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DISCRETIZING DISTRIBUTIONS WITH EXACT MOMENTS:

ERROR ESTIMATE AND CONVERGENCE ANALYSIS∗

KEN’ICHIRO TANAKA† AND ALEXIS AKIRA TODA‡

Abstract. The maximum entropy principle is a powerful tool for solving underdetermined in-
verse problems. This paper considers the problem of discretizing a continuous distribution, which
arises in various applied fields. We obtain the approximating distribution by minimizing the Kullback-
Leibler information (relative entropy) of the unknown discrete distribution relative to an initial
discretization based on a quadrature formula subject to some moment constraints. We study the
theoretical error bound and the convergence of this approximation method as the number of discrete
points increases. We prove that (i) the theoretical error bound of the approximate expectation of any
bounded continuous function has at most the same order as the quadrature formula we start with,
and (ii) the approximate discrete distribution weakly converges to the given continuous distribution.
Moreover, we present some numerical examples that show the advantage of the method and apply
to numerically solving an optimal portfolio problem.

Key words. probability distribution, discrete approximation, generalized moment, quadrature
formula, Kullback-Leibler information, Fenchel duality

AMS subject classifications. 41A25, 41A29, 62E17, 62P20, 65D30, 65K99

1. Introduction. This paper has two goals. First, we propose a numerical
method to approximate continuous probability distributions by discrete ones. Second,
we study the convergence of the method and derive error estimates. Discretizing con-
tinuous distributions is important in applied numerical analysis [26, 35]. To motivate
the problem, we list a few concrete examples, many of which come from economics.

Optimal portfolio problem. Suppose that there are J assets indexed by j =
1, . . . , J . Asset j has gross return Rj (which is a random variable), which means
that a dollar invested in asset j will give a total return of Rj dollars over the invest-
ment horizon. Let θj be the fraction of an investor’s wealth invested in asset j (so
∑J

j=1 θj = 1) and θ = (θ1, . . . , θJ ) be the portfolio. Then the gross return on the port-

folio is the weighted average of each asset return, R(θ) :=
∑J

j=1 Rjθj . Assume that

the investor wishes to maximize the risk-adjusted expected returns E
[

1
1−γ

R(θ)1−γ
]

,

where γ > 0 is the degree of relative risk aversion.1 Since in general this expecta-
tion has no closed-form expression in the parameter θ, in order to maximize it we
need to carry out a numerical integration. This problem is equivalent to finding an
approximate discrete distribution of the returns (R1, . . . , RJ ).

Optimal consumption-portfolio problem. In the above example the portfolio choice
was a one time decision. But we can consider a dynamic version, where the investor
chooses the optimal consumption and portfolio over time (Samuelson [37] and Merton
[34] are classic examples that admit closed-form solutions. Almost all practical prob-
lems, however, admit no closed-form solutions). Since we need to numerically solve a
portfolio problem for each time period, we face one more layer of complexity.

∗March 13, 2015
†Corresponding author: School of Systems Information Science, Future University Hakodate

(ketanaka@fun.ac.jp).
‡Department of Economics, University of California San Diego (atoda@ucsd.edu).
1Readers unfamiliar with economic concepts need not worry here. The point is that we want to

maximize an expectation that is a function of some parameter. The case γ = 1 corresponds to the
log utility E[logR(θ)].
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2 KEN’ICHIRO TANAKA AND ALEXIS AKIRA TODA

General equilibrium problem. Instead of solving the optimization problem of a
single investor, we can consider a model of the whole economy, and might want to
determine the asset prices that make demand equal to supply. This is called a general
equilibrium problem in economics. Since we need to solve a dynamic optimal portfolio
problem given asset prices, and we need to find asset prices that clear markets, we face
yet another layer of complexity. Such problems are especially computationally inten-
sive [22, 4, 29], and it is important to discretize a continuous distribution with only a
small number of support points in order to mitigate the ‘curse of dimensionality’.

Discretizing stochastic processes. In many fields, including decision analysis, eco-
nomic modeling, and option pricing, it is necessary to discretize stochastic processes
such as diffusions or autoregressive processes to generate scenario trees [21, 36] or
finite state Markov chain approximations [43, 44, 19].

The above examples have the following common feature. The researcher is given a
continuous density f (transition densities in the case of a stochastic processes), which
comes from either some theoretical model or data (say the kernel density estimation).
The density f is used to solve a complicated model. In order to reduce the complexity
of the problem, the researcher wishes to discretize the density.

Since the density is ultimately used to compute expectations, a natural idea is to
start with some quadrature formula

(1.1) E[g(X)] =

∫

RK

g(x)f(x) dx ≈
IM
∑

i=1

wi,Mg(xi,M )f(xi,M ),

where M is an index of the quadrature formula (for example, the grid size in each
dimension), IM is the number of integration points {xi,M}, and wi,M is the weight
on the point xi,M . Then the probability mass function qi,M ∝ wi,Mf(xi,M ) is a valid
discrete approximation of the continuous density f . Popular quadrature formulas—
such as the Newton-Cotes type or the Gauss type formulas (see [14] for a standard
textbook treatment)—may not be suitable for our purpose, however. First, the choice
of the quadrature formula automatically determines the discrete points {xi,M}. How-
ever, in practice the researcher often wishes to choose the set of points D ⊂ R

K at his
or her will, depending on the specific application. Second, for a general distribution
f , the quadrature formula (1.1) may not even match low order moments such as the
mean or the variance, i.e.,

E[X l] =

∫ ∞

−∞

xlf(x) dx 6=
IM
∑

i=1

wi,Mxl
i,Mf(xi,M )

for l = 1, 2 (in the one-dimensional case).2 Although the Newton-Cotes and the
Gauss formulas (in the one-dimensional case) match low order moments exactly, the
multi-dimensional case is not trivial. This is a major disadvantage because matching
moments is known to improve the accuracy of the analysis [39]. Third, some quadra-
ture formulas have negative weights wi,M when the order is high. Since we want to
obtain probabilities, which are necessarily nonnegative, such formulas are inappropri-
ate. Thus it is desirable to obtain a discretization method that (i) has a flexible choice

2Matching moments of a single density with a quadrature formula is not hard. The difficulty
arises when discretizing a stochastic process. If we approximate a stochastic process by a finite-
state Markov chain, when the process hits the lower or upper boundary of the support points, the
conditional moments under the true transition density and the approximate probabilities implied by
the quadrature formula will be vastly different, making the approximation poor.
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of the integration points, (ii) matches at least low order moments, and (iii) always
assigns positive weights.

