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Abstract

Studying how diverse human populations are related is of historical and anthropological interest, 

in addition to providing a realistic null model for testing for signatures of natural selection or 

disease associations. Furthermore, understanding the demographic histories of other species is 

playing an increasingly important role in conservation genetics. A number of statistical methods 

have been developed to infer population demographic histories using whole-genome sequence 

data, with recent advances focusing on allowing for more flexible modeling choices, scaling to 

larger data sets, and increasing statistical power. Here we review coalescent hidden Markov 

models, a powerful class of population genetic inference methods that can utilize linkage 

disequilibrium information effectively. We highlight recent advances, give advice for practitioners, 

point out potential pitfalls, and present possible future research directions.

1. Introduction

Using genetic data to understand the history of a population has been a long-standing goal of 

population genetics [1], and the emergence of massive data sets with individuals from many 

populations [2–4], often including ancient samples [5], have enabled the inference of 

increasingly realistic models of the genetic history of human populations [6–8]. The 

progress in other species is no less impressive, with demographic models inferred for dogs 

[9], horses, [10], pigs [11], and many others.

These demographic models are frequently of interest in their own right for historical or 

anthropological reasons, and failing to account for demographic history when performing 
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tests of neutrality [12], disease associations, [13], or recombination rate inference [14, 15] 

can lead to spurious results. Demographic models also play an important role in 

conservation genetics, informing breeding strategies for maintaining genetic diversity in 

endangered populations [16].

Yet, inferring complex demographic models- often including multiple populations with 

continuous migration, admixture events, and changes in effective population size is 

challenging both statistically and computationally, and numerous methods have been 

developed to address this problem. Even under neutral evolution, computing the likelihood 

of observing a set of genotypes given a demographic model is computationally and 

analytically intractable. Hence, demographic inference methods must make simplifying 

approximations and generally fall into three classes: those based on allele frequencies; those 

based on identity- by-descent (IBD) or identity-by-state (IBS); and coalescent hidden 

Markov models (coalescent-HMMs).

Allele frequency-based methods use the multipopulation sample frequency spectrum (SFS) 

to infer either parametric [17–21] or non-parametric [22] models. For computational 

purposes, these methods assume that all loci are independent, an assumption violated by 

physically-linked loci, and thus ignore the rich linkage information (although [23] relaxes 

this to allow pairwise dependencies). Yet, these methods are very fast, with recent methods 

scaling to data sets with hundreds of individuals from tens of populations [21], making them 

ideal for quickly exploring many potential models (e.g., testing models with different 

number of admixture events). Nevertheless, there are concerns about statistical identifiability 

([24], but see [25]), power [26, 27], and stability [28].

IBD- and IBS-based methods use patterns of pairwise haplotype sharing to infer 

demographic models, matching the distribution of observed IBD or IBS tract lengths to the 

distribution expected under the inferred demographic model. While IBD-based methods, 

such as [29–31], can be powerful especially for learning about the recent past they rely on 

having access to unobserved IBD tracts. Many methods have been developed for inferring 

IBD tracts [32, 33], but these rely either explicitly or implicitly on the unknown 

demographic history of the samples, resulting in a chicken/egg problem. The effect of these 

assumptions on IBD-based methods has not been thoroughly explored, although see [34]. To 

sidestep this issue, [35] works directly with IBS tracts, a promising direction for further 

methodological development.

The focus of this review is the final class of methods: coalescent-HMMs. Below, we provide 

a historical overview of coalescent-HMMs; explore recent advances; discuss caveats, 

pitfalls, and best practices for applying coalescent-HMMs to data; and conclude with open 

problems and promising future research directions.

2. A brief history of coalescent-HMMs

Coalescent-HMMs can trace back to the seminal work of Wiuf and Hein [36]. The 

coalescent — a stochastic model of the genealogy of a sample of homologous chromosomes 

— was first developed for a single nonrecombining locus [37] and then extended to 
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incorporate recombination [38]. The coalescent had been thought of as a process through 

time, but Wiuf and Hein [36] formulated it as a process along the genome. This sequential 

coalescent is very complex and non-Markovian (the genealogy at a locus depends on the 

genealogies at all previous loci), but simple, yet highly accurate, Markovian approximations 

were subsequently proposed (the sequentially Markovian coalescent; SMC) [39–42].

