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ABSTRACT 

We investigate neutral current neutrino-nucleus interactions of interest in the supernova problem: endo- 
thermic and exothermic inelastic neutrino scattering processes; de-excitation of hot nuclei into neutrino pairs; 
and neutrino-antineutrino annihilation processes involving nuclei. We employ a shell model based treatment 
including allowed and forbidden transitions to compute the relevant weak strength distributions in nuclei. We 
discuss Fermi gas fitting formulae for the differential cross sections of all four processes for use in numerical 
stellar collapse calculations. Since target nuclei in stellar collapse are expected to be in highly excited states we 
explicitly include thermal effects in our calculations. We find that low-energy neutrino-pair production from 
hot nuclei and exothermic neutrino-nucleus scattering may have an important role in determining the evolu- 
tion of the lepton distribution functions in the infalling presupernova core. 
Subject headings: neutrinos — nuclear reactions — stars: collapsed — stars: supernovae 

1. INTRODUCTION 

In this paper we re-examine and extend the results of the pioneering survey on the production and scattering of neutrinos by 
nuclei at high temperatures in stellar collapse done by Kolb & Mazurek (1979). Haxton (1988b, also Woosley et al. 1990) has revived 
interest in this subject by performing detailed shell model calculations of inelastic neutrino-nucleus scattering rates in the endo- 
thermic channel (where the neutrino scatters to a lower energy state). He has shown that giant-resonance forbidden-weak nuclear 
transitions can make important, even dominant, contributions to these rates when neutrino energies are large enough (~ 10 MeV) to 
give substantial momentum transfer to nuclei. With this forbidden strength Haxton’s (1988b) scattering rates can be one order of 
magnitude larger than those predicted in Kolb & Mazurek (1979). Subsequently Bruenn & Haxton (1989, 1991) have shown that 
this enhanced rate of neutrino down-scattering (to lower energy) could lead to significant modification of the lepton number 
distribution physics in the pre-supernova core which, in turn, could have an effect on the initial shock energy. 

In light of these developments it is important to extend a similar shell model treatment to the other neutrino-nucleus interactions, 
both because the rates of these processes may be different than previously calculated and because they may tend to compensate the 
effects of endothermic neutrino-nucleus scattering in the collapse. To this end we extend the calculations of Haxton (1988b) to finite 
temperature and to three additional closely related neutrino-nucleus interaction processes. 

The processes which we consider are shown in Figures lu—Id: two endothermic processes where neutrinos transfer energy to 
nuclei, including inelastic scattering and the three-body process of neutrino pair annihilation on nuclei; and two exothermic 
processes where nuclei in thermally excited states transfer energy to neutrinos, including exothermic inelastic scattering and 
de-excitation of nuclear excited states into neutrino pairs. All of these processes are closely related in their nuclear physics properties 
but substantial differences exist in regards to neutrino phase-space considerations. 

In § 2 we will briefly consider the relevant matrix elements and phase-space factors for the four neutrino-nucleus processes. The 
nuclear shell model calculations for the weak strength distributions are described in § 3. Simple Fermi gas motivated fitting formulae 
are derived in § 4 and applied to our shell model results from § 3. We discuss the expected angular distribution for neutrino 
scattering in § 5. The effects of neutrino-nucleus processes on the temperature, lepton fraction, and entropy in the collapsing stellar 
core are discussed in § 6. One zone collapse calculations are presented which illustrate the relative importance of the neutrino- 
nucleus processes in stellar core collapse and the supernova problem. 

2. THE FUNDAMENTAL PROCESSES 

In what follows we assume weak interaction universality for ve, v^, and vt interactions. The effective Lagrangian for weak neutral 
current interactions is taken to be 

& = —j^2 ÛVri - VsWz » (2.1) 

where G is the weak coupling constant, v(v) are neutrino spinors, and is the nuclear (hadronic) neutral weak current which we 
take to be 

7£ = 'P/[CF/-Cy4y'‘y5]4'i. (2.2) 

1 Postal address: Physics Department 0319, University of California, San Diego, La Jolla, CA 92093-0319. 
2 Postal address : Department of Physics and Astronomy, Clemson University, Clemson, SC 29634. 
3 Institute of Geophysics and Planetary Physics, University of California, Lawrence Livermore National Laboratory, Livermore, CA 94550. 
4 Institute for Nuclear Theory, University of Washington, Seattle, WA 98195. 
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FlG- 1C 17 IJ T? 1 I? i • FlG- 
nucleons. Theînitiaîand final racitation^er^e^of the n“"! ^r^rlX^heto^ ^ ^ ^ e'Ä °r T»intCTact with a "-'eus of . 
(c) exothermic inelastic scattering, and id) thermal de-excitation into neutrino pafrs. ^ ? endothermic scattering, (6) neutrino pair annihilation, 

In this expression T, and ^ represent initial and final nuclear spinors and we take Cv and CA to be effective vector and axial 
vector form factors which include dependence on the isospin and on the Weinberg and Cabibbo angles Strictly speaking C and 
C. each have both isoscalar and isovector components, but in what follows we will ignore isospin eiLtsS 

manner^o b^described^elow^^686 ParameterS ^ ^ t0 ^ ^ model reSUltS rep0rted in Woosley et al‘ d9^) in a 

tmnlríV^^f68 and densiiie® characteristic of stellar collapse, nucleons are nonrelativistic. If additionally the momentum 
(Gamow-Telleer)nandeUFerWme.rtransftioisn nUdear matnX element C°Uld be t0 the familiar allowed’ diPole form for M1 

I^fI2 = I < ll/f\Cyt±\>l/l > I2 
(2.3a) 
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and 
\MaT\2 = \<i¡/f\CAax3\il/i>\2 , (2.3b) 

where and i¡/f are appropriate nuclear wavefunctions derived from the large components of the nuclear spinors and <r and x are 
the Pauli spin and isospin operators. In this nonrelativistic limit, of course, there is typically no Fermi strength. The selection rules 
for Gamow-Teller transitions are | AJ | = 0, +1, Ati = no, and no orbital angular momentum change. 

As discussed above it is not sufficient to include only allowed nuclear transitions, as momentum transfer in neutrino-nucleus 
interactions can be large. We therefore generalize the nuclear matrix element in equation (2.3b) to include first forbidden strength as 
well as allowed axial-vector strength. All single particle transitions in the nucleus are then assigned the same matrix-element kernel, 
\MS I2. Considerations of subshell occupation numbers and orders of forbiddenness are taken into account as explained in § 3. 