Several methods for discrete approximations of continuous distributions have been
proposed in the literature. Given a continuous probability distribution, Tauchen [43]
and Adda and Cooper [3] adopt simple partitions of the support of the distribution
and assign the true probability to a representative point of each partitioned domain.
Although their methods are intuitive, simple, and work in any dimension, their meth-
ods are not so accurate, for they generate discrete distributions with only approximate
moments. Miller and Rice [35], Tauchen and Hussey [44], and Smith [39] discretize
the density function using the weights and the points of the Gaussian quadrature,
and Devuyst and Preckel [16] consider its generalization to multi-dimensions. Al-
though their methods are often more accurate and can match prescribed polynomial
moments exactly, they do not allow for the restriction {xi,M} ⊂ D and cannot be
applied to non-polynomial moments. Furthermore, the multi-dimensional method by
Devuyst and Preckel [16] is computationally intensive and does not have a theoretical
guarantee for the existence of the discretization, error bounds, or convergence.

As a remedy, in Tanaka and Toda [42] we proposed an approximation method
based on the maximum entropy principle (MaxEnt) that exactly matches prescribed
moments of the distribution. Starting with any discretization, we “fine-tune” the given
probabilities by minimizing the Kullback-Leibler information (relative entropy) of the
unknown probabilities subject to some moment constraints. In that paper we proved
the existence and the uniqueness of the solution to the minimization problem, showed
that the solution can be easily computed by solving the dual problem, and presented
some numerical examples that show that the approximation method is satisfactorily
accurate. The method is computationally very simple and works on any discrete
set D of any dimension with any prescribed moments (not necessarily polynomials).
However, up to now the theoretical approximation error and the convergence of this
method remain unknown.

This paper gives a theoretical error bound for this approximation method and
shows its convergence. We first evaluate the theoretical error of our proposed method.
It turns out that the order of the theoretical error estimate is at most that of the
initial discretization, and actually improves if the integrand is well-approximated by
the moment defining function. Thus our proposed method does not compromise the
order of the error at the expense of matching moments. Second, as a theoretical
consequence of the error estimate, we show the weak convergence of the discrete
distribution generated by the method to the given continuous distribution. This
means that for any bounded continuous function g, the expectation of g under the
approximating discrete distribution converges to that under the exact distribution as
the number of integration points increases. This property is practically important
because it guarantees that the approximation method never generates a pathological
discrete distribution with exact moments which has extremely different probability
from the given distribution on some domain, at least when the discrete set is large
enough. In addition, we present some numerical examples (including a numerical
solution to an optimal portfolio problem) that show the advantage of our proposed
method.

The idea of using the maximum entropy principle to obtain a solution to underde-
termined inverse problems (such as the Hausdorff moment problem) is similar to that
of Jaynes [24] and Mead and Papanicolaou [33]. There is an important distinction,
however. In typical inverse problems, one studies the convergence of the approximat-
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ing solution to the true one when the number of moment constraints tends to infinity.
In contrast, in this paper we study the convergence when the number of approximat-

ing points tends to infinity, fixing the moments. Thus the two problems are quite
different. The literature on the foundations, implementations, and the applications of
maximum entropy methods is immense: any literature review is necessarily partial.
The maximum entropy principle (as an inference method in general, not necessarily
restricted to physics) was proposed by Jaynes [23]. For axiomatic approaches, see
Shore and Johnson [38], Jaynes [25], Caticha and Giffin [11], and Knuth and Skilling
[28]. For the relation to Bayesian inference, see Van Campenhout and Cover [48] and
Csiszár [13]. For the duality theory of entropy maximization, see [7, 15, 20]. For
numerical algorithms for computing maximum entropy densities, see [1, 2, 5]. Budǐsić
and Putinar [10] study the opposite problem of ours, namely transforming a probabil-
ity measure to one that is absolutely continuous with respect to the Lebesgue measure.
Applications of maximum entropy methods can be found in economics [18, 45, 46],
statistics and econometrics [6, 27, 49], finance [40, 41, 9], among many other fields.

2. The approximation method. This section reviews the discrete approxima-
tion method of continuous distributions proposed in [42].

Let f be a probability density function on R
K with some generalized moments

T̄ =

∫

RK

f(x)T (x) dx,(2.1)

where T : RK → R
L is a continuous function. (Below, we sometimes refer to this

function as the “moment defining function”.) For instance, if we are interested in the
first and second polynomial moments (i.e., mean and variance), T becomes

T (x) = (x1, . . . , xK , x2
1 . . . , xkxl, . . . , x

2
K).

In this case, we have K expectations, K variances, and K(K−1)
2 covariances. Hence

the total number of moment constraints (the dimension of the range space of T ) is

(2.2) L = K +K +
K(K − 1)

2
=

K(K + 3)

2
.

In general, the components of T (x) need not be polynomials.

Moreover, for each positive integer M , assume that a finite discrete set

DM = {xi,M | i = 1, . . . , IM} ⊂ R
K

is given, where IM is the number of discrete points. An example of DM is the lattice

DM = {(m1h,m2h, . . . ,mKh) | m1,m2 . . . ,mK = 0,±1, . . . ,±M} ,

where h > 0 is the grid size, in which case IM = (2M + 1)K . Our aim is to find a
discrete probability distribution

PM = {pi,M | xi,M ∈ DM}

on DM with exact moments T̄ that approximates f (in the sense of the weak topology,
that is, convergence in distribution).
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To match the moments T̄ with PM = {pi,M | xi,M ∈ DM}, it suffices to assign
probabilities {pi,M} such that

IM
∑

i=1

pi,MT (xi,M ) = T̄ .(2.3)

Note that the solution to this equation is generally underdetermined because the
number of unknowns—pi,M ’s—of which there are IM , is typically much larger than
the number of equations (moments), L+ 1.3 To obtain PM that approximates f and
satisfies (2.3), we first choose an arbitrary discretization of f with not necessarily

exact moments, which we denote by QM = {qi,M}. For example, if we already have a
numerical quadrature formula

(2.4)

∫

RK

f(x)g(x) dx ≈
IM
∑

i=1

wi,Mf(xi,M )g(xi,M )

with positive weights wi,M (i = 1, 2, . . . , IM ), where g is an arbitrary function that
we want to compute the expectation with respect to the density f , then it is natural
to set qi,M proportional to wi,Mf(xi,M ), i.e.,

qi,M =
wi,Mf(xi,M )

∑IM
i=1 wi,Mf(xi,M )

.

In the following, we do not address how to choose QM (or the quadrature formula
(2.4)) but take it as given.