Under the SMC, observed sequence data are modelled in a hidden Markov model (HMM) 

[43] framework by treating the genealogy of the sampled individuals at a given locus as an 

unobserved, latent variable. Because the demographic model impacts the distribution of 

genealogies (e.g., without migration, samples from different populations cannot have a 

common ancestor more recent than the divergence of those populations) and the observed 

sequence data are directly dependent on the underlying genealogy, coalescent-HMM 

methods can be extremely powerful. Furthermore, the HMM framework integrates over all 

possible genealogies when inferring demographic models — even if there is substantial 

uncertainty about the genealogy of a given sample, the set of genealogies likely to have 

given rise to that sample is still informative about its demographic history.

In principle, the HMM framework enables efficient inference of demographic parameters, 

but there are a number of complications. First, except for rare special cases (e.g., Kalman 

Filters [44] and iHMMs [45]), HMM algorithms require a finite state space for the latent 

variables; this is problematic in the coalescent- HMM case since the branch lengths of the 

genealogy at a given locus are continuous and can take an uncountably infinite number of 

values. All coalescent-HMMs avoid this issue by discretizing time. Having a finite state 

space is not sufficient for efficient inference, however, as the number of tree topologies 

grows super-exponentially in the sample size, making the full coalescent-HMM impractical 

for all but the smallest sample sizes. The menagerie of coalescent-HMM methods then arises 

by making different approximations to this idealized coalescent-HMM: instead of tracking 

the entire genealogy of the sample as a latent variable, these methods only track some 

features or subset of the genealogy.

Briefly, CoalHMM [46, 47], developed to study different species, tracks only the topology of 

the genealogy and in which branch of the species tree the lineages coalesce. CoalHMM 

cannot scale to more than a few species. PSMC [48] can only be applied to a pair of 

haplotypes, but tracks their genealogy exactly, up to the discretization of time. MSMC [49] 

can use more than two haplotypes, but only tracks the time to the first coalescence event and 

the individuals involved in it. The first version of diCal [50], inspired by the copying model 

of [51] and subsequent work on conditional sampling distributions (CSDs) [52, 53], 

considers a particular haplotype and tracks when and with which other haplotype it first 

coalesces. PSMC makes the fewest simplifying assumptions, but as it can only be applied to 

two haplotypes it is less powerful than MSMC or diCal, especially in the recent past.

Furthermore, these methods differ in the types of demographic models they can infer. 

PSMC, MSMC, and diCal v1 all infer piece-wise constant population size histories for a 

single panmictic population. CoalHMM and MSMC are capable of making inferences about 

multiple populations: CoalHMM fits simple parametric models, and MSMC performs non-

parametric inference, reporting “cross-coalescence rate” curves (CCRs). While CCRs have 
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been interpreted in terms of divergence times [4, 49], an exploration of what models give 

rise to a particular CCR has not been performed: if the goal of a study is to fit a particular 

demographic model (e.g., a two population isolation migration model), CCR curves can be a 

useful diagnostic, but are difficult to interpret and cannot replace parametric model fitting. 

All of the coalescent-HMMs discussed here are summarized visually in Figure 1.

3. Recent advances

In response to the aforementioned shortcomings, there has been much progress in 

coalescent-HMM methodology. In particular, diCal version 2 allows for the parametric 

inference of more complex demographic models involving multiple populations, and SMC+

+ and ASMC push the boundaries of scalability for coalescent- HMMs.

Building on diCal v1 [50] and advances to the CSD framework [54, 55], diCal v2 [56] was 

developed to perform parametric inference of essentially arbitrarily complex demographic 

models, including estimating divergence times, continuous and pulse migration, and 

population sizes with possible exponential growth. The method can scale to tens of 

haplotypes and has been used on models with three populations, but can handle arbitrarily 

many populations at increased computational cost. Like diCal v1, version 2 also considers a 

particular haplotype, and keeps track of when and with which other haplotype it first 

coalesces — these coalescence events tend to happen in the recent past making diCal well-

powered to investigate recent history, such as the peopling of the Americas [7, ]. diCal v2 

has also been used in a hypothesis testing framework: in [57, Supplementary Information, 

section 18.4] a null model of a clean split between two populations was tested against a 

model of gene flow following that split. Furthermore, the CSD framework used by diCal v2 

allows it to infer local ancestry or admixture, which was recently used to infer tracts of 

Neanderthal introgression in modern humans [58].

SMC++ [59] combines the scalability of SFS-based methods with the simplicity of PSMC. 

