
UC San Diego
UC San Diego Previously Published Works

Title
Quantitative Translation of Dog-to-Human Aging by Conserved Remodeling of the DNA 
Methylome

Permalink
https://escholarship.org/uc/item/7g36m48t

Journal
Cell Systems, 11(2)

ISSN
2405-4712

Authors
Wang, Tina
Ma, Jianzhu
Hogan, Andrew N
et al.

Publication Date
2020-08-01

DOI
10.1016/j.cels.2020.06.006
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7g36m48t
https://escholarship.org/uc/item/7g36m48t#author
https://escholarship.org
http://www.cdlib.org/


Quantitative Translation of Dog-to-Human Aging by Conserved 
Remodeling of the DNA Methylome

Tina Wang1, Jianzhu Ma1, Andrew N. Hogan2, Samson Fong3, Katherine Licon1, Brian 
Tsui1, Jason F. Kreisberg1, Peter D. Adams4, Anne-Ruxandra Carvunis5, Danika L. 
Bannasch6, Elaine A. Ostrander2, Trey Ideker1,3,7,*

1Division of Genetics, Department of Medicine, University of California, San Diego, La Jolla, CA 
92093, USA

2National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, 
USA

3Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA

4Sanford Burnham Prebys Medical Discovery Institute, San Diego, La Jolla, CA 92093, USA

5Department of Computational and Systems Biology, Pittsburgh Center for Evolutionary Biology 
and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA

6Department of Population Health and Reproduction, School of Veterinary Medicine, University of 
California, Davis, Davis, CA, USA

7Lead Contact

SUMMARY

All mammals progress through similar physiological stages throughout life, from early 

development to puberty, aging, and death. Yet, the extent to which this conserved physiology 

reflects underlying genomic events is unclear. Here, we map the common methylation changes 

experienced by mammalian genomes as they age, focusing on comparison of humans with dogs, 

an emerging model of aging. Using oligo-capture sequencing, we characterize methylomes of 104 

Labrador retrievers spanning a 16-year age range, achieving >150× coverage within mammalian 

syntenic blocks. Comparison with human methylomes reveals a nonlinear relationship that 

translates dog-to-human years and aligns the timing of major physiological milestones between 

*Correspondence: tideker@ucsd.edu.
AUTHOR CONTRIBUTIONS
T.W. and T.I. initiated and conceptualized the study; T.W. carried out all experiments and implemented the main analyses; A.H., 
E.A.O., and D.L.B. provided canine samples; J.M., S.F., B.T., J.F.K., D.L.B., and A.R.C. assisted with miscellaneous analyses and 
provided feedback; P.D.A. provided key input on human and animal aging; T.W., T.I., P.D.A., and E.A.O. interpreted results and wrote 
the manuscript.

DECLARATION OF INTERESTS
T.I. is co-founder of Data4Cure Inc, is on the Scientific Advisory Board, and has an equity interest. T.I. is on the Scientific Advisory 
Board of Ideaya Biosciences, has an equity interest, and receives sponsored research funding. The terms of these arrangements have 
been reviewed and approved by the University of California San Diego in accordance with its conflict of interest policies. T.I. and 
T.W. hold a patent entitled “Methylome profiling of animals and uses thereof,” international patent application #PCT/US18/49103, US 
application #16/638,454.
SUPPLEMENTAL INFORMATION
Supplemental Information can be found online at https://doi.org/10.1016/j.cels.2020.06.006.

HHS Public Access
Author manuscript
Cell Syst. Author manuscript; available in PMC 2020 September 11.

Published in final edited form as:
Cell Syst. 2020 August 26; 11(2): 176–185.e6. doi:10.1016/j.cels.2020.06.006.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://doi.org/10.1016/j.cels.2020.06.006


the two species, with extension to mice. Conserved changes center on developmental gene 

networks, which are sufficient to translate age and the effects of anti-aging interventions across 

multiple mammals. These results establish methylation not only as a diagnostic age readout but 

also as a cross-species translator of physiological aging milestones.

In Brief

Wang et al. create an oligo-capture system to characterize the canine DNA methylome, targeting 

syntenic regions of the genome conserved across all mammals. Cross-species comparisons reveal a 

nonlinear epigenetic signature that aligns the progression of life events in dogs, humans, and mice. 

This conserved signature occurs primarily in modules of developmental genes, leading the team to 

create a conserved epigenetic clock model of aging that can be trained and operated across 

different species.

Graphical Abstract

INTRODUCTION

The wisdom that every year in a dog’s life equates to seven human years reflects our deep 

intuition that development and aging are conserved processes that occur at different rates in 

different species. All mammals, whether dog, human, or other creature, pass through similar 

life stages of embryogenesis, birth, infancy, youth, adolescence, maturity, and senescence 

(Withers, 1992). Although embryonic developmental programs have been relatively well 
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studied, many of the molecular events governing postnatal life stages, including those tied to 

aging, are still unresolved (Khan et al., 2017). Over the past decade, it has become clear that 

a prominent molecular alteration during aging is remodeling of the DNA methylome, the 

pattern of epigenetic modifications whereby methyl groups are present at some cytosine-

guanine dinucleotides (methyl-CpGs) but absent from others (Field et al., 2018). The 

methylation states of tens of thousands of CpGs have been found to change predictably over 

time, enabling the construction of mathematical models, known as “epigenetic clocks,” that 

use these shifting patterns to accurately measure the age of an individual (Hannum et al., 

2013; Horvath, 2013; Petkovich et al., 2017; Stubbs et al., 2017; Thompson et al., 2017; 

Wang et al., 2017).

Most questions regarding the relationship between DNA methylation and mammalian life 

stage remain unanswered (Figure 1). While the rate of methylation change appears to 

depend on maximal lifespan (Maegawa et al., 2017; Lowe et al., 2018), whether lifespan is 

the sole factor in determining how the methylome progresses with age, or if CpG states are 

aligned to specific intermediate milestones in development and aging, remains unknown. It 

is also unclear if the major epigenetic changes that occur with age involve the same or 

different (or random) CpG sites in different species. While DNA encoding a highly 

conserved ribosomal RNA family shows increasing methylation over time at the same 

conserved CpG sites in mice and humans (Wang and Lemos, 2019), epigenetic clocks 

trained in humans have not been strong predictors of age in other mammals (Petkovich et al., 

2017; Stubbs et al., 2017). Perhaps this is not surprising, as epigenetic clocks are formulated 

using regression techniques that select only a small subset of the available CpG sites (<500) 

out of millions of potential subsets that can be used to measure age equivalently (Field et al., 

2018).

