference package including a phylogenetic tree of full-length 16S rRNA alleles from the repos-

itory that match the ASVs; and (4) placement of the ASVs onto the reference package phylogenetic tree.

Generation of amplicon sequence variants (ASVs) from FASTQ files
As noted in theMain section, the overall approach is relatively agnostic to themethod used to generate ASVs.MaLiAmPi uses DADA2

by default, based in part on prior benchmarking studies.59 For Illumina reads, if index reads are available demultimplexing is

confirmed with Barcodecop (version 0.5). Reads are then filtered, trimmed and have residual primer and linker sequences removed

with TrimGalore (version 0.6.6–0). Amplicon sequence variants are then generated using DADA2 (version 1.18.0). Reads are grouped

into Batches, ideally representing a group of specimens processed into a library together, and typically of a size of 100. Each spec-

imen’s reads (or read pairs) are then filtered and trimmed (in parallel) with DADA2’s filterAndTrim with the following parameters for

Illumina reads.
maxN 0

maxEE Inf

truncQ 2

trimLeft 0

truncLen (0, 0)
And with the following parameters for 454/Pyrosequencing reads.
maxN 0

maxEE Inf

truncQ 2

trimLeft 0

truncLen 250

maxLen Inf
Filtered and trimmed reads are then dereplicated with the DADA2’s derepFastq command.

The filtered and trimmed reads are grouped into batches, and then the learnErrors command is used to generate an error model for

each batch’s forward (and when available) reverse reads with the following parameters for Illumina data.
MAX_CONSIST 10

Randomize TRUE

nbases 1e8
And these parameters for 454/Pyrosequencing data.
MAX_CONSIST 10

Randomize TRUE

nbases 1e8

HOMOPOLYMER_GAP_PENALTY �1

BAND_SIZE 32
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By batch, the batch’s error model is applied to the dereplicated reads using the dada commandwith the pool = "pseudo" option for

all data, additionally HOMOPOLYMER_GAP_PENALTY = �1, BAND_SIZE = 32 for 454/pyrosequencing data.

On a per-specimen basis, paired-end reads are merged with the mergePairs command with the following parameters.
trimOverhang TRUE

maxMismatch 0

minOverlap 12
The minOverlap parameter occasionally needs to be relaxed down to a lower number depending on the PCR primer design and

specific Illumina chemistry used, specifically whenmost or all read pairs fail to merge. For very-low quality read data (e.g., when read

pairs fail tomerge evenwith amin overlap of 4), wewill only use the forward read data (aswe believe those reads cannot be accurately

paired).

Finally the merged read pairs or dada models for unpaired reads are converted to sequence tables with the

makeSequenceTable command. From these sequence tables are the ASV sequences and specimen-ASV counts extracted into

FASTA and CSV formats respectively for subsequent analysis.

Repository sequence selection
We started with the deduplicated -> 1200bp -> filtered -> named subset of 16S rRNA alleles from NCBI via the YA16SDB pipeline as

our repository of sequences. As noted in the Main section, other repositories of 16S rRNA alleles can also be employed (e.g., SILVA,

RDP, Greengenes, etc). This entire set of YA16SDB reads are available for download (as below in the Data Availability section) on

Zenodo (https://doi.org/10.5281/zenodo.6876634). A subset of repository candidate full-length 16S rRNA alleles are identified by

searching the repository sequences for matches with at least 80% identity to at least one ASV sequence using vsearch (version

2.17.0) in usearch_global mode, and max_accepts = 10. To ensure the resultant tree will not result in overfitting or over diffusion

of ASV placement later, full-length 16S rRNA alleles are recruited from the repository with the objective of having roughly the

same number of recruited reference sequences per each amplicon sequence variant. Specifically, we establish the best possible

percent identity between each ASV and the repository alleles, and discard any alleles that are below this best possible percent iden-

tity (e.g., retain the bounded-best-hits). We then determine howmany ASVs each reference is a best hit for and discard those that are

not a best hit for at least two ASVs. Finally we backfill references for ASVs that no longer have a reference sequence as good as their

best it, focusing on the longest alleles with no ambiguous bases and with a precise taxonomic annotation. Even for very broad sets of

ASVs, this typically results in less than 30,000 reference alleles.