Now the approximation method is defined as follows. Let g be any bounded
continuous function. Then the approximation error of the expectation under PM is

∣

∣

∣

∣

∣

∫

RK

f(x)g(x) dx −
IM
∑

i=1

pi,Mg(xi,M )

∣

∣

∣

∣

∣

(2.5)

≤
∣

∣

∣

∣

∣

∫

RK

f(x)g(x) dx −
IM
∑

i=1

qi,Mg(xi,M )

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

IM
∑

i=1

qi,Mg(xi,M )−
IM
∑

i=1

pi,Mg(xi,M )

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫

RK

f(x)g(x) dx −
IM
∑

i=1

qi,Mg(xi,M )

∣

∣

∣

∣

∣

+ ‖g‖∞
IM
∑

i=1

|pi,M − qi,M | ,

where ‖g‖∞ = supx∈RK |g(x)| is the sup norm. Since the first term depends only on
the initial discretization QM , we focus on the second term. By Pinsker’s inequality,4

the second term can be bounded as follows:

(2.6)

IM
∑

i=1

|pi,M − qi,M | ≤
√

2H(PM ;QM ),

where

(2.7) H(PM ;QM ) =

IM
∑

i=1

pi,M log
pi,M
qi,M

3The “+1” comes from accounting the probabilities
∑IM

i=1
pi,M = 1.

4See [12, 30] for proofs of Pinsker’s inequality and [17] and references therein for refinements.
The appendix of this paper gives a short proof of Pinsker’s inequality.
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is the Kullback-Leibler information [31].
In order to make the approximation error (2.5) small, given Pinsker’s inequal-

ity (2.6), it is quite natural to obtain the approximate discrete distribution PM =
{pi,M | xi,M ∈ DM} as the solution to the following optimization problem:

min
{pi,M}

IM
∑

i=1

pi,M log
pi,M
qi,M

(P)

subject to

IM
∑

i=1

pi,MT (xi,M ) = T̄ ,

IM
∑

i=1

pi,M = 1, pi,M ≥ 0.

The first constraint matches the moments
∫

f(x)T (x) dx = T̄ exactly.
∑IM

i=1 pi,M = 1
and pi,M ≥ 0 ensure that {pi,M} is a probability mass function. The problem (P)
has a unique solution if T̄ ∈ coT (DM ), where coT (DM ) is the convex hull of T (DM )
defined by

coT (DM ) =

{

IM
∑

i=1

αi,MT (xi,M )

∣

∣

∣

∣

∣

IM
∑

i=1

αi,M = 1 and αi,M ≥ 0

}

,(2.8)

because in that case the constraint set is nonempty, compact, convex, and the ob-
jective function is continuous (by adopting the convention 0 log 0 = 0) and strictly
convex.

To characterize the solution of (P), we consider the Fenchel dual5 of (P),

(D) max
λ∈RL

[

〈

λ, T̄
〉

− log

(

IM
∑

i=1

qi,Me〈λ,T (xi,M )〉

)]

,

where 〈 · , · 〉 denotes the usual inner product in R
L. Tanaka and Toda [42] show that

we can obtain the solution to (P) as fine-tuned values of qi,M , and that the minimum
value of (P) and the maximum value of (D) coincide. Although these properties
are routine exercises in convex duality theory (see for example [8] for a textbook
treatment), we present them nevertheless in order to make the paper self-contained.

Theorem 1. Suppose that T̄ ∈ int coT (DM ), where int denotes the interior.

Then the following is true.

1. The dual problem (D) has a unique solution λM .

2. The probability distribution PM = {pi,M | xi,M ∈ DM} defined by

(2.9) pi,M =
qi,Me〈λM ,T (xi,M )〉

∑IM
i=1 qi,Me〈λM ,T (xi,M)〉

is the unique solution to (P).
3. The duality H(PM ;QM ) = min (P) = max (D) holds.
Our proposed approximation method has two advantages. The first is the compu-

tational simplicity. The dual problem (D) is an unconstrained optimization problem
with typically a small number of unknowns (L), whereas the primal problem (P) is a
constrained optimization problem with typically a large number of unknowns (IM ).
With existing methods such as Gospodinov and Lkhagvasuren [19] that target the first

5See [7] for an application of the Fenchel duality to entropy-like minimization problems.
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and second moments with a quadratic loss function, the optimization problem remains
high dimensional and constrained. For example, if we discretize a 3-dimensional dis-
tribution with 10 discrete points in each dimension and match the mean and the
variances, then there will be 103 = 1, 000 unknowns, 9 moment constraints (according
to (2.2)), and 1,000 nonnegativity constraints. On the other hand, our dual problem
(D) is unconstrained and involves only 9 variables. The second advantage is that the
resulting weights on the points (2.9) are automatically positive, as they should be
since they are probabilities.

3. Error bound and convergence. Let g : RK → R be a bounded continuous
function and

E
(Q)
g,M =

∣

∣

∣

∣

∣

∫

RK

f(x)g(x) dx −
IM
∑

i=1

qi,Mg(xi,M )

∣

∣

∣

∣

∣

,(3.1)

E
(P )
g,M =

∣

∣

∣

∣

∣

∫

RK

f(x)g(x) dx −
IM
∑

i=1

pi,Mg(xi,M )

∣

∣

∣

∣

∣

(3.2)

be the approximation errors under the initial discretization QM and PM = {pi,M} in

(2.9). In this section we estimate the error E
(P )
g,M and prove the weak convergence6 of

PM = {pi,M} to f , i.e., E
(P )
g,M → 0 as M → ∞ for any g. Using the definition of the

errors (3.1) and (3.2), the triangle inequality (2.5), and Pinsker’s inequality (2.6), we
obtain the following error estimate:

(3.3) E
(P )
g,M ≤ E

(Q)
g,M + ‖g‖∞

√

2H(PM ;QM ),

where H(PM ;QM ) is the Kullback-Leibler information (2.7).
We consider the error estimate and the convergence analysis under the following

two assumptions. The first assumption states that the moment defining function T has
no degenerate components and the moment T̄ can also be expressed as an expectation
on the discrete set DM .

Assumption 1. The components of the moment defining function T are affine

independent on R
L ∩ supp f : for any 0 6= (λ, µ) ∈ R

L × R, there exists x ∈ supp f
such that 〈λ, T (x)〉+ µ 6= 0. Furthermore, T̄ ∈ int(coT (DM )) for any M .

The second assumption concerns the convergence of the initial discretization
QM = {qi,M}.