Thus far, a major impediment to understanding the relationship between methylation and 

mammalian life stages has been our inability to characterize conserved epigenetic features in 

different mammals. Most studies of the human methylome use Illumina methylation arrays, 

which include oligonucleotide probes designed to explicitly measure the methylation states 

of >450,000 CpG sites (http://www.illumina.com/). Since a similar array platform has not 

yet been developed for other species, techniques such as whole-genome bisulfite sequencing 

(WGBS) have been used, which measure many CpGs without the need for a specific capture 

system but at relatively low coverage per sequencing run (Chatterjee et al., 2017). Other 

efforts, such as reduced representation bisulfite sequencing (RRBS), increase coverage for 

some CpGs but do not guarantee consistent measurements of the same sites across samples 

(Chatterjee et al., 2017). Therefore, what is needed is (1) to select a suitable model species, 

and (2) within this species, to develop a CpG capture system that can be more directly 

aligned with human methylation arrays.

Domestic dogs provide a unique opportunity to address these challenges (Gilmore and 

Greer, 2015; Kaeberlein et al., 2016). Dogs have been selectively bred by humans for 

occupation and esthetics (Ostrander et al., 2017), generating over 450 distinct breeds whose 

members share morphologic and behavioral traits. Most breeds derive from small numbers 

or popular sires, and dogs have been domesticated for only about 15,000–30,000 years 

(Vonholdt et al., 2010), leading to strong phenotypic and genetic homogeneity within breeds 
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(Dreger et al., 2016). Dogs share nearly all aspects of their environment with humans, 

including factors associated with aging such as diet and chemical exposure. They also 

experience similar levels of health observation and health care intervention as humans 

(Gilmore and Greer, 2015; Kaeberlein et al., 2016). While the average lifespan differs 

dramatically across breeds, there is also considerable variability within some breeds, such as 

the Labrador retriever. Despite extensive phenotypic differences, however, all domestic 

breeds are members of the same species with a similar developmental, physiological, and 

pathological trajectory as humans (Gilmore and Greer, 2015; Kaeberlein et al., 2016). 

Importantly for aging studies, dogs accomplish this progression in many fewer years than 

humans, generally fewer than 20. Finally, epigenetic clocks have been demonstrated in dogs 

(Thompson et al., 2017), establishing them as a system for studies of age-related epigenetic 

remodeling.

Here, we develop the dog as a model system for epigenetic aging, using a specifically 

designed CpG oligo-capture system to generate high quality methylation data that align 

directly to human methylomes. Comparison of each dog methylome to its nearest human 

counterparts reveals a conserved but nonlinear progression of epigenetic changes, with rapid 

remodeling in puppies, relative to children, which slows markedly in canine adulthood. We 

show that most of the conserved epigenetic changes occur within specific developmental 

gene networks, such that a set of 439 conserved CpG sites is sufficient to build a pan-species 

epigenetic clock of aging. Unlike previous clocks, which are predictive in a single species 

only, the conserved developmental clock translates to multiple species with relative 

accuracy.

RESULTS

Characterization of Dog Methylomes with Syntenic Bisulfite Sequencing (SyBS)

Commonly used techniques such as WGBS and RRBS measure large numbers of random 

CpGs, but such CpGs are often not present in regions conserved across species. To enable 

high quality evolutionary comparisons of dog methylomes with other mammals, we 

performed targeted-bisulfite sequencing to systematically characterize CpGs in regions of 

the dog genome that are syntenic with those measured by Illumina human methylome 

arrays. Since Illumina arrays have been used to characterize epigenetic aging in many 

human studies (Alisch et al., 2012; Hannum et al., 2013; Horvath, 2013), our goal was to 

create a high quality panel of dog methylomes with substantial coverage of CpGs noted in 

prior human datasets (Figure 2A). Our strategy, henceforth called synteny bisulfite 

sequencing (SyBS), was designed to capture approximately 90,000 CpGs of the 

approximately 232,000 conserved CpGs on the Illumina array (STAR Methods).

We applied SyBS to characterize the methylomes of 104 dogs, primarily consisting of 

Labrador retrievers and representing the entire lifespan, from 0.1 to 16 years at the time of 

blood draw (Figure S1A; Table S1). Libraries were sequenced to an average depth of 163×, 

with nine dogs removed due to lack of coverage. Captured CpG sites spanned the genome 

and were enriched for genomic regions that included exons, transcription start sites, and 

CpG islands (odds ratio >2.5 and p < 10−10 by Fisher’s exact test, Figure 2B). The 

methylation values associated with captured CpGs were similar to those obtained using 
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WGBS (Pearson correlation r > 0.85, Figure 2C) and showed excellent replication across 

independent captures from the same samples (r > 0.95, Figures 2D and S1B–S1F). As 

expected, SyBS achieved substantially higher coverage of syntenic regions compared with 

non-targeted reduced representation bisulfite methods (~13-fold increase, Figure 2E). For 

comparison, we obtained previously published methylation profiles from the blood of 320 

human individuals aged from 1 to 103 years at the time of sample isolation (Alisch et al., 

2012; Hannum et al., 2013). Based on these data, we identified 54,469 well profiled CpGs in 

both species, thus enabling systematic evolutionary studies of epigenetic changes during life 

(STAR Methods).

A Concordant but Nonlinear Relationship between Dog and Human Age

We observed the highest methylome similarities (Pearson correlation, STAR Methods) when 

pairing young dogs with young humans, or aged dogs with older humans. In contrast, the 

lowest similarities were obtained when pairing young dogs with old humans or vice versa 

(Figure 3A). The relationship between methylome similarity and age was lost upon 

permutation (FDR < 0.01; Figure S2A), which indicated that a conserved set of CpG sites 

are affected during aging in the two mammalian species. Notably, this signal was sufficiently 

strong to arise in an unsupervised methylome-wide analysis without sub-selection of 

markers. This result suggested that the conserved methylation changes with age in ribosomal 

RNA genes, noted previously (Wang and Lemos, 2019), extend more generally to the greater 

mammalian methylome. It contrasts with previous observations using epigenetic clocks, 

which did not find strong conservation across species, likely because these clocks are 

restricted to 80–300 CpGs, selected for optimal age prediction in humans independent of 

other species (Stubbs et al., 2017).

We next investigated whether the conserved methylation changes in dogs and humans follow 

a constant rate of change with age, with the rate constant depending on the lifespan of each 

species as suggested previously (Maegawa et al., 2017; Lowe et al., 2018), or whether there 

was evidence for a more complex trajectory. For this purpose, we assigned the age of each 

dog to the average age of its nearest humans by methylome-wide similarity (STAR 

Methods). This analysis revealed a monotonic, time-resolved, nonlinear relationship 

between dog and human age (Figure 3B considering the k = 5 nearest humans, Figures S2B–

S2G considering other k values). Similar results were obtained in a reciprocal analysis 

assigning each human to its nearest dogs (Figure 3C), as evidenced by the similarity in fitted 

functions: human_age = 17 ln(dog_age) + 33 (Figure 3B) and human_age = 16 ln(dog_age) 
+ 30 (Figure 3C). Therefore, we combined the reciprocal analyses to generate the single 

function: human_age = 16 ln(dog_age) + 31 (Figure 3D).