Like PSMC, it does not make assumptions beyond the SMC, and also does not require 

phased data. SMC++ tracks the coalescence time of a single “distinguished” pair of lineages, 

but then computes the likelihood of observing the sequence data of both the distinguished 

lineages and the rest of the sample. The simplicity of the hidden state allows SMC++ to 

scale to sample sizes in the hundreds, about an order of magnitude larger than any other 

coalescent-HMM presented above, giving it substantial power in both the recent and ancient 

past. It also achieves a substantial speedup by taking advantage of the fact that genotype data 

contain long stretches of non-segregating loci which may be effectively “skipped over” — 

an idea similar to [60]. Furthermore, instead of inferring piece-wise constant population 

sizes, SMC++ fits population sizes as smooth splines, reflecting a more realistic scenario of 

non-instantaneous population size changes. SMC++ is also capable of inferring divergence 

times for a pair of populations but makes the assumption that there was no migration after 

the populations diverged, which may not always be appropriate.

Recently, ASMC [61] extended SMC++ to genotype array data by accounting for SNP 

ascertainment bias. ASMC also takes advantage of certain symmetries when computing 

likelihoods in the underlying HMM to achieve extremely fast runtimes — an idea first 
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explored in [62]. Its speed allowed ASMC to be run on all pairs of haplotypes from 113,756 

phased British individuals [2] although still at considerable computational cost.

To compare these methods, we performed a small simulation study shown in Figure 2. We 

considered four scenarios:

• A bottleneck.

• Constant size (Ne = 104).

• An isolation-with-migration model involving two populations.

• Exponential growth beginning 500 generations ago.

For each scenario, we used msprime [63] to simulate 10 replicate data sets each consisting of 

30 haploids with eight 125 Mb chromosomes per haploid. The code used to simulate data 

and infer population sizes is fully reproducible and available at https://github.com/terhorst/

coal_hmm_review.

4. Caveats, pitfalls, and best practices

Despite their power and flexibility, coalescent-HMMs are not without their pitfalls. All 

coalescent-HMMs contain tuning parameters that are crucial for good performance. A 

critical factor is the way that time is discretized. Finer discretization leads to a more accurate 

approximation, but the number of discretization points directly impacts the runtime, so care 

is needed to balance computational and accuracy considerations. Additionally, all of the 

methods discussed above, save SMC++, group adjacent loci and assume that they have the 

same genealogy. This assumption decreases the runtime substantially, but is certainly 

violated in practice. Depending on the method and application, it may be acceptable to 

perform the grouping at a kb scale, but care should be taken that such grouping does not 

influence the results. Furthermore, the likelihoods optimized by coalescent-HMMs — and 

demographic inference methods more broadly — tend to have many local optima. Thus, 

different initializations of the methods will likely yield different results, making it crucial to 

take the best of several runs, seeded with different initializations, as the final inferred model.

Users should also be careful about model choice. As an example, SMC++ infers population 

splits in the absence of gene flow. If there has been pervasive migration between the 

populations of interest, then the model inferred by SMC++ will not be reflective of reality. 

Additionally, even seemingly non-parametric methods, like PSMC, make implicit 

assumptions such as the data coming from a single panmictic, neutrally evolving population. 

Recent studies [64, 65] used simulated data to investigate these model violations and showed 

that pervasive selective sweeps or population structure bias coalescent-HMMs. Another 

study [66] showed that when applied to simulated data, coalescent-HMMs infer models that 

have an expected SFS similar to that of the data, but when applied to real data the SFS of the 

inferred models does not match that of the data. This suggests that real data violate the 

idealized models that are commonly used for simulation and inference.

We also urge caution in over-interpreting the results of any demographic inference method. 

For instance, all methods infer “effective population sizes”, defined as the inverse 
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coalescence rate for a pair of haplotypes. Under many models effective population size is 

correlated with census population size, but does not need to be; e.g., a structured population 

will have a larger effective size than a panmictic population of the same census size.

To avoid the aforementioned pitfalls, we recommend using multiple methods utilizing 

different aspects of the data, such as frequency-based methods and coalescent-HMMs. While 

the exact models inferred will differ between methods, one can have some confidence in 

aspects of the model that are robustly inferred across methods. We also recommend using 

the results of either a pilot run of the coalescent-HMM or the results of another method (or 

even PCA [67, 68], or STRUCTURE-like programs [69–72]) to inform model selection — 

e.g., if the data appear to come from unadmixed populations based on this initial fit, it may 

be appropriate to assume a clean split model instead of modeling gene flow. After fitting a 

model, it is crucial to measure goodness-of-fit, for example by comparing the SFS and 

MSMC’s CCR curves for data simulated from the inferred models to those computed 

directly from the real data.