Assumption 2. The initial discretization weakly converges: for any bounded

continuous function g on R
K , we have

(3.4) lim
M→∞

IM
∑

i=1

qi,Mg(xi,M ) =

∫

RK

f(x)g(x) dx.

Furthermore, the targeted moments converge as well:

(3.5) lim
M→∞

IM
∑

i=1

qi,MT (xi,M ) =

∫

RK

f(x)T (x) dx.

6For readers unfamiliar with probability theory, a sequence of probability measures {µn} is said
to weakly converge to µ if limn→∞

∫

g dµn =
∫

g dµ for every bounded continuous function g. In
particular, by choosing g as an indicator function, we have µn(B) → µ(B) for any Borel set B, so
the probability distribution µn approximates µ.
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Assumption 2 is natural since any discrete approximation should become accurate

as we increase the number of grid points. Under this assumption, we have E
(Q)
g,M → 0

as M → ∞, so by (3.3) we have E
(P )
g,M → 0 whenever H(PM ;QM ) → 0 as M → ∞.

Below, we focus on estimating H(PM ;QM ).
Lemma 2. Define the function JM : RL → R by

(3.6) JM (λ) =

IM
∑

i=1

qi,Me〈λ,T (xi,M )−T̄〉.

Then

(3.7) H(PM ;QM ) = − log

(

min
λ∈RL

JM (λ)

)

.

Proof. By Theorem 1 and the definition of JM , we obtain

H(PM ;QM ) = max
λ∈RL

[

〈

λ, T̄
〉

− log

(

IM
∑

i=1

qi,Me〈λ,T (xi,M )〉

)]

(∵ (D), Theorem 1)

= max
λ∈RL

[

− log

(

IM
∑

i=1

qi,Me〈λ,T (xi,M )−T̄〉
)]

(∵
∑

qi,M = 1)

= max
λ∈RL

[− log(JM (λ))] = − log

(

min
λ∈RL

JM (λ)

)

, (∵ (3.6))

which is (3.7).
By Lemma 2, in order to estimate the Kullback-Leibler information H(PM ;QM )

from above, it suffices to bound JM (λ) from below. To this end let

(3.8) E
(Q)
T,M =

∥

∥

∥

∥

∥

∫

RK

f(x)T (x) dx −
IM
∑

i=1

qi,MT (xi,M )

∥

∥

∥

∥

∥

be the initial approximation error for the moments T ,

(3.9) Cα = inf
λ∈RL,‖λ‖=1

∫

RK

f(x)
(

max
{

0,min
{〈

λ, T (x)− T̄
〉

, α
}})2

dx

for any α > 0, and C∞ = limα→∞ Cα. The following lemma gives a quadratic lower
bound of JM .

Lemma 3. Let Assumptions 1 and 2 be satisfied. Then

1. 0 < Cα ≤ C∞ ≤ ∞.

2. For any C with 0 < C < C∞, there exists a positive integer MC such that for

any M ≥ MC , we have

(3.10) JM (λ) ≥ 1− E
(Q)
T,M ‖λ‖ + 1

2
C ‖λ‖2 .

Proof. First we prove 0 < Cα ≤ C∞ ≤ ∞. Since the integrand in (3.9) is
nonnegative and increasing in α > 0, clearly Cα ≤ C∞ ≤ ∞. Due to the presence
of the max and min operators, the integrand is positive if and only if x ∈ supp f
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and
〈

λ, T (x)− T̄
〉

> 0. Since the components of T are affine independent on supp f
(Assumption 1) and

T̄ =

∫

RK

f(x)T (x) dx ⇐⇒
∫

RK

f(x)(T (x)− T̄ ) dx = 0

⇐⇒ (∀λ)
∫

RK

f(x)
〈

λ, T (x)− T̄
〉

dx = 0,

for any λ 6= 0 there exists a region in supp f for which
〈

λ, T (x)− T̄
〉

> 0. Since T
is continuous, the integrand in (3.9) is positive on a set with positive measure and
continuous with respect to λ, so Cα > 0.

Next we prove (3.10). For this purpose, we use the inequality

(3.11) ez ≥ 1 + z +
1

2
(max {0,min {z, a}})2

for any z, a ∈ R. (3.11) follows from

max {0,min {z, a}} =











0, (z ≤ 0 or a ≤ 0)

z, (0 ≤ z ≤ a)

a, (0 ≤ a ≤ z)

ez ≥ 1 + z if z ≤ 0, and ez ≥ 1 + z + 1
2z

2 if z ≥ 0.
Let z =

〈

λ, T (xi,M )− T̄
〉

and a = ‖λ‖α for α > 0 in the inequality (3.11). Then

e〈λ,T (xi,M )−T̄〉 ≥ 1+
〈

λ, T (xi,M )− T̄
〉

+
1

2

(

max
{

0,min
{〈

λ, T (xi,M )− T̄
〉

, ‖λ‖α
}})2

.

Multiplying both sides by qi,M ≥ 0, letting λ∗ = λ
‖λ‖ , and summing over i, we obtain

(3.12) JM (λ) ≥ 1 + 〈λ,BM 〉+ 1

2
CM,α(λ

∗) ‖λ‖2 ,

where

BM =

IM
∑

i=1

qi,M (T (xi,M )− T̄ ),(3.13)

CM,α(λ
∗) =

IM
∑

i=1

qi,M
(

max
{

0,min
{〈

λ∗, T (xi,M )− T̄
〉

, α
}})2

.(3.14)

Letting M → ∞ in (3.14), we obtain

CM,α(λ
∗) →

∫

f(x)
(

max
{

0,min
{〈

λ∗, T (x)− T̄
〉

, α
}})2

dx (∵ Assumption 2)

≥ Cα. (∵ (3.9))

Since limα→∞ Cα = C∞ > C > 0, we can take α > 0 large enough such that Cα > C.
Since limM→∞ CM,α(λ

∗) ≥ Cα > C, we can take MC such that for any M ≥ MC we
have CM,α(λ

∗) ≥ C. Then by (3.12) and the Cauchy-Schwarz inequality, we obtain

JM (λ) ≥ 1− ‖BM‖ ‖λ‖ + 1

2
C ‖λ‖2 .
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Since ‖BM‖ = E
(Q)
T,M by (3.8),

∫

RK f(x)T (x) dx = T̄ , and (3.13), we obtain the
conclusion (3.10).

Combining the above lemmas, we obtain the following estimate of E
(P )
g,M .