We found that this function showed strong agreement between the approximate times at 

which dogs and humans experience common physiological milestones during both 

development and lifetime aging, i.e., infant, juvenile, adolescent, mature, and senior 

(Lebeau, 1953; Bogin and Smith, 1996; Bartges et al., 2012) (Figure 3D). The observed 

agreement between epigenetics and physiology was particularly close for infant/juvenile and 

senior stages. For instance, the epigenome translated approximately 8 weeks in dogs (0.15 

years) to approximately 9 months in humans (0.78 years), corresponding to the infant stage 
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when deciduous teeth develop in both puppies and babies (Bogin and Smith, 1996; Bartges 

et al., 2012). In seniors, the expected lifespan of Labrador retrievers, 12 years, correctly 

translated to the worldwide lifetime expectancy of humans, 70 years (Fleming et al., 2011; 

CIA, 2013). For adolescent and mature stages, the correspondence was more approximate, 

with the epigenome showing faster changes for dogs, relative to humans, than expected by 

physiological tables (Inoue et al., 2015; Arias et al., 2017) (Figure 2D). Thus, the canine 

epigenome progresses through a series of conserved biological states that align with major 

physiological changes in humans, occurring in the same sequence but at different 

chronological timepoints during each species’ lifespan.

A conserved nonlinear and weaker epigenetic progression was also observed by comparing 

the dog methylomes to those measured previously from 133 mice (Petkovich et al., 2017) 

(Figures 3E and 3F). This weaker effect may be due to the limited number of mice sampled 

during the developmental period (Table S3). Nevertheless, the ability to translate age among 

these three diverse mammals indicates that shared physiology may yield conserved 

molecular transitions in epigenome remodeling with age.

Identification of Genes Exhibiting Conserved Methylation Dynamics with Age

To determine whether the conserved changes were concentrated within particular genes or 

gene functions, we examined CpG methylation states near 7,942 genes for which orthologs 

were present in all three species (dogs, humans, and mice, STAR Methods). This analysis 

identified 394 genes for which methylation values showed conserved time-dependent 

behavior across species (empirical p < 0.05, Figure S3; Table S2). To understand the 

underlying gene functions, we mapped them onto the parsimonious composite network 

(PCNet), a database of approximately 2 106 molecular interactions capturing physical and 

functional relationships among genes and gene products, in which each interaction has 

support from multiple sources (Huang et al., 2018). The genes clustered into five highly 

interconnected network modules (Figure 4), nearly all of which were enriched for 

developmental functions. Methylation changes at these developmental genes were 

concentrated near transcription start sites (Figure S4A) and in CpG islands and shores for all 

three species (Figure S4B). Four modules predominantly increased in methylation with age 

(FDR < 0.05) and included modules associated with synapse assembly (18 genes) and 

neuroepithelial cell differentiation (5 genes) and two modules associated with anatomical 

patterning (117 and 69 genes). These four modules were enriched for polycomb repressor 

targets, which are predominantly silenced in adult tissues (Xie et al., 2013). A fifth module 

was enriched in leukocyte differentiation and nucleic-acid metabolism (144 genes) and 

demonstrated decreasing methylation with age. We also noted that orthologs from all five 

modules were among the most highly conserved in DNA sequence in the mammalian 

genome, even accounting for high sequence conservation of developmental genes in general 

(Figure S5).

Further indication of the importance of developmental gene modules was observed when 

calculating dog-human methylome similarity using CpGs at developmental genes only 

versus a comparison using all CpGs except those at developmental genes (Figure S6; STAR 

Methods). This comparison showed that CpGs near developmental genes are both necessary 
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and sufficient to recapitulate the cross-species alignments of age observed earlier (Figure 3). 

Enrichment of age-related methylation increases in developmental genes has been previously 

observed in humans (Rakyan et al., 2010) and mice (Maegawa et al., 2010). Our findings 

extend such observations by highlighting developmental genes as predominant drivers of the 

ability to align mammalian methylomes and in specifying more precisely where in the 

developmental gene modules such changes occur.

Translating Age and Aging Effects Using a Conserved Epigenetic Clock

Epigenetic clocks have garnered recent interest due to their ability to translate an 

individual’s methylome to an accurate prediction of age (Hannum et al., 2013; Horvath, 

2013; Petkovich et al., 2017; Stubbs et al., 2017; Thompson et al., 2017; Wang et al., 2017). 

However, they have typically been applied to study methylome data in one species only, with 

less success in cross-species application (Stubbs et al., 2017). Therefore, in our final 

analysis, we examined whether the conserved developmental gene modules could be used to 

construct a conserved epigenetic clock capable of predicting age in multiple mammalian 

species.

In particular, we formulated a conserved development clock based on methylation values of 

the 394 CpGs within the conserved developmental gene modules we had identified earlier 

(Figure 4; STAR Methods). By training in dogs or alternatively mice, this clock could be 

used to score the age of a dog or mouse using its methylation profile. Implicit in this analysis 

was the translation of a dog methylome to its equivalent mouse age or vice versa (Figure 

5A). For baseline comparison, we also constructed single species methylome-wide clocks 

for dogs and mice as per the usual procedure (STAR Methods). In this case, the model was 

allowed to select the most optimal CpGs for age prediction from the entire methylome of 

each species (Figure 5A).

When training and predicting on individuals within a single species, the ages measured by 

the single species methylome-wide clocks were very accurate (dog rho = 0.99, Figures 5B 

and 5D; mouse rho = 0.86, Figures 5C and 5D) relative to the conserved development clocks 

(dog rho = 0.81; mouse rho = 0.78; Figure 5D). However, when applying a clock trained in 

one species to make predictions in the other, the ages predicted by the conserved 

development clock (dogs-to-mice rho = 0.73; mice-to-dogs rho = 0.71) were substantially 

more accurate than those of the single species methylome-wide clocks (dogs-to-mice rho = 

0.22; mice-to-dogs rho = 0.32; Figure 5D). In addition, clocks based on the developmental 

gene modules were more accurate than clocks based on methylation of ribosomal RNA 

sequences (rho = 0.6 dogs-to-mice and 0.5 mice-to-dogs) (Wang and Lemos, 2019). When 

applying the conserved development clock to mice treated with lifespan-extending 

interventions (STAR Methods), the epigenetic ages were 30% less, on average, than those of 

control mice (p < 10−6, Figure 5E). These same results were observed when using the 

development clock trained in dogs to predict mouse age (Figure 5F). Together, these results 

demonstrate that the methylation states of developmental gene modules can be used to 

construct a conserved model of age that is transferable between mammalian species. In 

contrast, previous models trained in a single species can appear to achieve extremely high 
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accuracy when testing in that same species, but these models do not readily transfer outside 

of the original species context.