It is also important to understand sources of bias and noise present in data. Because most 

coalescent- HMMs make use of both segregating and non-segregating sites it is crucial to 

use “masks” indicating which regions of the genome have been reliably genotyped. 

Additionally, when working with ancient DNA showing an excess of transitions due to 

postmortem cytosine deamination [73], we have found that restricting analysis to only 

transversions and adjusting the mutation rate correspondingly improves inference.

Finally, as with any statistical analysis, it is important to study uncertainty in the inferred 

model, e.g., by bootstrapping, either parametric via simulation or non-parametric by 

resampling the data as in [48]. While parametric bootstrapping is more straightforward, it is 

only capable of estimating uncertainty in the estimation procedure, whereas non-parametric 

bootstrapping captures uncertainty in both modeling and estimation, but cannot reveal bias 

in the estimates. Note that in demographic inference, bootstrapping does not produce 

statistically valid confidence intervals, if the data are used to perform model selection prior 

to estimating statistical uncertainty. However, providing some quantification of uncertainty 

is still important.

5. Outlook

While there has been much recent work on improving the flexibility, and computational and 

statistical efficiency of coalescent-HMMs, there are still a number of open problems and 

interesting directions for future research.

As alluded to above, when the sample size is greater than 2, every coalescent-HMM tracks 

only a part of the genealogy of the whole sample. Such choices are based on intuition and 

are made primarily for analytic convenience to ensure computational tractability. Tree length 

has recently been explored as such a choice [74]. Finding optimal ways of encoding 

genealogical information in a small number of discrete parameters remains a challenging 

open problem.
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While coalescent-HMMs work extremely well on simulated data, they, like most inference 

methods in population genetics, are less stable on real data [66]. This is likely due to 

rampant model misspecification: coalescent-HMMs make many unrealistic assumptions, 

such as assuming constant recombination [75, 76] and mutation [77–79] rates across the 

genome. In addition, all methods must simplify the “true” demographic model: reality is 

always more complicated than any model with a handful of parameters, presenting a need 

for more robust methods.

A major challenge, especially in studying non-model organisms, is that with the exception of 

PSMC and SMC++, coalescent-HMMs are currently unable to handle unphased data. 

Overcoming this challenge is an important task for future methods.

Lastly, despite their excellent behavior in practice, our understanding of coalescent-HMMs 

is based entirely on intuition and numerical experiments. In contrast to frequency-based 

methods, which have a rich literature on their theoretical properties [24–28], coalescent-

HMMs are poorly understood from a theoretical perspective. While there has been some 

work on how accurately demographic history can be inferred directly from genealogies [80, 

81], in the more realistic coalescent-HMM setting even the basic question of whether 

demographic models are statistically identifiable is unanswered
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Figure 1: 
The sequentially Markovian coalescent views the genealogy relating a sample of individuals 

as a sequence of trees along the genome. The number of possible trees relating a sample 

grows super exponentially with sample size, making such a model computationally 

intractable for inference. The commonly used coalescent-HMMs make various 

simplifications to this full process. PSMC, SMC++, and ASMC only track the genealogy of 

a “distinguished” pair of haplotypes. PSMC ignores the rest of the sample, while SMC++ 

and ASMC use the other samples to inform the genealogy of the distinguished pair. ASMC 

was designed to work on genotype array data and so skips over sites not included on the 
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array (middle genealogy). MSMC tracks only the most recent coalescence event in the 

whole sample, while diCal tracks the first coalescence event involving a particular 

haplotype.
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Figure 2: 
Performance of various coalescent-HMMs on simulated data. The scenarios considered here 

are: a population experiencing a sharp bottleneck; a single panmictic population of constant 

size; samples from a large population that is exchanging migrants with a smaller population; 

and a population that has recently experienced exponential growth. Each scenario has 10 

replicate data sets, with each data set containing 30 haploids with eight 125 Mb 

chromosomes per haploid. PSMC was run with the options ‘-N 25 -p 4+20*3+4’ on a single 

pair of haploids. MSMC was run with the default hyperparameter settings with the 

‘fixedRecombination’ flag, using only 4 of the 30 haploids. The same 4 haploids were used 

for diCal v2, and inference was performed by taking the composite likelihood over all pairs 

of those 4 haplotypes, and running 30 EM iterations. SMC++ was run with the ‘-timepoints 

33’ and ‘-thinning 500’ options.
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