The distribution of single-particle weak strength with nuclear excitation energy is denoted /?(£, E' - E), where E and E' are the 
excitation energies of the initial and final nuclear states, respectively. This function is determined from the shell model in the next 
section. Ultimately we wish to use this strength function to compute double-energy-differential neutrino scattering and production/ 
destruction rates for use in stellar collapse codes. However it is useful to consider first the total scattering rate for one process, which 
we will take to be endothermic scattering. This discussion will then be illustrative of how we break down the phase space factors for 
each process into simple kernels from which it is easy to read off the double-energy-(flux)-differential quantities desired. 

The total endothermic neutrino scattering rate, integrated over initial neutrino flux and summed over final neutrino phase space 
is 

^endo = (T,, J" dEvS?y(Ev)^dE'vE'y
2(l -/;)j| dEp(E)e-E'kT£+(E' ^dE'ß(E, E' - E)<5[EV - Fv - (E - E)]j , (2.4a) 

where Ev and £'v are the incident and scattered neutrino energies, respectively, E and E' are the initial and final nuclear energies, 
respectively, is the incident flux for neutrinos with energies Ev to Ev + dEv, /'v is the neutrino distribution function in the 
star evaluated at E'v, T is the temperature with k Boltzmann’s constant, and <5 represents a Dirac delta function. In equation (2.4a) 
the overall cross-section scale factor is defined 

<Tn - — _Jl — g2
A& 6.658 x KT23 MeV4 

71 
(2.4b) 

where GF is the Fermi constant (we neglect the small correction for the Cabibo angle, given the nature of our matrix element fits) and 
gA « 1.24 is the ratio of axial-vector-to-vector coupling constants. In these expressions p(E) is the nuclear level density and Z is the 
high temperature nuclear partition function, 

Z = j””0 dEp(E)e~ElkT . (2.5) 

As discussed in § 3 we can replace the explicit thermal average in equation (2.4a) with a mean nuclear state, the “representative 
configuration.” This procedure is a good approximation so long as the nuclear mass is large and the temperature is comparable to 
or larger than the mean single particle level spacing (both of these conditions are met during stellar core collapse). In this limit the 
average nuclear excitation energy is /E/ fa a(kT)2 where a is the level density parameter and is equal to ~ A/8 MeV where A is 
the nuclear mass. In terms of this representative configuration and average excitation energy equation (2.4a) reduces to 

<*0 jj
0 dEv^v(Ev) d£'v(i -/;)e;2/?«£>, £v - E'v) ; (2.6) 

the integrand of which obviously gives the double-energy/flux-differential scattering rate kernel. In like manner we can write the 
total rate for exothermic scattering as 

""i* 
dE^v(Ev) 

'£» + <£> 
dE'vE

2(\ -/;)/?«£>, e; - £„). 
<E> 

(2.7) 

where the notation is as above. Again it is obvious that the integrand represents the desired scattering kernel. 
We can write the total nuclear de-excitation rate into neutrino pairs in terms of the representative configuration energy <£> as 

(*<£> f<E>-E. 
2de-ex*2o|o dEv£v2(l-/v)| dE,E2(l-/#«£>, Ev+ £,), (2.8a) 

where Ev and Ev are the energies of the neutrino and anti-neutrino, respectively, and/v and /’ are the neutrino and anti-neutrino 
distribution functions, respectively. The overall rate scale factor /0 is defined 

= 5.134 x KT3 MeV“5 s“1 

« 3.334 x 10“88 MeV s cm4 . (2.8b) 
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In a similar fashion the total neutrino-anti-neutrino annihilation rate on nuclei is 

r 00 f* oo 
dE,^(E,)fl(E), Ev + EJ , 

where.^(Ev)[.^ ,(£-)] is the neutrino (anti-neutrino) flux at energy £v(£v-). The desired double-energy(flux)-differential oroduction 
(annihilation) rates are given by the integrand in equation (2.8a) (eq. [2.9]). 8X1 production 

3. THE SHELL MODEL 

nJpQMw t0t.
make estimates of the rates of neutrino-nucleus interactions, we employ an independent single-particle shell model aSPSM). In this model neutrinos interact with single nucleons in the nucleus. The nucleons aïe treated af inSrpendent Dartides 

moving in an average potential; therefore, the resulting energy gain or loss by the nucleus in neutrino-nucleus processes is simplv the 
difference between the initial and final single-particle energies of the relevant nucleon. This model neglects the effects of a residual 
mterac ion and configuration mixing. The results in the next section for inelastic neutrino scattering on ground 

with detailed shell model calculations, however. We therefore expect that the independent single-particle shell model adeouatelv 
describes the essential features of neutrino-nucleus interactions. purucie sneii model adequately 

As outlined above, it is necessary to include some measure of the forbidden strength in the calculation of npntHno-m,„u„o 
interaction rates. This may be done by noting that the degree of forbiddenness in a weak interaction is given by the ik • r term in the 

Äh aVC eTnS10n ? j 6 lept°mC Crent’where k is the momentum transfer and r is the coordinate vector The otheÎ vSv of 
TheTefor/T6! f’ thf ^ • com?onents in the nucleon sPinors, can be neglected in most supernova conditions (Fuller 

f rifK rf0Kb^den trans.ltl0ns in neutrino-nucleus processes will have rates proportional to (kR)2 where R is the nuclear radius. Other forbidden transitions will have rates proportional to higher powers of (kR) 

s,ntlpena
0rtäiSttengtvf0r & "eu

u
trino-nucleus

Amteraction of energy AE in the ISPSM is then the sum of all allowed and forbidden 

/«E. 4£| - E E 
protons i, / 

neutrons {AE} 

Mif\2 
IMI : £ £ 

protons i, f (2// + 1) 
neutrons {A£} 

{kR)N 
(3.1) 

where the sum is over neutrons and protons for all initial single particle levels i and all final single particle levels f and I M- I2 is the 
weak matrix element (allowed or forbidden) connecting level i with level f We aooroximate \M I2 an u 1 + • 
matrix element I »P be fit to the detailej shell modJ calculationsXi^riTÄL prïïue^^^^^ 
number of the initial level i, nf9 and the fractional number of open holes in the final level/, nh

f/(2jf + 1) PThe term (£) means that 

möÄe^fA“10118 yÍeldÍng enCrgy A£ arC ÍndUded Ín thC — In keepi^ ÄCde^ 

AE = \Ej- — Ej\ (3.2) 
where Ei and Ef are the initial and final single particle energies, respectively. For the forbiddenness term (kR)N in equation (3.1), we 

N = 2(| An| + I A/), (3.3) 
with J An! -\nf - „f| the change in radial quantum number in the single particle transition and I A/l = IZ, - /.I the chanse in the 

franlv ^ We ?Xdude, a11 “i0118 with N > 2’ and th^ only allowed and first a sitions. We note that strictly speaking, forbidden transitions would introduce an extra energy dependence in the phase space 
integrals in equations (2.4a) through (2^9). In the interest of obtaining a simple fit to the fundam!mal mtes we hïve neglected this 

note thatrgy dependence-At the worst thls.would tend t0 underestimate the effect of forbidden weak strength, and to compensate we 
goodt than i8 ^ Correct- U1“y we justify this procedure by our 