DISCUSSION

By using targeted oligonucleotide capture (SyBS), we have produced methylomes of high 

quality for comparative studies among dogs and other mammals. Analysis of these data 

shows that multiple mammalian species experience conserved methylation changes during 

aging, and that the scope of these changes is methylome-wide. Second, the trajectory of 

changes followed by one species as it ages is not necessarily the same as that followed by 

another. In particular, dog methylomes remodel very rapidly in early life compared with the 

methylomes of their human counterparts. Our further analysis in this regard (Figure 3D) 

suggests that the rate of remodeling is not only determined by the lifespan of a species but 

also by the timing of key physiological milestones. Previously, CpG methylation states in 

humans were proposed to exhibit a nonlinear trajectory over time, with non-constant rates of 

change (Horvath, 2013). The analysis here demonstrates a different point, that methylation 

changes in one species can be nonlinear with respect to another.

We observe that epigenetic changes during aging center on highly conserved modules of 

developmental genes, in which methylation generally increases with age. Although the 

enrichment of developmental pathways has been generally observed in mammals previously 

(Ciccarone et al., 2018; Field et al., 2018; Horvath and Raj, 2018), our findings show that 

specific changes at these loci translate the effects of age and anti-aging interventions across 

species. While the biology of aging has historically been considered as separate from that of 

development (Miller and Nadon, 2000; Kowald and Kirkwood, 2016), their strong 

association, demonstrated here, supports a model in which at least some aspects of aging are 

a continuation of development rather than a distinct process.

Limitations and extensions of our findings are as follows. First, we have used DNA isolated 

from whole blood, for which age-dependent shifts in leukocyte populations have been 

described (Jaffe and Irizarry, 2014). In particular, previous studies have found that CD4+ T 

cells, CD8+ T cells, and B cells decline with age. Although it is possible that such conserved 

shifts may influence our findings, such decline occurs in both dogs (Greeley et al., 2001) and 

humans (Jaffe and Irizarry, 2014). Second, our study has focused exclusively on Labrador 

retrievers, a popular and heterogeneous breed for which we could collect large numbers of 

unrelated dogs in order to control for population structure. Distinct breeds exhibiting widely 

varying lifespans (Gilmore and Greer, 2015; Kaeberlein et al., 2016) could yield different 

age-translation functions.

Further efforts to characterize epigenetic changes across breeds and species may help to 

address these and broader questions. For example, does the timing of epigenetic changes 

early in life influence the overall lifespan of a species, or of an individual within that 

species? Does modulating the timing of developmental events affect lifespan? Again, 

comparisons of species or sub-species that experience developmental milestones at similar 

times but with different lifespans (such as distinct dog breeds) may help address these 

questions, providing critical and complementary data to inform the ongoing cross-species 
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aging studies (Kaeberlein et al., 2016), including clinical trials of aging interventions (Urfer 

et al., 2017).

Finally, our study has demonstrated that the methylome can be used to quantitatively 

translate the age-related physiology experienced by one organism (i.e., a model species like 

dog) to the age at which physiology in a second organism is most similar (i.e., a second 

model or humans; Figures 3 and 5). These results enable the methylome to act not only as a 

diagnostic readout of age in a single species, as per the usual epigenetic clock studies, but 

also for cross-species translation of age and physiological state of aging. Such translation 

may provide a compelling tool in the quest to understand aging and identify interventions for 

maximizing healthy lifespan.

STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Trey Ideker (tideker@ucsd.edu)

Materials Availability—This study did not generate new materials.

Data and Code Availability—The sequencing reads and processed files generated during 

this study are available at GEO (GSE146920). All original code is freely available for 

download at 10.5281/zenodo.3864683.

METHOD DETAILS

Annotations—Reference genomes were downloaded from Ensembl for dog (CanFam3.1), 

mouse (mm10) and human (hg19). Ensembl Biomart version 91 was used for gene, 3′UTR 

and 5′UTR annotations (Yates et al., 2016). CpG islands, repeat annotations, and chain files 

were downloaded from the UCSC Genome Browser (Rosenbloom et al., 2015). CpG shores 

were designated as regions 2 kilobases (kb) outside each CpG island, and CpG shelves were 

designated as regions 2kb outside of CpG shores. Promoters were designated as regions 2kb 

upstream and 100 basepairs (bp) downstream of the transcription start sites (TSS) based on 

gene annotations from Ensembl (Yates et al., 2016). Whole genes were divided into exonic 

and intronic sequences. Intergenic regions were then defined as the remaining regions of the 

genome after subtracting all other annotated regions. Definitions of one-to-one orthologs 

were downloaded from Ensembl Compara (Vilella et al., 2009) for dogs, humans and mice.

Public Datasets—The following datasets were obtained from Gene Expression Omnibus 

(GEO) or Sequence Read Archives (SRA) [number of individuals included in study in 

brackets]:

• GSE80672 (Petkovich et al., 2017): Methylomes from postnatal mice. Blood, 

Reduced Representation Bisulfite Sequencing (RRBS) method. [133]

• GSE36054 (Alisch et al., 2012): Methylomes from human children. Blood, 

Infinium 450K array. [35]
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• GSE40279 (Hannum et al., 2013): Methylomes from human adults. Blood, 

Infinium 450K array. [285]

• SRP065319 (Thompson et al., 2017): Methylomes from dogs and wolves. Blood, 

RRBS method [92].

Canine Samples—Information on each dog sample used, including age, breed, and 

source, is given in Table S1, with the age distribution also provided in Figure S1A. For 

samples sourced from NHGRI, domestic dogs were collected with owners’ signed consents 

in accordance with standard protocols approved by the NHGRI IACUC committee. Samples 

were collected at canine-centric events such as dog shows. Alternatively, owners were 

supplied with a mail-in kit which included instructions, tubes for blood draws and a general 

information sheet requesting the AKC number (when available), pedigree and date of birth. 

Blood draws were performed by licensed veterinarians or veterinary technicians. For 

samples sourced from UC Davis, blood was collected from privately owned dogs through 

the William R. Pritchard Veterinary Medical Teaching Hospital. Owners specified the breed 

of each dog. Standard collection protocols were reviewed and approved by the UC Davis 

IACUC. DNA was extracted either using the Puregene kit (Qiagen) or using the cell lysis 

protocol described by (Bell et al., 1981), followed by phenol/chloroform extraction with 

phase separation in 15-mL phase-lock tubes (5-Prime, Inc. Gaithersburg, MD, USA).