Theorem 4. Let Assumptions 1 and 2 be satisfied and g be a bounded continuous

function. Then, for any C > 0 be with 0 < C < C∞ = limα→∞ Cα, there exists a

positive integer MC such that for any M with M ≥ MC , we have

(3.15) E
(P )
g,M ≤ E

(Q)
g,M + ‖g‖∞

√

√

√

√−2 log

(

1−
(E

(Q)
T,M )2

2C

)

,

where the right-hand side is interpreted as ∞ if the inside of logarithm is negative.

Proof. For notational simplicity let E := E
(Q)
T,M . Minimizing the right-hand side

of (3.10) analytically, we obtain

(3.16) JM (λ) ≥ 1− E2

2C
.

If E2 ≥ 2C, (3.16) is not tight since JM ≥ 0 always. In this case, we obtain the trivial

estimate E
(P )
g,M ≤ ∞. Otherwise,

E
(P )
g,M ≤ E

(Q)
g,M + ‖g‖∞

√

−2 log

(

min
λ

JM (λ)

)

(∵ (3.3), (3.7))

≤ E
(Q)
g,M + ‖g‖∞

√

−2 log(1− E2/2C), (∵ (3.16))

which is (3.15).

Note that E
(P )
g,M is bounded by a formula consisting of E

(Q)
g,M and E

(Q)
T,M , which are

the errors of the initial discretizationQM for the functions g and T . Since both of them
tend to zero as M → ∞ by Assumption 2, it follows from (3.15) and − log(1− t) ≈ t
for small t that

(3.17) E
(P )
g,M = O

(

max
{

E
(Q)
g,M , E

(Q)
T,M

})

(M → ∞).

The equality (3.17) shows that the error Eg,M is at most of the same order as the
error of the initial discretization. Thus our method does not compromise the order of
the error at the expense of matching moments.

Using Theorem 4, we can prove our main result, the weak convergence of the
approximating discrete distribution PM = {pi,M} to f .

Theorem 5. Let Assumptions 1 and 2 be satisfied. Then, for any bounded

continuous function g, we have

lim
M→∞

IM
∑

i=1

pi,Mg(xi,M ) =

∫

RK

f(x)g(x) dx,(3.18)

i.e., the discrete distribution PM weakly converges to the exact distribution f .

Proof. By the definition of E
(P )
g,M in (3.2), (3.17), and Assumption 2, we get

∣

∣

∣

∣

∣

∫

RK

f(x)g(x) dx −
IM
∑

i=1

pi,Mg(xi,M )

∣

∣

∣

∣

∣

= E
(P )
g,M = O

(

max
{

E
(Q)
g,M , E

(Q)
T,M

})

→ 0
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as M → ∞, which is (3.18).

The following theorem gives a tighter error estimate when E
(Q)
T,M is large.

Theorem 6. Let everything be as in Theorem 4. Then

(3.19) E
(P )
g,M ≤ E

(Q)
g,M + ‖g‖∞

2√
C
E

(Q)
T,M .

Proof. By (3.3) it suffices to show

(3.20) H(PM ;QM ) ≤ 2

C
(E

(Q)
T,M )2.

Let λM ∈ R
L be the solution to the dual problem (D). By Theorem 1, we have

H(PM ;QM ) = − log

(

IM
∑

i=1

qi,Me〈λM ,T (xi,M )−T̄〉
)

(3.21)

≤ −
IM
∑

i=1

qi,M log
(

e〈λM ,T (xi,M)−T̄〉) (∵ − log(·) is convex)

= −
〈

λM ,

IM
∑

i=1

qi,MT (xi,M )− T̄

〉

(∵
∑

qi,M = 1)

≤ ‖λM‖E(Q)
T,M . (∵ Cauchy-Schwarz, (3.8))

Since λM solves (D), and hence minimizes JM , we obtain

λM = argmin
λ∈RL

JM (λ) ⊂ {λ | JM (λ) ≤ JM (0)}

⊂
{

λ

∣

∣

∣

∣

1− E
(Q)
T,M ‖λ‖+ 1

2
C ‖λ‖2 ≤ 1

}

. (∵ (3.10), JM (0) = 1)

Solving the inequality, we obtain ‖λM‖ ≤ 2E
(Q)
T,M

C
. (3.20) follows from (3.21).

Since − log(1− t) ≈ t < 2t for small t > 0, the error bound (3.15) is tighter than

(3.19) for large M by setting t =
(E

(Q)
T,M

)2

2C .
Theorems 4 and 6 show that the order of the theoretical error of our approximation

method is at most that of the initial quadrature formula, but does not say that the
error actually improves. Next we show that our method improves the accuracy of the
integration in some situation.

Assume that the density f has a compact support. Let T (x) = (T1(x), . . . , TL(x))
be the moment defining function, which are bounded on supp f . Consider approxi-
mating the integrand g using the components of T as basis functions:

g(x) ≈ bg,T (x) =

L
∑

l=1

βlTl(x),

where β1, . . . , βL are coefficients. Let

(3.22) rg,T =
g(x)− bg,T (x)

‖g − bg,T ‖∞
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be the normalized residual of the approximation. Clearly ‖rg,T ‖∞ ≤ 1.

Theorem 7. Let everything be as in Theorem 6 and supp f be compact. Then

(3.23) E
(P )
g,M ≤ ‖g − bg,T ‖∞

(

E
(Q)
rg,T ,M +

2√
C
E

(Q)
T,M

)

.

Proof. Since the moments T1, . . . , TL are exact under PM = {pi,M}, we have

E
(P )
bg,T ,M = 0. Therefore by the triangle inequality we obtain

E
(P )
g,M ≤ E

(P )
g−bg,T ,M + E

(P )
bg,T ,M = E

(P )
g−bg,T ,M

≤ E
(Q)
g−bg,T ,M + ‖g − bg,T ‖∞

2√
C
E

(Q)
T,M (∵ Theorem 6)

= ‖g − bg,T ‖∞
(

E
(Q)
rg,T ,M +

2√
C
E

(Q)
T,M

)

, (∵ (3.22))

which is (3.23).

A similar bound can be obtained if we apply Theorem 4 instead of 6. Theo-
rem 7 shows that by matching the moments T (x), the error improves by the factor
‖g − bg,T ‖∞, which is the approximation error of the integrand g by a linear combi-
nation of the moments T (x).

For example, suppose that the problem is one dimensional with supp f = [c, d]
and we match the polynomial moments by setting the moment defining function
Tl(x) = xl (l = 1, . . . , L). Then for bg,T above we can adopt the Chebyshev inter-
polating polynomial of g, which is an L-degree polynomial that coincides with g at
the points xj = c+d

2 + d−c
2 cos(jπ/L), where j = 0, 1, . . . , L. The Chebyshev inter-

polating polynomial can be easily computed and is known to be a nearly optimal
approximating polynomial of a continuous function on a finite interval [47, Ch. 16].7

4. Numerical experiments. In this section, we present some numerical ex-
amples that compare the accuracy of the approximate expectations computed by an
initial quadrature formula and its modifications by our proposed method. All compu-
tations in this section are done by MATLAB programs with double precision floating
point arithmetic on a PC.