Reference package recreation
These filtered reference alleles are now aligned with cmalign from the Infernal package using the SSU_rRNA_bacteria covariance

matrix from the rfam database and amxsize 4096. The recruited full-length 16S rRNA alleles alignment is then assembled into a phy-

logeny. The generation of the phylogenetic tree is the most computationally intensive step in the entire approach. The current imple-

mentation default to RAxML (version 8.2.4), but also allowsRAxML-ng (1.0.3) to be used if desired for a deeper exploration of possible

starting random trees.

For RAxML, the following settings are used.
-m GTRGAMMA

-p 12345
And for RAxML-ng.
model GTR+G

seed 12345

tree pars{1},rand{1}

bs-cutoff 0.3
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This de novo phylogenetic tree is combined with the metadata for each allele within the tree (e.g., species-level taxonomy, source

accession, etc) into a standardized reference package format using the taxtastic package.

Placement of ASVs onto a reference package phylogenetic tree
ASVs are next placed onto this reference tree. First the ASV sequences are aligned, using cmalign from the Infernal package, and the

same covariance matrix as was used to make the alignment of reference sequences (retained in the reference package). The ASV

alignment is combined with reference alignment (contained within the reference package) using esl-alimerge utility from easel.

This combined alignment is then used to phylogenetically place the ASVs onto the reference package tree using either pplacer (the

current default) or epa-ng. Both have comparable performance and outputs. For pplacer, the following parameters are used.
-p

–inform-prior

–prior-lower 0.01

–map-identity
For epa-ng.
–baseball-heur
For SEPP to place on the Greengenes 13.5 ‘off the shelf’ taxonomic tree, we ran the command:

/sepp-package/run-sepp.sh/working/asv/sv_2022-03-08.fasta gg -x 12.

Within a docker container created based on the sepp-package: golob/sepp-greengenes:4.5.1. In turn, this is based on the

gg_13_5_ssu_align_99.fasta alignment and associated tree fromGreengenes version 13-5 of alleles clustered at 99%global identity.

The output of the placement step is in JPLACE format, dedup.jplace. For each ASV, the likelihood, distal-length, and pendant-

length is reported for each edge in the tree (omitting edges for which there is no meaningful likelihood). These likelihood-weighted

trees are the basis for subsequent analysis. Combined with ASV-counts-per-specimen, the weighted tree can be used to estimate

pairwise phylogenetic distance (KRD-distance, akin to weighted UniFrac) between specimens, the alpha diversity of a specimen, and

to group ASVs into phylotypes. Phylotypes are groups of ASVs clustered at a specific phylogenetic distance, and are created using a

Python package (https://github.com/jgolob/phylogroups) installable via pypi (https://pypi.org/project/phylotypes/). A distance of

1 roughly corresponds to a species of bacteria, but with significant variation depending on the degree of taxonomic - phylogenetic

concordance.

In silico human gut microbiota for validation
As in our prior work,18 we used 100 microbial communities similar in structure and composition to those found in the healthy human

gut microbiome, but generated in silico and thus with a known allele of origin for each and all amplicons generated. These commu-

nities are available via Zenodo (10.5281/zenodo.1120359). For each community, we have selected specific full-length unambiguous

16S rRNA gene alleles to represent each microbe within the community. From these alleles we can generate amplicons targeting

specific hypervariable regions via in silico PCR.

We selected primers targeting the most common variable domains and sequencing platforms represented in the large volume of

legacy 16S rRNAgene data available in public repositories. Specifically, the V4 region (or V3-V6), V1-V2, andV5-V9 domains (Figure 1)

and the sequencingplatforms IlluminaMiSeqorRoche454 (a legacy technology forwhichSRAcontains 139,965 recordswith the label

‘16S’). For MiSeq we set a goal of 50,000 simulated amplicons per community and for 454 we targeted 5,000 amplicons per commu-

nity, reflecting the typical read-depths from the respective platforms. As depicted in Figure 1, there is effectively no overlap between

the amplicons targeting distinct regions (i.e., no overlap in sequence between the primers targeting V1-V2 and V5, nor with V6-V9).
Primer Set Variable Region Intended Platform Simulated amplicons per community

27fmod/338r V1 - V2 Illumina MiSeq 50,000

U515f/806r V4 Illumina MiSeq 50,000

27f/357r V1 - V2 454 5,000

357f/926r V3 - V5 454 5,000

968f/149r V6 - V9 454 5,000
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Dereplication of ASVs
ASVs with the exact same sequence (length and each base pair) were combined together and assigned an ID.