SyBS Target Selection—The strategy for syntenic bisulfite sequencing was to base our 

Illumina Human 450K probe locations were extended 50bp with respect to the strand of each 

probe. The resulting locations were mapped to the dog genome using liftOver (Rosenbloom 

et al., 2015) using default parameters. After excluding regions that mapped to sex, 

mitochondrial and unplaced contigs in the dog genome, we identified approximately 

230,000 probes that were syntenic between human and dogs. Hybridization probes were 

generated to target these regions using the Roche SeqCap-Epi platform. This process 

produced an 18.8 megabase sequencing library in dogs, containing approximately 90,000 

CpGs that were also profiled by the Illumina 450K array in humans.

SyBS Library Preparation and Sequencing—We followed the protocol specified by 

the Roche SeqCap-Epi platform. Briefly, approximately 500ng of lambda phage DNA 

(bisulfite-conversion control) was added to 1ug of dog DNA, then sheared to an average of 

175bp (Covaris). Sheared DNA was end-repaired, A-tailed and ligated to barcoded adapters. 

Adapter-ligated libraries were subjected to bisulfite treatment (Zymo EZ DNA methylation 

lightning kit) following manufacturer’s instructions. Bisulfite-treated libraries were cleaned 

and amplified using 25 cycles of PCR with a uracil-tolerant enzyme (Kapa). Libraries were 

pooled equimolarly into 4-plex or 6-plex hybridization capture reactions to a total of 1ug per 

reaction. Captured product was PCR amplified (10 cycles). Hybridizations were pooled 

before sequencing and split among 10 lanes on an Illumina HiSeq 4000 in 2×100bp cycles.

SyBS Data Processing—Reads obtained from sequencing were demultiplexed and their 

quality was verified using FastQC (Andrews et al., 2010). Reads were trimmed using 

TrimGalore (Krueger, 2015) (4bp) then aligned to a bisulfite-converted dog genome 

(CanFam3.1) using Bismark (v0.14.3) (Krueger and Andrews, 2011), which produced 
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alignments with Bowtie2 (v2.1.0) (Langmead et al., 2009) with parameters “-score_min 

L,0,−0.2”. Methylation values for CpG sites were determined using MethylDackel (v0.2.1) 

(Ryan, 2017). Custom Python scripts using BEDtools (v2.25.0) (Quinlan and Hall, 2010) 

were used to determine on-target reads. Optical PCR duplicates were determined using 

Picard tools (v1.141) (Picard Toolkit, 2019) and removed using Samtools (v0.1.18) (Li et al., 

2009). Coverage of syntenic regions was determined using the number of unique on-target 

reads that were orthologous to humans, divided by the expected sequencing space. Only 

CpG sites that were on-target, covered by at least five reads and present across 90% of 

samples were selected for further analysis. Samples missing more than 30% of CpGs were 

removed from further analyses resulting in the removal of nine dogs. Missing data for 

selected CpGs were imputed by performing k-nearest neighbors (k = 10) using fancyimpute 

in Python. To assess the concordance of methylation values obtained using SyBS with 

conventional approaches, we also sequenced 10 of the same dogs using whole-genome 

bisulfite sequencing (libraries prior to enrichment with SyBS probes). Reads were processed 

and aligned with the canine genome as described above. We saw an average Pearson 

correlation of r = 0.85 among these 10 samples (range 0.75 – 0.97) (Figure 2C). We also 

performed independent replicate hybridizations for 6 samples. We saw an average r = 0.97 

(range: 0.96 – 0.98) for these technical replicates (Figures 2D and S1B–S1F). We verified 

that lambda phage DNA exhibited complete conversion (>99.5%). We tested the significance 

of the enrichment of our captured sequences and genome region annotation using the LOLA 

package (Sheffield and Bock, 2016) in R (version 3.5.1) (R Core Team, 2018). Enrichment 

tests are performed using Fisher’s exact tests, with the possible ‘universe’ defined by 

restriction digestion fragmentation of autosomes in the canine reference genome.

Public RRBS Data Processing—For data generated using Reduced Representation 

Bisulfite Sequencing (RRBS), methods for alignment and CpG selection were identical to 

those described above. Since RRBS fragments are generated using restriction enzymes with 

specific recognition sites, optical PCR duplicates could not be removed and on-target CpGs 

were not determined. For evolutionary comparative analysis, we included 133 control mice 

aged between 3 months to 2.5 years (Petkovich et al., 2017). To compare the coverage of 

syntenic regions between SyBS and non-targeted bisulfite technology, we used a RRBS 

study in dogs and wolves (Thompson et al., 2017) (Figure 2E).

Human Methylation Array Data Processing—Illumina Infinium 450K methylome 

array data were quantile normalized using Minfi (Aryee et al., 2014) and missing values 

were imputed using the Impute package (Hastie et al., 2020) in R. These values were 

adjusted for cell counts as previously described (Gross et al., 2016). To enable comparisons 

across different methylation array studies, we implemented beta-mixture quantile dilation 

(BMIQ) (Horvath, 2013; Teschendorff et al., 2013) and used the median of the (Hannum et 

al., 2013) dataset as the gold standard. To mitigate residual batch effects, we selected human 

samples that clustered closely in the first two principal components using scikit-learn 

v0.19.2 (Pedregosa et al., 2011) and verified that such filtering had little effect on the 

distribution of ages. We also removed samples for which more than 10% of probes were not 

adequately detected. This procedure resulted in methylome profiles for 320 humans that 

could be compared to the SyBS-generated dog methylomes.
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Determining Orthologous CpGs—Human Illumina 450K methylation array CpGs were 

extended by 50bp with respect to the strand using BEDtools and mapped to the target 

genome (mouse or dog) using liftOver with “-minMatch=0.5”. We verified that the 

coordinate alignment obtained using 50bp was identical to that obtained using the exact 

coordinate (1bp) at “-minMatch=0.95”. This procedure allowed us to determine an exact 

orthologous region for each human CpG and each dog CpG. When multiple dog CpGs were 

assigned to one human CpG probe region, we took the average methylation value of the 

aligned CpGs in dogs. This procedure resulted in 54,469 dog-human orthologous CpGs for 

further analysis. To mitigate batch effects specific to sequencing and/or array platforms, we 

normalized the sequencing methylation values using BMIQ and performed quantile 

normalization using the preprocessCore package in R (normalize.quantiles.use.target 

function) (Bolstad, 2013).

For dog-to-mouse comparisons, CpGs that were separated by 1bp were merged into one 

region using BEDtools. Each region was then extended by 50bp. The resulting region files 

were aligned to the target genome using liftOver “-minMatch=0.5”. Only regions that were 

concordant between the two alignments (i.e., dog to mouse or mouse to dog) were selected 

for further analysis. CpGs that were assigned to the same aligned regions were averaged to 

generate 9,404 bins, consisting of 87,915 CpGs from dogs.