4.1. Beta and uniform distributions. For simplicity, we consider continuous
probability distributions on the finite interval [0, 1], specifically the beta distributions
and the uniform distribution. The exact density function of the beta distribution is

f(x) = xa−1(1− x)b−1/B(a, b),

where B( · , · ) is the beta function. We set (a, b) = (1, 3) and (2, 4) in the following.

4.1.1. Initial discretization and implementation. We adopt the trapezoidal
formula and Simpson’s formula as initial quadrature formulas. Consider the discrete
set DM = {mhM | m = 0, 1, . . . , 2M}, where hM = 1

2M is the distance between the

7Although the theoretical error estimate of the Chebyshev interpolation is well-known [47, Ch. 7],
we do not use the estimate in the next section because it is not so tight to explain the improvement
by our method when L is small. Instead we use the actual computed values of the error

∥

∥g − bg,T
∥

∥

∞
as an improvement factor.
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points andM = 1, 2, . . . , 12. The number of points is IM = 2M+1 and the integration
points are xi,M = (i − 1)hM , where i = 1, . . . , IM . The integration weights are

Trapezoidal: wi,M =

{

hM , (i 6= 1, IM )

hM/2, (i = 1, IM )

Simpson: wi,M =











4hM/3, (i 6= 1, IM and i is even)

2hM/3, (i 6= 1, IM and i is odd)

hM/3. (i = 1, IM )

Below, we compute the approximate expectation E[g(X)] of a test function g(x)
using eight formulas: the trapezoidal formula, Simpson’s formula, and their modifica-
tions by our proposed method with exact polynomial moments E[X l] up to 2nd order
(l = 1, 2), 4th order (l = 1, . . . , 4), and 6th order (l = 1, . . . , 6).

We numerically solve the dual problem (D) as follows. First, note that in order
for (P) to have a solution, it is necessary that there are at least as many unknown
variables (pi,M ’s, so in total IM ) as the number of constraints (L moment constraints
and +1 for probabilities to add up to 1, so L + 1). Thus we need IM ≥ L + 1.8 A
sufficient condition for the existence of a solution is T̄ ∈ coT (D) (Theorem 1), which
can be easily verified in the current application.

Second, note that (D) is equivalent to the minimization of JM (λ) in (3.6), which
is a strictly convex function of λ. In order to minimize JM , we apply a variant of the
Newton-Raphson algorithm. Starting with λ0 = 0, we iterate

(4.1) λn+1 = λn − [κI +∇2JM (λn)]
−1∇JM (λn)

over n = 0, 1, . . . , where κ > 0 is a small number, I is the L-dimensional identity
matrix, and ∇JM ,∇2JM denote the gradient and the Hessian of JM . Such an algo-
rithm is advocated in [32]. The Newton-Raphson algorithm corresponds to setting
κ = 0 in (4.1). Since the Hessian ∇2JM is often nearly singular, the presence of κ > 0
stabilizes the iteration (4.1). Below we set κ = 10−7 and terminate the iteration (4.1)
when ‖λn+1 − λn‖ < 10−10.

4.1.2. Results for the beta distributions. For the test function, we pick
g(x) = ex for x ∈ [0, 1]. The exact expectations are E[g(X)] = 3(−5 + 2e) for
X ∼ Be(1, 3) and E[g(X)] = 20(49− 18e) for X ∼ Be(2, 4).

Figure 4.1 shows the results. According to the figures, our proposed method excels
the trapezoidal and Simpson’s formula in the accuracy. The errors basically decrease
as the order of the matched moments increases, consistent with Theorem 7. Note
that the curves marked “Theoretical” in Figure 4.1 express not exact error estimate
but only the order of the theoretical error (O(M−2) for trapezoidal and O(M−4) for
Simpson), which is same for Figures 4.3 and 4.4 below.

The reason why the error curves for our proposed method are not necessarily par-
allel to those for the initial quadrature formula when M is very small is because when
the number of constraints L+ 1 is large relative to the number of unknown variables
IM , the method generates pathological probability distributions at the expense of
matching many moments. For instance, Figure 4.2 shows the discrete approximations

8Since the beta density is zero at x = 0, 1, which are included in xi,M ’s, we necessarily have
p(xi,M ) = 0 for i = 1, IM . Thus, the number of unknown variables is IM − 2, so we need IM − 2 ≥
L+ 1 ⇐⇒ IM ≥ L+ 3 in the case of the beta distribution.
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(a) X ∼ Be(1, 3), Trapezoidal.
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(b) X ∼ Be(1, 3), Simpson.
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(c) X ∼ Be(2, 4), Trapezoidal.
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(d) X ∼ Be(2, 4), Simpson.

Fig. 4.1. Relative errors of the computed values of E[g(X)], where g(x) = ex. The legends “2nd

order”, “4th order”, and “6th order” represent those by our method with exact polynomial moments

E[Xl] up to 2nd order (l = 1, 2), 4th order (l = 1, . . . , 4), and 6th order (l = 1, . . . , 6), respectively.
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(a) Be(1, 3).
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(b) Be(2, 4).

Fig. 4.2. 6th order discrete approximation from the trapezoidal formula with IM = 9 grid points.

of the beta distributions Be(1, 3) and Be(2, 4) with L = 6 exact polynomial moments
and IM = 9 grid points. Clearly the discrete approximations do not resemble the
continuous counterparts. This pathological behavior is rarely an issue, however. As
long as there are twice as many grid points as constraints (IM ≥ 2(L+1)), the discrete
approximation is well-behaved.
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4.1.3. Results for the uniform distribution. We choose the test functions
g1(x) = x

9
2 , g2(x) = 1

1+x
, g3(x) = sin(πx), and g4(x) = log(1 + x) for the uniform

distribution on [0, 1].
Figures 4.3 and 4.4 show the numerical results. In all cases, our method excels

the initial quadrature formula. The improvement in the accuracy is significant (of the
order 10−4 for the trapezoidal formula and 10−2 for Simpson’s formula), consistent
with Theorem 7.
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(a) g1(x) = x
9
2 .
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(b) g2(x) =
1

1+x
.
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(c) g3(x) = sin(πx).