TheLTre tChint8 the.8Um in equation (3.1) to transitions for which Ef > E¡, we confine ourselves to single-particle “ up ” transitions 
stons are Iho» for whfchT??8 (Kg. 1«) or .i-annihilarion (Fig lb). Single-partide E down - tram sitions are ihose for which ^/ < These are transitions occurring in exothermic scattering (Fig. 1c) or v-pair de-excitation (Fie 

S,r“gth f0r °f these ~ “ -“i •» know t'STuSr 

• At,Ze^temP,“e the nu
]
c*eus 18 in lts ground state. The initial nuclear configuration of nucleus (Z A) in the ISPSM is then simp y obtained by filling up the single particle orbitals with Z protons and ZV = A-Z neutrons. At finite temperature however tS 

problem is considerably more complicated since many nuclear configurations will be thermally populated Furthermore ’ the 
number of populated configurations will increase essentially exponentially with temperature. Kolb & Mazurek (1979) accounted for 
this by assuming that the weak strength was a function of the energy which was in turn proport.onaTte ^ 
density with a cutoff at sum-rule saturation. They obtained the total weak strength at a given energy by summing strengths over 
different initial configurations weighted by a Boltzmann population factor, and dividing by a partfdon function This FemiLgïs 

the flnt
8 j F?artlC*e shiU model nature of the many-body nuclear wavefunction, however, and does not allow for a quantitative means of studying the effects of forbidden strength. A strictly correct shell-model treatment of finite temperature 

interactions, on the other hand, would be prohibitive since it would be necessary to construct all nuclear configurations thm would 
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19
91

A
pJ

. 
. .

37
6.

 .
70

1F
 

No. 2, 1991 HIGH-TEMPERATURE NEUTRINO-NUCLEUS PROCESSES 705 

exist at finite temperature T. In this paper, we choose to select a representative excited nuclear configuration at T. I t is 
configuration is truly representative in the sense that most excited configurations resemble it, the strength calculated from it alone 
should give a good indication of the appearance of the true strength calculated from the ensemble of configurations 

In the shell model we have single particle levels of energy e¡ with multiplicity gi, = 2j¡ + 1. Since these particles follow Fermi-Dirac 
statistics, the logarithm of the grand partition function, or thermodynamic function, for the nomnteracting particles is 

(3.4) 

where the sum is over single particle states and where the firvalues are the thermodynamic functions for individual single-particle 
states : 

-/?Q, = 0,-ln [1 + exp (a - /fe,)] , (3-5) 

where ß = 1/fcT, a = ßß, and ß is the chemical potential. Given a fixed number of particles (neutrons or protons) N = Yjini (where n¡ 
is the single-particle occupation number), we may solve for a via 

(3.6) N- -fí — = Y gi 
} da , exp (/?€,• - a) + 1 

The mean number of particles in the single particle level with energy e¡ IS then 

ÔQ: 1 dlnZ 
<«,■> =--^=-7;^- 

9j (3.7) 
dß ß d€j exp (ß€j - a) + 1 ’ 

where Z is the ordinary partition function (eq. [2.5]). Clearly N = X/V when a is chosen according to equation (3^6) 
Let us now populate the shell-model single-particle states at finite temperature according to equation (3.7). We do this by letting 

np = /n.\ anci ni> = nj + 1) - <n,>. Such a thermal distribution of single particle states defines a thermodynamic configuration. 
Since this configuration is the mean in an ensemble of configurations, it is an appropriate choice to be the representative of the 
thermal averatze 

The initial energy of the target nucleus in the representative configuration is the mean energy of the nucleus, which is given by 

. p,, _ _ 2. dlflZ _ ^ 9i£i  
^ ^ ~ ß dß - ¡ exp (ßei - a) + 1 ’ 

(3.8) 

where again Z is the ordinary partition function; hence, ß(E, AE) is /?(<£>, AE). In what follows, we always compute the strengt 
function at a given temperature by first computing the representative configuration from equation (3.7). Strictly speaking, then, t e 
strength is a function of the temperature and not the energy of the target nucleus. This is advantageous since we merely need to 
keep track of the temperature, not the initial energy of the nucleus to compute the strength distributions. On the other hand, the 
rates in equations (2.6H2.9) require <£> as input. We should thus calculate <E> from equation (3.8). In keeping with our simple 
approach, we choose instead to consider the simple Fermi gas limit of equation (3.8) which gives <£> ~ a(kT) . This limit is valid 
when kT is comparable to the level spacing in the nucleus, a situation roughly attained in stellar collapse. The value of the leve 
density parameter a is approximately A/S MeV" \ where A is the nuclear mass, but when specific distributions of nuclei are used, it 
is perhaps preferable to choose the correct value of a for those nuclei (see, for example, Woosley et al. 1978). 

Besides the simplicity of this approach, there are two additional advantages. The first is that we can if we desire alter the model to 
include correlations, such as BCS pairing (Moretto 1972), or subtraction of continuum states (Tubbs & Koonin 1979) by simply 
adding the appropriate terms to equation (3.5). The second is that the formalism naturally goes over to that for a Fermi gas for 
Y'.g¡ -> 2¡d3r¡d3p/(2nh)3. This allows us to make connections with Fermi gas studies of neutrino-nucleus processes in a particu- 
larly straightforward manner. .. ,, 

At this point we may consider the qualitative features of the ISPSM neutrino-nucleus strength as computed from equation (3.1). 
Figure 2a shows the strength for single-particle-up transitions of 56Fe at T = 1 MeV. Figure 2b shows the strength for the same 
transitions but with the first forbidden single particle transitions excluded. Clearly the forbidden transitions open up considerably 
more strength for neutrino-nucleus interactions, especially for high-energy transitions. Figure 2c is the same as Figure 2a but now 
for j s MeV. Qualitatively, Figures 2a and 2c are not greatly different. The effect of higher nuclear temperature on the strength 
distribution is not large since unblocking by nuclear excitation affects only a few single-particle-up transitions. This is to be 
contrasted with the many up transitions that were unblocked even at T = 0 MeV. Unblocking does affect the allowed transitions, 
however, since these were mostly blocked at T = 0 MeV. This is seen in Figure 2d, which is the same as Figure 2b but tor — 

^Unblocking is particularly important in single-particle-down transitions. Figure 3a gives the strength for single-particle-down 
transitions (where now E is in fact — E) for 56Fe at T = 1 MeV. There is much less strength in these transitions than m the 
single-particle-up transitions in Figure 2a. This is because most single-particle-down transitions are blocked since the lower levels 
are mostly filled. Figure 3b, which is the same as Figure 3a but with the first forbidden transitions excluded, is not much diflerent 
from Figure 3a since the forbidden transitions, which are mostly blocked, are only really important for large energy change. At 
T = 5 MeV (Fig 3c), many more transitions are unblocked and, consequently, there is much more strength than in the T — 1 Mey 
case. Moreover, forbidden transitions are more important at higher temperature since higher energy transitions are possible. This 
may be seen by comparing Figure 3c with Figure 3d, which is the same as Figure 3c but with the first forbidden transitions excluded. 