QUANTIFICATION AND STATISTICAL ANALYSIS

Dog-Human Pairwise Methylome Similarity—Methylation values of orthologous 

CpGs were normalized by subtracting the mean and dividing by the standard deviation over 

individuals (i.e., z-transformed, separately for each species). The resulting z-values represent 

the tendency to decrease or increase relative to the mean of each CpG within a species. 

Using these values we calculated the pairwise Pearson correlation between the methylomes 

of each dog-human pair. Correlation was computed across all orthologous CpG values using 

the SciPy Python package (Virtanen et al., 2020), forming a 95 × 320 (dog × human) 

methylome similarity matrix (Figure 3). We also created a coarsened version of this matrix, 

in which the pairwise similarities were averaged over two-year age windows in both species, 

forming an 8 × 51 (dog × human) methylome similarity matrix (MSA, Figure S2A).

Given this matrix, we evaluated the significance of association between age and methylome 

similarity using permutations. Specifically, we generated the following two-by-two 

contingency table:

Ages More Different AD(i,j)>AD Ages More Similar AD(i,j)≤AD

Methylomes more different MSA(i,j) ≤ MS Count1 Count3

Methylomes more similar MSA(i,j)> MS Count2 Count4

where MSAis the methylome similarity matrix, AD(i, j) is the age difference computed as | 

Age bindog –Age binhuman | and Count is the number of occurrences (cells within the MS 
similarity matrix) for which the table row and column conditions are met. Using these 

counts, we calculated the p-value using the one tailed Fisher’s exact test and compared this 
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p-value to that obtained when permuting the membership of dogs and humans in two-year 

age bins across 1000 permutations (Figure S2A).

k-nearest Neighbors Analysis—To achieve a robust assignment of reciprocal nearest 

neighbors, we used a strategy inspired by Context Likelihood of Relatedness (Madar et al., 

2010). Specifically, we z-normalized the MS methylome similarity matrix to form MSZ, as 

follows:

MSZrow(i, j) = max 0,
MSi, j − MSi *

σi *

MSZcolumn(i, j) = max 0,
MSi, j − MS * j

σ * j

MSZ(i, j) = mean MSZrow(i, j), MSZcolumn(i, j)

k-nearest neighbors were assigned to each dog or to each human with respect to MSZ 
values. This process was implemented in Python using scikit-learn.

Fitting the Epigenetic Age Transfer Function—The nearest neighbor analysis was fit 

using non-linear regression with the SciPy package in Python. The model fit was specified 

using the following formula:

Dog Age = A ∗ ln(Human age) + B

Here, “Dog age” was represented by the chronological ages of dogs, and “Human age” was 

the average age of the nearest human neighbors with respect to methylome similarity. The 

converse was performed as well, i.e., dog age was represented as the average age of the 

nearest dog neighbors and human age was the chronological age in humans. For the final age 

transfer function, the coefficients (A,B) were estimated by bootstrapping an equal number of 

both dogs and humans. The standard error was estimated using 1000 bootstraps.

Validation Using Mouse Methylomes—Dog-mouse methylome similarity was 

calculated identically as for dog-human comparisons. A k-nearest neighbors analysis (as 

described for dogs and humans above) was repeated using the orthologous CpGs for 

pairwise comparisons involving mice. The mouse methylome data had a highly canalized 

age distribution which was different from that of the dogs or humans in our study. That is, 

mice had been sampled at discrete ages, we therefore visualized these data according to 0.2 

year bins (Figure 3F).

Conserved Methylation Changes in Orthologs—We considered 14,652 one-to-one 

orthologs in dogs, humans and mice that were within 2.5kb of orthologous CpGs. Among 

these, we identified 7,934 orthologous genes for which methylation values were available. 
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Methylation values were then logit-transformed; multiple CpGs assigned to one gene were 

represented by the average methylation value. We assigned to each ortholog a ‘methylation 

conservation score’ using the following procedure. First, the age of each dog or mouse 

individual was translated to the equivalent human age using the epigenetic age translation 

functions built using the k-nearest neighbors analysis. We ranked all individuals according to 

their age in human years and divided this ranking into 15 quantile bins. Logit-transformed 

methylation values were averaged within each bin and species. For each gene and species we 

calculated the Spearman correlation between the gene’s methylation values and age. Genes 

were then ranked by sign(correlation) ∗ −log10(correlationp value) within each of the three 

species. We computed the Euclidean norm of the three ranks and sought genes with very low 

norms (for which methylation was consistently among the most increasing with age across 

species) or with very high norms (for which methylation was consistently among the most 

decreasing with age across species). Significance was determined using a two-sided 

empirical p-value < 0.05, yielding 394 genes.

We examined methylation within gene bodies by calculating the distance of each CpG 

relative to the transcription start site and normalized these distances by the gene length. We 

then grouped CpGs into 10 bins and calculated the average methylation using a rolling 

window (window = 3) among genes grouped according to their conservation status: 

conserved increasing or decreasing methylation with age and not conserved. We then 

calculated the difference between the oldest 20% and youngest 20% for each species. We 

repeated this analysis using all one-to-one orthologs or grouped according to their 

developmental gene status (Figure S4A). To test enrichment of genomic regions for 

conserved developmental genes, for each developmental gene, we annotated its underlying 

CpGs according to their genomic region (TSS, intergenic, 5′UTR, repeats, exonic, 3′UTR, 

intronic, CpG shelves, CpG shores, CpG islands). We then tested for enrichment using the 

Fisher’s exact test between conserved and not conserved developmental genes using a p-

value cutoff of < 0.005 for each species (Figure S4B).

Network Analysis—We downloaded the PCNet parsimonious composite human 

functional interaction network from (Huang et al., 2018) and subselected gene orthologs 

with significantly conserved methylation trajectories (see above) resulting in a subnetwork 

with 355 nodes and 2003 edges. We visualized the network using Cytoscape (Shannon et al., 

2003) (version 3.7) and performed community detection using clusterMaker2 (Shannon et 

al., 2003). To annotate modules, we performed functional enrichment using a 

hypergeometric test for each term within the Biological Process branch of the human Gene 

Ontology (GO) (Ashburner et al., 2000) and adjusted for false-discovery rate using a very 

strict Benjamini-Hochberg procedure (FDR <0.001) implemented using statsmodel in 

python. Significant GO terms were clustered according to gene-set similarity using 

Enrichment Map (Merico et al., 2011), and gene modules were clustered according to their 

Jaccard overlap, revealing high-level functional categories (Figure 4).

Developmental Genes Analysis—Genes were ranked according to their methylation 

conservation score (see above) and subdivided into 25 evenly spaced bins, separating genes 

with significantly conserved decreases or increases in methylation for a total of 27 bins. We 
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then obtained PhyloP (Siepel et al., 2006) sequence conservation scores according to the 

orthologous CpGs assigned to each gene. Finally, we averaged the PhyloP scores in each 

methylation conservation score bin, estimating the 95% confidence interval by bootstrapping 

(Figure S5). We assessed the significance of the interaction between methylation 

conservation score and developmental gene status using ANOVA.