0 5 10 15 20 25

10
−8

10
−6

10
−4

10
−2

10
0

I
M

R
el

at
iv

e 
E

rr
or

 

 
Theoretical
Trapezoidal
2nd order
4th order
6th order

(d) g4(x) = log(1 + x).

Fig. 4.3. Relative errors of the computed values of
∫ 1

0
g(x) dx. The legends “2nd order”, “4th

order”, and “6th order” represent those by our method with exact polynomial moments E[Xl] up to

2nd order (l = 1, 2), 4th order (l = 1, . . . , 4), and 6th order (l = 1, . . . , 6), respectively.

4.1.4. Discussion. According to Figures 4.1, 4.3, and 4.4, the rate of conver-
gence (the slope of the relative error with respect to the number of grid points IM )
is almost the same for the initial quadrature formula and our method. Specifically,
the curves of the relative error are quite similar to the translations of the graphs of
the theoretical errors, which are O(M−2) for the trapezoidal formula and O(M−4) for
Simpson’s formula when the integrands are in C2[0, 1] and C4[0, 1], respectively [14,
Ch. 2]. This observation is consistent with Theorem 7, which shows that the error
estimate is of the same order as the quadrature formula but improves by the error of
the Chebyshev approximation.

Table 4.1 shows the errors of the Chebyshev approximations of the functions
g, g1, . . . , g4. Since the trapezoidal formula does not even match the second moment,
the theoretical improvement of our method (in log10) should be the numbers in Table
4.1. The actual improvements in Figures 4.1 and 4.3 are in line with these numbers.
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(a) g1(x) = x
9
2 .
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(b) g2(x) =
1
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(c) g3(x) = sin(πx).

0 5 10 15 20 25

10
−8

10
−6

10
−4

10
−2

10
0

I
M

R
el

at
iv

e 
E

rr
or

 

 

Theoretical
Simpson
2nd order
4th order
6th order

(d) g4(x) = log(1 + x).

Fig. 4.4. Relative errors of the computed values of
∫

1

0
g(x) dx. The legends “2nd order”, “4th

order”, and “6th order” represent those by our method with exact polynomial moments E[Xl] up to

2nd order (l = 1, 2), 4th order (l = 1, . . . , 4), and 6th order (l = 1, . . . , 6), respectively.

Since Simpson’s formula gives exact quadratures for 2nd order polynomials (hence
our method with L = 2 coincides with Simpson), the theoretical improvement of our
method should be the difference between the numbers in Table 4.1 and those in the
row corresponding to L = 2. For example, when we match L = 6 moments, the
improvement should be approximately 10−3, which is similar to what we observe in
Figures 4.1 and 4.4.

Table 4.1

Errors of the Chebyshev approximations of g, g1, . . . , g4 in log10.

Test function

Degree ex x
9
2 (1 + x)−1 sin(πx) log(1 + x)

2 −1.841 −0.847 −1.874 −1.251 −2.221
4 −4.285 −2.869 −3.363 −3.031 −3.918
6 −7.102 −5.048 −4.895 −4.872 −5.592

In summary, our method seems to be particularly suited for fine-tuning a quadra-
ture formula with a small number of integration points. For instance, we can construct
a highly accurate compound rule by subdividing the interval and applying our method
to each subinterval.
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4.2. Optimal portfolio problem. In this section we numerically solve the op-
timal portfolio problem briefly discussed in the introduction (see [42] for more details).
Suppose that there are two assets, stock and bond, with gross returns R1, R2. Asset
1 (stock) is stochastic and lognormally distributed: logR1 ∼ N(µ, σ2), where µ is the
expected return and σ is the volatility. Asset 2 (bond) is risk-free and logR2 = r,
where r is the (continuously compounded) interest rate. The optimal portfolio θ is
determined by the optimization

(4.2) U = max
θ

1

1− γ
E[(R1θ +R2(1− θ))1−γ ],

where γ > 0 is the relative risk aversion coefficient. We set the parameters such that
γ = 3, µ = 0.07, σ = 0.2, and r = 0.01. We numerically solve the optimal portfolio
problem (4.2) in two ways, applying the trapezoidal formula and our proposed method.
(We also tried Simpson’s method but it was similar to the trapezoidal method.) To
approximate the lognormal distribution, let IM = 2M+1 be the number of grid points
(M is the number of positive grid points) and DM = {mh | m = 0,±1, . . . ,±M},
where h = 1/

√
M is the grid size. Let p(x) be the approximating discrete distribution

of N(0, 1) as before (trapezoidal or the proposed method with various moments).
Then we put probability p(x) on the point eµ+σx for each x ∈ DM to obtain the
approximate stock return R1.

Table 4.2 shows the optimal portfolio θ and its relative error for various moments
L and number of points IM = 2M +1. The result is somewhat surprising. Even with
3 approximating points (M = 1), our proposed method derives an optimal portfolio
that is off by only 0.5% to the true value, whereas the trapezoidal method is off by
127%. While the proposed method virtually obtains the true value with 9 points
(M = 4, especially when the 4th moment is matched), the trapezoidal method still
has 23% of error.

Table 4.2

Optimal portfolio and relative error for the trapezoidal method and our method. M : number of

positive grid points, IM = 2M + 1: total number of grid points, L: maximum order of moments.

# of grid points L = 0 (trapezoidal) L = 2 L = 4
M IM θ Error (%) θ Error (%) θ Error (%)

12 = 1 3 1.5155 127 0.6717 0.54 - -
22 = 4 9 0.8246 23.4 0.6694 0.20 0.6680 −0.015
32 = 9 19 0.6830 2.24 0.6684 0.044 0.6681 0
42 = 16 33 0.6687 0.088 0.6682 0.015 0.6681 0
52 = 25 51 0.6681 0 0.6681 0 0.6681 0

The reason why the trapezoidal method gives poor results when the number of
approximating points is small is because the moments are not matched. To see this,
taking the first-order condition for the optimal portfolio problem (4.2), we obtain
E[(θX+R2)

−γX ] = 0, whereX = R1−R2 is the excess return on the stock. Using the
Taylor approximation x−γ ≈ a−γ−γa−γ−1(x−a) for x = θX+R2 and a = E[θX+R2]
and solving for θ, after some algebra we get

θ =
R2 E[X ]

γVar[X ]− E[X ]2
.