In Figures 3a and 3b only four allowed transitions are giving any significant contribution to the down strength in Fe. These 
transitions are l/5/2 ^ l/7/2 and 2p1/2 2p3/2, for both neutrons and protons, which are transitions between spin orbit partner 
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levels. Similarly in Figures 3c and 3d transitions between spin orbit partner levels dominate the strength distribution These results 

nature ofTn118, ^ ShOW that SOme kind ^H-model treatment is neJssary for dteovenn^^^ nature of the down strength, namely, that it is dominated by transitions between spin orbit partner levels As a conseauence the 

Sp^robsÄ 
makf.simijar cements about the up strength. The allowed transitions are between spin orbit partner levels. The enemies 

these transitions he in the range 1-10 MeV, which is the range of typical spin orbit splitting in the fp shell Forbidden transitions 
contribute at energies in the range 15-25 MeV where the momentum transfer is large. transitions 

For comparison with the detailed shell-model calculations in Woosley et al. (1990) we compute ground-state Fermi-Dirac 
flux-averaged cross sections for several nuclei with no blocking of the scattered neutrino. In this case, 

<W7’) — 
Aendo 

tt.^JEv)dEv 
(3-9) 

where Aendo is computed as in equation (2.6a), J%(EV) is a Fermi-Dirac flux, and f. = 0 We fit our results for 56Fp to thnc r.f 
Woosley « >1(1990) by varying | M p. The value for | « f we found was 0.20. We .hen use "h "valueZ tlSZ, of our caléulSs 

dishSonZTÚ) *Z7hT‘^(cí“7FraZZ?f«^0“w h““' “nÿuratlon vs'1116 lemperature character,ang the neutrino 
U U' u° J 68o ^ °’, Fe’ and ^ Se’ We have S0°d agreement with Woosley et al. (1990) for the heavv nuclei 56Fe 
irimSr Sre;,FOr ‘î6 hghter

f 
nUClei’h0wever’the a8reement is not as g°od- This Shows the Sations of our model due 

HenpnHpn ‘ ^ î.he. 1”c
J
lusion of configuration mixing in our shell model and to the lack of inclusion of the extra energy dependence in the weak-forbidden transitions. In both the ground state configurations for 4He and 160 in the ISPSM no allowed 

[Z T are P0^ble, C^urfo™ing would result in particle-hole excitations which permit ^l^wed single partdetran sitions to occur in these lighter nuclei. This would result in more strength and larger cross sections, especially at higher temnerature 

zeroT^^ the*rates^>f ymiudeus interactíon^Likewfse^síni^11f^OTbidcfon'strengfocîearîy ^iominat^Tthe^trengt^for “^le and^O at 
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001 mi ■jiji in iflHiiMiii! inn mi mi iiJiimiBniiiinim i.i mi n .001 11111 ■11 ■ »m 
0 5 10 15 20 25 0 5 10 15 20 25 

E (MeV) E (MeV) 
pIG 3—Strength in the independent single-particle shell model for down transitions in 56Fe. (a)T = 1 MeV and allowed and first forbidden transitions. (b)T - \ 

MeV and allowed transitions only, (c) Same as Fig. 2a but for T = 5 MeV. (d) Same as Fig. 2b but for T — 5 MeV. 

4. FERMI-GAS-MOTIVATED FITTING FORMULAE 

In the previous section we have calculated strength distributions for neutrino-nucleus interactions in the ISPSM. These detailed 
strength distributions are useful because they show the nature of the variation of strength with temperature and the important 
underlying single-particle nature of the strength. For example, we have seen that it is the transitions between spin orbit partner 
levels that dominate the single-particle-down strength. This observation could not have been made in a model that did not consider 
the details of the shell model nature of the nucleon wavefunctions. The conclusion from a Fermi gas treatment would have been that 
the dominant contributions to the single-particle-down strength come from transitions of energy kT (Kolb & Mazurek 1979), which 
is erroneous. 

While the ISPSM is useful for clarifying the nature of the strength of neutrino-nucleus interactions, the resulting strength 
distributions are not useful as input in detailed numerical supernova calculations. Here a Fermi gas treatment is in some ways 
preferable because, in such a model, the strength functions will simply scale continuously with proton number, neutron number, and 
temperature. The purpose of this section will be to derive a simple Fermi-gas-based treatment which, however, fits the detailed shell 
model. Such a scheme will retain the essential energetic and selection rule results of the shell model, yet will be simple to code for all 
nuclei under a wide range of stellar collapse conditions. 

In order to deal with excited nuclei, we continue to work with the representative configuration, which we have taken to be the 
mean thermodynamic state. In this state the number of initial particle states nf and number of final hole states nh

f = gf — np
f, where 

again # = 2; + 1 is the spin multiplicity of level/, are given by their mean values as computed in equation (3.7). The conversion to 
the Fermi gas limit is made by replacing the discrete sum Y^íQí with the continuous sum J2F^Pi/ilnh)3, where V is the nuclear 
volume. In this limit we find 

and 

<"?> 
2Vd3Pi 1 
(2nh)3 éEi~p)IT + 1 

(4.1a) 

«> t, 
1 

2/7 + 1 e(Ef-a)IT + 1 . 
(4.1b) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
91

A
pJ

. 
. .

37
6.