We restricted to orthologous CpGs profiled across dogs, humans and mice (6,906 CpGs) that 

were within 2.5kb of the gene bodies of all orthologous genes (‘all CpGs’). From this set, we 

identified CpGs near development genes (‘devCpGs’); we also controlled for the number of 

CpGs with 100 randomly-sampled subsets of CpGs that were equal in size from those not 

near developmental genes (‘not devCpGs’). We calculated the methylome similarity (as 

described above) based on these CpG subsets for pairwise comparisons of species (dog and 

human, dog and mouse). For each pairwise comparison (Species 1, Species 2), we identified 

the 5-nearest neighbors in Species 2 for each individual of Species 1, then binned the actual 

age of Species 1 into five discrete bins and calculated the average neighbor age for each bin 

with the 95% confidence interval estimated by bootstrapping (Figure S6).

Conserved Development Clock Analysis—Dog and mouse epigenetic clocks were 

built with Elastic net (scikit-learn in Python) using either methylome-wide CpG values 

(~90000 CpGs across both species) or 394 CpG values associated with developmental gene 

modules (Figure 5). We refer to the ages predicted from this model as “epigenetic ages”. 

Hyperparameters were tuned using five-fold cross validation in the dog data. Since some 

other clocks in the literature use ten-fold cross validation, we also tested the parameters 

selected using a ten-fold cross-validation procedure. We found an increase in median 

absolute error (MAE) in this case, thus we proceeded with fivefold. Performance of the final 

model was assessed by Spearman correlation of actual versus epigenetic age (output of the 

Elastic net model) for 11 dogs which had not been used for training, and for the control mice 

described above. As controls in Figures 5E and 5F, we built 100 control clocks using 100 

randomly sampled sets of 394 CpGs that had been profiled in dogs and mouse but were not 

in developmental gene modules. For analysis involving lifespan-enhancing intervention 

mice, we obtained DNA methylation data profiled from whole blood from (Petkovich et al., 

2017), processed as described above. We removed GHRKO from further analysis, as 

principal component analysis using the 394 conserved CpGs revealed clustering due to 

treatment. All remaining mice used in this analysis are described in Table S3. We applied the 

epigenetic clock, trained in mice or trained in dogs, and evaluated the effect of longevity-

enhancing interventions using a log-likelihood ratio test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Oligo-capture sequencing of methylomes from 104 Labradors, 0–16 years old

• Methylome similarity translates dog years to human years logarithmically

• Conserved age-related changes predominately impact developmental gene 

networks

• Formulation of a conserved epigenetic clock transferable across mammals
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Figure 1. Physiological versus Epigenetic Change during Development and Aging
Aging yields similar physiological changes in humans and dogs, yet these changes occur 

along different time scales. Are these different timescales reflected in the progression of 

epigenetic changes observed during aging? If so, is this progression consistent with the 

adage “one dog year equals seven human years,” or does it suggest a different cross-species 

alignment of time?
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Figure 2. Interrogating Mammalian Methylomes by Syntenic Bisulfite Sequencing (SyBS)
(A) Strategy used to profile and compare CpG methylation states within blocks of synteny in 

the mammalian genome. Capture oligonucleotide design: regions of DNA (blue blocks) 

characterized by the Illumina 450K methylation array in humans are mapped to their 

syntenic region in dogs using whole-genome alignments between the two species. These 

regions are used to design oligonucleotides (yellow stars) for capture and enrichment of 

DNA in the second species. Data generation: A sequencing library is constructed from high 

quality DNA and bisulfite converted, analogously to WGBS. Syntenic sequences are 

captured, sequenced, and aligned to the mammalian genome under study. CpG methylation 

values are called and then filtered to select those conserved with humans for further analysis. 

For more details see STAR Methods.

(B) Pie charts showing representation of targeted genomic regions. Regions exhibiting 

significant enrichment (p < 10−10) are indicated using asterisks with * indicating odds ratio 

> 2.5 and ** odds ratio > 4. UTR, untranslated region; TSS, transcription start site.

(C) Ten dog methylomes were sequenced twice, either with enrichment for syntenic regions 

(SyBS hybridization) or without enrichment (WGBS). Methylation values (per CpG site per 

animal) are shown for SyBS (y axis) versus WGBS (x axis). Sites were considered if they 

were covered by >5 reads with both SyBS and WGBS.

(D) Concordance of SyBS values for one canine DNA sample (S1), for which two 

independent captures were performed. In (C) and (D) the color captures the density of 

observations at each point (darker colors represent higher densities), and the r value is the 

Pearson correlation.

(E) Average coverage of syntenic segments versus total reads in millions, contrasting SyBS 

with RRBS.
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Figure 3. A Nonlinear Transformation from Dog-to-Human Age
(A) Dog-human methylome similarities (Pearson correlation, blue-red color range) are 

shown with dogs and humans ranked from youngest to oldest. Data are lightly smoothed in 

both dimensions using Gaussian interpolation in matplotlib.

(B) The age of each dog methylome (x axis) is plotted against the average age of the five 

nearest human methylomes (y axis), 95 dogs are depicted.

(C) Reciprocal plot in which the age of each human methylome (y axis) is plotted against 

the average age of the five nearest dog methylomes (x axis), 320 humans are depicted.

(D) Logarithmic function for epigenetic translation from dog age (x axis) to human age (y 

axis). Outlined boxes indicate the approximate age ranges of major life stages as 

documented qualitatively based on common aging physiology. Juvenile refers to the period 

after infancy and before puberty, 2–6 months in dogs, 1–12 years in humans; adolescent 

refers to the period from puberty to completion of growth, 6 months to 2 years in dogs, 

approximately 12–25 years in humans; Mature refers to the period from 2–7 years in dogs 

and 25–50 years in humans; Senior refers to the subsequent period until life expectancy, 12 

years in dogs, 70 years in humans. Dog life stages are based on veterinary guides and 

mortality data for dogs (Fleming et al., 2011; Bartges et al., 2012; Inoue et al., 2015). 

Human life stages are based on literature summarizing life cycle and lifetime expectancy 

(Bogin and Smith, 1996; CIA, 2013; Arias et al., 2017). Black dots on the curve connect to 
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images of the same yellow Labrador taken at four different ages (courtesy of Sabrina and 

Michael Mojica, with permission) and to images of a representative human at the equivalent 

life stages in human years (photos of Tom Hanks drawn from a public machine-learning 

image repository, Chen et al., 2015).

(E) Mouse-dog methylome similarities shown as in (A).