Therefore the (approximate) optimal portfolio depends on the first and second mo-
ments of the excess return X . Our method is accurate precisely because we match
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the moments. In complex economic problems, oftentimes we cannot afford to use
many integration points, in which case our method might be useful to obtain accurate
results.
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Appendix A. Proof of Pinsker’s inequality. This appendix proves Pinsker’s
inequality 1

2 ‖P −Q‖21 ≤ H(P ;Q), where P = {pn}Nn=1 and Q = {qn}Nn=1 are prob-
ability distributions and ‖·‖1 denotes the L1 norm. Let N+ = {n | pn > qn}, N− =
{n | pn ≤ qn}, p =

∑

n∈N+
pn, and q =

∑

n∈N+
qn. Then

‖P −Q‖1 =

N
∑

n=1

|pn − qn| =
∑

n∈N+

(pn − qn)−
∑

n∈N
−

(pn − qn)

= 2
∑

n∈N+

(pn − qn)−
N
∑

n=1

(pn − qn) = 2(p− q),

where we have used
∑N

n=1 pn =
∑N

n=1 qn = 1. By the convexity of − log(·), we get

N
∑

n=1

pn log
pn
qn

= p
∑

n∈N+

pn
p

(

− log
qn/p

pn/p

)

+ (1− p)
∑

n∈N
−

pn
1− p

(

− log
qn/(1− p)

pn/(1− p)

)

≥ −p log





∑

n∈N+

qn
p



− (1 − p) log





∑

n∈N
−

qn
1− p





= p log
p

q
+ (1− p) log

1− p

1− q
.

Therefore it suffices to show

h(p, q) := p log
p

q
+ (1− p) log

1− p

1− q
− 2(p− q)2 ≥ 0.

Fix q and regard the left-hand side as a function of p alone. Then

h′(p, q) = log
p

q
− log

1− p

1− q
− 4(p− q),

h′′(p, q) =
1

p
+

1

1− p
− 4 =

(1− 2p)2

p(1− p)
≥ 0,

so h is convex. Clearly h′(q, q) = 0, so it follows that h(p, q) ≥ h(q, q) = 0.
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moment closures: Characterizing degenerate densities. SIAM Journal on Control and

Optimization, 47(4):1977–2015, 2008.
[21] Kjetil Høyland and Stein W. Wallace. Generating scenario trees for multistage decision prob-

lems. Management Science, 47(2):295–307, February 2001.
[22] Mark Huggett. The risk-free rate in heterogeneous-agent incomplete-insurance economies. Jour-

nal of Economic Dynamics and Control, 17(5-6):953–969, September-November 1993.
[23] Edwin T. Jaynes. Information theory and statistical mechanics. Physical Review, 106(4):620–

630, May 1957.
[24] Edwin T. Jaynes. On the rationale of maximum-entropy methods. Proceedings of the IEEE,

70(9):939–952, 1982.
[25] Edwin T. Jaynes. Probability Theory: The Logic of Science. Cambridge University Press,

Cambridge, U.K., 2003. Edited by G. Larry Bretthorst.
[26] Donald L. Keefer and Samuel E. Bodily. Three-point approximations for continuous random

variables. Management Science, 29(5):595–609, May 1983.
[27] Yuichi Kitamura and Michael Stutzer. An information-theoretic alternative to generalized

method of moments estimation. Econometrica, 65(4):861–874, July 1997.
[28] Kevin H. Knuth and John Skilling. Foundations of inference. Axioms, 1(1):38–73, 2012.
[29] Per Krusell and Anthony A. Smith, Jr. Income and wealth heterogeneity in the macroeconomy.

Journal of Political Economy, 106(5):867–896, October 1998.
[30] Solomon Kullback. A lower bound for discrimination information in terms of variation. IEEE



20 KEN’ICHIRO TANAKA AND ALEXIS AKIRA TODA

Transactions on Information Theory, 13(1):126–127, January 1967.
[31] Solomon Kullback and Richard A. Leibler. On information and sufficiency. Annals of Mathe-

matical Statistics, 22(1):79–86, March 1951.
[32] David G. Luenberger and Yinyu Ye. Linear and Nonlinear Programming. International Series

in Operations Research and Management Science. Springer, NY, third edition, 2008.
[33] Lawrence R. Mead and Nikos Papanicolaou. Maximum entropy in the problem of moments.

Journal of Mathematical Physics, 25(8):2404–2417, August 1984.
[34] Robert C. Merton. Optimum consumption and portfolio rules in a continuous-time model.

Journal of Economic Theory, 3(4):373–413, December 1971.
[35] Allen C. Miller, III and Thomas R. Rice. Discrete approximations of probability distributions.

Management Science, 29(3):352–362, March 1983.
[36] Georg Ch. Pflug. Scenario tree generation for multiperiod financial optimization by optimal

discretization. Mathematical Programming, 89(2):251–271, January 2001.
[37] Paul A. Samuelson. Lifetime portfolio selection by dynamic stochastic programming. Review

of Economics and Statistics, 51(3):239–246, August 1969.
[38] John E. Shore and Rodney W. Johnson. Axiomatic derivation of the principle of maximum

entropy and the principle of minimum cross-entropy. IEEE Transactions on Information

Theory, 26(1):26–37, January 1980.
[39] James E. Smith. Moment methods for decision analysis. Management Science, 39(3):340–358,

March 1993.
[40] Michael Stutzer. A Bayesian approach to diagnosis of asset pricing models. Journal of Econo-

metrics, 68(2):367–397, August 1995.
[41] Michael Stutzer. A simple nonparametric approach to derivative security valuation. Journal

of Finance, 51(5):1633–1652, December 1996.
[42] Ken’ichiro Tanaka and Alexis Akira Toda. Discrete approximations of continuous distributions

by maximum entropy. Economics Letters, 118(3):445–450, March 2013.
[43] George Tauchen. Finite state Markov-chain approximations to univariate and vector autore-

gressions. Economics Letters, 20(2):177–181, 1986.
[44] George Tauchen and Robert Hussey. Quadrature-based methods for obtaining approximate

solutions to nonlinear asset pricing models. Econometrica, 59(2):371–396, March 1991.
[45] Alexis Akira Toda. Existence of a statistical equilibrium for an economy with endogenous offer

sets. Economic Theory, 45(3):379–415, 2010.
[46] Alexis Akira Toda. Bayesian general equilibrium. Economic Theory, 58(2):375–411, 2015.
[47] Lloyd N. Trefethen. Approximation Theory and Approximation Practice. SIAM, Philadelphia,

2013.
[48] Jan M. Van Campenhout and Thomas M. Cover. Maximum entropy and conditional probability.

IEEE Transactions on Information Theory, 27(4):483–489, July 1981.
[49] Ximing Wu. Calculation of maximum entropy densities with application to income distribution.

Journal of Econometrics, 115(2):347–354, August 2003.