 .
70

1F
 

708 FULLER & MEYER Vol. 376 

F!,G J 
4;—En<iothennic scattering cross sections averaged over a Fermi-Dirac distribution of neutrinos. Curves detailed shell-model calculations of Woosley et al. 1989 (a) 4He, (b) 160, (c) S6Fe, and ( J) 6SSe. are from the ISPSM. Square points are from the 

dn£{/f v1 wimtia a7d uDa energleS of the Slngle Partlcle making the transition and ß is the nuclear Fermi energy which is of order 40 MeV. We consider here transitions such that Ef = £,. ± AE, where the upper sign refers to endothermic (single- 
partide-up) transitions and the lower sign refers to exothermic (single-particle-down) transitions. Summation over the final levels 
wfihmnply pick out the correct energy of the final state for a transition of energy A£; thus, by direct substitution into equation (3 1) 

£«£>, A£) = 
2F 

{Inh)' i: 
d3

Pi e(Ei-ß)/kT + 1 l 1 e(E,-ß)lkT _|_ j 
1 

For endothermic (up) transitions, Ef = E¡ + A£. With this substitution, we can factor the integrand to obtain 

*<*>•“>-(2^ J> 

If we carry out the integration, we find 

1 
l_e-AEIkT r i  ■ i 

|_1 + e(Ei-ß)/kT e[Ei-(ß-AE)]/kT _|_ J * 

;)]- 

(4.2) 

(4.3) 

'p - AE') 
(4.4) /?«£>, A£) = \JkT)312 JfJJL) _ j 

’ n2(fic)3 ll -e-AEIkTJ_ ll2\kTj 

where F1/2(ri) is the Fermi integral of order j given by 

^ f00 x^dx 
F^> - J0 • (4.5) 

We note that the nuclear volume is F = 47tr30Aß, where r0 = 1.2 fin. In the limit of large nuclear degeneracy (u g> kT) which 
obtains in the region of interest in stellar collapse, ^ ’’ 

^60/\40 MeVy 
where/has units MeV -1 and is to be fit to give the fraction of transitions which are allowed to occur. 

(4.6) 
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The fit in equation (4.6) does not account for any difference between allowed and forbidden strength, nor between neutrons and 
protons. In order to get better agreement with the ISPSM results of § 3, it is necessary to introduce at least some of the features of 
the shell model in the Fermi gas treatment. This is done in the following way. 

The ISPSM showed us that the allowed transitions resulted from transitions within a given shell between spin orbit partner levels. 
Forbidden transitions occur predominantly between levels in different shells. This led to allowed transitions mainly in the energy 
range 1 MeV < A£ < 10 MeV. Most of the forbidden strength lies in the energy range 15 MeV < AE <25 MeV. To this end we 
consider factors such as {l/[e<£'_ A£)Ml + 1]} {l/[e(AE'Ê2,M2 + 1]}. Such factors will pick out transitions with E1 < AE < £2, with 
the parameters A determining the strength cutoff. We can then choose separate parameters for allowed and forbidden transitions 
and can include a (k ■ R)2 term for the forbidden transitions. Finally, we can treat the protons and neutrons as separate Fermi 
gasses. This will allow us to fit strength distributions of nuclei with different neutron-to-proton ratios. 

With these considerations in mind, we can refine our Fermi gas fit. We obtain for the endothermic (up) strength 

£„„«£>, E) = r0
p(AE, T, Z, A)[1a(AE, 2,, E1, A2, E2) + IF(AE, /3, £3, A4, £J] , (4.7a) 

where the overall Fermi-gas form factor is 

r0t>(AE, T, Z, N) = 79/ (4.7b) 

the allowed strength form factor is 

^15 ^15 ^2? ^2) — 
1 

e(Ei-AE)/Xi _j_ 1 A ^(A£-£2)/A2 _|_ I 
1 

(4.7c) 

and the forbidden form factor is 

^3? F3, A4, F4) — ■ 
1.4v42A£2 

(he)2 

1 
e(E3-AE)/X3 _|_ 1 A £< 

1 
,(A£-E4)/A4 + 1 

(4.7d) 

In these equations Z and N are the nuclear proton and neutron number, respectively, so that the total nucleon number is 
A = Z + N, and the proton and neutron nuclear Fermi levels are 

(4.8a) 

and 

Hn = 501 
N\2/3 

30/ 
(4.8b) 

We have left out of our overall Fermi gas form factor the jli312 factor, as this will only vary slowly with nuclear mass and 
temperature. Again, / is an overall fit-parameter related to the ratio of allowed/forbidden transitions in the shell model to those 
among plane-wave fermions. 

Figure 5 shows the binned strength for single-particle-up transitions in various nuclei at temperatures of 1, 2, and 5 MeV as 
computed in the ISPSM. The curves are the strength distributions computed from equation (4.7). The values of/ Al5 etc., used to 
compute the curves are shown in Table 1. The overall agreement of these curves with the ISPSM results is good. The general 
features of the strength distribution are well-reproduced, namely the magnitude, spread, and distribution of allowed and forbidden 
strength. Furthermore, the fits seem to work well for varying temperatures and varying degrees of neutron-richness of the nuclei. 

A similar analysis may be made for single-particle-down transitions, for which Ef = Ei — AE. In this case the Fermi gas result is 

/?«£>, AE) = 79/( - 
40 MeV 

3/2 

e“'r - 1 L 
1+^) 

V J 

3/2 

']• 
(4.9) 

TABLE 1 
Parameters for Use with Equation (4.7) 

Parameter Value 

/  0.1 
Ei   4.0 MeV 
^   1.0 MeV 
E2   4.9 MeV 
k2   1.2 MeV 
E3   17.0 MeV 
¿3   8.0 MeV 
£4   24.0 MeV 
A4   0.5 MeV 
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where again/is to be fit. This strength function peaks at AE = 0, which disagrees with the ISPSM results 
allowed and forbidden transitions to get our modified Fermi-gas fit for exothermic transitions: 

/?d„wn«£>, AE) = /rn(A£, T, Z, N)[Ia(AE, Eu A,, E2) + IF(AE, ¿3, E3, A4, £4)] , 
where the Fermi-gas form factor is now 

We again pick out 

(4.10a) 

/down = 79y. 
,AE/kT 

, AE\312 

1+— -1 
EpJ 

AE\312 

- 1 
}• 

(4.10b) 

WÍth aS before* The allowed, IA, and forbidden, /F, form factors are the same as given in equations (4.7c) and (4.7d) except that fitting parameters (/, Eu A2, E2, À3, E3, A4, £4) differ for the down transitions and are given in Table 2. 

TABLE 2 
Parameters for Use with Equation (4.10) 

Parameter Value 

/  0.09 + 0.017T2 
Ei   3.0 MeV 
¿i   1.0 MeV 
E2   4.0 MeV 
À2   1.0 MeV 
E3     17.0 MeV 
À3   8.0 MeV 
E4   22.0 MeV 
À4   1.0 MeV 
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Fig. 6.—Down transition strengths for the indicated nuclei. The histograms are binned strength from the ISPSM, while the curves are from the Fermi gas model. 
The quantity/is the normalization factor for the Fermi gas strength to match the binned strength integrated over energy. 

Figure 6 corresponds to Figure 5 but is for single-particle down transitions. Curves show the fit of equation (4.10). The values of/, 
El9 etc., used for these curves are shown in Table 2. Again the agreement between the ISPSM results and the modified Fermi-gas 
results are good over a range of nuclear masses and temperatures. 