(F) Data from (E) are summarized by sorting mice according to 0.2-year bins (x axis) and, 

for each mouse, plotting the average age of the 5 nearest dogs by methylome similarity (y 

axis). Points illustrate the mean of each bin and bars represent the 95% confidence interval 

obtained from bootstrapping.
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Figure 4. Conserved Lifetime Methylation Changes Aggregate in Developmental Networks
Genes exhibiting conserved age-related methylation behavior were mapped onto a 

composite molecular interaction network which was subsequently clustered to reveal five 

major modules, labeled according to enriched Gene Ontology functions (STAR Methods). 

Colors represent the conserved direction of change with age, with red representing genes 

that increase in methylation with age and blue representing genes that decrease in 

methylation with age. Heatmaps show the conserved methylation patterns of a random 

subset of genes in each module. Columns represent distinct orthologs, while rows represent 

the average values of all species ranked according to their age in human years and divided 

into 15 age bins (quantiles). Values are normalized according to the mean and standard 

deviation of methylation for each ortholog. The fractional species composition of each bin is 

visualized in the legend.
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Figure 5. A Conserved Development Clock Measuring Age and Physiological Aging
(A) Construction of epigenetic clocks. Four clocks are constructed, depending on whether 

the training data are from dogs or mice and whether the input features are from all 

methylome-wide CpGs or from CpGs in conserved developmental modules only. All four 

cases yield a regression model for predicting age from CpG markers (STAR Methods).

(B) Scatterplot of predicted versus actual ages for the dog methylome-wide model.

(C) Scatterplot of predicted versus actual ages for the mouse methylome-wide model.
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(D) Performance of single species methylome-wide clocks (gray) or conserved 

developmental clocks (turquoise) as measured by the Spearman correlation between 

predicted and actual ages within species or across species.

(E) The conserved development clock distinguishes the effects of lifespan-enhancing 

treatments (orange) from control treatments (gray). For each treatment, mouse epigenetic 

ages are measured (y axis; conserved development clock trained in mice) and plotted against 

actual mouse ages binned in 0.1-year bins (x axis). Mean ± 95% confidence intervals shown 

for each bin and each observation.

(F) As for (E) but training the conserved development clock using data for dogs. For each 

treatment (orange lifespan-enhancing; gray control), epigenetic ages of each mouse are 

measured and plotted against actual mouse ages binned in 0.1-year bins (x axis). * denotes p 

< 0.05 in all panels.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Labrador retrievers whole blood samples UC Davis N/A

Labrador retrievers whole blood samples NHGRI N/A

Critical Commercial Assays

Kapa HTP Library Prep Illumina Roche KK8234

SeqCap Adapter kit A Roche 7141530001

SeqCap Adapter kit B Roche 7141548001

SeqCap Epi Developer S Roche 7139071001

SeqCap Epi Developer Reagent Roche 6684335001

SeqCap EZ HE-Oligo Kit A Roche 6777287001

SeqCap EZ HE-Oligo Kit B Roche 6777317001

VK SeqCap Epi Reagent Kit plus Roche 7185723001

Seqcap EZ Pure Capture Bead Kit Roche 6977952001

Zymo EZ DNA methylation Zymo 11-334

Kapa Library qPCR quantification Roche KK4824

Bioanalyzer (DNA 1000) Agilent 5067-1504

Bionalyzer machine Agilent 2938C

Kapa HiFi HotStart Uracil Polymerase Roche KK2801

Covaris microTUBES Covaris 520166

Ampure beads Beckman Coulter A63881

HiSeq 4000 Reagent kit Illumina PE-410-1001

Deposited Data

Raw and analyzed data This paper GEO: GSE146920

Code and associated files This paper https://doi.org/10.5281/zenodo.3864683

Dog genome (CanFam 3.1) Yates et al., 2016 http://dec2017.archive.ensembl.org/

Mouse genome (mm10) Yates et al., 2016 http://dec2017.archive.ensembl.org/

Human genome (hg19) Yates et al., 2016 http://dec2017.archive.ensembl.org/

CpG Islands & repeat regions Rosenbloom et al., 2015 https://hgdownload.soe.ucsc.edu/downloads.html

Gene & ortholog annotations Vilella et al., 2009 http://dec2017.archive.ensembl.org/

Mouse RRBS data Petkovich et al., 2017 GEO: GSE80672

Human (children) 450K array Alisch et al., 2012 GEO: GSE36054

Human (adults) 450K array. Hannum et al., 2013 GEO: GSE40279

Dog and wolf RRBS Thompson et al., 2017 SRA: SRP065319

Gene Ontology Ashburner et al., 2000 http://geneontology.org/docs/download-ontology/

Software and Algorithms

LiftOver Rosenbloom et al., 2015 http://hgdownload.soe.ucsc.edu/
downloads.html#utilities_downloads

FASTQC N/A http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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REAGENT or RESOURCE SOURCE IDENTIFIER

TrimGalore (v0.4.5) N/A http://www.bioinformatics.babraham.ac.uk/projects/
trim_galore/

Bismark (v0.14.3) Krueger and Andrews, 2011 http://www.bioinformatics.babraham.ac.uk/projects/
bismark/

MethylDackel N/A https://github.com/dpryan79/MethylDackel

Picard Tools (v1.141) N/A https://broadinstitute.github.io/picard/

SAMtools Li et al., 2009 http://www.htslib.org/

BEDtools (v2.25.0) Quinlan and Hall, 2010 https://bedtools.readthedocs.io/en/latest/

fancyimpute N/A https://pypi.org/project/fancyimpute/

Minfi (R) Aryee et al., 2014 https://bioconductor.org/packages/release/bioc/html/
minfi.html

Impute (R) Hastie et al., 2020 https://www.bioconductor.org/packages/release/bioc/html/
impute.html

Modified beta-mixture quantile dilation 
(BMIQ, R)

Horvath, 2013; Teschendorff et 
al., 2013

PMID: 24138928; Additional File 24

LOLA (R) Sheffield and Bock, 2016 https://bioconductor.org/packages/release/bioc/html/
LOLA.html

preprocessCore (R) Bolstad, 2013 http://bioconductor.org/packages/release/bioc/html/
preprocessCore.html

statsmodel (v0.8.0 Python) Perktold et al. http://www.statsmodels.org/stable/index.html

SciPy (v1.1.1 Python) Virtanen et al., 2020 https://www.scipy.org/

scikit-learn (v0.19.2 Python) Pedregosa et al., 2011 https://scikit-learn.org/stable/

Cytoscape (v3.7) Shannon et al., 2003 https://cytoscape.org/download.html

clusterMaker2 Shannon et al., 2003 http://apps.cytoscape.org/apps/clustermaker2

Enrichment Map Merico et al., 2011 http://apps.cytoscape.org/apps/enrichmentmap
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