Generation of closed OTUs
Here we used the QIIME1 package, and the Greengenes 97% OTU repository. We generated a docker container containing QIIME

1 version 1.9.1A, and ran the following commands to generate blast-picked closed OTUs with a similarity of at least 80%:

pick_otus.py -i <raw_fastq> -o blast_picked_otus/ -m blast -r 97_otus.fasta -s 0.8.

Where the 97_otus.fasta were the 97_otus from the Greengenes repository, as recommended by the QIIME1 documentation.

Calculation of Bray-Curtis distance
Count tables were first assembled with one row per specimen and one column per feature (dereplicated ASV, closed-OTU, or phy-

lotype) and each cell the number of reads assinged to that feature and specimen. These raw-count tables were then normalized to a

read depth of 10,000 reads per specimen. The normalized count tables were then used to calculate pairwise Bray-Curtis distance

using the scipy (verison 1.6.3) pairwise distance calculator.

UMAP ordination
The Python umap-learn package (version 0.5.1) was used with the following hyperparameters: min_distance = 0

n_components = 2

n_neighbors = 45.

Random state was fixed at 42. The pre-computed Bray-Curtis distance (as above) was used.

Generation of phylotypes
Amplicon sequence variants were then grouped into phylotypes via a utility that accepts the jplace-formatted60 placement of the

sequence variants onto the full-length 16S rRNA allele phylogeny. Sequence variants are then grouped into clusters via agglomer-

ative clustering using phylogenetic distance,22 set to generate clusters at a distance threshold (0.1, 0.5 and 1). To avoid the exhaus-

tive O(n2) calculation of KR-distance between all sequence variants, the sequence variants are first partitioned into those with place-

ments on similar subclades of the tree. These partitions are then combined when the distance between the lowest common ancestor

of each partition is less than the clustering threshold distance. Within each remaining partition, the calculation of pairwise phyloge-

netic distance is used for clustering.

Post-hoc integration of novel sequence variants into an existing set of phylotypes requires the placement of the new sequence

variants onto the same phylogenetic tree as used to generate the phylotypes, the placements of the ‘seed’ sequence variants

used to generate the phylotypes, the binning distance, and the phylotype assignments of the existing sequence variants. The process

is to (1) determine the lowest common ancestor of each existing group of sequence variants binned into phylotypes; (2) determination

of the pairwise phylogenetic distance between the new sequence variants to the lowest common ancestors of the existing; (3) assign-

ment of the new sequence variant to the phylotype with the lowest pairwise distance that is below the specified threshold. New

sequence variants that cannot be assigned by this approach are not assigned to a phylotype and can be made into a new phylotype

if needed.

QUANTIFICATION AND STATISTICAL ANALYSIS

Calculation of Bray-Curtis distance
Count tables were first assembled with one row per specimen and one column per feature (dereplicated ASV, closed-OTU, by-spe-

cies, or phylotype) and each cell the number of reads assigned to that feature and specimen. These raw-count tables were then

normalized to a read depth of 10,000 reads per specimen. The normalized count tables were then used to calculate pairwise

Bray-Curtis distance using the scipy (verison 1.6.3) pairwise distance calculator.

Random forest regression
The RandomForestRegressor module of the Python scikit-learn package was used with the following hyperparameters: n_estima-

tors = 2300, criterion = ’poisson’, max_depth = 6, min_samples_split = 2, min_samples_leaf = 1, min_weight_fraction_leaf = 0.0,

max_features = None, max_leaf_nodes = None, min_impurity_decrease = 0.0, bootstrap = True, oob_score = False, random_state =

42, verbose = 0, ccp_alpha = 0.0, max_samples = 0.05. The fit data included valencia community state types, and phylotype as pre-

sent/absent at both 0.1 and 0.5 phylogenetic binning distances.
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