In summary, we have computed the strength distributions for neutrino-nucleus interactions in the Fermi gas limit. We have 
modified the results to obtain better agreement with results from the ISPSM by taking allowed and forbidden transitions to fall in 
different energy ranges. The fits made on the basis of the modified Fermi-gas results agree well with the ISPSM results. Equation 
(4.7), with the fitting parameters in Table 1, may be used for the strength distribution in endothermic processes (Figs, la and lb; eqs. 
[2.6] and [2.9]), while equation (4.10), with the parameters in Table 2 may be used for the strength distribution in exothermic 
processes (Figs. 1c and Id; eqs. [2.7] and [2.8]). 

5. ANGULAR DISTRIBUTIONS 

It may be necessary to know the angular distribution of the neutrinos in v-nucleus interactions. The angular distributions of the 
electron and antineutrino emitted in /?-decay are given in detail in Greuling & Meekes (1951) and Morita (1953). To the extent that 
isospin is a good quantum number in nuclei, a reasonable approximation in our model, these distributions apply to v-nucleus 
interactions as well. 

All of our allowed strength comes from Gamow-Teller transitions. The angular distribution is 

P(fi) = ¿(1-7COS0)’ ^ 

where 6 is the angle between the momenta of the neutrinos in the entrance and exit channels and P(il) is normalized for integration 
over dQ, = sin OdOdÿ. This distribution is slightly backward peaked. Note that for vv-emission and annihilation one may view the 
antineutrino as a neutrino moving backwards in time ; therefore, it is in the entrance channel in emission and the exit channel for 
annihilation. 

The angular distribution for forbidden transitions is a complicated matter. In first forbidden /?-decay (or charged-current 
v-nucleus interactions) where Coulomb wave corrections are important in the energetics of the emitted electron, the angular 
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d^tnbuùon depend8 strongly on the nature of the interaction. A vector interaction will tend to have a distribution that goes rouehlv 

h t+ Cnoß77fi1C? 1S.Str0nf y forward Peaked. An axial-vector interaction will tend to be strongly backward-peaked ü - cos 0) Haxton (1987) finds charged-current capture on 160 to be strongly backward-peaked. Because f«O has a totaTfsospin aulTtl 
number T O ground state and little allowed strength, charged-current interactions to 16N or 16F (both T = 1 in the ground state) 
will proceed primarily through forbidden axial-vector transitions. These transitions favor large momentum traisflr 

““TSwriSd "8y <compared “ "" l"cid“1 "eutirino "er8y) for ,he <!mi,,ed "e,:<ron'The ■‘“"‘i»'- 

h; neutral‘curre”t interactions the exit channel lepton is neutral; therefore, Coulomb wave-correction terms in the angular 
RWhUtl°n are T-!16!“1- As ab?Ve’ however> the angular distribution will depend strongly on which operators in the weak Hamiltonian contnbu e most to the overall forbidden strength. For example, the vector operator r gives a matrix element iTp 
proportional to roughly 1+ cos 6. The axial vector operator <r x /• has a square matrix element\a x f|2 roughly proportional to 

L diSS K Wï H ^ - ' 2 The Vec,0r 0pera,0r ” has a s1“are «'«"« kl2 proportil„7lfl - rS which 
peaked fo^fiît'foïbiddenÎ ' There ^ ^^ ^ essentially isotropic. Although many terms appear to be roughly forward peaked for first-forbidden decay, we do not have sufficient detail in our model to determine the magnitude of the various terms and 

ÎaTsitî atlVe cont"b“tlo.n t0.tbC °Vera11 angular distribution. We assume for now that the angular distribution for the forbidden transitions is roughly isotropic because we have terms that peak at 0 = 0, tc/2, and n. Thus, 

Pf(£2)*-. 
4n (5.2) 

I 6 " ,13 "10" arf,foaad‘0aa0mmate the forbldden strength for v-nucleus interactions, we can alter P(Ü) accordingly We do 
Sevam for steZ^’l l u tiansitloI\s wil1 Play a dominant role in v-nucleus interactions in the heavier mass nuclei 
77a f stellar collapse. As we have seen, down transition strength is completely dominated by allowed transitions Because phase space considerations favor large exit channel neutrino energy and, hence/low momentum transfer to nuclei' alTowed 

alertions will also completely dominate up transitions (endothermic processes) when significant allowed strength is available Such 
allowed strength is available to almost all nuclei present in a collapsing star. Our ignorance of the ™ Sforp ¡oi!hn?S 

th Whh^SandyS? °n CalcU,lab0nS of the ov7a11 an8ular distribution for v-nucleus processes in stellar collapse. ' With Pa(Q) and PF(Q) now available, we write the expressions for up and down transition distributions. These are 

/?UP«E>, A£, 0) = r0»(AE, T, Z, N)[Ia(AE, £„ A2, E2)PJQ) + IF(AE, A 
and similarly for the down transitions, 

■3> T3 ¿4, EJPACi)] , 

/?down«£>, A£, 0) - /oown(A£, T, Z, N)[1a(AE, Au £1; A2, E2)Pa(Q) + IF(AE, A3, E3, A4, E4)PF(Q)] , 
where 70,1A, and IF are computed as in § 4. 

(5.3a) 

(5.3b) 

6. NEUTRINO-NUCLEUS PROCESSES AND STELLAR COLLAPSE 
None of the four neutrino-nucleus processes discussed here become important for supernovae until the core is well into the 

collapse epoch. As neutrmos begin to be trapped (for densities p10 > 10, where Pl0 =/,/lG10 g cm'3) each of the four neutrino 
processes contributes to the evolution of the neutrino distribution functions, as well as to the overall entropy temperature and 

an h,st?Ves of thf \"fallil'2 co™* By far the dominant process in these considerations is endothermic scattering since it is 
teK aS °f 7 s,reng,h' Tl,is P'0““ lb, some lepton nnmber loss before itself off at high density by filling up low-energy neutrino states (Kolb & Mazurek 1979). In any case all four nrocesses taken 

lfoSe
pnfnnd

il tCOv!T1cenSfte T an0thu r 'Vn611- effeCtS °n the COre ProPerties. Nevertheless, detailed calculations If the evolution o the lepton distribution functions in the infalhng core, post-bounce neutrino reheating of the material behind the stalled shock or 
v-induced nucleosynthesis will require the detailed fits to the processes which are provided in this paper. 

It is useful to consider first the process of nuclear de-excitation into neutrino pairs. This discussion will serve to illustrate the level 
of accuracy of the fits described m the last section. This process is the dominant neutrino-pair energy-loTs mecSanTsm at high 

o^r^te fo? m hl|gh y electron-degenerate environments. From equation (2.8a) we can derive that the total neutrino-pair energy- loss rate for a nucleus making a transition between discrete energy levels E¡ and Ef is (Bahcall, Treiman, & Zee 1974), ? 8y 

A, lif ■ 
gVa 
óOtt 3 (Er - F/)61M gt! (6.1a) 

where G is the weak coupling constant (nearly Gf), gA * 1.24 is the ratio of axial-vector-to-vector coupling constants and where as 
above, we ignore the vector coupling. In this case | MGT|2 is the Gamow-Teller matrix element. We find that 

I A/Gt|2 — l</|ffT3| i>|2 , (6.1b) 

where; is the spin of state i and where | i) and |/> represent the initial and final nuclear wave functions respectively An adeouate 

(3q
xm « ra“on,(6 la) :s rate 1 eqoai ,o tha, ^ ä“ (see eq. L17J in Fuller et al. 1982). The total energy-loss rate for a nucleus is then given by a sum over discrete nuclear transitions 

A — nv/l0 £ I MGT\ff(AEif)
6 

if (6.1c) 
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where nv = 3 is the number of neutrino flavors, 20 = G2g2
A/60n3 * 1.74 x IO“4 MeV5 s“1, and where | MCT\ff and AEif are the 

matrix element and energy difference for transitions between states i and f. Consider the neutrino-pair energy-loss rate for the 
de-excitation of 56Fe. In the zero-order shell model this nucleus would have two proton holes in the l/7/2 shell and two neutrons in 
the 2p3/2 shell. It is clear that at relatively low temperature the dominant transitions would involve de-excitations between 
spin-orbit-partner levels which include l/5/2-l/7/2, 2p1/2-2p3/2, and lfif7/2-l09/2 for both protons and neutrons. The probability of 
excitation of a neutron or proton to level i with spin /, is (from eq. [3.7]), 

«, « (2/,. + , (6.2) 

where AEif is the energy difference between single particle levels, essentially the spin-orbit splitting. Technically these excitations 
correspond to the Ml-excitations, and so the sum over spin-orbit partners indicated above would correspond closely to the Ml 
resonance for the 56Fe ground state. Since these configurations represent particle-hole excitations the residual interaction will tend 
to collect strength and push it up in energy. We could include a positive particle-hole repulsion energy as in Fuller et al. (1982), but 
this has little effect on the rates, since the increase in the £6 term is compensated by the decrease in the population index of the initial 
state. We can approximate the total energy-loss rate per 56Fe nucleus by 

Ae « A?p + Xp
gi + A"p + Xn

gi, (6.3a) 

where Xp
fp and Xp

gd are the rates from proton excitations in the /p and gd shells, respectively, while the superscript n denotes the 
corresponding quantities for neutron excitations. Using equations (2.8a) and (3.1) we can write, 

A?p = A0[| Mff\2 x § x 6 x e-^’¡T(Ap
íff + | Mpp|2 x 1 x 2 x e -A’'/r(A£p)6] , (6.3b) 

and similarly the neutron contributions are 

A"p = A0[l Mff\2 x è x 6 x e (A^)6 + | Mpp|2 x | x 2 x e -A^(A"pp)
6] . (6.3c) 

For the gd-shçM transitions we can infer, 

Àp
d = A0[l MJ2 x 1 x 8 x e-A'>/T (ApJ6 + \Mdi\

2 x 1 x 4 x e~^/r(AJd)6] , (6.3d) 

while similarly for the neutron transitions, 

Xn
gd = A0[| Mgg\2 x 1 x 8 x e-A~/T (A"ggf + \ Mdd\2 x 1 x 4 x e(A^)6] , (6.3e) 

where | ;\7 ,-,-|2 is the single particle Gamow-Teller matrix element for the l/5/2-l/7/2 transitions and similarly for lpi 2 IP3/2 (or PP)» 
2d3/2-2d5/2 (or dd), and l0f7/2-lp9/2 (or gg), and where, for example, Ap

ff is the proton single-particle excitation energy difference 
between l/5/2 and l/7/2, Ap

pf is that for 2p1/2-l/7/2, while similarly Ap
fg is for l/7/2-l07/2> while Ap

fd is for 2d3/2-l/7/2, and A^p is for 
2pi/2-2p3/2- The superscript n denotes the corresponding quantities for neutrons where, for example, An

pg is the 2p3/2-lg7/2 splitting. 
All single-particle energies are the same as used in the numerical calculations in the previous sections and are listed through the 
¿/d-shell in Table 3. 

For low temperatures (T < 5 MeV) it can be inferred from the above considerations that Xfp is dominated by the 
transitions (A£ « 6.5 MeV) for both neutrons and protons, while Xgd is dominated by the neutron transition (A£ ä 9 
MeV). A convenient fit to the neutrino-pair energy-loss rate (MeV s~1 nucleus - x) using just these transitions for a nucleus of mass A 
is 

[-24.87/(7741/3)] 
A/p « (8.64 x 105) j2 , (6.4a) 

TABLE 3 
Single-Particle Energies for 56Fe in MeV 

Shell Neutrons Protons 

lSi/2 •• 
lp3/2 .. 
lPl/2 •• 
1^5/2 - 
2s1/2 .. 
lí¿3/2 •• 
I/7/2 • ‘ 
2p3/2 •• 
2pm .. 
I/5/2 •• 
109/2 '• 
2^5/2 - 
3Si/2 .. 
2^3/2 .. 
107/2 •' 
1^11/2 
lh9/2 • 

-37.7195 
-30.5994 
-28.7018 
-22.7940 
-19.1850 
-18.7578 
-14.4634 
-10.2387 
-8.0895 
-7.9626 
-5.7389 
-1.9587 
-0.6869 

1.0491 
2.9483 
3.2884 

13.0656 

-32.5067 
-24.9307 
-22.9301 
-16.6323 
-12.6992 
-12.2864 
-7.8884 
-3.5610 
-1.0365 
-0.7045 

1.0882 
4.4898 
5.6475 
7.9622 

10.8464 
10.1549 
20.9399 
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and similarly for the grd-shell, 

Àgà K (2.40 x 107) 
„l-Sl.SZKTAUl)] 

1  
(6.4b) 

where T is the temperature in MeV. We see immediately from this exercise that the energy scale which is important for determininc 

scales aT ^ S° ^ temperature as the ^n-orbit splitting. Schematically the nuclear energy-loss de-excitation rate 

: Gp(AE)6e~AE,T . (6.5) 
The ratio of the rates given by this expression for a transition energy A£ « 7 MeV (a typical spin-orbit energy difference! to a 

" T lf T " 15 MeV is of °rder 30°- A strict Fermi gas treatrL7of the Lleus SÄi^intial 

f.,lr^
e
i

C
c°”pare f

the ener.8y-loss rates for, 56Fe (MeV s“1 nucleus1) for three different calculation techniques in Figure 7 The solid curve is the neutrino pair loss rate as calculated from equation (2.8a), with an integration of the detailed fit given in the last section 
e ong-dashed curve is the result from the simple schematic shell model discussed above (eq. [6.4a]) These curves track each 

other well at low temperature, as expected, where the/p and gd spin orbit transitions dominate As the tem¿mtmeIncreases 

dSIfilH fi!1<!
e'wChaunC Pen^UP an,d forbldden strength becomes important so that the result from equation (6 4) falls below the detailed fits. We show the independent single-particle model result (Fermi gas) of Kolb & Mazurek HQTQt fnr mm™*™™ ( u * 

dashed curre). This model ^elds a rate which is below our result by one ordTr o^ 
MeV) where the/p and gd shell transitions dominate, but is considerably larger at high température where the Feí™; tu- ’ 
overestimates the weak strength. Nevertheless, we concur with Kolb & Mazurek Ü979) af to the effect! ¡,f tí 8 technique 

haveaPr5eot!ndfr ^ ^ ^ ^ at KStetSwI 
as discussalir^Dicus et "ah (1976).^ " ^ eleCtr°n ^ fr0m neutri^-Pa- bremsstrahlung (dot-dasbed curve) 

To gauge the relative importance of, and role of, the four neutrino-nucleus processes in stellar collapse we have performed some 

andy a
slmphttlC t°nHZ^n

t
e co.llaps® calculations. These are to be understood as illustrative of the relative role of tlJprocesses only 

fimit not'ntendÇd t0 8lve the true evolution of entropy, temperature, composition, and the form of the lepton distribution functions m the infallmg core. These quantities could be obtained only through a detailed multizone collapse code calculation with 
v'.transport which could use our detailed numerical fits to the neutrino-nucleus rates^he overall equation of state and electron capture characteristics of our one-zone calculation are as described in Fuller (1982). However we have modified 

this calculation at high densities to mock-up the effects of neutrino trapping and the consequent fi ingTnrmriSo pha“ spa!e 

Kmrôf oriê, ^ PPed '.V1“ COr‘, al,de”SiiCS °f order or'’'» » 10 whe" the "'“■"-O become of order the dynaimcal time scale for collapse. The dominant neutrino opacity source here is conservative-coherent 
scattering on heavy nuclei. The highest energy neutrinos will be trapped first. Very crudely, the electron neutrino distribution 

by ,hc above criKrion: ,he dmmiw <ime s“le’w * 

where A is the mean nuclear mass number. 

/ 80\1/2/ 30 \5/12 

Ee &(n MeV)(—J (5 
(6.5) 
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Neutrino phase space is filled up in these calculations by several processes, including electron capture on free protons and heavy 
nuclei, endothermic neutrino-nucleus scattering and nuclear de-excitation into neutrino pairs as well as neutrino-electron scattering. 
To estimate the rate at which the low-energy phase space is filled we first estimate the fraction of states below Ec which are occupied, 
/, in terms of the number of occupied neutrino states below Ec,nv, and the total number of states below Ec, rtf. Thus we have, 

where roughly, 

(6.6a) 

(6.6b) 

The time evolution of nx can be estimated by 

¿pnA 
(6.7) 

Where Àp is the rate at which neutrinos are downscattered into the window per nucleus and nA is the number density of nuclei, and 
where Tdif is the neutrino diffusion time scale at the appropriate energy. The most important processes in this regard are electron 
capture, endothermic neutrino-nucleus scattering, and (at high temperature only) nuclear de-excitation into pairs. All of these 
processes are blocked in our calculation by 1 — / at the appropriate energies for ve (note that nuclear de-excitation into and vT 
pairs remain unblocked). 

The results of the one-zone calculations are shown in Figures 8, 9, and 10. In these figures entropy-per-baryon in units of 
Boltzmann’s constant k, temperature and electron fraction are plotted versus p10 for three cases: complete blocking of all lepton- 
nucleus processes (solid curve), down-scattering of electron neutrinos and pair de-excitation of nuclei with no low-energy blocking 
(short-dashed curve), and down-scattering and pair de-excitation but with phase-space filling of low-energy ve phase space as 
described above (long-dashed curve). The calculation which would best track detailed collapse calculations is the complete blocking 
case. However, the other cases give insight into the gross effects of the neutrino-nucleus processes. 

We have found that the entropy of the post-trapped core is little changed by nuclear de-excitation into pairs, since the 
temperature is so low T « 1 MeV. In fact, from equation (6.4) it can be shown that the entropy loss per baryon in units of 
Boltzmann’s constant generated by this process is less than 0.01. This process will, however, produce most of the ve, and and vt 
pairs in the core. Endothermic scattering of ve quickly fills the low-energy window in our calculation. Were this window not filled 
quickly then electron capture could considerably heat the core and reduce the lepton number (here given by Ye) and thus reduce the 
mass in the homologous core (see Bethe et al. 1979 and Burrows & Lattimer 1983). There may be some lepton number loss and 
concomitant entropy generation in the collapsing core due to endothermic scattering, but only a detailed collapse calculation using 
our fits will reveal how large this effect is. 

Finally, we note that endothermic scattering may play a role in neutrino reheating of the stalled shock after core-bounce, in 
addition to the role it plays in nucleosynthesis. The reheating epoch begins about 0.15 s after bounce in the calculation of Mayle 
(1985) and Bethe & Wilson (1985) and is due primarily to ve and ve absorption on free neutrons and protons. By contrast, 

Fig. 8 Fig. 9 
Fig. 8.—Entropy per baryon as computed in one zone core collapse models. The quantity pl0 is the density in units of 1010 g cm 3. The models have either no 

neutrino-nucleus processes included (solid curve), down-scattering of electron neutrinos and pair de-excitation of nuclei (short-dashed curve), or down-scattering and 
pair de-excitation but with filling up of the low-energy window in the electron neutrino distribution (long-dashed curve). 

Fig. 9.—Same as Fig. 8 but for temperature 
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Fig. 10.—Same as Fig. 8 but for electron-to-baryon ratio Ye 

endothermic neutrino-nucleus scattering can tap into the higher energy (and higher luminosity) v„ and v neutrinos with scattering 

uPPHOaChlnfu0 Cm, ?er nulleon in heavy nuclei (at the beginning of reheating the entropy is still low enough thaï a substantial abundance of heavy nuclei exits), as discussed in Haxton (1988b). ^ 

nrír^cdUSír0n fuf Pf®86".1!*1 simple fitting formulae for our shell-model calculations of the rates of the four neutrino-nucleus 
moH^l The FlgUre L We have dlscus.sed the underlying nuclear physics of these processes in terms of the simple single-particle shell 

tiJh 1 ?rocess.es ™ay Play an interesting role in the evolution of the lepton distribution functions in the infalling supernova core, the neutrino re-heating epoch of supernova, and the v-process of nucleosynthesis. g ^ 
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